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Abstract

We present a new algorithm for generation of a random walk on

a 2-dimensional sphere. The algorithm is obtained by viewing the 2-

sphere as the equator in the 3-sphere surrounded by an infinitesimally

thin band with boundary which reflects Brownian particles and then

sapplying known effective methods for generating Brownian motion

on the 3-sphere. To test the method, the diffusion coefficient was

calculated in computer simulations using the new algorithm and, for

copmparision, also using a commonly used method in which the par-

ticle takes a Brownian step in the tangent plane to the 2-sphere and

is then projected back to the spherical surface. The two methods are

in good agreement for short time steps, while the method presented

in this paper continues to give good results also for larger time steps,

when the alternative method becomes unstable.
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1 Introduction

Brownian motion is of fundamental importance for understanding a large

number of processes in almost any scientific field.1 The translational diffu-

sion in ordinary Euclidean space can be modelled by a random walk generated

from a Gaussian distribution.2 In many applications, however, one is instead

interested in diffusion processes on a curved surface, usually the sphere, S2,

of fixed radius in three dimensional Euclidean space, R
3. The examples range

from diffusion of proteins or fluorescent marker molecules in cell membranes

or on other types of particles,3−6 to the swimming of bacteria7 or the mi-

gration of elephant seals in the oceans.8 The random walk on S2 has also

been analyzed in connection with spin dynamics9−11 or surface smoothing

in computer graphics applications12, as well as in more general statistical

analyses.13−14 An important application of random motion is in Brownian

dynamics simulations when modeling the structure and dynamic processes

in colloidal or polymer systems.15−17 The random part of this motion is gen-

erated by drawing random numbers from the solution of the corresponding

diffusion equation for the particular geometry. In flat R
n, this is reasonably

straightforward by generating Gaussian random numbers.16

For a diffusion process on unit sphere, Sn, in (n + 1)-dimensional Eu-

clidean space R
n+1 however, it is more involved. For particles moving on S3,

a random walk can be generated for any physically reasonable set of param-

eters by defining the diffusion coefficient, the radius, and the time step.18 On

S2, however, the standard solution of the diffusion equation is not in a form

suitable for easily generating random numbers necessary in a Brownian dy-
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namics simulation. On spheres of arbitrary dimensions, Sn, there are closed

formulas for odd but not for even n, see e.g. Caillol19 or Taylor20. One can

also note that in Monte Carlo simulations there is no explicit time depen-

dence, and the random displacements can be chosen more freely, as long as

one samples the phase space in a correct way, given a certain ensemble.21

In simulations mimicking the diffusion of particles on S2, a commonly used

approach is to approximate the curved surface with its tangent plane and

use a two-dimensional Gaussian distribution to generate the random walk.

This is valid for small time steps and large radii. We propose below a novel

and more exact method to generate a random walk on S2 useful in molecular

simulations. Our method is obtained by viewing S2 as an equator of the 3-

dimensional sphere S3 surrounded by a thin band S2× [−ǫ, ǫ] centered on the

equator, letting the boundary of the band reflect Brownian particles, using

known effective methods to generate random walks on S3,18 and taking the

limit as ǫ → 0.

2 Theory

To generate a diffusion process in a computer simulation, one can draw ran-

dom numbers from the probability distribution corresponding to the solution

of the diffusion equation given the appropriate boundary conditions. In R
n

this would mean drawing n Gaussian random numbers corresponding to the

random walk in each dimension.15−17,21 For other geometries, however, there

might not be a closed expression for the distribution function or the solution

can be a slowly converging sum. In this paper we are concerned with spheres
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Sn = {(x1, . . . , xn+1) ∈ R
n+1 : x2

1 + · · · + x2
n+1 = R2}, where R is the radius

of the sphere. A special case which is of great general interest is the motion

of particles confined to the spherical surface, S2. An often used procedure is

to approximate the sphere locally with a planar surface and to use Gaussian

random numbers to generate a random walk in the tangent plane followed

by a projection of the particle to get back to S2.

A more exact procedure starts from the diffusion equation on S2:

∂ρ(r, t)

∂t
= D0∇2ρ(r, t) (2.1)

with the initial condition

ρ(r, 0) = δ(r0, r)δ(t, 0) (2.2)

where ∇2 is the Laplace-Beltrami operator and D0 is the diffusion coefficient.

A separation of variables leads to a Fourier series solution which together with

the addition theorem for spherical harmonics results in22

ρ(r, t) =

∞
∑

l=0

2l + 1

4πr2
e−D0l(l+1)t/r2

Pl(cos θ) (2.3)

where r is the S2-radius and Pl(cos θ) is the l:th Legendre polynomial. This

solution, although exact, converges slowly and also oscillates for typical val-

ues of the parameters even if a large number of terms are taken into account.

