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Abstract—We describe how constraint propagatiorpressed in terms of the endpoints of the operands. Note that
techniques can be used to reliably reconstruct model ptre identities (1) reduce to ordinary real arithmetic when
rameters from noisy data. The main algorithm combinesthe intervals ar¢hin, i.e., whena = aandb = b.
branch and bound procedure with a data inflation step; it is A key feature of interval arithmetic is that it isclusion
robust and insensitive to noise. The set—valued results ar®notonici.e., if a C x, andb C y, then
transformed into point clouds, after which statisticalgro
erties can be retrieved. We apply the presented method to a axbcxxy, (2)

mixed-dtects model. o
where we demand that®y for division.

One of the main reasons for passing to interval arithmetic
is that this approach provides a simple way of enclosing the

Finitely parameterized mathematical models are used {gnge of a functiorf, defined byR(f; D) := {f(x): x € D}.
describe, explain, summarize, and predict the behavior &¥Cept for the most trivial cases, classical mathematics
physical, biological, and economical systems. A paramet®fOVides few tools to accurately bound the range of a func-
estimation problem is a problem of finding a set of pararion. To achieve this latter goal, we extend the real func-
eter values that makes the model function fit the experfions tointerval functionswhich take and return intervals
mental data. Incomplete approaches to this problem sear@her than real numbers. Based on (1) we extend rational
for one solution in parameter space; complete approachi§ICtions to their interval versions by simply substitgtin
search for all. In this article, we describe a complete agill occurrences of the real variabtevith the interval vari-
proach — a general-purpose solution strategy based on séplex (and the rea_l arithmetic opera;ors W_ith their inter\_/al
valued computations and global search algorithms that oounterparts). This produces a rational interval function
erate reliably under noise. We begin by describing the basfdX). called thenatural interval extensionf f. As long as
components of the solver which involves set-valued confl© Singularities are encountered, we have the inclusion
putations, directed acyclic graphs, constraint propagati )
and data inflation. We end the article with an example R(f;X) € F(x). ©)
demonstrating the usefulness of our approach.

1. Introduction

by property (2). In fact, this type of range enclosure
can be achieved for any reasonable function. A higher-
2. Interval analysis dimensional functionf: R" — R can be extended to an
interval functionF : IR" — IR in a similar manner.

_The fom_mdatlon of most c_:omputer_—glded proofs deal_lng There exist several open source programming packages
with continuous problems is the ability to compute WIthfor interval analysis, as well as commercial products.

set-valued functions. This not only allows for all rounding We will now illustrate the use of interval techniques

errors t.o b.e taken into account, but—.mor.e |mp0rtan_tly— a\u/ith a special emphasis on parameter estimation problems.
discretization errors too. Here, we will briefly describe th

fundamentals of interval analysis. For a concise referenc‘Eg(amme 2.1 Consider the model 3 f(x; p)
on this topic, see e.g. [M0066, Neu90].

LetIR denote the set of closed intervals. For any eleme
a € IR, we adopt the notatioa = [a, @], wherea, a € R. If
* is one of the operators —, x, +, we define the arithmetic

on elements oR by f(x;p) = f(2;[0,1]) = 2602 =262 2].  (4)
axb={axb:acabe b}, (1)

= xe P% to-
gether with the (exact) data poifit,y) = (2, 1), and search
'Pégion p = [0, 1]. A straight-forward interval evaluation of
the model function yields:

This constrains (at x= 2) the value of the model func-
except thata = b is undefined if 0c b. Working exclu- tion (y = 1) to belong to the intervae 2, 2] ~ [0.27, 2],
sively with closed intervals, the resulting interval careke  which it does. Had we chosgn = [1,2] as our search

- 67 -



space, we would obtain an inconsistenty f(2,[1,2]) =
[2e74,2e7?] ~ [0.03,0.27]. This would allow us to discard

the entire sep. n, \
This example illustrates how divide and conquep- @_’@ ”

proach can be devised. Starting from a large search space /4 N3 ng Ns \
p, we adaptively bisecp into smaller subsets, many of
which we can discard via inconsistency checks. >

©

ny Ng =Yy
3. Noise and data inflation . _
Figure 1: The DAG representation of a forward sweep of

Given a model functioy = f(x; p) together with a finite y = xe P,
set of noisy dataxy, ¥1),. .., (Xn, Yn), we will attempt to
find parameters that make the modehnsistentwith the

data, i.e., we want to find the set . .
parameters consistent with the data. Of course, when the

S={pep: f(x;p) =Viforalli=1,...,N}. (5) datais noisy, there are no consistent parameters, in gen-

eral. This forces us to inflate the data — a process that com-

In general, this set will be empty, indicating the presencpensates for the loss of information caused by the noise.

of noise in the data. In order to improve matters, we inflat®nce stficiently inflated, the set of consistent parame-

each data value into an interval. This can be done in sevetals is non-empty and bounded. We shrink the bounding

ways; assigning a width roughly proportional to the valuaet (and the inflated data) by constraint propagation tech-

¥i is a good heuristic choice in many situations: niques. To be fully fective, these techniques require that
the model function be represented in a special form.

