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1. Preliminary

The aim of this paper is to address theoretical and practical aspects of high-precision
computation of Maass forms. Namely, we compute to over 1000 decimal places the Lapla-
cian and Hecke eigenvalues for the first few Maass forms on PSL(2, Z)\H, and certify the
Laplacian eigenvalues correct to 100 places. We then use these computations to test certain
algebraicity properties of the coefficients.

The outline of the paper is as follows. In Section 2, we discuss Hejhal’s algorithm
for computation of Maass forms on cofinite Fuchsian groups with cusps, and the details
necessary to implement it in high precision. This algorithm is heuristic and does not prove
the existence of cusp forms. In Section 3 we turn to the question of rigorously verifying
that a proposed eigenvalue, together with a proposed set of Fourier coefficients, indeed
correspond to a true Maass cusp form. We will use standard methods to show that the
putative eigenfunction has almost all of its spectral support concentrated near the proposed
eigenvalue. It is a more subtle point to show that it is close to a cusp form (i.e., a discrete
eigenfunction). Indeed, Selberg introduced the trace formula for the precise purpose of
showing that there exist cusp forms for PSL(2, Z); we shall use a trick from [22] to greatly
simplify the analysis.

We apply our technique to the data which we have computed using Hejhal’s algorithm:
We prove that our values for the first ten eigenvalues on PSL(2, Z)\H are correct to at least
100 decimal places (Theorem 1). We also prove a theoretical result (Theorem 2) stating
that our algorithm will in general achieve its certification task in polynomial time (with
respect to the eigenvalue and digits of precision), whenever it is given input data which
describes a true cusp form to a sufficient accuracy.

In Section 4 we test some algebraicity properties of coefficients of Maass forms. It is gen-
erally believed that the Laplacian and Hecke eigenvalues of Maass forms on PSL(2, Z)\H

are transcendental; we provide (to our knowledge, the first published) evidence in this di-
rection. For instance, we show that the first eigenvalue of PSL(2, Z)\H is not the solution
of any algebraic equation with degree ≤ 10, all of whose coefficients are integers of mag-
nitude ≤ 107. This uses the 100 decimal places which were certified in Theorem 1; if we
assume (and there is a great deal of evidence in this direction) that the numbers computed
in Section 2 are correct to 1000 decimal places, we obtain much stronger results yet.

Moreover, we also test for algebraic relations between coefficients that generalize those
that exist for eigenvalue 1

4
forms or for dihedral forms. Stark has informed us that he tested
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for relations of a similar nature in the early 1980s, but the data he had available was less
accurate.

Related problems and other applications. Farmer and Lemurell have recently found
[10] that Maass forms persist when deforming lattices along certain (special) curves in
Teichmüller space. The theoretical aspects of this are not fully understood; in particular,
rigorously proving this persistence seems like an interesting question. The high precision
algorithm which we outline in Section 2 might be a valuable tool when studying this
question, at least from an experimental perspective: For example, we have used it to refine
some points on the curves of [10] to more than 200 decimal places.

In this vein, it seems natural to propose the following (challenging) problem in rigorous
computation of spectra: Find practical algorithms which for given numbers Λ > 0 and
ε0 > 0 and a given region U in Teichmüller space, determine—with proofs, and to within
an error bounded by ε0—the complete set of submanifolds in U × [0, Λ] described by the
{λ < Λ}-part of the discrete spectra on the hyperbolic surfaces corresponding to the points
in U .

Finally, we remark that the methods of this paper are “local” in the sense that they
treat one Maass cusp form at a time, with the main emphasis being on high precision
computation. In order to certify many eigenvalues or forms of large eigenvalue, it is natural
to employ global methods from the trace formula as well. We will address this topic in a
sequel paper, [5].

Acknowledgements. We would like to thank Dennis Hejhal, Peter Sarnak, Kannan
Soundararajan, and Fredrik Strömberg for helpful discussions. The first author was sup-
ported by an NSF postdoctoral fellowship. The third author was supported by a CMI
Research Fellowship and NSF Grant DMS-0245606.

2. Computation

The problem of computing Maass waveforms on PSL(2, Z)\H numerically has been con-
sidered by a number of authors, starting in the 1970s; cf. [30] and the references listed
therein. In the present section we will briefly recall the method due to Hejhal [15] for
computation of Maass waveforms, and then describe how we adapt this algorithm in order
to carry out the computations in very high accuracy. Hejhal’s algorithm represents a major
step forward compared to earlier existing methods, regarding both numerical stability and
range of applicability. For example, this algorithm was used by H. Then in [30] to compute
eigenvalues of size λ > 1.6 · 109 on PSL(2, Z)\H, which is the current record.

As stressed in the introduction, the method is (at present) non-rigorous. It seems quite
reasonable to expect that when implemented with sufficiently sharp parameters M0, Q, Y
(see below), the algorithm should succeed in finding correct data for all existing cusp forms,
and that it should never indicate existence of “false” cusp forms—this is also corroborated
by all experiments carried out so far (see [15, 25, 30, 27], as well as sections 2.3, 3 below).
However, we do not attempt to prove either of these assertions here.
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The algorithm of Hejhal applies to the computation of Maass waveforms on any cofinite
Fuchsian group Γ such that Γ\H has exactly one cusp. It has recently been extended to
the case when Γ\H has several cusps, see [25, 27].

2.1. Hejhal’s algorithm. We start by recalling the algorithm from [15] (cf. also [16] for
more details). Let Γ ⊂ PSL(2, R) be a cofinite Fuchsian group. For simplicity we will
assume that Γ\H has exactly one cusp (the modifications necessary in the case with several
cusps are mentioned very briefly at the end). Without loss of generality we may take this
cusp to be positioned at ∞, and to have width 1, i.e. we assume that Γ∞, the stabilizer of
∞ in Γ, is generated by ( 1 1

0 1 ). We fix a (closed) fundamental domain F ⊂ H of Γ; since
Γ\H has only one cusp we may assume that Y0 = inf {Im z : z ∈ F} is a positive number.

We also fix an integer D (say D ≥ 10), indicating that we are optimally aiming for a
precision of about D decimal digits in our results.

Let us consider any fixed Maass cusp form f(z) of eigenvalue λ = 1
4
+r2 (r ∈ R) on Γ\H.

Take its Fourier expansion at ∞ to be (see [13] or [18])

f(z) =
∑

n6=0

an
√

y κir(2π|n|y) e(nx), (z = x + iy).(1)

Here we understand κir(u) to mean e
π
2
rKir(u), in line with the numerical convention from

[14, 15]. This ensures that κir(u) is an oscillating function of u when 0 < u . r with
amplitude roughly of order of magnitude ∼ 1, and then decays exponentially for u & r, see
[2].

It is known in general that the coefficients an are bounded by an = O(|n| 13+ε), for all
n, see [3]. We will assume from the start that the cusp form f(z) has been singled out in
the λ-eigenspace by a legitimate normalization an1 = 1, an2 = an3 = . . . = and

= 0 where
d is the dimension of the λ-eigenspace and n1, . . . , nd are some small distinct indices. We
will also assume that this normalization makes an = O(|n| 13+ε) hold with a modest implied
constant.1

Under this assumption, one can choose a sensible (decreasing) function M(y) so that,
for each z = x + iy ∈ H, one has

f(z) =
∑

0<|n|≤M(y)

an
√

y κir(2π|n|y) e(nx) + [[10−D]],(2)

where [[10−D]] is shorthand for a quantity of absolute value less than 10−D. Let us declare
M(y) = M(Y0) := M0 for all y ≥ Y0.

1In all experiments known to us it has been possible to find a good an-normalization of this type without
too much effort, although some trial and error might be necessary, especially when d is not known. The
most common case is d = 1 and here the normalization a1 = 1 very often turns out to fulfill our assumptions;
for instance this is certainly true in the case of Hecke–Maass forms on Γ = PSL(2, Z); here one knows that

the normalization a1 = 1 leads to |an| ≤ d(|n|)|n| 7

64 for all n (where d(n) is the usual divisor function),
and a similar fact is true for newforms on any congruence subgroup of PSL(2, Z), see [20]. We refer to [27]
for a more detailed discussion involving cases with d ≥ 2 and a1 = 0.
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Thus, by (2), for every y > 0 we are now viewing f(x+ iy) as a finite Fourier series in x.
We fix any number Y such that 0 < Y < Y0 and then take an integer Q with Q > M(Y ).
We introduce the following 2Q points, evenly spaced along a closed horocycle:

zj = xj + iY =
1

2Q

(

j − 1

2

)

+ iY ∈ H, 1 − Q ≤ j ≤ Q.(3)

By taking appropriate linear combinations of relation (2) over all these points, we obtain,
for each |n| ≤ M(Y ):

an

√
Y κir(2π|n|Y ) =

1

2Q

Q
∑

j=1−Q

f(zj) e
(

−nxj

)

+ [[10−D]].(4)

We will now utilize the fact that f is Γ-automorphic. For each j we compute the F -pullback
of zj, that is, we find a map Tj ∈ Γ such that z∗j = x∗

j + iy∗
j := Tj(zj) ∈ F . (There is

in general a very quick way to find this map Tj; the natural algorithm to use depends on
whether Γ is a “generic” cofinite subgroup of PSL(2, R), or a congruence or non-congruence
subgroup of PSL(2, Z), see, e.g. [25, 27, 28].) Using the automorphy relations f(zj) = f(z∗j )
in (4) we now have

an

√
Y κir(2π|n|Y ) =

∑

0<|`|≤M0

a`Vn` + 2[[10−D]],(5)

with

Vn` =
1

2Q

Q
∑

j=1−Q

√

y∗
j κir(2π|`|y∗

j ) e(`x∗
j − nxj).(6)

Relation (5) holds for all |n| ≤ M(Y ), for any given Maass cusp form f(z) of eigenvalue
λ = 1

4
+r2. Since Im zj = Y < Y0 ≤ Im z∗j we have Tj /∈ Γ∞ for all j, and hence the system

(5) should be far from a tautology.
Restricting (5) to 1 ≤ |n| ≤ M0, we obtain a system of 2M0 linear (homogeneous)

equations for the 2M0 unknowns {an}1≤|n|≤M0. Of course, the eigenvalue λ = 1
4

+ r2 will
not be known from the start. To get a hold of r the above linear system is repeatedly
solved for two different Y -values, successively adjusting r to make the two solution vectors
{a′

n}1≤|n|≤M0
and {a′′

n}1≤|n|≤M0
as nearly equal as possible. (In cases of congruence groups

Γ one can instead adjust r so as to satisfy Hecke multiplicative relations among the first
few an.)