Equation (2.3) is thus not suitable to use as a function for drawing random

numbers to generate a random walk. Because of this other approximate

methods, in particular the tangent plane method mentioned above, are more

commonly used.
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We are interested in finding a solution to Eq. (2.1) which can be used

in molecular simulations. On S3 one obtains, using the relation between the

Laplacian on the sphere and in the ambient Euclidean space,18−20

ρ(r, t) =
A(β)

sin θ

k=∞
∑

k=−∞

(θ + 2kπ)e−(θ+2kπ)2/4β (2.4)

where θ is the angular distance between two points on S3, A is a normalisation

factor, and β = D0t/R
2. For physically reasonable values of β the sum is

rapidly converging and can be used for generating a random walk on S3.

The expression which corresponds to Eq. (2.4) on S3 for S2 can be derived

as follows. Using the Dirichlet-Mehler integral23

Pl(cos θ) =

√
2

π

∫ π

θ

sin (l + 1
2
)sds√

cos θ − cos s
(2.5)

and the Jacobi theta-function relation24,25

e−α/4
∞

∑

n=0

e−n(n+1)α cos(2n + 1)κ =

√

π

4α

∞
∑

n=−∞

(−1)ne−(κ+πn)2/α (2.6)

gives the following expression25 for the solution of the diffusion equation on

S2

ρ(r, t) = K
∞

∑

k=−∞

(−1)k

∫ π

θ

1√
cos θ − cos s

(s + 2πk) exp
−

r
2(s+2πk)2

4D0t ds (2.7)

which, although having a rapidly decreasing exponential term with increasing

k in line with Eq. (2.4), also contains a non-trivial integral which makes it

difficult to use as a source for random number generation and it is thus

not a straightforward task to find an efficient and robust way to generate a

random walk on S2. Our approach here is to use Eq. (2.4) in combination
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with geometry in a thin band around the equator on S3 rather than Eq. (2.7)

to solve this problem.s

The spherical surface, S2, can be obtained from the three-dimensional

surface S3 in R
4, constraining one of the coordinates to a constant value.

For instance, letting a plane in R
4 orthogonal to the x4-axis cut this axis at

x4 = R cos ϕ, would generate the surface x2
1+x2

2+x2
3 = r2 where the radius of

the S2-sphere r = R sin ϕ. In essence, our algorithm produces a random walk

on the equator, corresponding to R = 1 and ϕ = π/2 but since we want the

algorithm to be useful in many types of simulations and since we have specific

applications in mind, we have described a more general case, transporting

the Brownian motion to spheres with an arbitrary fixed x4-coordinate.

Since we already know how to generate a Brownian motion on S3,18 we

can now use this to also obtain a Brownian motion on S2. In the Appendix we

give a more detailed argument motivating the procedure which is described

in an algorithmic way below.

We begin with a point pi = (p1, p4) where p1 ∈ S2. Mapping pi onto the

equator of S3 gives a point p̃1

p̃1 = R
pi − (pi · n̂)n̂

|pi − (pi · n̂)n̂| (2.8)

where n̂ is the unit vector in the x4-direction. Let the particle at p̃1 now

make a random move on S3 according to the algorithm described in ref. 18.

This will give a new position q = (q1, q4) on S3. Now map the point q along

the geodesic through q and n̂ onto the equator of S3. Finally bring this point

back to S2 generating the new position on S2

pnew =

(

r

| q1|
q1, p4

)

(2.9)
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In this way we can generate a Brownian motion on S2 from a random walk

on S3 (algorithm 1).

To test the algorithm, we will in the next section compare it to the method

of generating a random walk in the tangent plane at the position of the

particle, drawing Gaussian random numbers in R
2, after which the particle

is projected onto the surface of the sphere along the line connecting the centre

of the sphere with the new particle position in the tangent plane (algorithm

2). For comparison, we also tested an alternative way of using a random

walk in the tangent plane using Gaussian random numbers (algorithm 3), by

scaling the distance so that the final position in the plane would correspond to

a distance along the geodesic on S2 (after projection) equal to the magnitude

of the random motion in algorithm 2. These two methods of projecting the

particle from the tangent plane back to the surface of the sphere gave similar

(though not identical) results for the diffusion coefficient, and we present

below the results moving the particles in the tangent plane without any

scaling.

Generating a Brownian motion for various time steps and S2-radii, we

have investigated the stability and accuracy of the methods. The analysis

of the resulting trajectories was made by fitting the random walk to the

function19

〈cos θ(t)〉 = e−2Dt/r2

(2.10)

For particles performing a Brownian motion on the equatorial S2 in S3 con-

structed as described above, the diffusion coefficient D will agree with the

corresponding quantity in S3. Our mapping of the random walk on the equa-

8



torial S2 to a sphere of radius R sin ϕ reduces all distances by a factor R sin ϕ

and it follows that one has to scale the obtained diffusion coefficient, D
′

, as

follows: D = D
′

/ sin2 ϕ, since in determining the diffusion coefficient, one in

principle analyzes the distance squared as a function of time.

