A rigorous lower bound for the stability regions of the quadratic map

Warwick Tucker and Daniel Wilczak Department of Mathematics University of Bergen Johannes Brunsgate 12, 5008 Bergen, Norway first.last@math.uib.no

July 6, 2009

Abstract

We establish a lower bound on the measure of the set of stable parameters a for the quadratic map $Q_a(x) = ax(1-x)$. For these parameters, we prove that Q_a either has a single stable periodic orbit or a perioddoubling bifurcation. From this result, we also obtain a non-trivial upper bound on the set of stochastic parameters for Q_a .

Keywords: Quadratic map, periodic orbit, period doubling bifurcation, interval analysis.

2000 MSC: Primary: 37E05; Secondary: 34-04, 37G15, 65G20.

1 Introduction

The quadratic map (often referred to as the *logistic map*)

$$Q_a \colon [0,1] \to [0,1] \qquad x \mapsto ax(1-x), \tag{1}$$

is arguably the most studied discrete dynamical system. Beginning with the famous article by Robert May [Ma76], the intricate properties of this dynamical system have gradually been revealed, see e.g. [CE80], [Ep85], [Fe79], [La82], [Ly02]. The latter article succinctly states that almost every parameter $a \in [0, 4]$ is either *regular* or *stochastic*. To be more precise, a parameter is called *regular* if Q_a has an attracting cycle. In this case the cycle is unique, and attracts almost all orbits in [0, 1]. A parameter is called *stochastic* if Q_a has an absolutely continuous invariant measure. In this case, the measure is unique, and almost all orbits in [0, 1] are asymptotically equidistributed with respect to it.

For convenience, let us denote the set of regular parameters by \mathcal{R} , and the stochastic parameters by \mathcal{S} . The result by Lyubich then states that $|\mathcal{R}|+|\mathcal{S}|=4$, where $|\cdot|$ denotes Lebesgue measure.

Today, it is well-known that S has positive measure, see e.g. [BC85], [BC91], [Ja81]. Remarkably, until very recently (see [LT06]), there has been no nontrivial estimates on the measure of S. And, as the authors of [LT06] point out, the result¹ $|S \cap I^*| > 0.97|I^*| > 10^{-5000}$ with $I^* = [2 - 10^{4990}, 2]$ is not a good estimate of |S|. Seeing that \mathcal{R} is an open (and dense [Sw92]) set, it trivially follows that it has positive measure. The aim of this work is to try to obtain a good *lower* bound on the measure of \mathcal{R} . In light of [Ly02], this automatically translates to a good *upper* bound on the measure of S.

Theorem 1 (Main Theorem) The set of regular parameters for the quadratic map satisfies the lower bound: $|\mathcal{R} \cap [2,4]| \ge 1.61394824439594656781$.

We believe that this lower bound is quite close to the true measure. According to non-rigorous numerical experiments ([Si08]) the measure of the regular set, beyond the first period doubling cascade (at $r^* \approx 3.569945672$) is estimated to be $|\mathcal{R} \cap [r^*, 4]| \approx 0.0455857$, i.e., \mathcal{R} constitutes roughly 10.6% of the set $[r^*, 4]$. Our bound captures more than 10.2% of these parameters, which means that our rigorous result is just slightly less than the non-rigorous estimate. Of course, the non-rigorous estimate may be a gross underestimation of the actual measure, but we find this quite unlikely.

The way we obtain our main result is by adaptively partitioning the parameter space $\mathbb{A} = [2, 4]$ into subintervals. For each such subinterval \mathbb{A}_i , we attempt to prove that Q_a has a unique, stable periodic orbit, which persists for all $a \in \mathbb{A}_i$. This can be achieved by employing various set-valued versions of fixed point theorems, implemented rigorously using interval analysis.

We also prove the existence of period doubling bifurcations, using a method presented in [WZ09]. Note that, although the set of parameters at which a period doubling occurs has measure zero, this step is not entirely superficial. It allows us to join the two parameter sets that correspond to stable periodic orbits before and after a period doubling. This produces larger connected parameter sets within each period doubling cascade, and thus adds measure to our final bound.

2 Three methods for verifying the existence of a stable orbit

Our algorithm for computing a lower bound for the measure of \mathcal{R} uses the following three methods for verifying the existence of a stable orbit:

- the Brouwer theorem,
- the method of backward shooting,
- the modified interval Krawczyk operator.

¹This results concerns the quadratic map $f_b(x) = x^2 - b$. Thus the parameter b = 2 corresponds to our parameter a = 4.

Figure 1: The bifurcation diagram for the quadratic map for parameters $a \in [3.99, 4]$. To the right of the main bifurcation diagram, verified stable windows have been marked as black rectangles.

The three methods are increasing in computational complexity, and therefore, when proving the existence of a stable orbit, we first use the Brouwer theorem. If this method fails, we apply the method of backward shooting. If we still have no success, we switch to the modified interval Krawczyk method, provided the assumptions of this method are satisfied.

2.1 The method based on the Brouwer theorem

This is the simplest method, and it relies upon the fact that our goal is to prove the existence of a stable periodic orbit. Let \mathbb{A} be a closed interval of parameters for which we expect the existence of a stable periodic orbit for Q_a . Let x_1 be an approximate *p*-periodic point for the parameter $a = \min(\mathbb{A})$ and let X_1 be a closed interval containing x_1 in its interior. Using interval arithmetic we compute the sequence X_i , $i = 2, \ldots, p$ such that for all $a \in \mathbb{A}$

$$Q_a(X_i) \subset X_{i+1}, \quad i = 1, \dots, p-1$$

Since the orbit is expected to be attracting, it might happen that $X_p \subset X_1$. In that case the Brouwer theorem guarantees that for each $a \in \mathbb{A}$ there exists a fixed point $x_1^a \in X_1$ for the map Q_a^p . It remains for us to verify that $\{x_i^a\}_{i=1}^p$ is the *p*-periodic stable orbit for Q_a .

The verification that p is the principal period of x_1^a can be simply done by checking if the computed enclosure of the trajectory satisfies the condition

$$X_1 \cap X_i = \emptyset$$
, for $i = 2, \dots, p$ such that $i - 1$ divides p (2)

In order to verify the stability of the trajectory of x_1^a it is enough to check if

$$|Q'_{\mathbb{A}}(X_1) \cdot Q'_{\mathbb{A}}(X_2) \cdots Q'_{\mathbb{A}}(X_p)| < 1 \tag{3}$$

Summarizing, we had prove the following

Lemma 2 Assume that Algorithm 1 is called with the arguments \mathbb{A} and X_1 . If the algorithm stops and returns true then for each $a \in \mathbb{A}$ the computed enclosure (X_1, \ldots, X_p) contains the unique p-periodic stable orbit for Q_a .

The above method is very fast, but has some disadvantages compared to the methods described in the following sections. First, given that we always examine an interval of parameters \mathbb{A} rather than a single parameter, the condition $Q_{\mathbb{A}}(X_p) \subset X_1$ might fail.

Second, the initial interval X_1 cannot be too small since we intend to verify the existence of a stable orbit for an interval \mathbb{A} . As the "convergence" of X_1 to the periodic orbit is linear (like the contraction of the map), it is very weak for parameters close to bifurcation parameters. Therefore the computed enclosure (X_1, \ldots, X_p) of the periodic orbit may be quite wide. This fact can result in that the stability criterion (3) is not satisfied.

The methods described in the next sections avoid such disadvantages. The computational complexity, however, is larger.

Algorithm 1: verify stability by means of the Brouwer theorem

```
Data: \mathbb{A} - interval,
              X_1, \ldots, X_p - intervals
 1 begin
         for i \leftarrow 2 to p do
 2
              X_i \leftarrow Q_{\mathbb{A}}(X_{i-1});
 3
              if p \mod i - 1 = 0 and X_i \cap X_1 \neq \emptyset then
               return false;
 4
         if Q_{\mathbb{A}}(X_p) \not\subset X_1 then
 \mathbf{5}
          return false;
 6
         X_1 \leftarrow Q_{\mathbb{A}}(X_p);
 7
         Interval product \leftarrow 1;
         for i \leftarrow 1 to p do
          product \leftarrow Q'_{\mathbb{A}}(X_i) \times \text{product};
 8
         if not |product| < 1 then
 9
            return false;
10
         return true;
11
12 end
```

2.2 The method of backward shooting

One of the most efficient methods for verifying the existence of isolated zeros for a map is the interval Newton method (see e.g. [AH83], [Kr86], [KN84]). Given a smooth function $F : \mathbb{R}^n \to \mathbb{R}^n$, an interval vector² X, and a point $\bar{x} \in X$ we define the interval Newton operator by

$$N(F, \bar{x}, X) = \bar{x} - DF^{-1}(X)F(\bar{x}).$$
(4)

Theorem 3 Let X be an interval vector, $\bar{x} \in X$, and $F : \mathbb{R}^n \to \mathbb{R}^n$ be smooth. Assume that DF(X) is invertible as an interval matrix. If the interval Newton operator satisfies

$$N(F, \bar{x}, X) \subset X$$

then the map F has a unique zero x^* in the set X. Moreover, $x^* \in N(F, \bar{x}, X)$.

This theorem can be adopted to the special situation of proving the existence of periodic orbits for one-dimensional maps, even for very high periods. In this section we recall the method of backward shooting introduced in [Ga02].

The question of the existence of a periodic point for a map $f : \mathbb{R} \to \mathbb{R}$ of principal period p can be transformed to finding a zero of the function

$$F(x_1, \dots, x_p) = (x_2 - f(x_1), \dots, x_p - f(x_{p-1}), x_1 - f(x_p)),$$
(5)

with the additional assumption that the zero of F has pairwise different coefficients. The following theorem is proved in [Ga02]:

²In the sequel we will call a Cartesian product of closed intervals an *interval vector*.

Theorem 4 Let $X = (X_1, \ldots, X_p)$ be an interval vector, $\bar{x} = (\bar{x}_1, \ldots, \bar{x}_p) \in X$, and let $f : \mathbb{R} \to \mathbb{R}$ be a smooth map. Define F as in (5). Let us assume that $A_k, G_k, H_k, k = 1, \ldots, p$ are intervals such that

$$0 \notin A_k, \quad k = 1, \dots, p$$

$$f'(X_k) \subset A_k, \quad k = 1, \dots, p$$

$$f(\bar{x}_k) - \bar{x}_{(k \mod p)+1} \in G_k$$
(6)

$$\left(1 - A_1^{-1} \cdots A_p^{-1}\right) \sum_{i=1}^p A_1^{-1} \cdots A_i^{-1} G_i \subset H_1 \tag{7}$$

$$A_k^{-1} \left(H_{(k \mod p)+1} + G_k \right) \subset H_k, \quad k = 2, \dots, p$$
(8)

Then $DF(X)^{-1}F(\bar{x}) \subset H = (H_1, \ldots, H_p)$, and $N(F, \bar{x}, X) \subset \bar{x} - H$.

The above theorem gives a precise algorithm for proving the existence of periodic points for a map $f : \mathbb{R} \to \mathbb{R}$. If $\bar{x} = (\bar{x}_1, \ldots, \bar{x}_p)$ is a good candidate for a periodic orbit, we can choose X to be a small interval vector centered at \bar{x} . Then, G_k and H_k can be computed directly by means of the formulas (6–8), provided that none of the A_k contain zero. If $N(F, \bar{x}, X) \subset X$, then by theorem (3) F has a (unique) zero in the set $N(F, \bar{x}, X)$, which corresponds to a periodic point of period p. As a final step, we must also verify that p is the minimal period of the found periodic point, and that this orbit is stable. This can be done by verifying conditions (2–3) in the same way as in Algorithm 1.

Remark 5 In our algorithm, which verifies the existence of stable periodic orbits for the map Q_a , we use Theorem 3 applied to the map F defined as in (5) with $f = Q_A$, where A is an interval of parameters. The interval Newton operator is computed as described in Theorem 4.

The method of backward shooting, although very efficient, cannot be used to prove the existence of a superstable periodic orbit, or even an orbit which is very close to a superstable orbit. In this type of situation, we use a special version of the interval Krawczyk operator.

