
Computational algorithms forordinary di�erential equations{Revised Otober 19, 1999{Warwik TukerIMPA, Est. D. Castorina 110Jardim Botânio, 22460-320Rio de Janeiro, RJ, Brazilwarwik�impa.brOtober 14, 1999AbstratWe present an algorithm for omputing rigorous solutions to a large lass of or-dinary di�erential equations. The main algorithm is based on a partitioning proessand the use of interval arithmeti. We illustrate the presented method by omputingsolution sets for two expliit systems.1 IntrodutionIn this paper, we will onsider a general initial value problem:_x = f(x); x(0) = x0; (1)where f 2 C1(D;Rn), and D � Rn. We will sometimes denote the solution of (1) by'(x; t), with '(x; 0) = x(0). This setting is lassial, and muh studied in standardtext books on ordinary di�erential equations. It is, however, not diÆult to �ndsituations where having a whole set of initial values is natural. Indeed, any modelof a physial system always has some unertainty onerning the measured initialvalues. Furthermore, we are seldom sure of exatly whih vetor �eld models oursystem. The natural thing do is to enlose the initial value x0 in a box [x0℄ whoseside lengths reet the maximal error made in the measurements of the initial data,and to replae f in (1) by a funtion F , whose omponents are interval valued. Theproblem we then fae is to �nd the solution of the following system:_x 2 F ([x℄); x(0) 2 [x0℄; (2)Our objetive is to ompute a set that is guaranteed to ontain all the solutions of(2) at a given time T . The method we present is based on a partitioning proess,whih will be presented in more detail below.

2 Interval arithmetiIn this setion, we will briey desribe the fundamentals of interval arithmeti. Fora onise referene on this topi, see [2℄.Let I denote the set of losed intervals. For any element [a℄ 2 I, we adapt thenotation [a℄ = [a; �a℄. If � is one of the operators +;�; �; =, we de�ne arithmetioperations on elements of I by[a℄� [b℄ = fa� b : a 2 [a℄; b 2 [b℄g;exept that [a℄=[b℄ is unde�ned if 0 2 [b℄. Working exlusively with losed intervals,we an desribe the resulting interval in terms of the endpoints of the operands:[a℄ + [b℄ = [a+ b; �a+�b℄[a℄� [b℄ = [a� �b; �a� b℄[a℄ � [b℄ = [min(ab; a�b; �ab; �a�b);max(ab; a�b; �ab; �a�b)℄[a℄=[b℄ = [a℄ � [1=�b; 1=b℄; if 0 =2 [b℄:To inrease speed, it is ustomary to break the formula for multipliation into nineases (depending of the signs of the endpoints), where only one ase involves morethan two multipliations. Moreover, the formula for division an be modi�ed forimproved auray. When omputing with �nite preision, direted rounding mustalso be taken into aount, see e.g. [2℄, [3℄, [1℄.It follows immediately from the de�nitions that addition and multipliation areboth assoiative and ommutative. The distributive law, however, does not alwayshold. As an example, we have[�1; 1℄([�1; 0℄ + [3; 4℄) = [�1; 1℄[2; 4℄ = [�4; 4℄whereas [�1; 1℄[�1; 0℄ + [�1; 1℄[3; 4℄ = [�1; 1℄ + [�4; 4℄ = [�5; 5℄:This unusual property is important to keep in mind when representing funtions aspart of a program. Interval arithmeti satis�es a weaker rule than the distributivelaw, whih we shall refer to as sub-distributivity:[a℄([b℄ + [℄) � [a℄[b℄ + [a℄[℄:Another key feature of interval arithmeti is that it is inlusion monotoni, i.e., if[a℄ � [a0℄, and [b℄ � [b0℄, then [a℄� [b℄ � [a0℄� [b0℄;where we demand that 0 =2 [b0℄ for division.We an turn I into a metri spae by equipping it with the Hausdor� distane:d([a℄; [b℄) = maxfja � bj; j�a� �bjg:For dealing with higher dimensional problems, we de�ne the arithmeti operationsto be arried out omponent-wise. We then talk about an interval vetor or, moresimply, a box. The metri is then de�ned byd([a℄; [b℄) = max1�i�nfd([ai℄; [bi℄)g:Matrix operations are de�ned analogously to the real ase.

