
Rigorous parameter estimation for noisy mixed-effects models

Alexander Danis† Andrew Hooker‡ and Warwick Tucker†

†Dept. of Mathematics, Uppsala University
Box 480, 751 06 Uppsala, Sweden

‡Department of Pharmaceutical Biosciences, Uppsala University
Box 591, 751 24 Uppsala, Sweden

Email: alexander.danis@math.uu.se, andrew.hooker@farmbio.uu.se, warwick.tucker@math.uu.se

Abstract—We describe how constraint propagation
techniques can be used to reliably reconstruct model pa-
rameters from noisy data. The main algorithm combines a
branch and bound procedure with a data inflation step; it is
robust and insensitive to noise. The set–valued results are
transformed into point clouds, after which statistical prop-
erties can be retrieved. We apply the presented method to a
mixed-effects model.

1. Introduction

Finitely parameterized mathematical models are used to
describe, explain, summarize, and predict the behavior of
physical, biological, and economical systems. A parameter
estimation problem is a problem of finding a set of param-
eter values that makes the model function fit the experi-
mental data. Incomplete approaches to this problem search
for one solution in parameter space; complete approaches
search for all. In this article, we describe a complete ap-
proach – a general-purpose solution strategy based on set–
valued computations and global search algorithms that op-
erate reliably under noise. We begin by describing the basic
components of the solver which involves set–valued com-
putations, directed acyclic graphs, constraint propagation,
and data inflation. We end the article with an example
demonstrating the usefulness of our approach.

2. Interval analysis

The foundation of most computer-aided proofs dealing
with continuous problems is the ability to compute with
set-valued functions. This not only allows for all rounding
errors to be taken into account, but – more importantly – all
discretization errors too. Here, we will briefly describe the
fundamentals of interval analysis. For a concise reference
on this topic, see e.g. [Moo66, Neu90].

Let IR denote the set of closed intervals. For any element
a ∈ IR, we adopt the notationa = [a, a], wherea, a ∈ R. If
⋆ is one of the operators+,−,×,÷, we define the arithmetic
on elements ofIR by

a ⋆ b = {a⋆ b: a ∈ a, b ∈ b}, (1)

except thata ÷ b is undefined if 0∈ b. Working exclu-
sively with closed intervals, the resulting interval can beex-

pressed in terms of the endpoints of the operands. Note that
the identities (1) reduce to ordinary real arithmetic when
the intervals arethin, i.e., whena = a andb = b.

A key feature of interval arithmetic is that it isinclusion
monotonic, i.e., if a ⊆ x, andb ⊆ y, then

a ⋆ b ⊆ x ⋆ y, (2)

where we demand that 0< y for division.
One of the main reasons for passing to interval arithmetic

is that this approach provides a simple way of enclosing the
range of a functionf , defined byR(f ; D) := { f (x) : x ∈ D}.
Except for the most trivial cases, classical mathematics
provides few tools to accurately bound the range of a func-
tion. To achieve this latter goal, we extend the real func-
tions to interval functionswhich take and return intervals
rather than real numbers. Based on (1) we extend rational
functions to their interval versions by simply substituting
all occurrences of the real variablex with the interval vari-
ablex (and the real arithmetic operators with their interval
counterparts). This produces a rational interval function
F(x), called thenatural interval extensionof f . As long as
no singularities are encountered, we have the inclusion

R(f ; x) ⊆ F(x), (3)

by property (2). In fact, this type of range enclosure
can be achieved for any reasonable function. A higher-
dimensional functionf : Rn → R can be extended to an
interval functionF : IRn→ IR in a similar manner.

There exist several open source programming packages
for interval analysis, as well as commercial products.

We will now illustrate the use of interval techniques,
with a special emphasis on parameter estimation problems.

Example 2.1 Consider the model y= f (x; p) = xe−px, to-
gether with the (exact) data point(x, y) = (2, 1), and search
regionp = [0, 1]. A straight-forward interval evaluation of
the model function yields:

f (x; p) = f (2; [0, 1]) = 2e−[0,1]×2 = [2e−2, 2]. (4)

This constrains (at x= 2) the value of the model func-
tion (y = 1) to belong to the interval[2e−2, 2] ≈ [0.27, 2],
which it does. Had we chosenp = [1, 2] as our search

2010 International Symposium on Nonlinear Theory and its Applications
NOLTA2010, Krakow, Poland, September 5-8, 2010

- 67 -

space, we would obtain an inconsistency:1 < f (2, [1, 2]) =
[2e−4, 2e−2] ≈ [0.03, 0.27]. This would allow us to discard
the entire setp.