2.3 The interval Krawczyk method for superstable orbits

A superstable orbit appears when the critical point of Q_a is a periodic point. Let (x_1, x_2, \ldots, x_p) be a periodic orbit, and assume that x_1 is the critical point. It is easy to see that, in this situation, we cannot apply the backward shooting method, since $Q'_a(x_1) = 0$. Note, however, that the derivative of $F(x_1, \ldots, x_p) =$ $(x_2 - Q_a(x_1), \ldots, x_p - Q_a(x_{p-1}), x_1 - Q_a(x_p))$ has the following form:

$$DF(x_1,\ldots,x_p) = \begin{bmatrix} -Q'_a(x_1) & 1 & 0 & \ldots & 0\\ 0 & -Q'_a(x_2) & 1 & \ldots & 0\\ \vdots & \vdots & \ddots & \vdots & \vdots\\ 0 & 0 & \cdots & -Q'_a(x_{p-1}) & 1\\ 1 & 0 & \cdots & 0 & -Q'_a(x_p) \end{bmatrix}.$$

Since we are assuming that x_1 is a critical point, we have $Q'_a(x_1) = 0$. This means that the solution of the linear equation $DF(x_1, \ldots, x_p) \cdot y = z$, where $y = (y_1, \ldots, y_p), z = (z, \ldots, z_p)$ is given by

$$\begin{cases} y_2 = z_1 \\ y_3 = z_2 + Q'_a(x_2)y_2 \\ y_4 = z_3 + Q'_a(x_3)y_3 \\ \dots \\ y_p = z_{p-1} + Q'_a(x_{p-1})y_{p-1} \\ y_1 = z_p + Q'_a(x_p)y_p \end{cases}$$
(9)

Despite this, we cannot use this approach for superstable orbits when solving the linear equation by means of the interval Newton operator. This is because the coefficient $Q'_a(X_1)$ is then not equal to zero - it is an interval *containing* zero. Of course, one might consider using Gaussian elimination for solving the linear system which appears in the interval Newton operator. In this special case, however, the computational complexity can be significantly reduced by using the interval Krawczyk operator instead.

The interval Krawczyk operator is defined by

$$K(F,\bar{x},X,C) = \bar{x} - C \cdot F(\bar{x}) + (\mathrm{Id} - C \cdot DF(X))(X - \bar{x})$$
(10)

Theorem 6 Let C be an isomorphism, and let $\bar{x} \in X$, where X is an interval vector. If the interval Krawczyk operator (10) satisfies

$$K(F, \bar{x}, X, C) \subset \operatorname{int} X$$

then the map F has a unique zero in $x^* \in X$. Moreover, $x^* \in K(F, \bar{x}, X, C)$.

Observe that the method only requires that C be an (arbitrary) isomorphism. For the method to work well, however, C should be chosen to be an approximate inverse of $DF(\bar{x})$. The main idea of our approach for proving the existence of superstable periodic orbits (and also nearly superstable ones) is to choose the matrix J as an approximation of $DF(\bar{x})$, and then force the coefficient $J_{11} = 0$. Given this, we choose C to be the inverse of J, which always exists. Furthermore, it can be computed relatively fast – the computational complexity is quadratic with respect to the period p, as we will see below.

Another advantage, in comparison to Gaussian elimination, is that this approach is more memory efficient. In fact, we need not store neither C nor $\mathrm{Id} - C \cdot DF(X)$, which significantly decreases memory usage, especially for large periods – see Algorithm 2. The only storage we need to cater for are the values of $C \cdot F(\bar{x})$ and $(\mathrm{Id} - C \cdot DF(X))(X - \bar{x})$. The value of $C \cdot F(\bar{x})$ can be computed by means of (9). What remains for us to show is the algorithm for the computation of $(\mathrm{Id} - C \cdot DF(X))(X - \bar{x})$.

Lemma 7 Assume that Algorithm 2 is called with its arguments, and assume that $a_1 = 0$. Then the algorithm always stops and returns an interval vector r

Algorithm 2: solve linear system

Data: a_1, \ldots, a_p - scalars, A_1, \ldots, A_p - intervals, $\bar{x} = (\bar{x}_1, \dots, \bar{x}_p)$ - a vector, $X = (X_1, \dots, X_p)$ - an interval vector 1 begin $r = (r_1, \ldots, r_p)$: an interval vector; $\mathbf{2}$ $r \leftarrow 0;$ for $i \leftarrow 1$ to p do Interval product $\leftarrow A_i - a_i$; 3 $r_{(i \mod p)+1} \leftarrow (r_{(i \mod p)+1} + \operatorname{product} \times (X_i - \bar{x}_i));$ for $j \leftarrow i+1$ to p do product \leftarrow product $\times a_j$; $\mathbf{4}$ $r_{(j \mod p)+1} \leftarrow (r_{(j \mod p)+1} + \operatorname{product} \times (X_j - \bar{x}_j));$ return r; $\mathbf{5}$ 6 end

which is an upper bound for the interval vector $(Id - C \cdot D)(X - \bar{x})$, where

$$D = \begin{bmatrix} -A_1 & 1 & 0 & \dots & 0 \\ 0 & -A_2 & 1 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \dots & -A_{p-1} & 1 \\ 1 & 0 & \dots & 0 & -A_p \end{bmatrix}, C = \begin{bmatrix} 0 & 1 & 0 & \dots & 0 \\ 0 & -a_2 & 1 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \dots & -a_{p-1} & 1 \\ 1 & 0 & \dots & 0 & -a_p \end{bmatrix}^{-1}$$

Proof: It is easy to see that the matrix $M := \text{Id} - C \cdot D$ has the form

$$\begin{bmatrix} a_{p}\dots a_{2}A_{1} & a_{p}\dots a_{3}(A_{2}-a_{2}) & \dots & a_{p}(A_{p-1}-a_{p-1}) & A_{p}-a_{p} \\ A_{1} & 0 & \dots & 0 & 0 \\ a_{2}A_{1} & A_{2}-a_{2} & \dots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ a_{p-2}\dots a_{2}A_{1} & a_{p-2}\dots a_{3}(A_{2}-a_{2}) & \dots & A_{p-1}-a_{p-1} & 0 \end{bmatrix}$$
(11)

The above form can be obtained by the application of (9) to the columns of D. Hence, the coefficients of the matrix M are given by

$$M_{(j \mod p)+1,i} = \begin{cases} 0 & \text{for } j = 1, \dots, i-1 \\ A_i - a_i & \text{for } j = i \\ a_j M_{j-1,i} & \text{for } j = i+1, \dots, p \end{cases}$$
(12)

Define $r = (\text{Id} - C \cdot DF(X))(X - \bar{x})$. Then

$$r = \sum_{i=1}^{p} M_{\cdot,i}(X_i - \bar{x}_i),$$
(13)

where $M_{,i}$ denotes the *i*-th column of the matrix M. The above sum corresponds to the external loop in the algorithm indexed also by *i*. In the internal loop of the algorithm (indexed by *j*), the variable 'product' contains precisely the coefficients of the *i*-th column of the matrix M, as given by the recursive formula (12).

Since all operations used in the algorithm are always well defined in interval arithmetic (extended to NaN cases), the algorithm always returns a valid upper bound for $(\text{Id} - C \cdot D)(X - \bar{x})$.

The above lemma gives us a tool for computing the interval Krawczyk operator for a periodic orbit which is (or is close to) superstable. To be more precise: the interval Krawczyk operator is used to prove the *existence* of such a periodic orbit. In addition to this, we need to check if this orbit has principal period p, and if it is stable. As in the method of backward shooting one needs to verify the conditions (2–3).

3 A method for verifying the existence of period doublings for 1D maps

The methods described in the earlier sections allow us to prove the existence of stable periodic orbits for parameter ranges well separated from bifurcations. Our aim, however, is to give as good as possible lower bound for the measure of parameters for which stable periodic orbit exists. Therefore, it is important to take into account neighborhoods of parameters for which period doublings occur.

A period doubling occurs when the derivative of a stable periodic orbit decreases through the value -1. When crossing -1, a new stable periodic orbit arises, with a derivative slightly less than 1. The existence of the period doubling can be deduced just from higher derivative information of the map at the bifurcation point. This does not, however, give us any information about the size of the set, or the parameter range, on which we have such dynamics.

In the paper [WZ09], a method for proving the existence of period doubling for higher dimensional maps is proposed. In this method, some computable inequalities for the derivatives allow one to deduce the dynamics of a map in an explicitly given neighborhood of the bifurcation point – both in the phase space and in the parameter space.

Here we recall the main definitions and theorems, adopted to the onedimensional case. Given a map $f: X \to Y$, we let dom (f) denote the domain of f. For a map $F: X \to X$, we will denote its (restricted) set of fixed points by Fix $(F, U) = \{x \in U \mid F(x) = x\}$.

Definition 1 Let $f : \mathbb{R} \supset \text{dom}(f) \to \mathbb{R}$ be C^1 . Let $z_0 \in \text{dom}(f)$. We say that z_0 is a hyperbolic fixed point for f iff $f(z_0) = z_0$ and $|f'(z_0)| \neq 1$.

Definition 2 A subset $I \subset \mathbb{Z}$ is called an interval in \mathbb{Z} if there exists an closed interval [a, b], where $a, b \in \mathbb{R} \cup \{\pm \infty\}$ such that $\mathbb{Z} \cap [a, b] = I$.

Definition 3 Consider a map $f : \mathbb{R} \supset \text{dom}(f) \to \mathbb{R}$. Let $x \in \mathbb{R}$. Any sequence $\{x_k\}_{k \in I}$, where I is an interval in \mathbb{Z} containing zero such that

 $x_0 = x,$ $f(x_i) = x_{i+1},$ for $i, i+1 \in I$

will be called an orbit through x. If $I = \mathbb{Z}_{-} \cup \{0\}$, then we will say that $\{x_k\}_{k \in I}$ is a full backward orbit through x.

Definition 4 Consider a continuous map $f : \mathbb{R} \supset \text{dom}(f) \rightarrow \mathbb{R}$. Let $Z \subset \mathbb{R}^n$, $x_0 \in Z$, $Z \subset \text{dom}(f)$. We define

$$\begin{split} W_Z^s(z_0,f) &= \{ z \mid \forall_{n \ge 0} f^n(z) \in Z, \quad \lim_{n \to \infty} f^n(z) = z_0 \} \\ W_Z^u(z_0,f) &= \{ z \mid \exists \{x_n\} \subset Z \text{ a full backward orbit through } z, \text{ such that} \\ \lim_{n \to -\infty} x_n = z_0 \} \\ W^s(z_0,f) &= \{ z \mid \lim_{n \to \infty} f^n(z) = z_0 \} \\ W^u(z_0,f) &= \{ z \mid \exists \{x_n\} \text{ a full backward orbit through } z, \text{ such that} \\ \lim_{n \to -\infty} x_n = z_0 \} \\ Inv^+(Z,f) &= \{ z \mid \forall_{n \ge 0} f^n(z) \in Z \} \\ Inv^-(Z,f) &= \{ z \mid \exists \{x_n\} \subset Z \text{ a full backward orbit through } z \} \\ Inv(Z,f) &= Inv^+(Z,f) \cap Inv^-(Z,f) \end{split}$$

If f is known from the context, then we will usually drop it and use $W^{s}(z_{0})$, $W^{s}_{Z}(z_{0})$ etc instead.

Definition 5 [WZ09, Def. 4] Let $f_a : \mathbb{R} \to \mathbb{R}$, where a belongs to some interval. We say that f_a has a period doubling bifurcation at (a_0, x_0) iff there exists $Z = [a_1, a_2] \times X \subset \mathbb{R} \times \mathbb{R}$, such that the following conditions are satisfied:

- $(a_0, x_0) \in \operatorname{int} Z, \ f_{a_0}(x_0) = x_0$
- there exists a continuous function $x_{fp}: [a_1, a_2] \to \text{int } X$, such that

$$Fix(f_a, X) = \{x_{fp}(a)\}$$

• there exist two continuous curves $x_i : [a_0, a_2] \to \text{int } X, i = 1, 2$, such that for $a \in [a_0, a_2]$, the following holds:

$$\begin{array}{rcl} x_1(a_0) &=& x_2(a_0) = x_{fp}(a_0) \\ x_1(a) &\neq& x_2(a), \quad a \neq a_0 \\ f_a(x_1(a)) &=& x_2(a), \quad f_a(x_2(a)) = x_1(a) \\ Fix(f_a^2, X) &=& \{x_1(a), x_2(a), x_{fp}(a)\} \end{array}$$

• the dynamics:

for $a \leq a_0$

$$Inv(X, f_a) = \{x_{fp}(a)\}$$

and $x_{fp}(a)$ is an attracting fixed point for f_a .

For $a > a_0$ the maximal invariant set in X $Inv(X, f_a)$ is equal to

$$\overline{W_X^u}(x_{fp}(a), f) \cap \left(\overline{W_X^s}(x_1(a), f_a^2) \cup \overline{W_X^s}(x_2(a), f_a^2)\right)$$

and it is an interval connecting the points $x_1(a), x_2(a)$.

Note that in the above definition, we assume the existence of a stable periodic orbit for each parameter value $a \in [a_1, a_2]$. Even for a_0 , which has the neutral eigenvalue -1, the point x_0 is assumed to be attracting.

The following theorem summarizes the numerical method for proving the existence of a period doubling bifurcation for one-dimensional maps.

Theorem 8 [WZ09, Thm.4, Thm.9] Let $Z = [a_1, a_2] \times [x_1, x_2]$ and let $f_a : \mathbb{R} \to \mathbb{R}$ be a family of maps, such that $[x_1, x_2] \subset \text{dom}(f_a)$ for $a \in [a_1, a_2]$.