Vi >y =51+ of-1, +1]) + p[-1, +1]. (6)

Herea is a scaling factor, and is a threshold factor, nec- 4.1. The DAG representation

essary for situations whef| is very small. We use a directed acyclic graph (DAG) representation
_ The new requwement_for consistency Is now formulateds the model function to automate constraint propagations.
in terms of more robust inclusion conditions: This representation captures the natural way of decompos-

ing a (possibly complicated) function into its basic builgli
blocks. The graph nodes represent variables, constants or
simple functions, while the edges represent dependencies
between them.

S={pep: f(x;p ey forali=1...,N}. (7)

With no data inflation, this reduces to (5). Gradually in
creasingr (andor g) will eventually produce a non-empty
set of consistent paramete$s

Given a partition® = {p;}X, of the search spage = Example 4.1 Returning to the model function of Exam-
i= . _ . .
pLU---Upy, the consistent parameters can be enclosed i€ 2-1, X p) = xe™™ it can be decomposed into the
ScScS where following code list:
S = (pjeP: f(x;py) cyforalli=1,...,N}, ng =X
S = {p;jeP: f(x;pj) Ny, #0foralli=1,...,N}. N2 =P
N3z = N1 X N2
The next example displays how interval-valued data can Ng=—ng
be contracted, using constraints from both the model func- e = g
tion and the search space. >~
Ne = N1 X Ns.

Example 3.1 Repeating the calculations from Exam-
ple 2.1, withp = [0, 1], but with the datdx, y) = (2,[1,3]),  This listis equivalent to the DAG illustrated in Figure 1.

we can contract the data range according to
The DAG representation is used to obtain numeric and

yyn f(xp) =[1,3]n[2e2 2] =[1,2]. symbolic information about various mathematical objects,
such as derivatives, slopes, mean value forms, linear or
4. Constraint propagation for pedestrians convex relaxations (over- and under-estimators), and con-

vexity information. Representations of equations and in-

In this section, we will outline the main ingredients ofequalities can be included for the purpose of accelerating

our parameter estimation procedure. As mentioned in Seffte constraint propagations. Information on these matters
tion 1, our method is global. As such, it attempts to falld can be found in [GW08, SNO5].
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@ @ for this simple example, we can find the explicit inverse:
p = %Iogg, which gives the sought result. The point is,

p=nz \ / ny however, that we never use this formula; we only use the
@ ) ) @ code list of f.
n3 Ny N5 \ Continuing Example 3.1, where we have interval-valued

data §, y), and a parameter domainto examine, we can
combine the forward and backward sweeps to contract both
Ne y andp.

Figure 2: The DAG representation of a backward sweep @fyample 4.4 Again, we work on the model function=y

y = xePx f(x; p) = xe PX, but now with the datéx, y) = (2,[1, 3]),
together with the parameter domain= [0, 1]. The for-
ward sweep, performed in Example 3.1, contracts the in-

4.2. Constraint propagation on DAGs terv_al data toy = [1,2]. Performing_a backward sweep,
as in Example 4.3, contracts the interval parameter to

To each elementary mathematical operation one assg= [0, L log 2]:
ciates two operation$prward and abackwardoperations.

The forward operator evaluates the range based onthens = ng+n; = [1,2]+2 = [%,1]

range of its arguments and intersect it with the current n, = logns = log[3,1] = [-log20]
range. The backward operator evaluates the ranges ofitsn; = -n; = [0,log2]

predecessors and intersect it with their current ranges. N, = ng+m = 3[0,log2] ~ [0,0.34657359]

Example 4.2 Once more, we will use the model functionNote that, in one forwaydackward sweep, we managed to
of Example 2.1, (x; p) = xeP*. As we saw in Exam- exclude ovei65% of the parameter domain, at the same
ple 4.1, it can be decomposed into a code list as well aime reducing the data uncertainty Bp%

a DAG. We will now show how we can use these objects to

propagate constraints from data to the parameter. Moving In most cases, the described constraint propagation tech-
backwards in the code list of Example 4.1, starting fronmiques do notresultin a complete contraction to the optimal
(x,y) = (n1,ng), and ending in p= n,, we obtain a new State. Rather, a stage is reached where no further contrac-

code list; tion can be obtained, even though there are inconsistencies
present. In order to proceed, some type of partitioning must
Ns =N+ M be employed. The partitioning can be performed at any

ns = logns node of the DAG. Once a node has been selected for par-

titioning, its domain is split, resulting in two new DAGS,

differing only in the domain of the split node. Each DAG is
Nz = N3 =+ Ny. updated through forwasdackward sweeps, possibly gen-
erating more contraction.