3 Interval-valued funtionsConsider a funtion f 2 C1(D;Rn), where D � Rn. Given a box [a℄ we de�ne therange of f over [a℄ by R(f ; [a℄) = ff(x) : x 2 [a℄g:If we �x a representation of f (whih we also denote f), and evaluate it in intervalarithmeti, we always have R(f ; [a℄) � f([a℄);due to the inlusion monotoni property. From this property, it also follows that bysplitting the box [a℄ into smaller piees [a0℄; : : : ; [an℄, we haveR(f ; [a℄) � n[i=0 f([ai℄) � f([a℄):It is lear that, by splitting [a℄ into many small piees, we an approximate the truerange of f over [a℄ with any desired auray. There are, however, better ways toapproximate the range of f : let m([a℄) denote the midpoint of [a℄. By the MeanValue Theorem, we have the following relation:R(f ; [a℄) � fMV ([a℄) := f(m([a℄)) + [Df ℄([a℄)([a℄ �m([a℄)):Let k[a℄k denote the maximal diameter of [a℄. It is easy to show thatd(R(f ; [a℄); f([a℄)) = O(k[a℄k);whereas d(R(f ; [a℄); fMV ([a℄)) = O(k[a℄k2):It is obvious that the latter version is preferred, seeing that we have a quadrati-ally small error. This assumes, however, that we only deal with intervals of smallwidths. The most fundamental part of our algorithm { the partitioning proess {guarantees that this indeed will be the ase, and thus allows us to attain a quadratiapproximation of the vetor �eld range R(f ; [a℄).As mentioned earlier in the introdution, it is often desirable in appliations toexhange the funtion f for its interval extension F . Given a �nite representationof f , we de�ne F to be any funtion having the same representation as f , exeptthat all real oeÆients are replaed by enlosing intervals. As an example, givenf(x) = 2x� �y, we may take F (x) = [1:99; 2:01℄x � [3:14; 3:15℄y.4 AlgorithmsIn this setion, we will present some algorithms for rigorously solving an initial valueproblem. We will start with the most basi approah, using the Euler method.The solution of (1) is formally given by'(x; ti+1) = '(x; ti) + Z ti+1ti f('(x; s))ds; (3)

where '(x; t0) = x0. Approximating the integrand in (3) by f('(x; ti)), we arriveat the lassial Euler method, whih gives the iterative shemexi+1 = xi +�tif(xi) i � 0for an approximate solution to (1), i.e., xi � '(x; ti). Here we have used the notation�ti = ti+1 � ti. The error we are making is in assuming that the vetor �eld f isonstant over eah time step. With interval arithmeti this an be overome byusing the following algorithm (in whih we have omitted the stopping ondition forlarity):Algorithm 1. For i � 0 do the following:1 Enlose the omputed solution at step i in a box: [xi℄ � [~xi℄;2 Compute a time step �ti suh that [xi℄ + �tiF ([~xi℄) � [~xi℄;3 Set [xi+1℄ = [xi℄ + �tiF ([~xi℄).This algorithm produes a box-valued solution that is guaranteed to ontain thetrue solution, i.e., '(x0; ti) 2 [xi℄. Moreover, it also overs the ase when the initialvalue is a whole box. There is, however, one major aw in this method: even if thetrue solution set is shrinking, the omputed boxes [xi℄ are always non-dereasing ini. This is beause we always have the equality k[a℄ + [b℄k = k[a℄k+ k[b℄k for any twointervals [a℄ and [b℄.The abovementioned problem an be overome by replaing the Euler step bya higher order Taylor-method, see e.g. [2℄, [4℄. This may inrease the auray ona loal level, but we are still left with a global problem: if the ow of the systemunder onsideration is not ontrating in all diretions, the strongest expanding (orneutral) diretion will generially ontaminate all other diretions. By this, we meanthat the omputed enlosures [xi℄ will expand in all diretions, although the truesolution may ontrat in several diretions. This phenomena is often referred to asthe wrapping e�et, see Figure 1(a).
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������

�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������

�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������

�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������

Figure 1: (a) The wrapping e�et, and (b) how to overome it.Fortunately, we an redue the wrapping e�et by enforing a �xed sale: if anelement of any intermediate solution set (inluding the initial set) attains a widthlarger than a predetermined onstant MaxSize, it is biseted along the diretionsthat are too wide. Thus, the omputed solution set will be made up of severalsmall boxes, all having widths less than MaxSize. If the system has ontratingdiretions, these will now show up in the solution set. This is due to the fatthat elements squeeze together in the ontrating diretions, whih results in anoverlapping e�et as illustrated in Figure 1(b). The global error is now of the same

order as MaxSize, and the ontamination is avoided. The following pseudo-odeoutlines an implementation of the algorithm just desribed:Algorithm 2.Initialize Stak with a olletion of boxes [x1℄; : : : ; [xN ℄while Stak is not emptyf Get a box [x℄ from Stakif [x℄ is too largeBiset [x℄ in all diretions that are wider than MaxSizePut the partitioned boxes in StakelseCompute a time step �t and an enlosure [x0℄ ontaining'([x℄;�t), using your favorite method (e.g. Algorithm 1)if [x0℄ satis�es the stopping onditionPut [x0℄ in OutStakelsePut [x0℄ in StakgOutput OutStakThe partitioning proess just desribed is self-adaptive: there is no need to knowin advane where the expansion is strong, or in what diretions it may at. Eahelement reports (by its urrent size) if a expanding region has been enountered, andthe algorithm ats aordingly. Therefore, by just looking at the omputed solutionset, we an see whih regions that have enountered a lot of expansion/ontration.Also, as mentioned earlier, we an attain quadratially lose approximations of theinterval-extended vetor �eld F by hoosing MaxSize small.5 ExamplesIn this setion, we will present a few simple examples illustrating the e�etivenessof the partitioning proess.Example 1: pure rotationConsider the system (_x1; _x2) = (x2;�x1). The exat solution is given by�'1(x1; x2; t)'2(x1; x2; t)� = � os t sin t� sin t os t��x1x2�:In [2℄, it is proved that Algorithm 1 produes extremely poor results for this system.If the time step is �xed, say �t = t=N , then the widths of the omputed enlosingboxes satisfy exponential growth. If w0 denotes the width of the initial box, thenthe omputed enlosing box at time t has width wt � etw0, whereas the enlosurewidth of the true solution is (os t+ sin t)w0, whih is bounded above by p2w0.Algorithm 2, however, does not display this irregular feature. We an makethe error as small as desired by hoosing MaxSize suÆiently small. In Figure 2,

we illustrate a typial omputed solution set at various times. Here, Algorithm 2was implemented (using the Euler step) on the initial set [�12 ; 12 ℄ � [�12 ; 12 ℄ withMaxSize = 1=5. No omputation required more than one seond on an ordinarylaptop omputer.
Figure 2: The solution set at times (a) �=20, (b) �=10, () �=4, and (d) �=3.Example 2: skew hyperboliityConsider the system (_x1; _x2) = (x2; x1). This is simply the unoupled system(_x1; _x2) = (x1;�x2) rotated by the angle �4 . Here is a situation where one typi-ally would expet ontamination, muh like the ase illustrated in Figure 1(a). InFigure 3, we again illustrate a omputed solution set at various times. Here, Algo-rithm 2 was implemented (using the Euler step) on the initial set [�14 ; 14 ℄� [�14 ; 14 ℄with MaxSize = 1=16. Again, no omputation required more than one seond onan ordinary laptop omputer.

Figure 3: The solution set at times (a) p2=8, (b) p2=4, and () p2=2.Referenes[1℄ L. H. de Figueiredo, J. Stol�, M�etodos num�erios auto-validados e aplia�~oes,Braz. Math. Colloq. 21, IMPA, 1997[2℄ R. E. Moore, Interval Analysis, Prentie-Hall Series in Automati Computation,Englewood Cli�s, N. J., 1966[3℄ R. E. Moore, Methods and Appliations of Interval Analysis, SIAM Studies inApplied Mathematis, Philadelphia, 1979[4℄ N. S. Nedialkov and K. R. Jakson, ODE Software that Computes GuaranteedBounds on the Solution, to appear in Advanes in Software Tools for Sienti�Computing, (ed. H. P. Langtangen, A. M. Bruaset and E. Quak), Springer-Verlag, 1999