A1 Assume there exists a C^k -function $(k \ge 3)$, $x_{fp} : [a_1, a_2] \to (x_1, x_2)$ such that for $a \in [a_1, a_2]$

$$Fix(f_a, [x_1, x_2]) = \{x_{fp}(a)\}\$$

A2 Assume that $G: Z \to \mathbb{R}$, defined as

$$G(a, x) = x - f_a^2(x), \quad for \ (a, x) \in Z,$$

is a C^k -function $(k \ge 3)$, such that

$$\begin{aligned} \frac{\partial^3 G}{\partial x^3}(Z) &\subset (0,\infty) \\ \frac{\partial^2 G}{\partial x \partial a}(Z) + \frac{\partial^2 G}{\partial x^2}(Z) x'_{fp}([a_1,a_2]) \cdot [0,1] &\subset (-\infty,0), \\ \frac{\partial G}{\partial x}(a_1,[x_1,x_2]) &\subset (0,\infty), \\ G(a_2,x_2) > 0, \qquad G(a_2,x_1) &< 0, \\ \frac{\partial G}{\partial x}(a_2,x_{fp}(a_2)) &< 0. \end{aligned}$$

A3 Assume that f_a is injective on $[x_1, x_2]$ for each $a \in [a_1, a_2]$, and

$$\begin{array}{rcl}
f'_{a_1}(x_{fp}(a_1)) &\in & (-1,1), \\
f'_{a_2}(x_{fp}(a_2)) &< & -1, \\
\frac{\partial}{\partial a} \left(f'_a(x_{fp}(a)) &< & 0, \text{ for } a \in [a_1,a_2] \end{array} \right)$$

Then there exists a point $(a_0, x_0) \in Z$ such that f has a period doubling bifurcation at (a_0, x_0) , with the neighborhood from the definition of the period doubling equal to Z.

Let us observe that all assumptions from the above theorem can be verified using rigorous numerics. The existence of the fixed point curve x_{fp} can be established by means of the interval Newton method. Given an enclosure for $x_{fp}(a)$, we can compute its derivative $x'_{fp}(a)$ by differentiating the equation

$$x_{fp}(a) - f_a(x_{fp}(a)) = 0.$$

The other inequalities are easily handled using interval arithmetic, as long as the set Z is a good candidate for the existence of the period doubling bifurcation.

4 The main algorithm

In this section, we will outline the main parts of the algorithm used to bound the measure of stable parameters.

4.1 Finding superstable windows

By a result of Douady and Hubbard ([DH07]), each stable window contains exactly one parameter yielding a superstable periodic orbit. Let $x(a_*)$ denote a new born fixed point for $Q_{a_*}^n$ which is an origin of a stable window. In each case $\frac{\partial}{\partial x}Q_{a_*}^n(x(a_*)) = 1$ and this derivative decreases to -1 along the fixed point curve x(a) when the parameter a increases and results in the next period doubling bifurcation. Hence, for some parameter value a_0 we have $\frac{\partial}{\partial x}Q_{a_0}^n(x(a_0)) = 0$ and the orbit is superstable. This means that the critical point for the quadratic map is on the trajectory of $x(a_0)$.

The above considerations give us a method for detecting superstable orbits. It is enough to solve the equation

$$Q_a^n(\frac{1}{2}) = \frac{1}{2} \tag{14}$$

with respect to a. Since the above equation is polynomial of the degree 2^n it has finite number of solutions, and any method for detecting zeros of this polynomial may be used. In our application we do not need to estimate all solutions of (14) – in fact a lot of them are complex numbers or even when real, they are out of the range $\mathbb{A} = [2, 4]$. In our algorithm we use the Newton method; the details will be presented in the sequel.

Given a good approximation of a superstable periodic point, say $x(a_0)$, we can also estimate very roughly the size of the entire stable window. This can be done by using the Taylor approximation of the curve $\frac{\partial}{\partial x}Q_a^n(x(a))$, where x(a) is a curve of period-*n* points. In the first approach, we can use the linear approximation. Put

$$s(a) = \frac{\partial}{\partial a} \left(\frac{\partial}{\partial x} Q_a^n(x(a)) \right)$$

Clearly $s(a_0)$ gives us a linear approximation of how fast the stability of $x(a_0)$ changes. Hence, given that $\frac{\partial}{\partial x}Q_{a_0}^n(x(a_0)) \approx 0$, we can expect that the stable window is roughly

$$d(a_0) = [a_0 + 1/s(a_0), a_0 - 1/s(a_0)]$$
(15)

(note that $s(a_0) < 0$) or at least of this magnitude. It is possible to compute a higher order Taylor expansion of this curve (for example by means of automatic differentiation), and then solve for when it is equal to 1 and -1.

4.2 One iteration of the algorithm.

Assume we have some grid of the parameter domain

$$[2,4] = \bigcup_{i \in \mathcal{I}} \mathbb{A}_i,$$

where the \mathbb{A}_i are closed intervals (with non-empty interior) such that $\operatorname{int} \mathbb{A}_i \cap$ int $\mathbb{A}_j = \emptyset$ provided $i \neq j$. To each subinterval \mathbb{A}_i from this grid we attribute one of the following four labels: unchecked, verified, periodDoubling, small. The first grid of the interval $\mathbb{A} = [2, 4]$ is created by subdividing the interval \mathbb{A} into 100 equal parts; each subinterval in this primary partition is given the label unchecked.

Let N > 1 be the maximal period of the stable window we are searching for. This is a parameter of our algorithm, and it remains fixed throughout the computations. One iteration of our algorithm consists of the following steps:

- 1. Search for superstable orbits
- 2. Fill parameter gaps
- 3. Search for parameter domains that contain a stable window, but which are not necessary superstable
- 4. Fill parameter gaps
- 5. Scan for period doubling

Note that neither our method of searching for superstable orbits, nor the bisection (step 3 below) produces a uniform partition. Without this non-uniform process, the computational times would become enormous. Below we describe how each one of the above steps are realized.

Searching for superstable orbits. For each subinterval \mathbb{A}_i , we proceed as follows.

- 1.1 If the interval \mathbb{A}_i has a width smaller than 10^{-17} , we label it small.
- 1.2 If the interval A_i is not labeled as unchecked, we leave it intact, and exit.

1.3 Set $a = \operatorname{mid}(\mathbb{A}_i)$. For each $n = 2, \ldots, N$ the point a is a seed for the standard Newton method which solves equation (14). In this way we obtain a sequence

$$\mathbb{B}_i = \left(\mathbb{B}_i^2, \mathbb{B}_i^3, \dots, \mathbb{B}_i^N\right)$$

such that for n = 2, ..., N either $\mathbb{B}_i^n = \{a_i^n\}$ if $a_i^n \in \mathbb{A}_i$ is a good candidate for the superstable orbit of the period n, or $\mathbb{B}_i^n = \emptyset$, otherwise.

- 1.4 If $\mathbb{B}_i^n = \emptyset$ for each $n = 2, \ldots, N$ then we leave interval \mathbb{A}_i intact, and exit.
- 1.5 For each $\mathbb{B}_{i}^{n} = \{a_{i}^{n}\}$ we try to prove that such a superstable orbit of principal period n exists on the interval of parameters $\mathbb{A}_{i}^{n} = a_{i}^{n} + [-10^{-17}, 10^{-17}]$. If we are able to prove stability on the interval \mathbb{A}_{i}^{n} then we set $\mathbb{B}_{i}^{n} = \{\mathbb{A}_{i}^{n}\}$, otherwise $\mathbb{B}_{i}^{n} = \emptyset$.
- 1.6 For each $\mathbb{B}_i^n = \{\mathbb{A}_i^n\}$ we proceed as follows. Using the estimation (15) we try to find two numbers $c_i^n, d_i^n \in \mathbb{A}_i$ such that c_i^n is as close as possible to the origin of the window \mathbb{A}_i^n and d_i^n is as close as possible to the end of that window. Next, we try to prove the existence of a stable periodic orbit of period n on the intervals $\mathbb{C}_i^n = c_i^n + [-10^{-17}, 10^{-17}]$ and $\mathbb{D}_i^n = d_i^n + [-10^{-17}, 10^{-17}]$.
- 1.7 We replace \mathbb{A}_i in the current partition by a set of intervals \mathbb{A}_i^n , \mathbb{C}_i^n , \mathbb{D}_i^n , on which we were able to verify stability and mark them as **verified**. We also insert the remaining parts of \mathbb{A}_i , and mark them as **unchecked**.

Filling parameter gaps The above method for finding superstable orbits produces a parameter set with many gaps. At this point of the algorithm, we scan our current partition, and try to locate and fill possible gaps in the computed stable windows. The key point is that we do not need to determine a period of a stable window. We assume that if two subintervals A_i and A_j with the same period are separated only by intervals marked as **unchecked**, these might form a gap.

Searching for parameter domains that contain a stable window, but which are not necessary superstable This step might seem superfluous at first, but it is very important for proving the existence of period doublings, as well as for extending the primary window of each detected period doubling cascade. Note that the primary window in a cascade has the largest measure in that cascade, so it is very important to extend this window as much as possible.

- 3.1 If the interval \mathbb{A}_i has a width smaller than 10^{-17} , we label it small.
- 3.2 If the interval \mathbb{A}_i is not labeled as unchecked, we leave it intact, and exit.
- 3.3 Subdivide the parameter \mathbb{A}_i onto two equal parts; say $\mathbb{A}_{i,1}$ and $\mathbb{A}_{i,2}$. Both halves inherit the label of \mathbb{A}_i . For each of these parts, we perform the next steps.

- 3.4 Set $a = \operatorname{mid}(\mathbb{A}_{i,j})$, and try to determine (non-rigorously) whether the map Q_a admits a stable orbit or not (of any period from the range $2, \ldots, N$). If we are not able to find a good candidate for a stable orbit, we mark $\mathbb{A}_{i,j}$ as unchecked, and exit.
- 3.5 If we have a good candidate for stable orbit, we try to prove the existence of this orbit for the parameter domain $a + 10^{-17}[-1, 1]$. If this is not successful, we mark $\mathbb{A}_{i,j}$ as unchecked and exit.
- 3.6 Try to extend the existing stable orbit as much as possible to the left and to the right (this is what makes our partition non-uniform). Then insert to our partition the verified interval of stability, marked **verified**. If the verified domain of stability is not the entire interval $A_{i,j}$, we also insert the remaining parts and mark them as **unchecked**.

Scanning for period doublings. In this step we traverse the current partition, and try to locate possible period doublings. For each candidate, we try to apply the method described in Section 3. If the method succeeds, we relabel the gap located between the two bounding stable windows as periodDoubling.

Collapsing data. In order to decrease the memory usage, we try to collapse windows which are connected, and on which we have the same verified period (it might happen that one window contains stability, the other period doubling).

5 Computational Results

In this final section, we present some quantitative results obtained from our computations.

In Table 1 we present information regarding the computed Lebesgue stability measure, the number of verified period doublings, and computational effort versus the subdivision level. From this table, it is apparent that proceeding with further subdivisions does not add much to the total stability measure, whereas the computational time increases significantly.

In order to obtain the stability measure reported in Theorem 1, we compute through 9 subdivision levels, with the restriction to the maximal period we are searching for as given in Table 1. We also compute through 18 subdivision levels with the restriction on the maximal period set to 33000, but with the older version of the C++ program, which did not contain the step of searching for superstable orbits. These latter computations took over one year of CPU time. We stress that this large computational effort is a consequence of us verifying the existence of orbits with relatively large periods (up to 33000). For such large periods, the corresponding stable windows do not contribute significantly to the total measure of the stability regions \mathcal{R} . Nevertheless, our aim is to maximize the lower bound of $|\mathcal{R}|$; not to be cost-effective. As a final step, we merge the data obtained from both computations. After merging the data, the number of verified period doublings numbered 95011.

level	N	measure	wall time (h:m:s)	per. doublings
1	256	1.60620127942955014935	2:05:05	14
2	256	1.61118596303518551971	3:05:08	78
3	256	1.61287812977207803823	1:43:51	335
4	256	1.61349027421762439933	2:39:44	1381
5	256	1.61372268390076635341	5:18:22	4019
6	256	1.61381346643292467144	8:47:48	9075
7	512	1.61389940246044893686	67:26:04	20128
8	512	1.61391413966146151119	95:46:06	41692
9	1024	1.61393868758488911574	2 months	89828

Table 1: Computational results in terms of the level of subdivision. Here, the reported wall time corresponds to the current subdivision level only, and is thus not the accumulated time. The listed values of the measure and period doublings, however, correspond to the accumulated amount from all previous levels.

In Table 2, we illustrate the fact that the parameter a = 4 is a (one-sided) Lebsgue density point of S. As such, the relative measure of the regular parameters should tent to zero as the density point is approached.

δ	$ \mathcal{R} \cap \mathbb{A}_{\delta} / \mathbb{A}_{\delta} $	$-\log_{10}(\mathcal{R} \cap \mathbb{A}_{\delta} / \mathbb{A}_{\delta})$
10^{-1}	2.542×10^{-2}	1.595
10^{-2}	7.596×10^{-3}	2.119
10^{-3}	3.148×10^{-4}	3.502
10^{-4}	1.555×10^{-5}	4.808
10^{-5}	4.145×10^{-6}	5.382
10^{-6}	1.466×10^{-7}	6.834

Table 2: The relative measure of the stable set, localised to increasingly small sets $\mathbb{A}_{\delta} = [4 - \delta, 4]$.