As pointed out in [15], it is not evident a priori that the linear system (5) will be well-
conditioned as hoped, and this would indeed be one of the key issues in any attempt to
prove that the above algorithm always achieves its goal.
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Our experiments consistently indicate that when solving (5) for a correct r-value, each
coefficient an (|n| ≤ M0) is obtained to an accuracy of, roughly,

[an-precision] ≈
{

D digits (if 2π|n|Y . r)
(

D − log+
10

∣

∣

∣

1√
Y κir(2π|n|Y )

∣

∣

∣

)

digits (if 2π|n|Y & r),
(7)

at least if 2π|n|Y (when . r) is not very close to a zero u of κir(u). This is easy to
explain heuristically in view of our remarks below (1) on the asymptotic behaviour of κir(u);
specifically, in the case 2π|n|Y & r, note that since

√
uκir(u) is positive and exponentially

decaying for u & r, and y∗
j ≥ Y0 > Y for all j, all coefficients in the column corresponding

to an in our system (5) will have absolute size .
√

Y κir(2π|n|Y ).
It follows from (7) that the {an}1≤|n|≤M0 are sufficiently accurate for formula (2) to

give f(x + iy) to ∼ D digits precision whenever y ≥ Y0, since the exponential decay of
κir(2π|n|y) in (2) sets in already at |n| ≈ r/(2πy) < r/(2πY ). Hence the coefficients an

may be obtained to precision ∼ D, also for |n| > M0, by running a second computation,
namely

a(new)
n =

∑

0<|`|≤M0
a`Vn`√

Y ′κir(2π|n|Y ′)
(8)

for some Y ′ < Y such that
√

Y ′κir(2π|n|Y ′) is not extremely small, using Q′ > M(Y ′) in

place of Q in (6) to compute each Vn`. In fact, even if 2π|n|Y ′ � r so that
√

Y ′κir(2π|n|Y ′)
is very small, we may still expect (8) to give an to an accuracy as in (7), with Y ′ in place
of Y .

Note that in the particular case of Γ = PSL(2, Z) (or more generally if JΓJ = Γ where
J : H 3 z 7→ −z ∈ H) we may assume each eigenfunction f to be either even (viz.,
a−n = an, ∀n) or odd (viz., a−n = −an, ∀n). This of course allows us to reduce the number
of unknowns in our system (5) by a factor 2.

In the case when Γ\H has several cusps, the only approach which has so far been found
to work well in general is to solve simultaneously for the Fourier coefficients at all cusps.

Then for each cusp η one introduces a set of evenly spaced points z
(η)
j around a closed

horocycle encircling η, and forms linear combinations analogous to (4). We refer to [25, 27]
for more details. It should be noted that in many cases, in particular when Γ is a congruence
group, the linear system can be reduced to involve fewer cusps, because of the existence of
Hecke-type symmetries (Fricke involutions) which connect the Fourier expansions at various
cusps. See [27, §2.8] as well as [10].

2.2. Adaptations to computations in high accuracy. We carried out our computa-
tions using the PARI/GP programming language [29], making use of its capacity to do
numerics in any given precision D (decimal digits). As we let D increase, we also need to
increase the size of the system of equations (5), because of M0 = M(Y0) and the definition
of M(Y ) in (2). For example, for Γ = PSL(2, Z) one has Y0 =

√
3/2, and tests on the
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size of Kir(u) suggest that for modest r (r ≤ 25, say), the smallest admissible choices of
M0 = M(Y0) in (2) are roughly as follows:

D 50 100 200 525 1050
M0 30 55 95 235 455

(In the case Γ = PSL(2, Z) it would be possible to prove that (2) holds for these choices of
M0 and y ≥ Y0, using e.g. the bounds in [20] and careful estimates of the K-Bessel function.
See footnote 1 on p. 3.) Hence for D = 1050 our system will be of size ∼ 455 × 455. This
makes both time and memory very serious issues (note that approximately 436 bytes are
required to store a single real number in precision D = 1050).

On Γ0(5) (which has two cusps) one has Y0 =
√

3/10 (see [27]), and for D = 525, r ≤ 10,
we need to take M0 as large as ∼ 1135 (D = 1050 would require M0 ∼ 2240; we have
not carried this out). We remark that due to symmetries the system of equations used for
Γ0(5) need not be of dimension larger than M0 × M0.

In the second computation, (8), the main problem is time, as the number of terms
involved is often quite large (recall that in (8) we are to use (6) with Q′ > M(Y ′) in place
of Q). It is useful to note that we may sacrifice accuracy in a controlled way, allowing
for a much larger choice of Y ′. For example, for r ≈ 13.77 on Γ = PSL(2, Z), we may
allow 2π|n|Y ′ to be as large as 315 and still only lose ∼ 130 digits according to (7);
hence for |n| ≤ 455 we may use Y ′ = 0.11 and Q′ = 3540 > M(Y ′), and this should
give all {an}1≤|n|≤455 to more than 900 digits precision. However, if we would only allow
a loss of ∼ 5 digits in (8), then for |n| = 455 we would need to take Y ′ ∼ 0.0097 and
Q′ > M(Y ′) & 40000, and the computation would be more than ten times as long.

When implementing the algorithm outlined in Section 2.1 on a computer, the most time-
consuming task is, by far, that of computing the values of the K-Bessel function Kir(u)
(see [14] and [30]). Our approach to computing Kir(u) (for u, r > 0) to very high accuracy
is quite elementary, and builds on recursive use of Taylor power series.

From (5) and (6) we see that our task will always involve computing Kir(u) for a fixed
r and a large set of different u-values, namely, u = 2π`y∗

j with 1 − Q ≤ j ≤ Q and
` = 1, 2, . . . , M0, as well as for u = 2πnY , n = 1, 2, . . . , M0. We start by pre-tabulating
all these values in a decreasing list, u1 ≥ u2 ≥ . . . ≥ uN . In practice, with M0 adapted
to high precision D ≥ 500, the number N is well beyond 105, and the vast majority of
gaps um − um+1 are found to be much smaller than 1

10
. We then use the fact that once

Kir(um) together with K ′
ir(um) have been calculated for some m, all the higher derivatives

K
(n)
ir (um), n ≥ 2, can be computed fairly quickly using the differential equation

u2K ′′
ir(u) + uK ′

ir(u) + (r2 − u2)Kir(u) = 0.(9)

Thus we obtain the coefficients of the Taylor expansion of Kir(u) about u = um, and this
can be used to quickly compute Kir(um′) for all points um′ in our list lying sufficiently close
to um.
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Specifically, using (9) we find that

unK
(n)
ir (u) = Pn(u)Kir(u) + Qn(u)uK ′

ir(u)(10)

where Pn(u) and Qn(u) are polynomials which satisfy P0(u) = 1, Q0(u) = 0 and the
recursion relations

{

Pn+1(u) = uP ′
n(u) − nPn(u) + (u2 − r2)Qn(u)

Qn+1(u) = uQ′
n(u) − nQn(u) + Pn(u).

(11)

In particular, we see that Pn(u) and Qn(u) are polynomials of degree ≤ n (more precisely,
deg Pn = 2[n/2] and deg Qn = 2[(n−1)/2] for n ≥ 2), the coefficients of which only depend
on n and r. Hence the coefficients of these polynomials can be computed explicitly once
and for all as soon as r is given. The Taylor expansion of Kir(u) at u = um is then given
by

Kir(u) =
∞
∑

n=0

Pn(um)Kir(um) + Qn(um)umK ′
ir(um)

n!
(u − um)n.(12)

Note that the coefficients of this series may be computed and stored once um is given (along
with Kir(um), K ′

ir(um)). Our approach now is to truncate (12) at some finite n, and use
this sum to compute Kir(um′) for all m′ > m such that um′ lies sufficiently close to um, say
um−L ≤ um′ ≤ um for some L > 0. When we reach the last m′, i.e. um′+1 < um−L ≤ um′ ,
we use the differentiated version of (12) to compute K ′

ir(um′), and use Kir(um′) and K ′
ir(um′)

to evaluate the Taylor polynomial for Kir(u) about u = um′, that is, we return to the start
of the above procedure but with m′ in place of m.

The advantage of this method is that for all intermediate um′ the above computation is
very fast. Note that the method is particularly suitable when the list u1 ≥ u2 ≥ · · · ≥ uN

is densely packed, and this becomes more and more the case the larger D we aim for.
Since Kir(u) is exponentially decreasing in u for u � r, it is essential to work with

decreasing u-values, u1 ≥ u2 ≥ . . . ≥ uN as above, in order to make the recursive procedure
numerically stable.

In order to compute Kir(u), K ′
ir(u) at some initial point u = um (as well as for small u),

we use the power series about the point u = 0, viz.