3 Results and discussion

To test the new method for generating a diffusion process on S2 described

above, we first simulated a random walk using Eqs. (2.8)-(2.9) for various

angles ϕ, where ϕ is the angle which determines the distance from the x4-axis.

All simulations consisted of 200 noninteracting particles, each making 1 · 106

steps, and the results are averages over 100 independent trajectories. The

results are presented as D/D0 as a function of the dimensionless time step τ =

∆tD0/r
2. We can see in Table I that the diffusion coefficient is independent

of ϕ, within the statistical fluctuations, as it should be. This is a necessary

test since the present algorithm will be used in simulations of colloidal and

polymer systems on S3,26 with the possibility to confine the corresponding

solution between two surfaces.27−28 On S3 the confining surfaces will be 2-

spheres, where the distance between the surfaces is 2(π−ϕ). For the case with

adsorbed and movable molecules or charges on these confining surfaces, the

algorithm above can be used to simulate the random motion of such particles.

When generating the random motion in the tangent plane, the angle ϕ does

not enter the calculations, and for a large enough radius and time small step,

as were used in Table I, the estimated diffusion coefficient will have the same

value as for the novel method described in the previous section. In the limit
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of small time steps, we see that the methods should give essentially the same

result by taking the logarithm of Eq. (2.10) resulting in 〈x2〉 ≈ r2θ2 ≈ 4Dt

which corresponds to a random walk in R
2. We chose, somewhat arbitrarily,

ϕ = π/4 when comparing our new algorithm with particles moving in the

tangent plane, for the different time steps and radii below.

Using either of the above algorithms in a molecular simulation, one would,

however, like to increase the time step to more efficiently sample the configu-

ration space. To that end, we investigated the stability of the three methods

for generating a Brownian motion on S2 by changing the time step for differ-

ent radii of the sphere. With particular applications in mind, we tested the

algorithms for two different radii corresponding to a surface fraction, φ, of

(in the present case non-interacting) particles corresponding to φ = 0.01 and

φ = 0.10. Since the two approximate methods using Gaussian random num-

bers gave very similar results, we only present the data from the non-scaled

motion in the tangent plane. In Fig. 1 the diffusion coefficient is plotted

versus different time steps for a Brownian motion on a sphere with a large

radius corresponding to φ = 0.01. The results from both algorithms virtu-

ally coincide and give a correct result, until a timestep of τ · 105 ≈ 20 where

the algorithm using a motion in the tangent plane for the diffusion becomes

unstable.

Decreasing the radius until φ = 0.10 in Fig. 2, one can observe that also in

this case, the two algorithms coincide until about τ ·105 ≈ 20, after which the

tangent plane method begins to deviate, although the deviation is initially

more gradual compared to Fig. 1. After τ · 105 ≈ 35, however, the deviation

for the instability of the tangent plane method rapidly increases.
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We have shown above that the novel method presented in this paper for

generating a Brownian motion on S2 is much more stable and give the correct

diffusion behaviour for larger values of τ (i.e. larger time steps and smaller

radii) compared to more approximate methods often used in simulations of

diffusion processes on spherical surfaces. We will use this method in future

work on confined polymer and colloid systems.

A Appendix

In this appendix we show that the method for constructing a Brownian mo-

tion on S2 from a random walk on S3 which is described in Section 2 really

gives a Brownian motion in the limit ∆t → 0. Since there is nothing special

about dimensions 2 and 3 we derive this result for general dimensions.

Let Sn be the unit sphere in R
n+1 and let Sn−1 be its equator: in standard

coordinates x = (x1, . . . , xn+1) on R
n+1 we have

Sn =

{

x :

n+1
∑

j=1

x2
j = 1

}

and Sn−1 =

{

x :

n+1
∑

j=1

x2
j = 1, xn+1 = 0

}

.

Consider the embedding F : Sn−1 × (−π
2
, π

2
) → Sn:

F (η, θ) = (cos θ · η, sin θ).

Note that F ({η} × (−π
2
, π

2
)) is a geodesic through η perpendicular to Sn−1.

(An embedding with this property is often called “Fermi coordinates based

on Sn−1”). We use the map F to define a projection

π : Sn − {(0, . . . , 0,−1), (0, . . . , 0, 1)} → Sn−1,

where π(ξ) = η where F (η, θ) = ξ for some θ ∈ (−π
2
, π

2
).
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In order to give a physical motivation for our method of construction

of Brownian motion we consider heat propagation on Sn. More precisely,

consider a band Bǫ = F (Sn−1 × (−ǫ, ǫ)) ⊂ Sn of width 2ǫ around Sn−1 and

assume that Bǫ is completely insulated. Then it is reasonable to expect that

heat propagation in Bǫ converges to heat propagation in Sn−1 as ǫ → 0.