In Figure 2, we illustrate an interesting phenomenom; when we plot \log_2 of the period versus \log_{10} of the verified measure, all points appear to be confined within a wedge–shaped region. This was also observed in [ST91].

In Table 3 (see the Appendix) the verified lower bound for the total measure of stable windows with a given principal period is presented. Note that the measures do not sum to the total measure obtained in Theorem 1. This is because the sets on which the period doubling is verified is not taken into account in this table.

Figure 2: A plot of \log_2 of the period versus \log_{10} of the verified measure. Note how the prime periods form the lower line, whereas periods of the form 2^k form the upper line.

5.1 Implementation notes

The program realizing the computer assisted proof of Theorem 1 has been written by the authors, and the C++ source code is available to download at [W]. The program has been successfully compiled and run on a 32 CPU computer (8 2.2 GHz Athlon Quad Processors) under the Fedora 10 operating system. During all computations, we use long double precision. The code, however, is independent of the number type, and supports e.g. GMP formats too.

The output of the program contains information about the intervals on which we are able to verify stability or period doubling, together with rigorous enclosures for such orbits. The file with this data is about 61GB, and is available from the authors on request.

Acknowledegments: The authors would like to thank Carles Simó for helpful comments and discussions on this topic.

References

[AH83] Alefeld, G. and Herzberger, J. Introduction to Interval Computations. Academic Press, New York, 1983.

- [BC85] Benedicks, M. and Carleson, L. On iterations of $1 ax^2$ on (-1, 1). Ann. of Math., 122:2, 1–25, 1985.
- [BC91] Benedicks, M. and Carleson, L. The dynamics of the Hnon map. Ann. of Math., 133:2, 73–169, 1991.
- [CE80] Collet, P. and Eckmann, J.-P. Iterated Maps on the Interval as Dynamical Systems. Boston, MA: Birkhuser, 1980.
- [DH07] Douady, A. and Hubbard, J. Etude dynamique des polynômes complexes. Documents mathématiques, Société Mathématique de France, 2007.
- [Ep85] Epstein, H. New Proofs of the Existence of the Feigenbaum Functions. Inst. Hautes tudes Sco., Report No. IHES/P/85/55, 1985.
- [Fe79] Feigenbaum, M. J. The Universal Metric Properties of Nonlinear Transformations. J. Stat. Phys. 21, 669–706, 1979.
- [Ga02] Galias, Z. Proving the existence of long periodic orbits in 1D maps using Newton method and backward shooting. Topology and its Applications, Volume 124:1, 25–37, 2002.
- [Ja81] Jakobson, M.V. Absolutely continuous invariant measures for oneparameter families of one-dimensional maps. Comm. Math. Phys., 81, 39–88, 1981.
- [Kr86] Krawczyk, R. A class of interval-Newton-operators. Computing, Volume 37:2, 179–183. 1986.
- [KN84] Krawczyk, R. and Neumaier, A. An improved interval-Newtonoperator. Freiburger Intervall-Berichte 84/4, 1–26, 1984.
- [La82] Lanford, O. E. III. A Computer-Assisted Proof of the Feigenbaum Conjectures. Bull. Amer. Math. Soc. 6, 427–434, 1982.
- [LT06] Luzzatto, S. and Takahashi, H. Computable starting conditions for the existence of nonuniform hyperbolicity in one-dimensional maps. Nonlinearity 19, 1657-1695, 2006.
- [Ly02] Lyubich, M. Almost every real quadratic map is either regular or stochastic. Ann. of Math., v. 156, 1–78, 2002.
- [Ma76] May, R.M. Simple mathematical models with very complicated dynamics. Nature 261:459, 1976.
- [Si08] Simó, C. Private communication, 2008.
- [ST91] Simó, C. and Tatjer, J. C. Windows of attraction of the logistic map. In C. Mira et al.ed. European Conference on Iteration Theory (ECIT 89), Batschuns (Austria), 335–342, World Scientific, Singapore, 1991.

- [Sw92] Swiatek, G. Hyperbolicity is Dense in the Real Quadratic Family. Stony Brook IMS Preprint 1992/10.
- [W] D. Wilczak, http://www.ii.uj.edu.pl/~wilczak, a reference for auxiliary materials.
- [WZ09] Wilczak, D. and Zgliczyński, P. Period doubling in the Rössler system - a computer assisted proof. To appear in Found. Comp. Math., 2009. [DOI 10.1007/s10208-009-9040-x]

Appendix

p	N_w	verified measure	p	N_w	verified measure
1	1	0.99999999999999999999133	55	3834	1.16952087014289031475e-06
2	1	0.449489712730337562154	56	34696	9.88223384075245878805e-05
3	1	0.0130718827973174615657	57	7775	1.57651265319863273517e-07
4	2	0.0952673665554875199416	58	33002	2.04086492206802250227e-07
5	3	0.00352281749623573363014	59	2263	9.39608159702433332061e-09
6	5	0.0100535208500819814043	60	40112	7.60159858456679275035e-05
7	9	0.000970108705773774183598	61	1712	4.2499394036551313425e-09
8	16	0.0211991511740123133017	62	32056	9.15700806604358152896e-08
9	28	0.000524485461610248388312	63	8587	1.73677949005996735965e-06
10	51	0.00270572045435648776343	64	33904	0.000256549465339254555846
11	93	0.000121528614720657927514	65	1853	4.26198131763802154359e-07
12	170	0.00417709278913209851314	66	39564	4.45155419376936853371e-06
13	314	4.41799281499500023224e-05	67	980	3.5057975281485576069e-09
14	583	0.000745338242653109531513	68	34003	2.93812095214789244235e-06
15	1081	0.00013866411367281154636	69	9099	3.72479415880911518544e-08
16	2001	0.00484464029931238248858	70	30358	9.57473156841894858238e-06
17	3674	9.73054144422376941781e-06	71	599	4.69818209791923735441e-09
18	6571	0.000459303691807767637545	72	42865	8.63683164619860350292e-05
19	11206	4.62585472593029546629e-06	73	481	2.02193056329964815365e-09
20	17602	0.00110323675556129436291	74	25233	3.78680588667985179585e-08
21	26270	3.58681690089041917135e-05	75	10964	1.03411117788700969433e-06
22	35999	9.30300639218476551479e-05	76	31668	1.38456132692103307813e-06
23	37228	1.25536973051955727532e-06	77	1242	3.26382623013713596416e-07
24	54621	0.00138359311074481676485	78	30007	1.60349387493246425818e-06
25	53658	1.72318055346306828191e-05	79	331	1.89875125409903755536e-09
26	71167	3.38041935882169800737e-05	80	33257	0.000107430044875180116457
27	85069	1.4731351237678731031e-05	81	9330	4.7157074870756224283e-07
28	90545	0.000302802777599259741181	82	15542	3.05558143936807830032e-08
29	70699	2.92616749706254425378e-07	83	193	2.75592126463414244242e-09
30	72811	0.000139073782564788119009	84	38462	2.01670921383297063745e-05
31	49998	1.32487884997936622433e-07	85	3884	9.05240564882080211984e-08
32	51460	0.00111489583255148854909	86	10550	1.35961065155908861213e-08
33	51338	4.37407428109876442179e-06	87	8993	8.67064942349123068954e-09
34	52969	7.41426465505293924574e-06	88	26053	1.2129835051315034089e-05
35	51517	9.33206508702726436622e-06	89	98	2.39681285821129186342e-09
36	54577	0.000222757503877830161793	90	24006	7.60450007215125386995e-06
37	48407	4.88544719043620262466e-08	91	1998	1.16842960114346347544e-07
38	53694	3.54432509872947693053e-06	92	22564	3.2889032366045962974e-07
39	42923	1.58656653860079002727e-06	93	8526	3.32452233689321807741e-09
40	52635	0.000360875968039200316698	94	5041	1.91490069276472468784e-08
41	36336	3.77527918547174851094e-08	95	5369	4.09062863484643129963e-08
42	50684	3.65605909414580283051e-05	96	34853	0.000117737286417092437002
43	28864	1.69450330377539370996e-08	97	44	9.6037879840533968423e-10
44	47615	3.75116589486691222322e-05	98	6033	1.32695184839161720025e-06
45	21957	6.61146604233418117014e-06	99	9140	2.12315322532059466698e-07
46	43808	9.44120952634311394469e-07	100	26510	9.65785966405342290175e-06
47	14255	2.30083172458005191796e-08	101	33	1.48979659533345076827e-09
48	42503	0.000415087370009211385768	102	14987	3.32312031203416125003e-07
49	9915	1.29714218588755994532e-06	103	35	6.26427760141642919756e-10
50	38085	1.75737844581981637188e-05	104	21894	4.37396446778320555082e-06
51	9566	3.41429440874627468383e-07	105	15452	5.39741123959215987616e-07
52	36585	1.35894747589091011847e-05	106	1846	1.081138791252794773e-08
53	5303	1.26399147778229886674e-08	107	27	1.35893234555831132759e-09
54	38727	1.59944966324214628284e-05	108	33467	9.58279471456168624455e-06
			109	19	5.89864870923634265765e-10

p	N_w	verified measure	p	N_w	verified measure
110	10150	1.19038627957698990578e-06	169	2552	2.23272062990775843616e-09
111	4657	1.33885744092905600855e-09	170	11995	8.61908283987088824629e-08
112	25245	2.93651594566893357069e-05	171	5301	5.61112843623819135264e-09
113	22	7.62790269967159040299e-10	172	3013	4.68261720869798947486e-09
114	14037	1 44886106519638915846e-07	173	4	2.05689922993385065908e-10
115	6379	8 9113670026074592867e-09	174	9899	6 12742601146035181792e-09
116	17449	7 368877050032277262530 08	175	7178	6 606450847152625451830 08
110	6022	7.500011055552211202556-00	175	01699	2 5702010700751025451036-08
111	0022	7.559740817279750891946-08	170	21000	3.370281878073183343916-00
118	855	7.6775308235476485974e-09	177	111	2.09676764449315267136e-10
119	4457	2.4378422289758963637e-08	178	28	1.91676241458743623625e-09
120	43913	3.18881550352232562284e-05	179	1	1.81419202577304261581e-10
121	1712	2.01468847724553534739e-08	180	37873	4.79193552861841530477e-06
122	684	3.88504109156799504188e-09	181	2	7.09528416922844407111e-11
123	1979	1.17893921296359505124e-09	182	11798	1.1485544300165149989e-07
124	16585	2.86872655920998587131e-08	183	90	1.31884991859745892562e-10
125	6388	8.27675618213837699377e-08	184	14009	9.11574432392418809723e-08
126	21280	1.99476268637191131439e-06	185	1472	3.6963785938343152182e-10
127	10	3.11803653426159788076e-10	186	8445	2.14654189540329498609e-09
128	22271	5 90094534758855895212e-05	187	4889	2 44808127545723119844e=09
120	133/	3 98103039249420032064e-10	188	1/88	5 71868696082507288470-09
130	11056	4 29632068925552002003e-07	180	8877	6 33191324262306204362e-08
121	11050	5 192744291617468980180 10	109	10014	2 717626641022010072760 08
131	21050	0.123744321017408289186-10	190	10914	1 40110541020200256407. 10
132	31059	2.44424912292508060563e-06	191	1	1.491105418392063564076-10
133	5116	1.03566685637646732632e-08	192	32702	3.2177302876180285951e-05
134	359	3.30075103274068970549e-09	193	8	9.00781276826079224662e-11
135	11331	2.49496996281278055063e-07	194	21	4.82311795970552514845e-10
136	21508	9.22704891692530462799e-07	195	6482	2.25026412384397161981e-08
137	7	4.88723072645039224859e-10	196	10147	7.25032295128625117742e-07
138	12129	3.08445294360058103189e-08	197	2	2.00523780739814139196e-10
139	6	2.2263665975900959193e-10	198	19072	2.38974888486839093238e-07
140	29225	5.27134620044726782961e-06	199	6	9.19185515462633828676e-11
141	632	4.44651497262874006999e-10	200	23926	4.04666939301232854442e-06
142	205	1.9515967544271595191e-09	201	44	6.48903123075250665153e-11
143	4612	1.40176287606510324713e-08	202	17	4.4796317133152796508e-10
144	40197	2.98354731677204741691e-05	203	2893	5.39752981242383467197e-10
145	5540	1.72202841721390276231e-09	204	17214	1.68595043458560217564e-07
146	164	1 13737421173973340949e-09	205	619	1 23161830126866655988e-10
147	5744	7.017263672177628808240.08	200	16	3 218736594531174111110 10
147	0725	1.01120301211102000240-00	200	4162	1 125022084762028041020 00
140	9125	1.47995975707849502119e-08	207	4102	1.125952084702928941956-09
149	1	4.79038224814341010000-10	208	19900	1.27204795097207508846-00
150	22985	1.28595427839779674617e-06	209	4250	8.93307148738808898258e-10
151	0	1.55892453460038105106e-10	210	26945	6.72630792430614632416e-07
152	19472	4.27804169227195135727e-07	211	6	6.63180751633851706117e-11
153	5541	1.41867695212932742876e-08	212	514	3.39555334023800003962e-09
154	11318	3.26390295524994419885e-07	213	14	8.67556000996860809948e-11
155	4733	7.744848803080406352e-10	214	11	3.95234908169561638402e-10
156	23718	8.70282784781739593427e-07	215	381	5.35231091218502097462e-11
157	4	1.48039428155347096983e-10	216	34527	4.39114458286615251537e-06
158	95	1.23036237101303846941e-09	217	2075	1.02007570142517711709e-10
159	255	2.82154136209758488185e-10	218	12	1.84614170738867100496e-10
160	30501	3.03247317811551793387e-05	219	18	3.29184882477684404023e-11
161	5273	2.26044629563805499206e-09	220	17958	6.40910974284607595775e-07
162	16539	5.81770673163456084054e-07	221	4056	7.12826590072365706696e-10
163	6	1.01781208678222712116e-10	222	2948	9.87033731874101261106e-10
164	4320	1.00819781626970000898e-08	223	1	5.00427043553797190611e-11
165	8982	6 4926658942861953383-08	224	25452	8 26527393371417548606-06
166	61	2 436989637640364381026 00	224	6878	5 7/2/6023206103/51103/ 09
167	201	2.40030303104304301328-09	220	0010	3 05212851748665056442~ 10
107	30005	3.31139397337147394986-10 9.49001094020040005705	220	0	0.900100017400009004430-10
108	39995	0.48901984030646025725e-06	221	1	0.00//1008038360143149e-11