Kir(u) =
−π Im Iir(u)

sinh(πr)
= − π

sinh(πr)
· Im

( ∞
∑

n=0

(u/2)ir+2n

n! Γ(n + ir + 1)

)

.(13)

When using this formula one encounters a catastrophic cancellation of significant digits un-
less u is quite small. To remedy for this fact we compute the sum using an internal precision
much larger than D. For example, for r ≈ 13.77 (the first even eigenvalue on PSL(2, Z))

and u = 3400, the maximum absolute value of an individual term in
∑∞

n=0
(u/2)ir+2n

n! Γ(n+ir+1)
is

slightly larger than 3.9·101472 (attained for n = 1699), whereas the total sum has imaginary
part ≈ −5.3 · 10−1461; to achieve the final precision D = 1050 for 3 ≤ r ≤ 25 and u in the
range 1000 ≤ u ≤ 3400, we added the terms using an internal precision of 5000 digits, and
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cutting the sum off at n = 8500. Of course this computation is rather time-consuming, but
this is not a problem since such an evaluation is only done once per analyzed r-value.

We refer to [6] for information on our precise choices of parameters such as the maximum
interval length L and n-cutoff to use in (12), and the cutoff and internal precision in (13).
These choices were made using trial and error, and tested by computing long series of
K-Bessel values and checking against the result obtained using (13) with extra precision
and longer cutoff. Note that it would in principle not be difficult to work out rigorous
error estimates for our K-Bessel values, but this would be a bit beside the point here, since
the computation of Maass forms using (5) is heuristic anyway. (However, rigorous error
estimates are essential later when we use (13) in Section 3.2.)

We also compared our method for Kir(u) with the PARI (version 2.1.5) built-in function
besselk (which treats Kir(u) as a special case of the confluent hypergeometric function,
computed using a recursion relation combined with an asymptotic expansion for large z).
In precision D = 50 our approach was found to be more than 5 times as fast as the built-in
function (when considering the total time for a whole series u1 ≥ . . . ≥ uN from (5)). For
D = 200 the corresponding speed gain was a factor > 20, and for larger values of D we ran
into cases where the built-in function seems to enter an infinite loop.

2.3. Results. Using the (partially heuristic) algorithm described above we have obtained
the following main results. Our data files with eigenvalues and Fourier coefficients are
available at [6], where each value is printed only to the number of decimals which we are
certain (empirically) are correct.

(A) We have computed the first ten eigenvalues on PSL(2, Z)\H (viz., r ≈ 9.5337,
12.1730, 13.7798, 14.3585, 16.1381, 16.6443, 17.7386, 18.1809, 19.4235, 19.4847) to a pre-
cision of more than 1000 decimal digits, together with the first 455 Fourier coefficients
a1, . . . , a455 to 900 digits (at least the first 50 of these were actually obtained to more than
1000 digits).

(B) We have computed a few examples of (newform) eigenvalues on congruence subgroups
of low level, namely

• the first eigenvalue on Γ0(5)\H: r ≈ 5.4362;

• the first two eigenvalues for Γ0(5) with nontrivial nebentypus
character χ = (5/·): r ≈ 3.2643 (a CM-form) and r ≈ 4.8938 (a
double eigenvalue);

• the first eigenvalue on Γ0(6)\H: r ≈ 2.5924.

In each case the eigenvalue and the first 50 Fourier coefficients were obtained to a precision
of more than 480 digits, and all the first 1050 Fourier coefficients were obtained to a
precision decaying with the index roughly as suggested by (7) (with Y = 0.171 for Γ0(5),
Y = 0.143 for Γ0(6), and D = 525). As initial data for the eigenvalues we used data from
the work of Fredrik Strömberg, [27].

(C) We have studied a few examples from Farmer and Lemurell [10] of (what appear to
be) Maass cusp form eigenvalues on deformations of an arithmetic surface, and refined the
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precision from about 8 decimal digits as given in [10] to more than 200 digits (for both the
eigenvalue r and the deformation parameters). More specifically, our examples lie along
the curves in the 2-dimensional Teichmüller space T (Γ0(5)) which were found in [10] when
deforming the Maass forms with eigenvalues r ≈ 4.1324, 5.4362 and 6.8235 on Γ0(5)\H.

The computer time required was between one and three weeks per example in (A) and
(B) (on a 1.5 GHz PC).

In each of these cases, we have performed a number of tests to make certain (empirically)
that the data obtained is correct to the expected accuracy. Specifically, in all cases the
system of equations (5) was solved twice, using different Y -values, and the eigenvalues and
the coefficients were consistently seen to agree to the expected accuracy (i.e. in accordance
with (7)). In cases (A) and (C) we also used (8) to obtain the higher coefficients to better
precision, each time using two different Y ′-values, and in cases (A) and (B) all Hecke
multiplicativity relations involving the calculated coefficients were tested; all these tests
consistently indicated agreement to the expected accuracy. (See [6] for more details.)

Furthermore the eigenvalues and the Fourier coefficients of the CM-form in (B) are in
fact known explicitly (see Section 4.1; in particular r = π/ log((3 +

√
5)/2) ≈ 3.2643) and

hence this provides an excellent test of the computational algorithm; we verified that the
calculated eigenvalue and all the Fourier coefficients agreed with the known explicit values
to the expected accuracy.

Regarding the examples in (C) we note that it is an open problem to prove that Maass
forms can truly be deformed along submanifolds in Teichmüller space, as suggested in [10].
The computations carried out in [10] provide strong evidence for this, however, and the
fact found here that these examples could be refined (in each case tried) to more than 200
digits’ precision, fulfilling tests as mentioned above, adds to this evidence.

3. Certification

In this section we present a technique for certifying the Laplacian eigenvalues com-
puted by Hejhal’s algorithms. We apply the technique to the first ten eigenfunctions on
PSL(2, Z)\H to prove the following theorem.

Theorem 1. The first ten cuspidal eigenvalues on PSL(2, Z)\H are as given in Table 1,
correct to 100 decimal places.

The proof will be achieved in several steps. First, in Section 3.1 we give an effective
result (Proposition 1) that reduces the problem to checking approximate automorphy of a
conjectured form in a small neighborhood of the boundary of the fundamental domain, and
is well suited to implementation on a computer. We provide details of the implementation
in Section 3.2 and complete the proof of Theorem 1 in Section 3.3. In Section 3.4 we analyze
the complexity of the algorithm; in particular, we prove that when given correct coefficients,
the certification can always be achieved in time bounded by a polynomial function of the
eigenvalue and number of digits.
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λ1 91.14134533635527808180977380712054599169397081569090
24779657001959542423895651247275628962288096291166 . . .

λ2 148.43213167272073721634630026099613950074024730230597
18429528711664752493611551782064774884270840759058 . . .

λ3 190.13154731993464754245355701518494068113589428312883
85576731615371323200677917820840283441119667596429 . . .

λ4 206.41679558595764086930256998274121408698217444408924
57353424774780566562633717682316760582937054960721 . . .

λ5 260.68740568936685449640878661876843428670512980543410
25160896652698127129961088063918703474378409525572 . . .

λ6 277.28136438002683115037066737081556475641461871642721
10389795051170027636925268679261948599959882451968 . . .

λ7 314.90663082378975395201087956594111981400929643683543
24577475933753113883450789890543230665313679076946 . . .

λ8 330.79577330595661811354919800716770713227919058116130
90838441757780526911223164841141432001520297756449 . . .

λ9 377.52163244760855963494607025104782105738237467084493
35117196084788698571774187390792935770199066442588 . . .

λ10 379.90407400113640004061759185737660211892670229631256
52341784484968001450252766577139865937140147593072 . . .

Table 1. First ten eigenvalues on PSL(2, Z)\H

First, we set some notation to be used in this section. Let Wν(y) :=
√

yKν(y); this
shorthand will be useful when it comes to taking derivatives with respect to y. Since we
work with Γ = PSL(2, Z) throughout, we may assume from the outset that all forms are
eigenfunctions of J : z 7→ −z, i.e. we consider Fourier expansions of the form

(14) f(z) =

M
∑

n=1

an√
n

Wir(2πny) cos(ε)(2πnx),

where f has eigenvalue

λ :=
1

4
+ r2 ≥ 1

4
,(15)

ε ∈ {0, 1} indicates the parity and cos(ε)(t) is the εth derivative of cos(t), i.e. it equals cos(t)
for ε = 0 and − sin(t) for ε = 1. We shall moreover normalize f so that a1 = 1. (Thus the
normalization of the coefficients coincides with that of the Section 2.1, but that of f itself
is different by a factor e

π
2
r.)

Let F =
{

z ∈ H : |z| ≥ 1, |Re z| ≤ 1
2

}

be the (closure of) the “standard” fundamental

domain for Γ. For z, w ∈ H, set u(z, w) := |z−w|2
4Im z Im w

. Recall that, if d denotes the
hyperbolic distance, then cosh(d(z, w)) = 1 + 2u(z, w) [18, Section 1.3]. If for z ∈ H we
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define uz := u(z, i) and ϕz ∈ [0, π) to be the hyperbolic angle of z (loc. cit.) then the
measure dµ(z) := dx dy

y2 on H may be expressed in “polar coordinates” as 4 duz dϕz.

Let φ be a non-negative, twice differentiable function on [0,∞), with support contained
in [0, 1], such that

∫∞
0

φ(x) dx = 1. Let δ > 0 be given, and assume that Y is such that the

point-pair invariant k(z, w) = φ(u(z, w)Y ) vanishes for d(z, w) ≥ δ. We denote by k̂(r) the
scalar by which k acts on any Laplacian eigenfunction of eigenvalue 1

4
+ r2 [18, Theorem

1.14], that is

(16) k̂(r) =

∫

H

k(z, i)y1/2+irdµ(z).