This example illustrates how adivide and conquerap-
proach can be devised. Starting from a large search space
p, we adaptively bisectp into smaller subsets, many of
which we can discard via inconsistency checks.

3. Noise and data inflation

Given a model functiony = f (x; p) together with a finite
set of noisy data (x1, ỹ1), . . . , (xN, ỹN), we will attempt to
find parameters that make the modelconsistentwith the
data, i.e., we want to find the set

S = {p ∈ p : f (xi ; p) = ỹi for all i = 1, . . . ,N}. (5)

In general, this set will be empty, indicating the presence
of noise in the data. In order to improve matters, we inflate
each data value into an interval. This can be done in several
ways; assigning a width roughly proportional to the value
ỹi is a good heuristic choice in many situations:

ỹi 7→ y i = ỹi(1+ α[−1,+1]) + β[−1,+1]. (6)

Hereα is a scaling factor, andβ is a threshold factor, nec-
essary for situations when|ỹi | is very small.

The new requirement for consistency is now formulated
in terms of more robust inclusion conditions:

S = {p ∈ p : f (xi ; p) ∈ y i for all i = 1, . . . ,N}. (7)

With no data inflation, this reduces to (5). Gradually in-
creasingα (and/or β) will eventually produce a non-empty
set of consistent parametersS.

Given a partitionP = {pi}
K
i=1 of the search spacep =

p1∪· · ·∪pK , the consistent parameters can be enclosed via
S ⊂ S ⊂ S, where

S = {p j ∈ P : f (xi ; p j) ⊂ y i for all i = 1, . . . ,N},

S = {p j ∈ P : f (xi ; p j) ∩ y i , ∅ for all i = 1, . . . ,N}.

The next example displays how interval-valued data can
be contracted, using constraints from both the model func-
tion and the search space.

Example 3.1 Repeating the calculations from Exam-
ple 2.1, withp = [0, 1], but with the data(x, y) = (2, [1, 3]),
we can contract the data range according to

y 7→ y ∩ f (x; p) = [1, 3]∩ [2e−2, 2] = [1, 2].

4. Constraint propagation for pedestrians

In this section, we will outline the main ingredients of
our parameter estimation procedure. As mentioned in Sec-
tion 1, our method is global. As such, it attempts to findall

x

p

×

× −(·) exp

n1

n2

n3 n4 n5

n6 = y

Figure 1: The DAG representation of a forward sweep of
y = xe−px.

parameters consistent with the data. Of course, when the
data is noisy, there are no consistent parameters, in gen-
eral. This forces us to inflate the data – a process that com-
pensates for the loss of information caused by the noise.
Once sufficiently inflated, the set of consistent parame-
ters is non-empty and bounded. We shrink the bounding
set (and the inflated data) by constraint propagation tech-
niques. To be fully effective, these techniques require that
the model function be represented in a special form.

4.1. The DAG representation

We use a directed acyclic graph (DAG) representation
of the model function to automate constraint propagations.
This representation captures the natural way of decompos-
ing a (possibly complicated) function into its basic building
blocks. The graph nodes represent variables, constants or
simple functions, while the edges represent dependencies
between them.

Example 4.1 Returning to the model function of Exam-
ple 2.1, f(x; p) = xe−px, it can be decomposed into the
following code list:

n1 = x

n2 = p

n3 = n1 × n2

n4 = −n3

n5 = en4

n6 = n1 × n5.

This list is equivalent to the DAG illustrated in Figure 1.

The DAG representation is used to obtain numeric and
symbolic information about various mathematical objects,
such as derivatives, slopes, mean value forms, linear or
convex relaxations (over- and under-estimators), and con-
vexity information. Representations of equations and in-
equalities can be included for the purpose of accelerating
the constraint propagations. Information on these matters
can be found in [GW08, SN05].

- 68 -

x

y

÷

÷−(·) log

n1p = n2

n3 n4 n5

n6

Figure 2: The DAG representation of a backward sweep of
y = xe−px.