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	n	Nau	verified measure	1	n	Nau	verified measure
220 34 2.4803797276545134141e-10 230 8715 7.0137107387556800824-60 294 8555 8.7201573400703709266-03 231 5572 1.64611388341843328798e-08 295 22 3.28098236513502117262-11 233 9784 2.06022104112675087073-08 296 2675 3.0463016744558535647-09 234 13890 8.2372610413867716701e-08 298 3 1.7744475658707163228e-10 235 196 1.2230413210923515877-10 298 3 1.774447565877163282e-10 236 1.23043125109235158472-10 300 25657 8.60520799162789798431-07 237 12 1.01521022056189414971e-08 302 1 1.0527761388511409379-12 239 17 7.58491354921885288501e-13 302 20 1.37904477413971475741e-11 241 2 5.6452058678179836233-10 3006 9108 1.2997068420078435798-08 241 1.364576253762470533055-08 300 5 1.2997068420078435798-08 241 2.654725782577654061066-10 312	228	14414	6 71485239852904342017e-08		291	3	3 28789100979831605542e-12
230 875 7.01471073870536800824e-08 294 8555 8.72918724690793790266e-08 231 5752 1.0641138834328708-08 295 22 3.280823051350117202e-11 232 9784 2.06922104112875087073e-08 296 2875 3.04630167445585353647e-09 233 2 8.188980808556821316e-11 297 3028 6.90054067142493377652628e-10 236 283 2.37998863557677398686e-09 300 25657 8.05027919162789798431e-07 237 7.12 4.01446688391704408144e-11 301 107 7.9889705961733106249e-12 238 977 7.154943584921898356922e-11 303 2 2.1355801494651395114e-07 241 2 364487262863817633015-08 306 9108 1.24334928052090287754e-10 244 186 5.6552055678179836253-01 304 1.315585054458510407te-11 245 0.00 7.8424157987555690758-04 312 2.0269 3.15555054358106407te-11 244 186 5.65520558775255490100606-10 312 2.02663720473435851064407te-11	220	3	4 22294577778759006037e-14		201	34	2 48037972756451341461e-10
231 5572 1.0461138834144328798-08 295 223 280 29784 2.06922104112675087073e-08 296 226 3.20463333647e-09 233 2 8.1889608055586213152102175667-07 296 297 3028 6.90054067142495337669e-09 234 13890 8.2372610413867716761e-08 298 3 1.77444756587971508224-51 236 1.23043145210923551827e-10 300 25657 8.06320799162789798431e-07 237 12 4.0144668830170449849189856922e-11 300 105277613883149309370e-12 239 1 7.58494384921898356022e-11 303 2 2.13528411532187825885e-11 240 47139 1.15839131623184533187e-05 304 12325 1.135580146451395114e-07 241 26 5.6582056678179382653-10 306 9108 1.2432498052990287753e-08 244 1.86 5.6582065678179382653-10 306 1108 1.43429802599028755-10 244 1.854212610906739758e-10 311 1.4668316598810299758-10 312 20269 3.2297658431490005611822-10	220	8715	7.014710738705368008240.00		202	8555	8 72018724600703700266c 08
231 3512 3514 2.0001305713-0.08 232 9784 2.0002104112675087073-0.08 200 215 3.046301744558833367609-09 233 196 1.22204312510923551827e-10 298 3.177444765587971652628e-10 236 2.83 2.379888807567738866e-09 300 25657 8.6052079162789784311-007 237 12 4.01446688391704498144e-11 301 107 7.98897059617331706240e-12 239 1 7.58494384921898356922e-11 302 1 105277618883514309370e-12 239 1 7.58494384921898356922e-11 303 2 2.13528411532187282885-11 240 4 7.84945202663871272001e-13 305 20 1.1709447143971475741-11 241 2 5.6582058678179830253e-10 310 3466 3.1358550435851064071e-10 244 186 5.6582058678179830253e-10 310 3466 3.3358550435851064071e-10 246 1.300 7.84241579875956597758-60 312 20269 3.227413147152747439847440380-71 247 9.2	200	5572	1.646112882418422287080.08		204	22	2 280082265125021172620 11
233 234 235 1054 2000221011201001010e00 200 201	201	0784	2.060221041126750870720.08		295	24	2.046201674455852526470.00
234 1380 2 8.1889800000330213100e-11 227 302.2 0.00034001142457331030e-02 235 196 1.223041312510923551827e-10 298 3 1.77444765587971652228e-10 236 283 2.3799888035677398666-09 200 256 8.60527991627807984312-01 237 12 4.01446688391704498144e-11 301 107 7.9889705961733100249e-12 239 1 7.55494384921898356922e-11 302 1 105277613883514309370e-12 240 47139 1.1885713162318431378-05 306 12325 1.1355801946151395114e-07 244 1.86 5.6582055678179836253e-10 305 108 14640 3.13555501446120207735e08 245 1060 1.8242120109007399753e-08 310 3466 3.135855054358510640711-10 246 1.300 7.8424157875956599758e-10 312 2020760523724539401189062e-10 247 300 2.65792577559401000e-10 316 5468 2.92710056397440329071e-10 248 8045 8.24204953740440665218-09 315	232	9784	2.009221041120750870756-08		290	2070	6.00054067149405303530476-09
235 13800 8.237/2010413867/16/01e-08 208 3 1.7444470588/97144052246-11 236 1.230 2.37/201021651250225512872-01 300 25657 8.0652079916278979240052453127e-11 237 12 4.014466883017044984618365020-01 300 25657 8.0652079916278979240052453127e-11 238 9773 2.11521022056189444971e-08 300 1.05277613885314093070e-12 239 1 7.584943492188356922e-11 303 2 2.13528411532187822885e-11 240 47139 1.15839131623184533187e-05 304 1.2325 1.1355801946451395114e-07 241 286 5.65520578127932053e-10 300 5 1.29976884200228245078e-11 245 10609 1.82342126109007399758e-10 311 2.366671204071e-10 312 2026045394011896092-10 246 3000 2.65798257752594691006e-10 312 2.02643594011896092-10 316 23 2.66370245394011896092-10 247 3030 2.657982577525946917067758-10 312 2.266370245394011896092-10 316 23 2.66370245	200	4	8.188980808558021510e-11		297	3028	0.900340071424933973096-09
236 288 126 283 283 126 283 27.3798866576 300 2567 8.60520799162789798431e.07 238 9.773 2.1152022056189444971e.08 300 1.0027761388351430379e.12 239 9 1 7.58494384921898366922e.11 302 1 1.0527761388351430379e.12 240 4713 1.158574562638617633015e.08 304 12235 1.3558001946451395114e.07 241 2 5.6648150898102090121e-08 306 9108 1.2433492030278145754e.88 243 3024 1.36608150898102909121e-08 308 14963 1.6607144028007435581064071e.10 244 186 5.6552058678179836258-10 310 316 3466 3.5274131471524784033e-07 244 180 2.65782575259461006e-10 312 2269 3.5274131471524784033e-07 244 8045 8.2420495374404406521e-09 315 5468 2.927106592734208924e-08 250 8005 1.0411747487288794172e-07 318 152 2.72538734419000561182e-10 251<	234	13890	8.2372610413867716761e-08		298	3	1.77444756587971652628e-10
336 283 2.3 (19988663767/39866-09) 300 205 (7 8.60520(99162789)/98431e-01) 237 12 4.0144668839170448914e-01 301 107 7.98897059617331706249e-12 238 9773 2.11521022056189444971e-08 302 1 1.0527761385314309379e-12 240 47139 1.15839131623184533187-05 304 12325 1.13558001946413395114e-07 241 2 3.6487632638712726011e-13 305 20 1.1790447711397145741e-11 244 186 5.0552058678179836253e-10 309 5 1.2997688429022845078e-11 246 1300 7.8424115078976559758e-10 312 2069 3.52741314715247084033-07 248 8045 8.242049574404066521e-09 314 1 1.3466006190245886002e-11 251 2 9.1527904170707463939e-11 316 2.3 2.66370204539401180692-10 253 9.555734172403939611326557242-007 322 4531 1.50550231249405659276-90 254 7 9.924017234693962726477-10 323 856 1.626786704476	235	196	1.22304312510923551827e-10		299	1203	3.26468379240052453127e-11
237 12 4.01446688391704498144e11 301 107 7.98897059073317062446e12 238 977 2.11521022056189444971c-08 302 1 1.05277613888351430795e12 240 4713 1.1589713162314853187c-05 304 12325 1.13558001946451395114e-07 241 2 3.6487262638712726001e-13 305 20 1.179044771398253114e-07 243 302 1.35558001946451395114e-07 306 9108 1.24334922052090287753-08 244 1.866 5.6552058678179836253e-10 308 1406 3.1555504358510443071e-10 246 1.300 7.842415789796559758e-10 312 2269 3.52741314715247084033e-07 247 3030 2.65798257752594611006e-10 318 12 2.7633734014090370e-12 250 8.005 1.04117474478288749172e-07 318 15 2.763373441040035e-07 251 2 9.1527930417070746339e-11 318 1.5652502312942665927e-09 254 4.8211662061208555742e-10 322 5453 1.56520312942665927e-09	236	283	2.37998886375677398686e-09		300	25657	8.60520799162789798431e-07
238 9773 2.11521022056189444971e-08 302 1 1.05277613885134093979e-12 239 1 7.58494384921898366922e-11 303 2 2.13528411532187228585-11 240 47139 1.15839131623184533187e-05 304 12325 1.1355800194641395114e-07 241 2 5664 1.89574562638617633015e-08 306 9108 1.24334928052090287754e-10 244 186 5.0552058678179836253e-10 309 5 1.29976884290228245078e-11 245 1069 1.82342126109607399758e-10 312 20269 3.55741314715247084033-07 248 8045 8.2420493374040406521e-09 315 5468 2.927100659273420892e-10 250 8005 1.04117474487288794172e-07 318 152 2.7253873441000561132e-10 251 2 9.152730417007746339a-11 312 2.66787044761673373420892e-10 254 7 1.9240112498000777647r-10 328 8.56 1.6667870447669737344e-11 255 4431 3.71214327332669569158e-10 322 5453	237	12	4.01446688391704498144e-11		301	107	7.98897059617331706249e-12
239 1 7.58494384921898356922e-11 303 2 2.1352841153218722885e-11 240 47139 1.5583013162314833187e-05 304 1225 1.3555001946451395114e-07 241 2 3.66487262836817263015e-08 306 9108 1.2434928052000287753e-08 243 3024 1.36608150898102909121e-08 308 14963 1.69071440280074355988e-07 244 186 5.6582058678179836258-10 310 3.664 3.1585550543585104701r-10 246 1300 7.8424157897955599758-10 312 20269 3.52741314715247084033e-07 247 3005 1.04117474487288794172e-07 318 152 2.72538734419000561182e-10 251 2 9.15279304170707643939e-11 319 488 2.25720759744018296674e-11 251 4431 3.71214327332669569159e-09 324 1.7339 3.91494915783678967824e-07 258 857 2.87317334816969379e-05 326 1.6732063893734e-01 326 1.63243103979642665027e-09 254 7 9.3035731733481696378e-05	238	9773	2.11521022056189444971e-08		302	1	1.05277613883514309379e-12
240 47139 1.15839131623184533187-05 304 12325 1.13558001946451395114-07 241 2 3.66487226363712726001-e13 305 20 1.17094477413971475741-e11 242 5664 1.8957456238617633015-08 306 9108 1.2433492802090287753-08 244 186 5.6582058678179836253e-10 305 5 1.29976884290228245078e-17 245 1069 1.82342126109607399758-08 310 3466 3.13885055435851064071-10 246 1300 7.84240495374404406521e-09 312 20269 3.52741314715247084033e-07 249 2 4.22043962278184636716e-11 316 5468 2.92710065927324208923e-08 251 2 9.1527930417077463939-11 318 152 2.7525374131471506754512-10 254 7 1.92401124980007276477e-10 323 856 1.62678670447666793744e-11 255 4431 3.71214327332669569159-09 324 17339 3.9149491578678678454e-07 254 7 1.92401124980007276477e-10 328 1.66257867044766	239	1	7.58494384921898356922e-11		303	2	2.13528411532187822885e-11
241 2 3.64872628638712726001e-13 305 20 1.17904477413971475741e-11 242 564 1.85675456238617633015-08 306 9108 1.243349280520092877552-08 244 186 5.6582058678179836253e-10 309 5 1.29976884290228245078e-10 245 1009 1.82342126109607399753e-08 310 3466 3.138550543585106471e-10 246 1300 7.8424157987956599758e-10 312 20269 3.52741314715247084038-07 247 303 2.6578594561006e-10 314 1.3466906192624586602e-10 250 8005 1.0411747487288794172e-07 318 15 5468 2.92710065927324208923e-08 251 2 9.152793041707074639394-11 316 2.3 2.663720473846000983739e-10 252 32554 1.821162061208555742e-10 322 5453 1.56525023129426565927e-09 254 7 1.92401124920356569159-09 324 17339 3.9144915783678967545e-13 256 4578 1.89707860662097285699258e-07 328 182	240	47139	1.15839131623184533187e-05		304	12325	1.13558001946451395114e-07
242 5664 1.89574652638617633015-08 306 9108 1.243349205200287753-08 243 302 1.3660515088910209121-08 308 14963 1.699071440280074355988-07 244 186 5.6582058678179836253-10 308 3466 3.13585505435851064071e-10 246 1300 7.8424157987556599758e-10 312 20269 3.52741314715247084033e-01 247 3030 2.65798257752594691006e-10 314 1 1.34669061927324208923e-08 248 8045 8.242095374014006521e-09 315 5468 2.927100559273249032e-08 251 2 9.1527930417070746339a-11 318 152 2.72338734419000561182e-10 253 2554 1.8211620061208555742e-10 322 24319 8.24290176316207386098e-06 254 7 1.92401124980007276477e-10 324 856 1.62678670447606793744e-11 255 4431 3.71214327332669561937e-05 322 137 2.4361186846000983739e-05 258 857 2.8773955679066431923e-10 326 2	241	2	3.64872628638712726001e-13		305	20	1.17904477413971475741e-11
243 3024 1.36608150898102009121e-08 308 14963 1.6907144028074355988-07 244 186 5.6552056875789856253-10 309 5 1.2997684220228245078-11 247 3030 2.657982577525946810066-10 312 20269 3.52741314715247084033-07 248 8045 8.24204953744044066521e-09 314 1.34669061926245836602-11 250 8005 1.0411747487288794172-07 318 152 2.72538734419000561182e-10 251 2 9.15279304170707463399-11 319 488 2.2572277594018796674-11 252 32054 1.82116620612085555742-10 322 5453 1.56525037346806782-00 254 7 1.92401124980007276477e-10 323 856 1.6267867044769679374-411 255 4431 3.7124327332669569159-09 324 1739 3.914949157836786782-07 256 15768 1.35557317334169693719-05 325 1377 2.436118846009983739-09 258 857 2.8773556790664150578-01 326 132 1.657320638891667554561-12	242	5664	1.89574562638617633015e-08		306	9108	1.24334928052090287753e-08
244 186 5.6582058078179836238-10 309 5 1.2997684290228245078e-11 245 1030 7.8424157987956599758e-10 312 20269 3.13585550435551064071e-10 247 3030 2.65798257752594691006e-10 314 1 1.3466906192624583602e-11 248 8045 8.2420453744044066521e-09 315 5468 2.9271006592734208932a-08 249 2 4.22043962278184636716e-11 316 23 2.66370204539401180692e-10 250 8005 1.0411747448728794172e-07 318 152 2.72538734419000561182e-10 251 2 9.15279304170707463939a-11 319 488 2.267277574018796674e-11 252 30848 1.20553648183069687772e-06 322 5453 1.5652503129426565972e-09 254 7 1.92401124980007276477e-10 323 856 1.62678670447696793744e-11 255 4431 3.712143273326695691569-09 324 17339 3.9149415783678967824-07 256 1576 1.3555731733481456963379e-05 325 1.327744587896	243	3024	1.36608150898102909121e-08		308	14963	1.69071440280074355988e-07
245 1069 1.82342126109607399753e-08 310 3466 3.1358550435851064071e-10 247 3030 2.6579825775294691006e-10 312 20269 3.52741314715247084033e-07 248 8045 8.24204953744044066521e-09 315 5468 2.9271005927324208923e-08 249 2 4.220496278184636716e-10 316 2.66370204539401189692e-10 250 8005 1.04117474487288794172e-07 318 152 2.66370204539401189692e-10 251 2 9.15279304170707463393e-11 319 488 2.257275974018796674e-11 252 3254 1.8211662061208555742e-10 322 5453 1.5652502312942655927e-09 254 47 1.92401124980007276477e-10 328 856 1.62678604471e-07 255 4313 3.71243733605656159e-09 324 17339 3.91494915783678067824e-07 256 15768 1.3555731733481696379e-05 326 2 1.02464694715087567546e1-12 260 16402 2.264252825285904852e-07 328 1083 2.7524531039764626	244	186	5.6582058678179836253e-10		309	5	1.29976884290228245078e-11
246 1300 7.8424157987956599758e-10 312 20269 3.52741314715247084033e-07 247 3030 2.6579825785254961066-10 315 5468 2.92710065927324208932e-08 249 2 4.22043962278184636716e-11 316 23 2.66370204539401189692e-10 250 8005 1.0411747447828794172e-06 318 152 2.7253873419000561182e-10 251 2 9.15279304170707463939e-11 319 488 2.25722775974018796674e-11 252 2554 1.82116620612085555742e-10 322 5453 1.56525023129426565927e-09 256 1.57618 1.3557317334816969379e-05 324 17339 3.91494195783678967824e-07 256 1.57618 1.35557317348416969379e-05 326 2 1.024649715087567545e-13 259 461 3.696802411124585847e-11 327 1 6.5732063881657546e11e-12 261 1.6402 2.25462528252859048528e-07 328 108 2.75245310397964626503e-09 263 1 2.87478591279130968787e-13 332 19	245	1069	1.82342126109607399753e-08		310	3466	3.13585505435851064071e-10
247 3030 2.65798257752594691006e-10 314 1 1.366906192624836602e-11 248 8045 8.24204953744044066521e-09 315 5468 2.92710065927324208923e-08 249 2 4.22043962278184636716e-11 316 23 2.66370204539401189062e-10 250 8005 1.04117474487288794172e-07 318 152 2.7253873419000561182e-10 251 2 9.15279304170707463339e-11 319 488 2.25722775074018796674e-11 252 30848 1.250536418306687772e-06 320 24319 8.24290176316207386098e-06 253 457 1.8773955679066431923e-10 322 5453 1.66278670447666793744e-11 256 15768 1.35557317334816969379e-05 325 1377 2.4361186846009988739e-09 258 857 2.8773955679066431923e-10 328 1083 2.75245310397964626503e-09 261 1421 1.93364146092145150758-10 332 19 3.007966640873162451e-12 266 8115 7.89302966880258109558e-09 335 3<84243305	246	1300	7.8424157987956599758e-10		312	20269	3.52741314715247084033e-07
248 8045 8.24204953744044066521e-09 316 23 2.66710065927324208923e-08 249 2 4.22043962278184636716e-11 316 23 2.66770204539401189692e-10 250 8005 1.04117474487288794172e-07 318 152 2.72538734419000551182e-10 253 2554 1.8211662061208555742e-10 322 24319 8.2429176316207386098e-06 254 7 1.92401124980007276477e-10 323 856 1.66278070447696793744e-11 255 4431 3.71214327332669569159e-09 324 17339 3.91494915786786786784e-07 256 15768 1.35557137334816969379-05 325 1337 2.4361186846000983739e-09 258 857 2.877395667906431923e-10 326 2 1.0246494715087567545e-13 260 1.6402 2.2545232825859048528e-07 328 1083 2.7524531039794626503-09 261 1821 1.93364146092514510578e-10 330 13569 7.737956103009503072-e08 263 1 2.874785127303884064424e-06 331 181	247	3030	2.65798257752594691006e-10		314	1	1.34669061926245836602e-11
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	248	8045	8.24204953744044066521e-09		315	5468	2.92710065927324208923e-08
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	249	2	4.22043962278184636716e-11		316	23	2.66370204539401189692e-10
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	250	8005	1.04117474487288794172e-07		318	152	2.72538734419000561182e-10
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	251	2	9.15279304170707463939e-11		319	488	2.25722775974018796674e-11
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	252	30848	1.25053648183069687772e-06		320	24319	8.24290176316207386098e-06
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	253	2554	1.82116620612085555742e-10		322	5453	1.56525023129426565927e-09
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	254	7	1.92401124980007276477e-10		323	856	1.62678670447696793744e-11
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	255	4431	3 71214327332669569159e-09		324	17339	3.91494915783678967824e-07
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	256	15768	1 35557317334816969379e-05		325	1377	2 43611868460009983739e-09
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	258	857	2 8773955679066431923e-10		326	2	1 02464694715087567545e-13
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	250	461	3 695860241112458588476-11		327	1	6 57320638891567554651e-12
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	200	16402	2 254625282528500485280 07		328	1083	2 752453103070646265030 00
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	200	1821	1 022641460025145105780 10		220	55	2.152455105515040205058-05
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	201	1621	1.955041400925145105786-10		329	12560	7 722705610200050207270 08
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	202	4	2 87478501970210068787 12		220	10	2.00707065640872162451 - 10
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	203	1	2.874785912795109087876-15		- <u>3</u> 32	19	1.62201148401002080826 11
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	204	20070	1.01405571508540004424e-00		333	101	1.022911484019939898306-11
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	200	01	6.65218461912142622339e-11		334	3	1.244330504520524405276-10
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	266	8115	7.89302969880258109558e-09		335	3	8.42931562224091823765e-12
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	267	9	3.38333571228699447886e-11		336	35084	3.07296043592221283791e-06
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	268	100	8.73613650170801392392e-10		338	3720	1.49485684486187764275e-09
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	269	1	7.64205300603226778122e-12		339	1	1.89858207280679813778e-11
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	270	20647	3.28607137428833795401e-07		340	111114	3.7674688509094916844e-08
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	271	1	2.77743186522655394199e-11		341	213	4.20183722885103527744e-12
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	272	15205	2.57170787834430647489e-07		342	7272	4.30791115887257936024e-09
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	273	3630	5.47343850755208083392e-09		343	179	1.58285188471898874418e-09
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	274	4	1.80316350826409399488e-10		344	727	6.25700079855823210195e-10
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	275	2162	7.95625608083182223051e-09		345	1986	2.44466277299695833314e-10
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	276	10154	1.36178319586500312655e-08		346	1	1.04354091123512460193e-10
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	278	4	1.14461913688565508629e-10		348	5374	3.01459598017923824376e-09
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	279	1065	6.16223929522652369428e-11		350	6967	8.38579626259716714998e-08
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	280	26310	2.20120257767128686688e-06		351	2168	2.01434204928109539257e-09
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	282	427	5.42756389094664615236e-10		352	17305	9.8525265833544761751e-07
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	284	43	1.15193265061257210657e-09		354	73	1.41771797209852556954e-10
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	285	3581	1.346731945362986127e-09		355	4	2.03310424051750260332e-11
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	286	9544	1.16034874009587896104e-08		356	7	5.20716608937502045684e-10
288 37360 9.56688468063378663619e-06 358 2 6.39165695197341232614e-12 289 778 3.35680834257640059448e-11 360 39653 2.27164097681164557641e-06 290 5004 1.25910311365474980594e-09 361 189 1.31565505018249595537e-12	287	162	3.00718781473530150095e-11		357	1986	7.11454540896702680719e-10
289 778 3.35680834257640059448e-11 360 39653 2.27164097681164557641e-06 290 5004 1.25910311365474980594e-09 361 189 1.31565505018249595537e-12	288	37360	9.56688468063378663619e-06		358	2	6.39165695197341232614e-12
290 5004 1.25910311365474980594e-09 361 189 1.31565505018249595537e-12	289	778	3.35680834257640059448e-11		360	39653	2.27164097681164557641e-06
	290	5004	1.25910311365474980594e-09		361	189	1.31565505018249595537e-12