With f as in (14), we define:

f̃ = [the Γ-periodic extension of f from F to H] and f̃S = f̃ ? k.(17)

Thus f̃S is a smoothed version of f̃ , and is Γ-periodic. Note that f̃(z) = f(z) for Im z ≥ 1

and thus f̃S(z) = k̂(r)f̃(z) for Im z ≥ eδ. Evidently there is an issue (at least for odd f)

regarding the definition of f̃(z) for those z ∈ H that are in the Γ-orbit of the boundary

of F . However, in all our bounds below, it is only necessary for f̃ to be defined off a set
of measure 0. In particular, one should interpret L∞ bounds as referring to the essential
supremum of a function. Thus this ambiguity is irrelevant to our proceedings.

3.1. An effective bound. The eventual aim of this section is to prove Proposition 1 (see
p. 15). In words, it states that given a finite series of the type (14), we can bound how
close it is to a cusp form by checking that it is “almost automorphic”, i.e. almost invariant
by certain fixed generators of PSL(2, Z). Moreover, to measure closeness of the eigenvalue,
the “almost invariance” need only be checked on a very small region around the boundary
of the standard fundamental domain.

The idea is the usual “quasimode construction” (cf., e.g., [8]): In a slightly more general
setting, let M be a finite-volume Riemannian manifold and f a smooth function on M .
Let ∆ = −div ◦ grad be the positive Laplace operator on M , and suppose that (∆ − λ)f
has small L2 norm. Then by making a spectral expansion, we conclude at once that f
has almost all its spectral support concentrated near λ. However, in our context, we must
implement this type of idea in a computationally efficient way. Moreover, we must show
that f is actually close to a discrete eigenfunction of the Laplacian.

For p a prime number, we define the pth Hecke operator Tp as the endomorphism of
C∞(Γ\H) defined by

(18) Tpf(z) =
1√
p

(

f(pz) +

p−1
∑

b=0

f

(

z + b

p

)

)

.

The notation ‖ · ‖q will mean, unless otherwise indicated, the Lq norm on Γ\H.
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Lemma 1. Let f(z) be any finite Fourier series as in (14). Put

(19) Cf,p =
2(p1/2 + p−1/2)

|pir + p−ir − ap|
for p prime, Cf,1 = 1.

Let p be a prime number if f is even, and 1 if f is odd. Let S be a finite set of places of
Q (viz., S is a finite subset of {∞, 2, 3, 5, 7, 11, . . .}), and let numbers λv be given for each
v ∈ S. Let Tv be the Hecke operator for each finite place v, and set T∞ = ∆. Then there
exists a cusp form on Γ\H with Tv-eigenvalues λ̃v satisfying

(20)
∑

v∈S

∣

∣λ̃v − λv

∣

∣

2 ≤
2C2

f,p

∑

v∈S

∥

∥(Tv − λv)f̃S

∥

∥

2

2
∣

∣k̂(r)
∣

∣

2 ∫∞
peδ Wir(2πy)2 dy

y2

.

Proof. Let ♦ be the identity endomorphism of C∞(Γ\H) if p = 1, and set

(21) ♦ = 2 cos

(

log p

√

∆ − 1

4

)

− Tp

in the general case. This operator was introduced in [22] and is engineered to annihilate
the part of the spectrum of the Laplacian which comes from the Eisenstein series. Here

♣ := cos
(

log p
√

∆ − 1
4

)

may be given a rigorous interpretation, either by using the spectral

decomposition of ∆, or by regarding it as the operation of convolution with a certain
compactly supported distributional point-pair invariant L(z, w), that is to say

(22) ♣f(z) =

∫

H

L(z, w)f(w)dµ(w).

Moreover, L(z, w) is supported in the region d(z, w) ≤ log(p). The operator ♦ has norm
≤ 2(p1/2 + p−1/2) w.r.t. the L2 norm on C∞(Γ\H), and commutes with Tv for all v. We
refer to [22] for a further discussion.

For p > 1 (and prime), ♦ maps into the space of cusp forms, by [22]. In any case, we

see that g = ♦
(

f̃S

)

is cuspidal. Assume now that p > 1, the case p = 1 following similarly.
Since ♦ commutes with Tv − λv for each v ∈ S, and in view of the bound on its operator
norm, we have

(23) ‖(Tv − λv)g‖2 ≤ 2
(

p1/2 + p−1/2
)
∥

∥(Tv − λv)f̃S

∥

∥

2
.

Next, let {fj}∞j=1 be an L2-basis of eigenforms for the cuspidal spectrum, with Tv-
eigenvalues λj,v, and put g =

∑∞
j=1 εjfj. Let PrH denote the orthogonal projection onto

the span of fj such that
∑

v∈S |λj,v − λv|2 ≤ H (note that this span may be empty). Then

(24)

‖PrHg‖2
2 = ‖g‖2

2 −
∑

j:
P

v∈S |λj,v−λv |2>H

|εj|2 ≥ ‖g‖2
2 −

∞
∑

j=1

|εj|2
∑

v∈S |λj,v − λv|2
H

= ‖g‖2
2 − H−1

∑

v∈S

‖(Tv − λv)g‖2
2,
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and we even have strict inequality here unless
∑

v∈S |λj,v − λv|2 = H or 0 for all j with
εj 6= 0. Consequently, there is a j such that

∑

v∈S |λj,v − λv|2 ≤ H as long as

(25) H ≥
∑

v∈S ‖(Tv − λv)g‖2
2

‖g‖2
2

.

By (23), this will always be the case if

(26) H ≥ 4
(

p1/2 + p−1/2
)2

∑

v∈S

∥

∥(Tv − λv)f̃S

∥

∥

2

2

‖g‖2
2

.

Now, for Im z ≥ peδ we have g(z) =
∑∞

n=1
cn√
n
Wir(2πny) cos(ε)(2πnx), with c1 = k̂(r)

(

pir +

p−ir − ap

)

. (To see this, use (18) and the comments after (22).) We thus have the lower
bound

(27) ‖g‖2
2 ≥

|c1|2
2

∫ ∞

peδ

Wir(2πy)2dy

y2
.

The conclusion follows. �

Lemma 2.

(28)
∣

∣k̂(r)
∣

∣ >
4π

Y

(

1 − 4

√

λ

Y

)

.

Proof. Recall that k̂(r) =
∫

H
y1/2+irk(z, i) dµ(z). In view of the “polar coordinates” expres-

sion of dµ, we obtain

(29)

∫

z∈H

k(z, i) dµ(z) =
4π

Y
.

Hence

(30)

∣

∣

∣

∣

k̂(r) − 4π

Y

∣

∣

∣

∣

≤ 4π

Y
sup

u(z,i)≤1/Y

∣

∣y1/2+ir − 1
∣

∣.

Now for z = x + iy, if u(z, i) ≤ 1/Y then |z − i|2 ≤ 4y/Y . Thus

(31)

∣

∣y1/2+ir − 1
∣

∣ =

∣

∣

∣

∣

∫ y

1

(

1

2
+ ir

)

t−1/2+ir dt

∣

∣

∣

∣

≤ 2
√

λ
∣

∣y1/2 − 1
∣

∣

≤ 4

√

λ

Y

y1/2

y1/2 + 1
< 4

√

λ

Y
.

�

Lemma 3. Put A =
∫

H

∣

∣(∆ − λ)k(z, i)
∣

∣ dµ(z), and let B(δ) be a hyperbolic δ-neighborhood

of the arc
{

z ∈ H : |z| = 1, |Re z| ≤ 1
2

}

. Then

(32)
∥

∥(∆ − λ)f̃S

∥

∥

2
≤ A

√

vol(B(δ) ∩ F) ess.supz∈B(δ)

∣

∣f̃(z) − f(z)
∣

∣.
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Proof. Note that on F , f̃S agrees with k̂(r)f̃ except on B(δ). Consequently, (∆ − λ)f̃S

vanishes away from B(δ). One has

(33) (∆ − λ)f̃S = f̃ ? (∆ − λ)k − f ? (∆ − λ)k = (f̃ − f) ? (∆ − λ)k.

From this we see that

(34)

∥

∥(∆ − λ)f̃S

∥

∥

2

2
≤ vol(B(δ) ∩ F)

∥

∥(∆ − λ)f̃S

∥

∥

2

∞

≤ vol(B(δ) ∩ F)

(

∥

∥f − f̃
∥

∥

∞,B(δ)

∫

H

|(∆ − λ)k(z, i)| dµ(z)

)2

.

The last inequality holds since z ∈ F ∩B(δ) and d(z, w) < δ imply that one of the points w

or w± 1 belongs to F ∪B(δ), while f − f̃ is invariant under translation by Z and vanishes
on F . �

Remark. Lemma 3 reduces the estimation of
∥

∥(∆−λ)f̃S

∥

∥

2
to bounding f̃−f in a “thin” set

around the arc at the bottom of the fundamental domain. A similar technique may be used
to estimate

∥

∥(Tp − ap)f̃S

∥

∥

2
, but will involve f̃ − f on the larger (genuinely 2-dimensional)

set
{

z ∈ H : |Re z| ≤ 1
2
, Im z ≥

√
3

2p

}

; thus, this is computationally more complex, and

becomes increasingly difficult as p increases.

Lemma 4. Let A be as in Lemma 3. Then

(35) A ≤ 4π

[
∫ 1

0

∣

∣xφ′′(x) + φ′(x)
∣

∣ dx +
1

Y

(

λ +

∫ 1

0

∣

∣x2φ′′(x) + 2xφ′(x)
∣

∣ dx

)]

.

Proof. [18, 1.21] shows that −∆ corresponds, in (u, ϕ) coordinates, to the operator u(u +

1) ∂2

∂u2 + (2u + 1) ∂
∂u

+ 1
16u(u+1)

∂2

∂ϕ2 . Hence since k(z, w) = φ(u(z, w)Y ) we get

A = 4π

∫ 1/Y

0

∣

∣

∣
u(u + 1)Y 2φ′′(Y u) + (2u + 1)Y φ′(Y u) + λφ(Y u)

∣

∣

∣
du.(36)

The inequality now follows by substituting u = x/Y and using
∫ 1

0
φ(x) dx = 1. �

Lemma 5.