4.2. Constraint propagation on DAGs

To each elementary mathematical operation one asso-
ciates two operations,forward and abackwardoperations.
The forward operator evaluates the range based on the
range of its arguments and intersect it with the current
range. The backward operator evaluates the ranges of its
predecessors and intersect it with their current ranges.

Example 4.2 Once more, we will use the model function
of Example 2.1, f(x; p) = xe−px. As we saw in Exam-
ple 4.1, it can be decomposed into a code list as well as
a DAG. We will now show how we can use these objects to
propagate constraints from data to the parameter. Moving
backwards in the code list of Example 4.1, starting from
(x, y) = (n1, n6), and ending in p= n2, we obtain a new
code list:

n5 = n6 ÷ n1

n4 = logn5

n3 = −n4

n2 = n3 ÷ n1.

This list is equivalent to the DAG illustrated in Figure 2.

Thus, viewing a function in terms of its code list or DAG
allows us to compute its formal inverses, without know-
ing the formulae for these. All we need is the code list for
f . Traversing the list backward produces the desired infor-
mation. This is extremely useful for parameter estimation
problems, as we illustrate in the following example.

Example 4.3 Given the model function y= f (x; p) =
xe−px, together with the data(x, y) = (2, 1), we can gen-
erate, and evaluate the code list of Example 4.2:

n5 = n6 ÷ n1 = 1÷ 2
n4 = logn5 = log 1

2
n3 = −n4 = log 2
n2 = n3 ÷ n1 = 1

2 log 2≈ 0.34657359.

The conclusion is that the only parameter that corresponds
to the data(x, y) = (2, 1) is p = 1

2 log 2. Of course,

for this simple example, we can find the explicit inverse:
p = 1

x log x
y , which gives the sought result. The point is,

however, that we never use this formula; we only use the
code list of f .

Continuing Example 3.1, where we have interval-valued
data (x, y), and a parameter domainp to examine, we can
combine the forward and backward sweeps to contract both
y andp.

Example 4.4 Again, we work on the model function y=
f (x; p) = xe−px, but now with the data(x, y) = (2, [1, 3]),
together with the parameter domainp = [0, 1]. The for-
ward sweep, performed in Example 3.1, contracts the in-
terval data toy = [1, 2]. Performing a backward sweep,
as in Example 4.3, contracts the interval parameter to
p = [0, 1

2 log 2]:

n5 = n6 ÷ n1 = [1, 2] ÷ 2 = [1
2 , 1]

n4 = logn5 = log [1
2 , 1] = [− log 2, 0]

n3 = −n4 = [0, log 2]
n2 = n3 ÷ n1 = 1

2[0, log 2] ≈ [0, 0.34657359].

Note that, in one forward/backward sweep, we managed to
exclude over65% of the parameter domain, at the same
time reducing the data uncertainty by50%.

In most cases, the described constraint propagation tech-
niques do not result in a complete contraction to the optimal
state. Rather, a stage is reached where no further contrac-
tion can be obtained, even though there are inconsistencies
present. In order to proceed, some type of partitioning must
be employed. The partitioning can be performed at any
node of the DAG. Once a node has been selected for par-
titioning, its domain is split, resulting in two new DAGs,
differing only in the domain of the split node. Each DAG is
updated through forward/backward sweeps, possibly gen-
erating more contraction.

4.3. Data gridding

In order to extract traditional statistics from the set-
valued results, we discretize the setS into a collection of
points. Recall the the outcome of our parameter estimation
is a collection of boxesp1, . . . , pn, whose unionS may or
may not be a connected set. We form the hull of this col-
lection by taking the smallest box̂p that containsS. Next,
we introducemequally spaced nodes along each side ofp̂.
This defines a grid of sizemd whered is the dimension of
p̂. From this grid, we discard all nodes that are not suffi-
ciently close to the setS. This leaves us with a set of points
amenable to statistical tests.

5. Methods and examples

We demonstrate our method on a mixed–effects model.
A mixed–effectsmodel is a model that includes a mixture

- 69 -

of fixed and random factors. In the current setting, we will
consider a model function of the formf (t, ~p), wheret de-
notes time, and~p = (p1, p2, p3) is a three-dimensional pa-
rameter vector. Apopulationparameter is a parameter that
is shared among every member of the population. Anin-
dividual parameter is a parameter that is unique to each
individual. In what follows, we letp1 be an individual pa-
rameter, whereasp2 and p3 act as population parameters.
Thus p1 corresponds to a random factor (sampled from
some underlying distribution), whereasp2 and p3 corre-
spond to fixed factors.