N3 =-MNy

This list is equivalent to the DAG illustrated in Figure 2.

Thus, viewing a function in terms of its code list or DAG4'3' Data gridding

allows us to compute its formal inverses, without know- |n order to extract traditional statistics from the set-
ing the formulae for these. All we need is the code list foyalued results, we discretize the seinto a collection of

f. Traversing the list backward produces the desired infopoints. Recall the the outcome of our parameter estimation
mation. This is extremely useful for parameter estimatiof 5 collection of boxey;, . .., p,, whose uniorS may or
problems, as we illustrate in the following example. may not be a connected set. We form the hull of this col-
lection by taking the smallest bgxthat containsS. Next,

we introducem equally spaced nodes along each sidp.of
This defines a grid of size whered is the dimension of

p. From this grid, we discard all nodes that are ndfisu

Example 4.3 Given the model function y= f(x;p) =
xe PX| together with the datdx,y) = (2,1), we can gen-
erate, and evaluate the code list of Example 4.2:

g = nNg<n = 1=2 ciently close to the se§. This leaves us with a set of points
n = logns = logk amenable to statistical tests.
2
ng = -ng = log2
n = ng+ng = % log 2~ 0.34657359 5. Methods and examples

The conclusion is that the only parameter that corresponds We demonstrate our method on a mixefieets model.
to the data(x,y) = (2,1)is p = %Iog 2. Of course, A mixed—gectsmodel is a model that includes a mixture
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of fixed and random factors. In the current setting, we
consider a model function of the forif(t, §), wheret de
notes time, angd = (p1, p2, P3) is a three-dimensional |
rameter vector. Aopulationparameter is a parameter
is shared among every member of the population.im
dividual parameter is a parameter that is unique to
individual. In what follows, we lep; be an individual p.
rameter, whereap, and pz act as population paramet
Thus p; corresponds to a random factor (sampled
some underlying distribution), wheregs and ps corre-
spond to fixed factors.

5.1. Methods

Starting from a given parameter veci®e (p1, P2, P3),
we perturb the individual parameter according to

Figure 3: (a) Data inflation and contraction for Exam-
ple 5.1. The graph of the model function— f(t, p) for

one subject (blue line). The data points are marked with
red dots. The inflated data sets are shown as striped bars,
and the re-contracted data as green bars. (b) The set of

py=pi+7m where 5 ~N(@0,06?)  (i=1...,Np).
(8)

Here N(a, b) denotes the normal distribution with mean |

consistent parameters for two subjects of Example 5.1.

N, = 10 Np = 25 Np = 50

and (positive) varianck. This producesN, different pa- ——q71
rameter vectorg®, ..., p\» (each corresponding to a dif- . — g2
ferent subject), wher@ = (p, p,, ps). For each of the =03
Np subjects, we generate exact dgtp = f(tj; p') for

j =1,...,Ng. Next, the exact data is perturbed, with max-gpje 1:

imal intensitye > 0, according to

')7”' = yij(1+9ij) where Gij ~ U(—e¢, +e€). (9

HereU (a, b) denotes the uniform distribution on the inter-4(7)
val [a,b]. This produces the data sef.§i;), which, to-  TOf Pr.
gether with the model function, is all information we have.

In order to find the typical performance of our method,
we repeat the entire estimation proclss- 200 times, and

report the average results. [DS98]

5.2. Example

The following model is used to study the growth of O [GWO08]
ange tree trunks, see [LB90, DS98].

Example 5.1 Consider the following function

() = o

1+ poerst’
For this specific example, we will use, Ne {10, 25,50}

subjects, sampled atyN= 10 data sites, evenly spaced
within[100, 1600] The parameter values corresponding to

the mean population arg = (19184, 8.153 —0.0029) the ~ [M0066]
perturbation parameters are¢ = 20ande € {0.1,0.2,0.3}.
We perform the constraint propagation over the param
ter regionp = ([0, 300], [0, 9],[-1, 0]). The results of this
procedure are illustrated in Figure 3 and in Table 1.

(10)
[LB9O]

TNeu9o]

[SNO5]

6. Conclusion
We have described a new approach to solve parameter
estimation problems for noisy data. It is a deterministic

global search method based on relaxation methods (via data
inflation) and the use of set—valued constraint propagation
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190.266 (20.3)
186.853 (20.4)
185.781 (20.7)

189.703 (20.1)
185.828 (20.0)
185.851 (20.0)

189.834 (20.0)
185.740 (20.0)
185.838 (20.0)

The results of several experiments for Exam-

ple 5.1, all using\; = 200 trial runs,pﬁ = 191184, and
o = 20.0. For each paire| Np), we display the pair(py)
—the average estimates of the distribution parameters
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