(37) vol(B(δ) ∩ F) <
2√
3
δ.

Proof. Note that B(δ) ⊂
{

z ∈ H : |z| < eδ
}

. Thus,

(38) B(δ) ∩ F ⊂ F \ eδF =
{

z ∈ F : 1 ≤ |z| < eδ
}

.

By the invariance of the hyperbolic measure under scaling, this set has the same volume as

(39) eδF \ F ⊂
{

x + iy :
1

2
< |x| ≤ eδ

2
, y ≥

√
3

2
eδ

}

.

The volume is therefore bounded by eδ−1√
3

2
eδ

< 2√
3
δ. �
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We can now prove our first main result, which gives an effective bound on how far the
eigenvalue of a putative cusp form is to that of a genuine cusp form.

Proposition 1. Let notations be as above, and suppose δ ≤ 1
4
√

λ
. Then there exists a cusp

form on Γ\H with Laplacian eigenvalue λ̃ satisfying

(40)
∣

∣λ̃ − λ
∣

∣ < 40δ−3/2Cf,p

ess.supz∈B(δ)

∣

∣f̃(z) − f(z)
∣

∣

(∫∞
peδ Wir(2πy)2 dy

y2

)1/2
.

Proof. The point-pair invariant k(z, i) vanishes when u(z, i) ≥ 1/Y , i.e. for d(z, i) ≥
cosh−1(1+2/Y ). Taking Y = 4δ−2, we see that k(z, i) is supported within a δ-neighborhood
of i.

We choose the point-pair invariant given by

(41) φ(x) =

{

3(1 − x)2 if x ≤ 1,

0 else.

Then, by Lemma 4,

(42) A ≤ 12π + πδ2

(

λ +
16

9

)

.

The hypothesis on δ, together with the bound λ ≥ 1
4
, yields A ≤ 12π + π

(

1
16

+ 4
9

)

.
Next, by Lemma 2 we have

(43)
1

∣

∣k̂(r)
∣

∣

<
1

πδ2
· 1

1 − 2δ
√

λ
≤ 2

πδ2
.

Combining these estimates with Lemmas 3 and 5, we apply Lemma 1 with the set S = {∞}.
The proposition follows. �

3.2. Implementation. Proposition 1 reduces our problem to bounding
∣

∣f(z) − f̃(z)
∣

∣ (in

L∞ norm) on a hyperbolic δ-neighborhood B(δ) of the arc
{

z ∈ H : |z| = 1, |Re z| ≤ 1
2

}

.
Here we describe an algorithm, based on Taylor’s theorem, for obtaining such a bound on
a computer.

Because of the symmetry of f in the x variable, it suffices to bound
∣

∣f(z) − f̃(z)
∣

∣ for
x ≥ 0. If δ is sufficiently small then the only Γ-translates of the fundamental domain
intersecting B(δ) for x ≥ 0 are γF for γ ∈ {1, T, S, ST−1, TS, TST}, where S = ( 0 1

−1 0 ) and

T = ( 1 1
0 1 ). For z ∈ F ∪ TF we evidently have f(z) − f̃(z) = 0. For the others we have:

(44)

z ∈ SF : f(z) − f̃(z) = f(z) − f(Sz);

z ∈ ST−1F : f(z) − f̃(z) = f(z) − f(TSz) = f(z) − f(Sz);

z ∈ TSF : f(z) − f̃(z) = f(z) − f(ST−1z) = f(T−1z) − f(ST−1z);

z ∈ TSTF : f(z) − f̃(z) = f(z) − f(T−1ST−1z) = f(T−1z) − f(ST−1z).
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Thus it suffices to bound simply |f(z) − f(Sz)| for z in the set

(45)
(

B(δ) ∩ (SF ∪ ST−1F)
)

∪ T−1
(

B(δ) ∩ (TSF ∪ TSTF)
)

.

Again by parity, we may replace this by (recall J(z) := −z)

(46)
(

B(δ) ∩ (SF ∪ ST−1F)
)

∪ JT−1
(

B(δ) ∩ (TSF ∪ TSTF)
)

.

In words, this amounts to reflecting the portion of B(δ) contained in TSF ∪ TSTF across
the line x = 1

2
. Note that in this region, the outer edge of B(δ) is not a sharp corner, but

rather a hyperbolic circle around the point 1
2
+ i

√
3

2
. The reflection of the circle across x = 1

2

is itself, and hence it suffices to obtain a bound just on B(δ)∩ (SF ∪ ST−1F). The part of
this for x ≥ 0 is contained in the Euclidean δ-neighborhood of the arc {eiθ : π

3
≤ θ ≤ π

2
}.

It is convenient to introduce polar coordinates x = et cos θ, y = et sin θ. Then the function
we want to bound is

(47)
f(z) − f(−1/z) = f(et cos θ, et sin θ) − f(e−t cos(π − θ), e−t sin(π − θ))

= f(et cos θ, et sin θ) − (−1)εf(e−t cos θ, e−t sin θ).

We write E(t, θ) for this final expression. By abuse of notation, we may also write f(t, θ)
for f(et cos θ, et sin θ); the choice of coordinates will be clear from context.

We bound E(t, θ) by computing derivatives with respect to t and θ and using Taylor’s
theorem. Suppose that we compute derivatives of E at some reference point (t0, θ0) and
we wish to bound it at (t1, θ1). Set F (u) = E(t0 + (t1 − t0)u, θ0 + (θ1 − θ0)u). Then

(48)
F (i)(u)

i!
=
∑

r+s=i

(t1 − t0)
r

r!

(θ1 − θ0)
s

s!

∂r+sE

∂tr∂θs
(t0 + (t1 − t0)u, θ0 + (θ1 − θ0)u).

Note that when u = t0 = 0 this simplifies to

(49)
F (i)(0)

i!
= 2

∑

r+s=i
r≡ε+1 (mod 2)

tr1
r!

(θ1 − θ0)
s

s!

∂r+sf

∂tr∂θs
(0, θ0).

Now Taylor’s theorem says that for any d ≥ 0,

(50) E(t1, θ1) = F (1) =

d−1
∑

i=0

F (i)(0)

i!
+

F (d)(u∗)

d!
,

for some u∗ ∈ [0, 1].
The basic outline of our implementation is as follows. We choose N + 1 equally spaced

sample points along the arc, i.e. t0 = 0, θ0 = π
3

+ π
6

j
N

, for j = 0, 1, . . . , N . We choose δ
in Proposition 1 so that the maximum displacement from a sample point is at most π

12N

in each variable. For each sample point (0, θ0) we evaluate ∂r+sf
∂tr∂θs (0, θ0) for all r, s with

r + s = i < d, r ≡ ε + 1 (mod 2). If it happens that f is close to a Maass form then
all these derivatives will be small, and we obtain from (49) a good bound

∣

∣F (i)(0)/i!
∣

∣ ≤
2( π

12N
)i
∑

(r!s!)−1
∣

∣

∣

∂r+sf
∂tr∂θs (0, θ0)

∣

∣

∣
valid for all (t1, θ1) with |t1|, |θ1−θ0| ≤ π

12N
. For each sample
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point (0, θ0) we also compute a trivial bound for
∣

∣F (d)(u)/d!
∣

∣ valid for all u ∈ [0, 1] and all
(t1, θ1) with |t1|, |θ1 − θ0| ≤ π

12N
. Via (50) this gives an upper bound for |E(t1, θ1)| valid for

all (t1, θ1) with |t1|, |θ1 − θ0| ≤ π
12N

. Taking the supremum of these bounds over all N + 1

sample points (0, θ0) we finally obtain the desired upper bound for ess.supz∈B(δ)

∣

∣f̃(z)−f(z)
∣

∣,
which we use in Proposition 1.

It now remains to describe how we compute the derivatives ∂r+sf
∂tr∂θs occurring in (49). The

form of f makes it more convenient to compute derivatives in rectangular coordinates, and
we therefore have to convert. The conversion takes the general form

(51)
∂r+sf

∂tr∂θs
(x, y) =

∑

k+`≤r+s

P (x, y; r, s, k, `)
∂k+`f

∂xk∂y`
(x, y),

where P (x, y; r, s, k, `) is a homogeneous polynomial with integer coefficients, of degree k+`
in x and y. Using the formulas

(52)
∂

∂t
= x

∂

∂x
+ y

∂

∂y
,

∂

∂θ
= x

∂

∂y
− y

∂

∂x
,

we see that P satisfies the recurrence relations

(53)

P (x, y; r + 1, s, k, `) = x
∂P

∂x
(x, y; r, s, k, `) + y

∂P

∂y
(x, y; r, s, k, `)

+ xP (x, y; r, s, k − 1, `) + yP (x, y; r, s, k, `− 1),

P (x, y; r, s + 1, k, `) = x
∂P

∂y
(x, y; r, s, k, `)− y

∂P

∂x
(x, y; r, s, k, `)

+ xP (x, y; r, s, k, `− 1) − yP (x, y; r, s, k − 1, `).

We compute P recursively from these formulas as we compute the derivatives.

We have now reduced everything to the computation of ∂k+`f
∂xk∂y` (x, y) at or near each of

the sample points. Note that

(54)
∂k+`f

∂xk∂y`
(x, y) =

M
∑

n=1

an√
n

∂`

∂y`
Wir(2πny)

∂k

∂xk
cos(ε)(2πnx).