5.1. Methods

Starting from a given parameter vector~p = (p1, p2, p3),
we perturb the individual parameter according to

pi
1 = p1 + ηi where ηi ∼ N(0, σ2) (i = 1, . . . ,Np).

(8)
HereN(a, b) denotes the normal distribution with meana
and (positive) varianceb. This producesNp different pa-
rameter vectors~p1, . . . , ~pNp (each corresponding to a dif-
ferent subject), where~pi = (pi

1, p2, p3). For each of the
Np subjects, we generate exact datayi j = f (t j ; ~pi) for
j = 1, . . . ,Nd. Next, the exact data is perturbed, with max-
imal intensityǫ > 0, according to

ỹi j = yi j (1+ θi j) where θi j ∼ U(−ǫ,+ǫ). (9)

HereU(a, b) denotes the uniform distribution on the inter-
val [a, b]. This produces the data set (t j , ỹi j), which, to-
gether with the model function, is all information we have.

In order to find the typical performance of our method,
we repeat the entire estimation processNt = 200 times, and
report the average results.

5.2. Example

The following model is used to study the growth of or-
ange tree trunks, see [LB90, DS98].

Example 5.1 Consider the following function

f (t; ~p) =
p1

1+ p2ep3t
. (10)

For this specific example, we will use Np ∈ {10, 25, 50}
subjects, sampled at Nd = 10 data sites, evenly spaced
within [100, 1600]. The parameter values corresponding to
the mean population are~p = (191.84, 8.153,−0.0029); the
perturbation parameters areσ = 20andǫ ∈ {0.1, 0.2, 0.3}.
We perform the constraint propagation over the parame-
ter regionp = ([0, 300], [0, 9], [−1, 0]). The results of this
procedure are illustrated in Figure 3 and in Table 1.

6. Conclusion

We have described a new approach to solve parameter
estimation problems for noisy data. It is a deterministic
global search method based on relaxation methods (via data
inflation) and the use of set–valued constraint propagation.

0 200 400 600 800 1000 1200 1400 1600
0

50

100

150

200

250

202
204

206
208

210
212

8.1

8.15

8.2

−2.98

−2.97

−2.96

−2.95

−2.94

x 10
−3

p1p2

p3

Figure 3: (a) Data inflation and contraction for Exam-
ple 5.1. The graph of the model functiont → f (t, ~p) for
one subject (blue line). The data points are marked with
red dots. The inflated data sets are shown as striped bars,
and the re-contracted data as green bars. (b) The set of
consistent parameters for two subjects of Example 5.1.

Np = 10 Np = 25 Np = 50
ǫ = 0.1 190.266 (20.3) 189.703 (20.1) 189.834 (20.0)
ǫ = 0.2 186.853 (20.4) 185.828 (20.0) 185.740 (20.0)
ǫ = 0.3 185.781 (20.7) 185.851 (20.0) 185.838 (20.0)

Table 1: The results of several experiments for Exam-
ple 5.1, all usingNt = 200 trial runs,p♯1 = 191.184, and
σ♯ = 20.0. For each pair (ǫ,Np), we display the pairµ(p1)
µ(σ) – the average estimates of the distribution parameters
for p1.

References

[DS98] Norman P. Draper and Harry Smith.Applied Re-
gression Analysis. John Wiley and Sons, New
York, 3rd edition, 1998.

[GW08] Andreas Griewank and Andrea Walther.Eval-
uating Derivatives: Principles and Techniques
of Algorithmic Differentiation. SIAM, Philadel-
phia, PA, 2nd edition, 2008.

[LB90] Mary J. Lindstrom and Douglas M. Bates. Non-
linear mixed effects models for repeated mea-
sures data.Biometrics, 46(3):673–687, 1990.

[Moo66] Ramon E. Moore. Interval analysis. Prentice
Hall, Englewood Cliffs, New Jersey, USA, 1966.

[Neu90] Arnold Neumaier.Interval Methods for Systems
of Equations. Cambridge Univ. Press, 1990.

[SN05] Hermann Schichl and Arnold Neumaier. In-
terval analysis on directed acyclic graphs for
global optimization.J. of Global Optimization,
33(4):541–562, 2005.

- 70 -

	Navigation page
	Session at a glance
	Technical program