p	N_w	verified measure	p	N_w	verified measure
362	2	3.57109459191151668023e-12	442	3463	2.74188517593657032911e-10
363	1058	7.50220272190127435152e-10	444	731	2.79526294038462408409e-10
364	12402	5.39704113264576762488e-08	448	17621	2 22956795963968196217e-06
365	3	6 46248245889102790329e-12	450	10607	7 57204546679175055646e-08
366	44	6 30018012473745418268o 11	451	8	1 481020167615100056850 14
269	7620	0.300103124131434102000-11	450	6	7.67666945941749760085 - 11
308	7039	2.17557572400254409551e-08	452	0	1.070002432417437009850-11
369	79	1.35921094258223407181e-11	455	1431	1.09358174729332069397e-09
370	696	1.01923816608895378977e-10	456	8882	2.14739260472832788063e-08
371	15	1.20559738407688410433e-11	458	1	3.59269471811307639086e-12
372	3710	8.59887850377175078087e-10	459	1157	2.13471115567340219421e-10
374	5548	1.37237300039741438873e-09	460	5063	2.60526625880247442169e-09
375	2133	6.13670979245257985912e-09	462	7375	1.71827184789613562899e-08
376	341	1.03754141996675874893e-09	464	3299	4.81598111520473159963e-09
377	126	3.69796315964621147288e-12	465	250	1.55688645569335148977e-11
378	12656	8.23235203118756475593e-08	468	12999	4.17045969132532473589e-08
380	8644	1.36420115978436867765e-08	469	4	1.52211403203761364011e-12
381	1	5 78295224207270308625e-13	470	95	5 82505365557400844878e-11
38/	2/301	8 54806273583403816718-06	472	60	1 81/95567/899615/0097e-10
205	1452	2 200252020045265250620 00	472	7	2.08047121107274451640.12
305	1452	1.01202402025127520072.11	473	1	2.0804712119737443104e-13
387	30	1.01308408025187539078e-11	474	8	1.41754409859612406919e-11
388	8	1.27831768174241355851e-10	475	656	1.01225277292227300308e-10
390	10186	2.36231673838346173389e-08	476	6957	6.95506201372694810026e-09
391	151	8.98662437867625563115e-13	477	5	4.10505375351977175313e-12
392	8863	2.93758243392503934355e-07	480	35258	3.81751390036012654139e-06
393	1	9.68506958659576255855e-14	481	6	6.25016531585753654099e-14
395	1	1.06436365797379917097e-12	483	747	4.27292923266264779159e-11
396	17783	1.37705456141950718929e-07	484	4644	7.01006428079076204796e-09
399	1511	2.36415917224952476516e-10	486	3947	1.66409927274645264017e-08
400	17274	1.45882010717831960001e-06	488	35	1.56188864576176089649e-10
402	17	2.79695370596771963889e-11	490	2385	2.13134221395926137799e-08
403	54	1.28929419224155239476e-13	492	270	1.37161591112766600986e-10
404	5	1 30888859863412254647e-10	493	12	2 92234986210004876739e-13
405	2949	7 9489685231217549477e-09	494	1938	6 64124952948208502335e-11
406	1653	2 476702144153103413160-10	/05	2570	2 571082975645275214840-09
407	26	1 407015040500244162750 12	406	2070	1 202875206722827484460 00
407	12079	1.49791394039034410373e-12	490	2103	1.203875390723827484408-09
408	12078	5.820894772850012075916-08	497	2 C	4.212142787340944494196-15
410	254	7.62303805149078250736e-11	498	6	2.38419993303532491424e-11
412	6	4.54929832954115154209e-11	500	4994	6.93831075523031193253e-08
413	7	6.13906343295556045092e-12	501	1	7.29035972216185435002e-13
414	4262	7.8518312121231281786e-10	502	1	2.55261686354230077356e-11
416	14202	3.42896459139306955533e-07	504	25618	5.76997125744998715091e-07
418	3779	3.91484720292309407164e-10	506	1295	5.69910882809027130591e-11
420	25512	4.40697868522941377245e-07	507	605	3.9476151080658494763e-11
423	25	9.72044189931353663781e-12	510	5237	2.89461418246164670087e-09
424	125	1.17792197328568659653e-09	512	8535	3.10252627675313211175e-06
425	777	3.18581583206092866511e-10	513	740	6.60282961119362798996e-11
426	13	1.10871804358952941172e-10	516	137	6.39748306413556733219e-11
427	5	1.44398121931788026018e-12	517	1	3 45381275662637321489e-14
428	7	7.92441947564809234805e-11	518	137	2.15820358546309210013e-11
420	1670	3 927446892010300061320 10	520	10622	8.000103226044480427020.08
429	185	4 405751080441000508000 11	520	772	1 31615068124165760855 10
430	100	1.7156002807675521188~ 06	524	114	5.00820404016070145258~ 11
434	21001	1.71300028970733311886-00	524	4	0.00020494010979140208e-11
434	873	1.10161517026080044701e-11	525	1832	3.08028304017006043513e-09
435	525	2.53035528727935110638e-11	527	4	1.73259843971873550572e-14
436	3	3.34855932045130533226e-11	528	15460	3.51311202236503569707e-07
437	57	1.13795257938864580183e-13	529	1	1.03411203211667412916e-15
438	13	2.08447898698838063325e-11	530	12	4.31274237242679214788e-11
440	15202	2.51972708386000512903 e-07	531	1	$1.01114277541169972352e{-}12$
441	1634	3.34070945668014929186e-09	532	4245	2.16707579745595291243e-09