The difficult part of that is the computation of W
(`)
ir (2πny), for each ` and each n =

1, 2, . . . , M . In practical terms, we may use any method for ` = 0, 1 since the number of
evaluations is limited. For example, in our implementation we used the power series (13);
this has the advantage that the error is easy to control, e.g. for n ≥ u/

√
2, the tail of the

series (from term n + 1 onward) is bounded by the magnitude of the nth term.
Computing the higher derivatives is another simple recursion: For ` ≥ 2 we have

(55) W
(`)
ir (y) = W

(`−2)
ir (y) + λ

`−2
∑

j=0

c`jy
j−`W

(j)
ir (y),



18 A. R. BOOKER, A. STRÖMBERGSSON, A. VENKATESH

for certain integer coefficients c`j, defined by the recurrence

(56) c`+1,j =

{

(j − `)c`j + c`,j−1, j ≤ ` − 2

−1, j = ` − 1.

(Note that this is essentially the same as the expansion (10) for K (n).)
Since the coefficients c`j and those of P (x, y; r, s, k, `) grow quite large, some care must be

taken to ensure that the computations are accurate. In practice, an efficient way to do this
rigorously is to use floating point precision and interval arithmetic (cf., e.g., [1]). For our
implementation we used the MPFI package [23] for arbitrary precision interval arithmetic,
based on the MPFR and GMP libraries [24, 11]. See Section 3.3 below for specific data on
which precision we used.

For the final term of (50) we must produce a bound for W
(`)
ir (2πny), for each n and `, and

y in a neighborhood of a given sample point. For this we again relied on the recurrence (55)
and crude use of interval arithmetic. (It will be clear from Section 3.4 that it is acceptable

to overshoot by an exponential factor in ` when computing these bounds for W
(`)
ir (2πny).)

3.3. Results. We may now complete the proof of Theorem 1. We implemented the algo-
rithm descibed above using the MPFI library on a 3 GHz PC; see [6, verify.c]. In addition
to the expansion (14), our program takes as input the parameters d, N , and the number of
bits of precision; it outputs the bound on the distance to the nearest eigenvalue given by
Proposition 1. Table 2 shows the running time and bound obtained with various choices
of the parameters, for the Maass form of smallest eigenvalue λ = 91.1413 . . . computed in
Section 2. Note that we already get a non-trivial estimate for the eigenvalue using double
precision (53 bits). On the other hand, roughly 6–8 decimal places of precision are con-
sistently lost; thus it is important that we compute the form to higher precision than the
desired certification.

Table 3 shows the parameter values used for each of the first ten forms in order to
certify the eigenvalues to 100 decimal places. That establishes Theorem 1, except for the
assertion that the list in Table 1 is complete. In principle, this should be possible to prove
by making the linear algebra used in Hejhal’s algorithms rigorous (cf. [16, §5]). However,
taking advantage of the fact that we now know the eigenvalues to high precision, a much
simpler method is to bound their number using the trace formula. This is carried out in
[4, Prop. 4.4].

3.4. Complexity. In this section, we show that from a theoretical point of view, the
certification procedure described above will always work when given sufficiently accurate
numbers, and can be performed in polynomial time. Precisely, we have the following.
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M (coefficients used) d N precision λ correct within running time
5 12 8 24 (D ≈ 7) 5.7 × 10−2 < 1 second
8 16 16 53 (D ≈ 16) 2.2 × 10−10 2.9 seconds

14 22 32 100 (D ≈ 30) 4.3 × 10−24 21 seconds
27 35 64 200 (D ≈ 60) 1.1 × 10−53 6.7 minutes
54 58 128 400 (D ≈ 120) 6.0 × 10−112 4.0 hours

Table 2. Eigenvalue bound and running time with various choices of pa-
rameters for the form of eigenvalue λ = 91.1413 . . . (The precision is given in
bits, and D is the corresponding number of decimal digits.)

λ M d N precision λ correct within running time
91.14 . . . 50 54 120 368 (D ≈ 111) 4.0 × 10−102 2.4 hours

148.43 . . . 50 55 122 368 3.8 × 10−103 2.6 hours
190.13 . . . 50 55 122 368 1.4 × 10−101 2.6 hours
206.41 . . . 50 55 122 368 8.3 × 10−102 2.6 hours
260.68 . . . 50 56 124 368 8.9 × 10−103 2.9 hours
277.28 . . . 50 56 124 368 1.4 × 10−102 2.9 hours
314.90 . . . 50 56 124 368 1.7 × 10−101 2.9 hours
330.79 . . . 50 56 124 368 1.4 × 10−101 2.9 hours
377.52 . . . 50 57 126 368 2.1 × 10−102 3.1 hours
379.90 . . . 50 57 126 368 8.2 × 10−103 3.2 hours

Table 3. Eigenvalue bound and running time for each of the first ten forms
on PSL(2, Z)\H

Theorem 2. There is a function D0(ε, λ), satisfying D0(ε, λ) �ε,η λ1/2+η for all η > 0,
and an algorithm with the following specifications:

INPUT: An integer (“target accuracy”) D, a constant 0 < ε < 1 (“allowable accuracy
loss”) and a sequence of numbers (“purported cusp form data”) {an}M

n=1 and λ ≥ 1
4
. These

input data must satisfy D ≥ D0(ε, λ) and M ≥ log 10

π
√

3
D.

RUNNING TIME: O(DA), where A and the implied constant are absolute.
OUTPUT: YES or INCONCLUSIVE.
The algorithm has the following properties:

(1) If YES, then “λ is correct to (1−ε)D digits”: there exists a cusp form on PSL(2, Z)\H

of eigenvalue λ̃′ satisfying
∣

∣λ − λ̃′∣
∣ < 10−(1−ε)D.

(2) Moreover, the algorithm will always return YES if there exists a Hecke-Maass cusp

form f ∗ on PSL(2, Z)\H with Laplacian and Hecke eigenvalues λ̃, {ãn} satisfying

(57)
∣

∣λ − λ̃
∣

∣ < 10−D and
∣

∣an − ãn

∣

∣ < 10−D for all n ≤ M.
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Remarks.

(1) The key feature of Theorem 2 is the polynomial running time in the eigenvalue and
number of digits. The mere existence of an algorithm to certify the eigenvalue of a
Maass form to any given number of digits is not surprising; one could, after all, use
the trace formula for this purpose. (In fact, low precision eigenvalue computations
have been rigorously carried out using the trace formula for congruence subgroups;
see [4].)

(2) The assumption M ≥ log 10

π
√

3
D is a natural one; it corresponds to the value Y0 =

√
3/2

in Section 2.1, so that (14) approximates the true cusp form f ∗ to roughly D decimal
places uniformly throughout the fundamental domain. On the other hand, using
more intricate estimates for the K-Bessel function than we employ here, Theorem 2
can be extended to allow much smaller values of D w.r.t. λ. This is important for
studying the large λ aspect of Maass form computations, which we will address in
[5].

(3) The algorithm as presented does not guarantee the uniqueness of the eigenvalue, i.e.

that λ̃ = λ̃′. One way to do so would be to certify the first several Hecke eigenvalues
as well, by generalizing the results above using Hecke operators; see Lemma 1 for the
first steps in this direction. However, it turns out to be more efficient to use global
information coming from the trace formula (e.g. to bound the eigenvalue counting
function, cf. [4, Prop. 4.4]) in conjunction with the methods presented here; we will
follow this approach in [5].

In this vein, note that we do not need to assume any a priori bound on the
multiplicity of λ̃ in Theorem 2; the reason is that we make the strong assumption
that the true cusp form f ∗ is also an eigenfunction of all Hecke operators. If there did
exist eigenvalues λ̃ on PSL(2, Z)\H of very large multiplicity, then this would likely
cause problems to any algorithm (heuristic or not) used for the actual computation
of λ, {an}M

n=1 which are given as input in Theorem 2. (Of course it is believed that
all eigenvalues on PSL(2, Z)\H are simple.)

(4) Theorem 2 may also be extended to congruence subgroups, with the running time
depending polynomially on the level. However, there are many technical consider-
ations in doing so. To avoid these complications, we restrict to PSL(2, Z)\H.

An interesting question (cf. our discussion of [10], end of Section 1) is whether
there is an effective method to determine the discrete spectrum for a non-arithmetic
lattice Γ\SL(2, R). (See also [16, §5(i)]).

(5) There is an implicit loss of precision: that is, to prove correct (1 − ε)D decimal
places we need a heuristic method of finding a cusp form to D decimal places. This
was visible in the results of Section 3.3.

The algorithm described in Sections 3.1–3.2 derives an upper bound for the distance from
a number λ to the nearest eigenvalue of a Maass form on Γ\H, based on the parameters d
and N . The essence of the proof of Theorem 2 in this section is to show that if λ and an

are close to the true data for a Hecke-Maass form then there is a choice of parameters (that
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one could in principle write down in advance) for which the upper bound is good. The
proof ultimately relies on the bounds for Bessel functions given in the following lemma.

Lemma 6. Let ε > 0. There is a number C = C(ε) > 0 such that, for all ` ≥ 0 and r ∈ R,

(1) W
(`)
ir (y) �ε

[

C(1 + `)
]` ∀y ≥ ε;

(2) ∂
∂λ

W
(`)
ir (y) �ε

[

C(1 + `)
]` ∀y ≥ ε;

(3) W
(`)
ir (y) � C`e−y ∀y ≥ ` + 1.

Here, as usual, λ = 1
4

+ r2. (In (3) both C and the implied constant are absolute.)

Proof. Recall Kir(z) =
∫∞
0

e−z cosh t cos(rt) dt for all complex z with Re z > 0, and Wir(z) =
√

zKir(z). Using cosh t ≥ 1 + t2/2 (∀t ∈ R) we get |Wir(z)| ≤
√

π
2

|z|
Re z

· e−Re z. Keeping

now y ∈ R, y ≥ ε and applying Cauchy’s formula on a circle of radius ε/2 about y

(note that |z|
Re z

< 2 on this circle), we obtain |W (`)
ir (y)| ≤ (`!)

(

ε
2

)−` √
πe−y/2. Similarly,

if y ≥ ` + 1 and we apply Cauchy’s formula on a circle of radius `+1
2

about y we get

|W (`)
ir (y)| ≤ (`!)