From the point of view of statistical mechanics, Bǫ being insulated means

that its boundary ∂Bǫ = F (Sn−1 × {−ǫ}) ∪ F (Sn−1 × {ǫ}) reflects particles.

Translating the physical motivation, we define a stochastic process on

Sn−1 as follows. For finite ∆t > 0 and any η ∈ Sn−1 take

Q∆t(η) = π(W∆t(η, 0)),

where Wt(ξ) is the time t Brownian motion on Sn with initial value ξ ∈ Sn.

Since the probability that Wt(ξ) hits (0, . . . , 0,±1) equals zero this is well

defined. Next define

Qt(η) = lim
N→∞

Q t

N

◦ N· · · ◦Q t

N

(η). (A.1)

Note that for n = 3, Q∆t(η) is the result of applying the algorithm described

in Section 2 to η ∈ S2. Thus the fact that our algorithm describes Brownian

motion on S2 in the limit ∆t → 0 is a consequence of the following lemma.

Lemma A.1. The limit in (A.1) exists and agrees with Brownian motion on

Sn−1.

Proof. To see this we use the local coordinate characterization of Brown-

ian motion: a stochastic process which looks like Brownian motion in lo-

cal coordinates is Brownian motion, see e.g. ref. 29, Proposition 3.2.1 and
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Example 3.3.5. We thus consider Brownian motion on Sn in local coor-

dinates. Write x = (x1, . . . , xn−1, xn) = (x̄, xn) around a point in Sn−1

where x̄ = (x1, . . . , xn−1) are coordinates on Sn−1 and xn is the coordinate

of geodesics perpendicular to Sn−1, i.e. xn corresponds to θ in the Fermi

coordinate map F above. Then, locally, the Brownian motion on Sn is the

stochastic process Xt = (X1
t , . . . , Xn

t ) given by

dX i
t = σij(Xt)dBj

t + bi(Xt),

where (B1
t , . . . , B

n
t ) is Brownian motion on R

n, where

σij =
√

gij,

and where

bi =
1√
g

∂

∂xj

(

gij√g
)

.

Here gij (x)dxi ⊗ dxj is the metric tensor of Sn, gij is the inverse of gij, and

g = det(gij). (In the equations above and throughout this proof we use the

summation convention: sum over repeated indices.)

In the Fermi coordinates x = (x̄, xn) under consideration, we have

gij(x̄, xn) =































(cos xn)2 hij(x̄) if i, j < n,

0 if i = n, j 6= n or i 6= n, j = n,

1 if i = j = n.

where hij is the metric on Sn−1. Consequently,

σij(x̄, xn) =































(cos xn)−1 hij(x̄) if i, j < n,

0 if i = n, j 6= n or i 6= n, j = n,

1 if i = j = n.
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and

g = (cos xn)2(n−1) h.

In particular,

σij(x̄, 0) = σ̄ij(x̄), 1 ≤ i, j ≤ n − 1,

where σ̄ij =
√

hij and

bi(x̄, 0) = b̄i(x̄), 1 ≤ i, j ≤ n − 1

where

b̄i =
1√
h

∂

∂xj

(

hij
√

h
)

.

In our Fermi coordinate system we have π(x̄, xn) = x̄ and thus in local coordi-

nates x̄ = (x1, . . . , xn−1) on Sn−1 we find that Qt = π(X1
t , . . . , Xn−1

t , 0) = X̄t

satisfies

dX̄ i
t = σ̄ij(X̄t)dBj

t + b̄i(X̄t)

and thus gives Brownian motion on Sn−1 as claimed.
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TABLE I. The diffusion coefficient, D/D0, for freely diffusing particles on

S2. Algorithm 1 is the method presented in this article, with the S2-surface

being located at different angles relative to the x4-axis. In algorithm 2 each

particle will, for every time step, move in the plane tangent to the point

where it is located after which is projected onto the spherical surface along

the line from the centre of the particle to the centre of S2. The size of the

random step is obtained by drawing Gaussian random numbers. In algorithm

3, the size of the random displacement in the tangent plane is scaled so that

after projection, the distance along the S2 surface will be the same as the

distance in the tangent plane in algorithm 2. The time step corresponds to

τ · 105 = 6.7 and the surface fraction φ = 0.01.

ϕ Algorithm 1 Algorithm 2 Algorithm 3

15 1.006 0.997 0.997

30 1.007 0.997 0.997

45 1.002 0.997 0.997

60 1.001 0.997 0.997

85 1.007 0.997 0.997
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Figure 1: The diffusion coefficient vs reduced time step in simulation for a

sphere with radius corresponding to φ = 0.01
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Figure 2: The diffusion coefficient vs reduced time step in the simulation for

φ = 0.10.
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