p	N_w	verified measure	p	N_w	verified measure
534	4	1.23989852673228595492e-11	637	334	8.40906476395897328757e-11
536	13	9.70846107499478971903e-11	638	92	7.85749221764164840209e-12
539	521	4.18010325789128223128e-10	640	11277	2.16519099872328375789e-06
540	17481	2.2595014129893689625e-07	644	1354	3.31289821964286801403e-10
544	6817	5.99732031206917648447e-08	645	3	4.50941367580171004192e-15
546	4516	4.97210680310347652444e-09	646	266	1.93933974781956841582e-12
5/18	1010	A 32844081757477461281e-12	648	9557	1 898612192637039175480-07
540	2	5.018077067045000302180.14	650	1445	1.030380236607374610860.00
545	2452	9.00141007045005502100-14	651	1440	5 51060022006172425646 a 14
550	2405	8.201412279558797924226-09	051	20	5.51000952990172425040e-14
551	2	1.94933045399858784208e-14	652	1	1.19616989924242744792e-13
552	3902	3.77969791749699357553e-09	654	1	6.59943020370201693936e-14
555	29	1.199099630352917778e-12	656	95	3.58436419867907973824e-10
556	1	2.07384884005207270619e-11	658	9	9.20311461587164370002e-12
558	339	1.57733427014195015659e-11	660	8720	4.20910504174334260119e-08
559	1	2.18033056886834941679e-15	663	208	2.14897175575268217784e-12
560	15519	7.78378122461400104304e-07	664	3	4.29011732822753844019e-11
561	518	2.63372203820194661361e-11	665	317	2.19077343072138219782e-11
564	70	5.73818048198865282572e-11	666	51	5.08874973409456643481e-12
567	1125	1.95572463822582531812e-09	670	4	2.81208650115827296645e-12
568	6	7.36877859078277630545e-11	671	1	5.96744875736021640478e-15
570	3109	9.54028078325314110586e-10	672	16585	9.90770461162075732897e-07
572	5463	3 36500545071623247129e-09	675	949	1.50169521696136287758e-09
574	20	1 59520187857642437024e-11	676	1380	2 602357331363269743469-10
575	20	1.240811660087885768100.11	678	1000	5 324325182132216838230 12
576	220	2 887417707265280408750 06	680	2580	8 5518506421221005025e-12
570	22110	2.88741770720328949873e-00	680	3369	4 11202105252050210172 12
510	308	0.477422114300574005096-12	084	34	4.112021055520598101756-15
580	970	5.804904028515122057086-10	084	2011	1.179704574095919494516-09
582	3	5.17805546704219743503e-12	080	507	1.72283972027856280285e-09
584	3	2.79572842740855032062e-11	688	41	8.15190963777273625013e-11
585	1524	6.52993548339378393486e-10	690	911	1.14456457332712258079e-10
588	6379	5.5688767369201086499e-08	693	810	4.67717291546126956447e-10
590	3	1.2258972266129819495e-11	696	581	6.4654358754821783517e-10
592	299	3.22638371314659666567e-10	697	1	4.58465730657220404964e-15
594	3767	6.9994637444999868725e-09	700	3679	5.10405214651336869291e-08
595	606	1.03685408566270287345e-10	702	2041	1.27188469868991238521e-09
596	1	1.61110708107869982086e-13	704	6733	2.39798847709304929765e-07
598	361	1.05182440448409186828e-11	705	6	2.92462516877922684699e-12
600	15095	4.18218123712310943518e-07	708	4	2.14708199136603994361e-12
602	19	2.99426022171145334028e-12	710	2	2.78729817004830238147e-12
604	1	1.13650885577576410412e-12	712	2	3.44888679247590257404e-11
605	480	1.32555783190213549716e-10	714	1431	3.61813527922916211566e-10
608	4374	2.04285658239860418162e-08	715	457	3.62098382961778542111e-11
609	76	4.23626910460439543016e-12	716	1	1.8762536663219364641e-11
610	1	1.72474881598994045362e-14	718	1	1.15963705651922488471e-11
611	1	2.46354586036501288504e-14	720	19213	8.6429333542251823852e-07
612	5061	4 13196899915965754069e-09	722	59	3 1730347516134571606e-13
615	10	2 2658177417644864704e-13	725	19	6 12616294498602442786e-13
616	8532	5 80/11969985/9/1305530-08	726	924	3 3/1781009899569276910-10
618	0002	2 076404062451020573550 12	720	4720	1 265518105401812084180 08
620	494	1 165140029272421220075-10	720	199	1.200015716046267212-10
621	434	1.10014990001340138297e-10 7.40108980017808260061 10	720	138	1.9099010/1094020/318e-10
021	195	1.49198880017898360961e-12	(30	2	4.16040108453925880638e-14
624	9613	1.11005251045137488823e-07	732	2	2.14005679496920286908e-13
625	136	3.33101014436329445623e-10	735	518	9.76086386847083153917e-10
627	278	4.88968761314101385551e-12	736	1434	3.44510321767695082418e-09
628	1	1.09057467917450523487e-12	738	14	5.30566693010547929532e-12
629	1	1.62456853525227984392e-15	740	57	2.81590068103299007163e-11
630	7956	3.56993611597047205697e-08	741	89	5.72940566517798899326e-13
632	4	2.85736783626339141406e-11	742	3	$4.77\overline{231904168207154981}e-12$
636	18	5.01058127280740173148e-11	744	251	1.25631554421731794768e-10