(

`+1
2

)−` √
πe

`+1
2

−y. The last two bounds lead to (1) and (3) via Stirling’s
formula.

For (2), note that ∂
∂λ

= (2r)−1 ∂
∂r

, so that ∂
∂λ

Wir(z) = −
√

z
2

∫∞
0

e−z cosh tt2sinc(rt) dt when

Re z > 0, where we use the standard notation sinc(x) = sin(x)
x

for x 6= 0, sinc(0) = 1.
Applying cosh t ≥ 1 + t2/2 as before, together with |sinc(x)| ≤ 1, ∀x ∈ R, we obtain

| ∂
∂λ

Wir(z)| ≤ (π|z|) 1
2 (2Re z)−

3
2 e−Re z. Using Cauchy’s formula as before we obtain (2). �

Lemma 7. For r + s ≤ d,

(58) |P (x, y; r, s, k, `)| ≤ (d + 4)!
[

1 + max(|x|, |y|)
]d

.

Proof. From (53), we see by induction that the coefficients of P (x, y; r, s, k, `) are bounded
by (r + s + 3)!. The result follows by homogeneity of P . �

With these estimates in hand, we may complete the proof of Theorem 2. Let notation
be as in section 3.2. For convenience, we introduce the notation x ≺d y to mean there exist
absolute positive constants A and B such that |x| ≤ ABdy.

We treat first the final term F (d)(u∗)/d! of (50). From (48), for each r + s = d we must
estimate

(59)

∣

∣

∣

∣

∂r+sE

∂tr∂θs
(t∗, θ∗)

∣

∣

∣

∣

≤
∣

∣

∣

∣

∂r+sf

∂tr∂θs
(t∗, θ∗)

∣

∣

∣

∣

+

∣

∣

∣

∣

∂r+sf

∂tr∂θs
(−t∗, θ∗)

∣

∣

∣

∣

,

where (t∗, θ∗) lies on the line segment between (t0, θ0) and (t1, θ1). These are handled, using

(51), by estimates for ∂k+`f
∂xk∂y` (x

∗, y∗) at points (x∗, y∗) corresponding to (±t∗, θ∗). We have

(60)
∂k+`f

∂xk∂y`
(x∗, y∗) =

M
∑

n=1

an√
n

(2πn)k+`W
(`)
ir (2πny∗) cos(k+ε)(2πnx∗).
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Since the an are close to Hecke eigenvalues of a Maass form, we have that an/
√

n � 1,
with implied constant universal (cf. footnote 1 on p. 3). Since y∗ is bounded away from 0,
Lemma 6 part 1 yields

(61)
∂k+`f

∂xk∂y`
(x∗, y∗) ≺d M

[

M(1 + d)
]d

.

Since x∗ and y∗ are bounded, Lemma 7 says that P (x∗, y∗; r, s, k, `) ≺d (1+d)d. Combining
this with (51) and (59), we get

(62)
∂r+sE

∂tr∂θs
(t∗, θ∗) ≺d M

[

M(1 + d)2
]d

.

Finally, from (48) and the bounds t1, θ1 − θ0 � N−1, we have

(63)
F (d)(u∗)

d!
≺d M

[

N−1M(1 + d)
]d

.

Next we estimate the terms of (50) for i < d. For that we compare f to the true Maass
form f ∗, with coefficients ãn, for which the analogous expression vanishes. In other words,
we replace f by f − f ∗ and compute (49). There are two parts to consider, corresponding
to the terms n ≤ M and n > M , respectively. (The latter terms are introduced when we
pass from f to f − f ∗.) First, from (57), Lemma 6 parts 1 and 2, and the mean value
theorem, we have, for (x0, y0) a point on the arc

{

z ∈ H : |z| = 1, |Re z| ≤ 1
2

}

,

(64)

an√
n

W
(`)
ir (2πny0) −

ãn√
n

W
(`)
ir̃ (2πny0)

=

(

an√
n
− ãn√

n

)

W
(`)
ir (2πny0) +

ãn√
n

(

W
(`)
ir (2πny0) − W

(`)
ir̃ (2πny0)

)

≺` 10−D(1 + `)`.

Proceeding as above, we see that the contribution of the terms n ≤ M to F (i)(0)/i! is

(65) ≺i 10−DM
[

N−1M(1 + i)
]i

.

For the terms n > M , we assume that 2πy0M ≥ k + ` + 1. Lemma 6 part 3 then gives
(66)
∑

n>M

ãn√
n

(2πn)k+`W
(`)
ir̃ (2πny0) cos(k+ε)(2πnx0) ≺k+`

∑

n>M

nk+`e−2πny0 � Mk+`+1e−2πMy0 .

Since y0 ≥
√

3/2 the right hand side is ≤ Mk+`+1e−π
√

3M . We deduce in the same manner
as the foregoing computations that the contribution of the terms n > M to F (i)(0)/i! is

≺i M
[

N−1M
]i

e−π
√

3M .
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Combining the estimates (63), (65) and (66), we have finally
(67)

E(t1, θ1) � M
[

C1N
−1M(1+d)

]d
+10−DM

d−1
∑

i=0

[

C2N
−1M(1+i)

]i
+e−π

√
3MM

d−1
∑

i=0

[

C3N
−1M

]i
,

for appropriate constants C1, C2 and C3. We now make the choice of parameters d = D,
M =

⌈

log 10

π
√

3
D
⌉

, and N = dC4D
2e for a sufficiently large, absolute constant C4. (Note

that the inequality 2πy0M ≥ k + ` + 1, which was needed for (66), is then satisfied, since
y0 ≥

√
3/2 and k + ` ≤ i < d.) Thus, altogether we have E(t1, θ1) � 10−DD.

Finally, we combine this bound with Proposition 1. Our choice of δ on p. 16 means that
δ is of size N−1; thus δ−3/2 � D3. From the K-Bessel asymptotic [2] one deduces that for

y ≥ c
√

λ for any fixed c > 1, Wir(y) �c e−
π
2
y. Thus, for δ sufficiently small we have

(68)

∫ ∞

peδ

Wir(2πy)2dy

y2
� max

(

peδ,
√

λ
)−2

exp
(

−2π2 max
(

peδ,
√

λ
))

� exp
(

−20 max
(

p,
√

λ
))

.

Hence by Proposition 1, applied with p = 1 or an arbitrary prime, there is a cusp form of
eigenvalue λ̃′ such that

(69)
∣

∣λ − λ̃′∣
∣� D410−De10 max(p,

√
λ)Cf,p,

where the implied constant is absolute.
To conclude, we need to show that for even forms f we may always find a prime p for

which Cf,p is not too large. (Note that in practice this is not an issue, as we can almost
always take p = 2.) This is an application of the Rankin-Selberg method. Recall that f ∗ is

a true Hecke-Maass cusp form with Laplacian eigenvalue λ̃ and Hecke eigenvalues ãn (thus
ã1 = 1). Hence an argument similar to that of [26] for holomorphic forms implies that there

exists a p �ν λ̃1/2+ν such that |pir̃ + p−ir̃ − ãp| �ν λ̃−ν (where ν > 0 is arbitrarily small).
In fact, [26] shows a corresponding result but without the restriction “p prime”; however,
it is easy to see that one can restrict from general integers to primes at the cost of a factor
λ̃ν.

Hence, as long as D � λ1/2+η for fixed η > 0, choosing 0 < ν < η and using (57) we get
|pir + p−ir − ap| �ν λ−ν and max(p, λ) = o(D). Thus, by (69) and (19),

(70)
∣

∣λ − λ̃′∣
∣ < 10−(1−ε)D,

for all sufficiently large D, as required.

3.5. Running time analysis. Our algorithm works by first computing and storing the

values of ∂k+`f
∂xk∂y` (x0, y0) for all k, ` and all sample points (x0, y0). If the Bessel function

computations are done efficiently then the bulk of the time is spent computing (51) for
each r and s and each sample point from the tabulated data. That amounts to about Nd5

arithmetic operations.



24 A. R. BOOKER, A. STRÖMBERGSSON, A. VENKATESH

To conclude, we need a bound on the precision needed in the computations. For this
we assume that the computations are done using fixed point precision, i.e. all numbers are
internally represented as a · 10−D1 (a ∈ Z), where D1 some large fixed integer (although
in practice it seems to be more efficient to use floating point precision and interval arith-
metic, cf. Section 3.2). By carrying out an error analysis in the computations described in
Section 3.2 (with d, M and N as chosen in Section 3.4) one shows that there are choices of
D1 � D log D such that the the numerically computed value for the E(t1, θ1)-bound will
provably be within distance 10−DD from the exact bound given by our formulas, and we
see from Section 3.4 that this suffices for our needs. We omit the details of the proof. One
also shows that all numbers a · 10−D1 (a ∈ Z) appearing in these computations will need
� D log D digits in a. In view of these observations, we may assume that each arithmetic
operation takes time Oε(D

1+ε).
The proof in Section 3.4 above shows that it suffices to take d, M � D and N � D2.

With these choices, we see that the total running time of the algorithm is Oε(D
8+ε). This

completes the proof of Theorem 2.

4. Testing algebraicity

We shall now use these results to test for certain algebraicity properties of the coefficients
of Maass forms. It is generally believed that the Laplacian eigenvalue and Hecke eigenvalues
of the general Maass form are transcendental; we provide a significant amount of evidence
for this below.

We have also tested more refined algebraicity questions that amount to asking: do any of
the algebraic properties of dihedral forms generalize to general Maass forms? We formulate
this question a little more precisely in Section 4.1; but in any case, we do not find any
evidence that even this (much weaker) form of algebraicity extends to general Maass forms.
It seems that this type of question was first considered and tested (but with much less
accurate data) by H. Stark.