	M			N	
<i>p</i>	IV w	vermed measure	<i>p</i>	1 v w	vermed measure
748	1408	1.50992142617170643781e-10	884	409	1.19631114910145885943e-11
750	1344	7.56329652943157904055e-09	888	31	5.75977980588060489708e-12
752	27	2.86284443417120226805e-10	891	205	4.88868116994833901146e-11
754	20	1.62976403206283038116e-13	896	5012	5.48941543476602969442e-07
756	6432	4 79394160867851332197e-08	897	8	3 74479093567803289488e-14
759	31	3 958662824626868470556-13	900	4438	4 07473651951005544358e-08
760	1002	1 80107060267472004020c 00	002	2	2 520110520725206506410 14
700	1902	2 2120(01207152(70727.11	902	J 1	2.520119529725500500416-14
700	343	3.318909122971320797276-11	903	1	2.80981835021343329117e-15
768	8604	2.18189426485549710366e-06	904	2	1.64998425079138089089e-11
770	2004	2.75209809455501108744e-09	906	1	1.52516888007880879741e-14
774	8	1.16522633555882215717e-12	910	776	3.02234676305065952384e-10
775	6	9.12551284537599372015e-15	912	1428	2.64289139141268836219e-09
777	5	2.59859408296980731734e-13	913	1	6.46264725762124569997e-14
780	4462	7.28152923026859077993e-09	915	1	1.58987406573274370203e-15
782	31	2.15576688444851782833e-13	918	531	5.47849354857327108803e-11
783	13	4.58466381178523896267e-13	920	481	2 5668242162844856491e-10
784	3628	9.2165588793909/170536e-08	020	2656	4 362165507065460245966-09
702	6034	3.000286237200136658550.08	025	2000	2 851028762502770283300 14
702	1	0.05055044695946499994 . 15	920	1	5.0170275020202010203.10
793	1	2.05955044685346422284e-15	928	222	5.91796759383603210303e-10
798	759	8.80575736026539823698e-11	930	19	9.11678068107879546744e-13
800	5548	4.57099504875841528007e-07	931	25	4.63697873501200952262e-13
804	4	7.40543694074946579065e-12	935	74	1.1840131739632164809e-12
805	65	1.54558592486975232561e-12	936	3392	7.54518250200945927997e-09
806	4	1.93443351614863701116e-15	938	1	2.00197931149448393739e-14
808	1	2.31145202804483584913e-11	940	5	2.36675132617159000858e-12
810	2531	7.82668530636618231533e-09	944	3	3.19315060504088421567e-12
812	114	3.9553866909222690218e-11	945	461	5 23403440163758282289e-10
814	3	1 46636825945622994993e-13	950	201	2 38799997571287336839e-11
014 916	2701	8 720720726424106020220 00	052	1116	6 44602606876002784042c 10
810	2701	6.129129120424100939226-09	057	2	E 25474449564590812002 14
819	373	0.391802803102024803386-11	957	3 10000	3.354744425045208159056-14
820	15	1.82129912280198924535e-11	960	10269	1.096476538441212497676-06
824	1	2.50777480378938655292e-13	962	3	2.20977749987305571722e-14
825	404	2.8227400299986327159e-10	966	164	6.19565076326322738964e-12
826	1	8.99280649946376797743e-15	968	975	8.25539695848212518037e-10
828	670	1.22388641322218605367e-10	969	3	1.10918219053957045617e-14
830	1	6.37055512509032695334e-15	972	1315	6.16193178188013945817e-09
832	3600	6.89918706682675353381e-08	975	158	2.37665922098867499201e-11
833	58	3.21869354086290471173e-12	976	2	6.35772901338982343589e-13
836	635	3.62297210461381968827e-11	980	1249	8.92045035776924122306e-09
837	1	1.38387565296049785957e-15	984	6	1.45336735268147831945e-11
840	98/1/	1 810103785521060385200-07	986	4	2 06468956515104551386e-14
845	65	1.07874841871746784060.12	087	1	3 020076443358330821540 14
846	4	5 86507177082426313177~ 12	088	187	2 42684051005410050777 2 12
040	4	5.805971770824205151776-15	900	107	2.420849519954199507776-12
847	95	7.2785443037265418198e-12	990	1631	1.02/38240/830100/2243e-09
848	9	2.38588763112543289502e-10	992	109	1.71481747421667329867e-10
850	409	1.03452779762897018045e-10	996	2	3.109483807592350324e-12
854	2	3.50107963453805126619e-13	999	2	2.92064549628490155442e-14
855	184	6.33060032347032564104e-12	1000	1111	2.92516899702121441207e-08
858	918	9.70563900516002719954e-11	1001	63	1.10894344922118914809e-12
860	7	3.59931008608871394472e-12	1008	7140	1.75993060460731196026e-07
861	1	4.73371342124551119923e-14	1012	96	4.88267998081937104615e-12
864	9039	5.56894825449062019773e-07	1014	200	4.8241792505177016892e-12
867	10	7 55010203662420664728e-14	1015	6	2.20514578819219764227e-13
868	40	3 4550149199952251/220-14	1020	1025	3 527770662398177/02/06 10
870	101	1 30182648515331234051 0 11	1020	2052	6.01056137385685081075~07
874	101	6 7625794126162221067-14	1044	16	7 44776695954749760691 - 11
014	0	0.705076412010522510076-14	1040	10	(.44)(0020004/42/00021e-11
875	90	2.9289056141350300333e-10	1050	7	0.47960142547362622395e-11
880	4583	5.88084942915265834751e-08	1056	76	7.7612096313541684145e-09
882	1350	3.01455380601577116462e-09	1072	1	7.05499872931392157938e-12

n	N	verified measure			N	verified measure
P 1090	190	1 00050025005052504 . 00	100	1	1 W	2 06646416200015002000 - 17
1080	138	1.26050035227295853524e-08	184	4	4	8.06646416329215298902e-17
1088	5	4.27856838283377505228e-10	184	8	4	8.06646416329215298902e-17
1092	1	2.01661604082303824725e-17	187	2	6	1.20996962449382294835e-16
1100	5	4.45526298145648702587e-12	190)4	1	2.01661604082303824725e-17
1104	1	2.01661604082303824725e-17	192	20	262	2.163420860449693367e-07
1120	156	1.26051267759818078074e-07	194	4	9	1.81495443674073442253e-16
1125	1	2.01661604082303824725e-17	196	50	4	1.40516183758099266754e-11
1134	1	5.26686875536308551915e-12	198	30	1	2.01661604082303824725e-17
1140	1	2.01661604082303824725e-17	200	00	15	1.29177164234425823075e-09
1144	1	2.01661604082303824725e-17	201	.6	125	4.52573798142424932323e-09
1152	255	6.10567644449304045007e-07	204	0	3	6.04984812246911474176e-17
1170	1	2.01661604082303824725e-17	204	8	43	1.35853521534765042666e-07
1176	24	5.56366844088607148677e-10	208	30	5	1.00830802041151912363e-16
1184	1	2.01661604082303824725e-17	210	00	8	1.6132928326584305978e-16
1188	2	4.03323208164607649451e-17	211	.2	22	2.01244349526744081835e-10
1200	157	5.58073092254366548426e-08	215	6	1	2.01661604082303824725e-17
1215	1	2.01661604082303824725e-17	216	60	92	1.56601677936060723617e-09
1216	3	1.59302432356511758371e-12	217	6	1	2.01661604082303824725e-17
1224	4	8.06646416329215298902e-17	218	34	1	2.01661604082303824725e-17
1232	24	4.69212817471448273565e-11	220	00	4	8.06646416329215298902e-17
1248	25	2.34445507712316425497e-10	224	0	89	1.89759388814249307931e-08
1260	22	5.99486903261198245119e-11	226	58	2	4.03323208164607649451e-17
1280	153	4.29530000367519398941e-07	230)4	187	1.46981382817372441263e-07
1296	88	9.42396631803225914847e-09	234	0	1	2.01661604082303824725e-17
1300	1	2.01661604082303824725e-17	235	52	12	2.62160085306994972143e-16
1320	18	2.09381784913725832453e-11	237	6	2	4.03323208164607649451e-17
1344	181	1.70660756297841623153e-07	240	0	121	7.68120562294472009057e-09
1350	1	1.64668621620289723495e-11	246	64	2	4.03323208164607649451e-17
1352	1	2.01661604082303824725e-17	249)6	5	1.00830802041151912363e-16
1360	2	4.03323208164607649451e-17	252	20	19	3.83157047756377266978e-16
1368	2	4.03323208164607649451e-17	256	50	99	9.52879874516806418816e-08
1372	2	4 03323208164607649451e-17	259)2	56	4 48746794497884016195e-10
1386	1	2.01661604082303824725e-17	264	0	5	1.00830802041151912363e-16
1392	1	3 93118697317174081718e-14	268	8	119	2 46360268030005463702e-08
1400	25	1 32888534074351860603e-09	270	0	6	1 20996962449382294835e-16
1408	41	1.35467981270554621576e-08	272	20	1	2 01661604082303824725e-17
1428	1	2 01661604082303824725e-17	280	0	18	9 85830763810396915048e-11
1440	292	1 19849110882547932322e-07	281	6	14	3 9972266664169142647e-10
1456	3	6.04984812246911474176e-17	288	80	224	1 57514175023500124784e-08
1458	2	4 03323208164607649451e-17	200	2	221	4 03323208164607649451e-17
1500	11	7 610108073222154878586-11	201	0	1	2 01661604082303824725e-17
1512	10	1.010100001922210401000000011	300	0	7	1 41163122857612677308e-16
1520	2	1.04323208164607649451e-17	302	24	18	3 62990887348146884506e-16
1520	170	4.365083585023540206380.07	30/	0	10	2.016616040823038247250.17
1540	170	4.30300338302334920038e-07 8.06646416320215208002o 17	304	20	103	0.333535774748600450280.08
1560	4	8.06646416329215298902e-17	310	2	105	2.016616040823038247250.17
1569	-4	4 112522025570155114420 00	212	10	19	0.78598651226685217820.11
1500	29 12	4.11232392337013311443e-09 7.48487556656574071212o 12	216	20	10	2.016616040822028247250.16
1600	13	27857452220547467216c.08	200	0	67	1 127668020022445722070 08
1600	93	0.37037433239347407210e-08	320	0	6	1.137008020922443732976-08
1620	12	2.47292923983309283114e-11	324	10	5	1.209909024493822948336-10
1032	4	1.70002002422179024909e-11 2.41086777508705681560-10	202	0	0 61	1.000300020411319123036-10 9.19697051006794905901, 11
1004	10	5.410607775267950815096-10	330	0	122	0.100270019907842002010-11
1080	121	0.2200740040057704002 00	345	00	133	1.15324545385727615265e-08
1744	208	9.33800740942957704993e-08	352	0	8	1.0132928320384305978e-16
1744	1	2.30004380473553869999e-12	352	ið I	1	2.01001004082303824725e-17
1760	21	1.20044088804453419783e-11	358	94	41	1.40504951935213373337e-08
1764	1	2.01661604082303824725e-17	360	0	24	2.22905021263902769491e-11
1792	65	9.20499040202876517069e-08	364	EU NC	1	2.01001004082303824725e-17
1800	<u>э</u> 0	1.92413121384136294963e-10	365	0	1	2.01001004082303824725e-17

		10.1
p	N_w	verified measure
3780	2	4.03323208164607649451e-17
3840	165	3.35846411221672053182e-08
3888	5	1.00830802041151912363e-16
3920	2	4.03323208164607649451e-17
3960	1	2.01661604082303824725e-17
4000	13	1.18540902788177859861e-10
4032	60	1 91539026826725855557e-10
4096	27	2 24732561321123319731e-08
4160	1	2.01661604082303824725e-17
4200	1	8.066464163202152080020-17
4200	15	4 408366033326061028670 16
4224	41	6 336715050250706288370 11
4320	-41	2.016616040822028247256.17
4410	1 47	2.010010040823038247236-17
4460	47	4.442800320373313700000-10
4500	1	2.01001004082303824725e-17
4608	109	2.75429096201380840814e-08
4704	4	8.00646416329215298902e-17
4752	1	2.01661604082303824725e-17
4800	59	4.65015083080458357934e-10
4928	2	4.03323208164607649451e-17
4992	4	8.06646416329215298902e-17
5000	1	2.01661604082303824725e-17
5040	8	1.6132928326584305978e-16
5120	46	1.69437647755659587245e-08
5184	27	3.28448097712541464688e-12
5280	2	4.03323208164607649451e-17
5376	71	1.51430259672825917594e-09
5400	2	4.03323208164607649451e-17
5600	6	1.20996962449382294835e-16
5632	2	4.03323208164607649451e-17
5760	111	1.09496048512902621752e-09
6000	5	1.00830802041151912363e-16
6048	4	8.06646416329215298902e-17
6144	58	1.70946220685863625732e-08
6272	3	6.04984812246911474176e-17
6300	1	2.01661604082303824725e-17
6336	2	4.03323208164607649451e-17
6400	38	6.63067415210272237402e-10
6480	4	8.06646416329215298902e-17
6720	17	3.42824726939916502033e-16
6912	80	8.68082543131407091686e-10
7040	1	2.01661604082303824725e-17
7168	23	9.41381698288390467155e-10
7200	12	2.62160085306994972143e-16
7680	78	3.80943674846943858281e-09
7776	1	2.01661604082303824725e-17
7840	2	4.03323208164607649451e-17
8000	7	1.41163122857612677308e-16
8064	28	4.11358252148941172521e-12
8192	8	4.29929311379292911077e-09
8400	2	4.03323208164607649451e-17
8448	5	1.00830802041151912363e-16
8640	8	1 6132928326584305978-16
8960	14	2 82326245715225354616 16
9216	63	2.56291700700287072870.00
9408	2	4.033232081646076494510.17
0600	2	4.305810016140788170066 12
9000	40	4.000010910149700170000-12
1111011	1	2 01661604082202824725~ 17
10080	1	2.01661604082303824725e-17 2.16034582103810886785c.00

p	N_w	verified measure
10368	5	1.00830802041151912363e-16
10752	25	5.8277964702299622779e-11
11200	1	2.01661604082303824725e-17
11264	1	2.01661604082303824725e-17
11520	50	3.45301736422859439912e-11
12288	25	2.52287638046258533286e-09
12544	1	2.01661604082303824725e-17
12800	7	1.6132928326584305978e-16
13440	5	1.00830802041151912363e-16
13824	30	3.00239722406808740018e-11
14336	7	3.0324076799939647664e-11
15360	30	1.3809309164919403301e-10
16000	1	2.01661604082303824725e-17
16128	2	4.03323208164607649451e-17
16384	2	4.58952424241959588969e-10
17280	1	2.01661604082303824725e-17
17920	7	1.41163122857612677308e-16
18432	19	7.0838524282579307112e-11
19200	1	2.01661604082303824725e-17
20480	6	1.48670596666899967886e-10
21504	4	8.06646416329215298902e-17
23040	1	2.01661604082303824725e-17
24576	7	1.96098825112206442967e-10
25600	1	2.01661604082303824725e-17
27648	3	6.04984812246911474176e-17
28672	2	$4.0332\overline{3208164607649451}$ e-17

Table 3: The lower bound of the total stability measure of windows with respect to the principal period p. Also the number of detected windows N_w is given. This means that we found N_w distinct orbits of principal period p. The total number of verified sinks is 4970355.