To be precise, recall that dihedral Maass forms are those associated to a Grössencharacter
of a real quadratic field. The eigenvalue of such a form is essentially of the shape 1

4
+ π2k2

R2 ,
where k ∈ Z and R is the regulator of the real quadratic field. Although there is no reason
to believe that this is algebraic, what is still true is that, given the eigenvalue, the Hecke
eigenvalues of a dihedral form are specified by a finite amount of algebraic data. A similar
comment applies to eigenvalue 1

4
Maass forms: it is believed ([21, p. 2] and discussion

of (T3) therein) that any Maass form for Γ0(N)\H with eigenvalue 1
4

is associated to a
2-dimensional even Galois representation. In particular, it has algebraic coefficients. We
therefore might ask: is it possible that, in a more general setting, the eigenvalue λ of a
Maass form controls the algebraicity of its coefficients? Although we know of no theoretical
justification for such a question, it seems to be a natural one; we explain in Section 4.1
a more precise formulation, based on “interpolating” between the properties of Eisenstein
series, eigenvalue 1

4
forms, dihedral forms and holomorphic forms.
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4.1. Looking for algebraic relations between coefficients–a precise formulation.

Let f be a (holomorphic or Maass) newform on H for some group Γ0(N), with Nebentypus
χf : (Z/NZ)× → C. We allow for the possibility that f is an Eisenstein series. Let
t ∈ R ∪ iR be so that the Casimir eigenvalue of the representation underlying f is 1

4
− t2,

i.e. t = (k − 1)/2 if f is a holomorphic form of weight k, and t = ir if f is a Maass form
or Eisenstein series of eigenvalue 1

4
+ r2. Let p be a prime number at which f does not

ramify, and let λp(f) be the pth Hecke eigenvalue of f ; we normalize matters so that the
Ramanujan conjecture corresponds to |λp(f)| ≤ 2.

Question. Do there exist roots of unity ζ, ζ ′ with ζζ ′ = χf (p), and a p-integral algebraic

number α ∈ Q so that

(71) λp(f) = ζαt + ζ ′α−t?

Here, if α is not real, there is clearly some ambiguity as to the meaning of αt. We shall
interpret it (in the most optimistic way) to mean any tth power of α: that is to say, any
element of the form exp(tx) when exp(x) = α.

We note that ζ, ζ ′, α are often by no means uniquely determined. We now show that, in
every case when the λp(f) may be written down explicitly, the answer to the question is
YES.

(1) If f is a holomorphic form of weight k, the fact that λp(f) has the form (71) follows
from the existence of the associated Galois representation. Indeed, by [9], there are
algebraic integers β1, β2 ∈ Q such that all conjugates of β1 and β2 have absolute
value p(k−1)/2, β1β2 = χf (p)pk−1, and λp(f) = β1+β2

p(k−1)/2 . In this case, (71) is satisfied

if we take (e.g.) α = β
2/(k−1)
1 p−1, ζ = 1, ζ ′ = χf(p).

(2) If f is a CM-form, i.e. so that L(s, f) = L(s, K, χ) for some quadratic extension K/Q

and some unitary Grössencharacter χ : A×
K/K× → C×, then a simple computation

verifies (71).
Indeed, we may assume that K is a real quadratic field. (If K is imaginary, then

f is holomorphic.) Now λp(f) = 0 if p does not split in K, and (71) is trivially
satisfied. (Take, e.g. α = 1 and ζ, ζ ′ to solve ζ = −ζ ′, ζζ ′ = χf (p).) On the other
hand, suppose p splits as p1p2, and let be ω1, ω2 uniformizers at p1, p2 respectively;
we regard ω1, ω2 as belonging to A×

K, the ring of adeles of K. Then

(72) λp(f) = χ(ω1) + χ(ω2).

Let AK,f be the ring of finite adeles of K, and let U ⊂ A×
K,f be an open compact

subgroup such that χ|U is trivial. The quotient A×
K/K×K×

∞U is finite; thus there is
M ≥ 1 such that ωM

1 and ωM
2 belong to K×K×

∞U . Here K∞ := K ⊗ R ∼= R × R.
Write ωM

1 = z−1z∞u with z ∈ K×, z∞ ∈ K×
∞, u ∈ U . If σ1, σ2 are the two distinct

isomorphisms of K into R, then we can identify K∞ with R×R in such a way that
z∞ corresponds to (σ1(z), σ2(z)).

With this identification, the restriction of χ to K×
∞ takes the form

(73) (x, y) 7→ (x/|x|)ε1(y/|y|)ε2|x|ir|y|−ir,
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for some εi ∈ {0, 1} and r ∈ R. Then an easy computation shows that t = ir (i.e.
the Casimir eigenvalue of f is 1

4
+ r2). It follows that χ(ωM

1 ) = ±(σ1(z)/σ2(z))ir. It

is now easy to see that (71) holds with α =
(

σ1(z)
σ2(z)

)1/M

and an appropriate choice

of ζ, ζ ′.
We also note in passing that if η is the fundamental unit for the ring of integers

of K, then the finite part of η lies in the maximal compact subgroup of A×
K,f , hence

(η∞/η)M ∈ U for some M ≥ 1. Since χ(η) = 1 and σ1(η)/σ2(η) = σ1(η
2), this

implies

r =
2πq

log σ1(η2)
, for some q ∈ 1

M
Z +

1

2
Z ⊂ Q.(74)

(3) Let χ be a Dirichlet character of Q, and let f be the Eisenstein series satisfying
L(s, f) = L(s+ ir, χ)L(s− ir, χ); then λp(f) = χ(p)pir +χ(p)−1p−ir visibly satisfies
(71), with ζ = χ(p), ζ ′ = χ(p)−1, α = p.

(4) Suppose r = 0. Then f corresponds to either a form of weight 1 (where (71) follows
from a result of Deligne-Serre) or a Maass form of eigenvalue 1

4
, which are believed

to all arise from Galois representations Gal(Q/Q) → GL(2, C). If this is indeed the
case, (71) follows.

4.2. Transcendence of coefficients–numerical results. We performed various tests to
search for algebraic relations. In order to have control on exactly what negative result was
proved we used the PARI routine lllint(A), which performs LLL-reduction on a lattice
basis given by the columns of an integral matrix A, using only integer operations. For this
routine, precise lower bounds are available on the shortest vector in the given lattice, and
it is easy to derive from these the non-existence of integer algebraic relations with certain
bounds on the coefficients. See [7, 2.6.3 and 2.7.2].

Let us say a number α is [d, H]-algebraic if it satisfies some relation

mdα
d + md−1α

d−1 + . . . + m0 = 0,(75)

where m0, m1, . . . , md are integers, not all zero, with |mj| ≤ H for j = 0, 1, . . . , d.
In short, we found no unexpected algebraic relation. In particular, from the fact that we

know the first ten eigenvalues provably to 100 decimal places (Theorem 1), we obtain using
lattice reduction:

Proposition 2. If λ is one of the first ten eigenvalues on PSL(2, Z)\H (cf. Table 1), then
λ is not [2, 1030]-algebraic; nor is λ [5, 1014]- or [10, 107]-algebraic.

However, most of our searches were performed assuming that our values for the eigenvalue
λ and the Fourier coefficients λ2(f), λ3(f), λ5(f), λ7(f) are correct to 1020 decimal digits
(see Section 2). Under this assumption, we found that for each of the first ten eigenvalues
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λ on PSL(2, Z)\H, λ is not [2, 10331]-algebraic; nor is λ [10, 1089]-, [30, 1030]- or [50, 1017]-

algebraic. Exactly the same assertions hold for r =
√

λ − 1
4

and for each of the Hecke

eigenvalues λ2(f), λ3(f), λ5(f), λ7(f).
We also checked that for each r as above, there does not exist any relation of the form

r = 2πq/ logα where α > 0 is [2, 10104]- or [10, 1066]-algebraic and q is rational with |q| ≤ 10
and denominator d(q) ≤ 30. (Recall that a relation of the form r = 2πq/ logα with α a
unit in a real quadratic field holds whenever f is a CM-form, see (74) above.)

4.3. Algebraic relations between coefficients–numerical results. Furthermore, we
searched for joint relations of the form (71) between r and λp(f), using various parameters,
and found the following: For each of the first ten eigenfunctions f on PSL(2, Z)\H, there
does not exist any relation

λp(f) = ei(2πq+r log α) + e−i(2πq+r log α)(76)

with p ∈ {2, 3, 5}, α > 0,
∣

∣2πq + r log α
∣

∣ ≤ π, q rational with denominator d(q) ∈ Z+, and
α, q satisfying the conditions in any one line of the following table:

α [2, 10100]-algebraic |q| ≤ 30 d(q) ≤ 100
α [10, 1066]-algebraic |q| ≤ 30 d(q) ≤ 10
α [30, 1022]-algebraic |q| ≤ 4 d(q) ≤ 10
α [50, 1012]-algebraic |q| ≤ 4 d(q) ≤ 10

For comparison we note that for the Ramanujan Delta function, ∆(z) = e2πiz
∏∞

n=1(1 −
e2πinz)24 =

∑∞
n=1 τne2πinz, which is the holomorphic cusp form of level 1 and lowest weight

(k = 12), the Hecke eigenvalue λ2(∆) = τ2/211/2 = −24/211/2 satisfies the relation (71)
with ζ = ζ ′ = 1 and α algebraic with 32α22 + 55α11 + 32 = 0, i.e. α is [22, 100]-algebraic.

All transcendence tests described above were carried out also for the three non-CM
Maass forms on Γ0(5)\H and Γ0(6)\H listed in Section 2.3(B). We refer to [6] for the
precise statements of our (negative) results in these cases.

4.4. Comments. The tests above are clearly not comprehensive. We invite the reader to
carry out his or her own tests using the numbers from [6]!
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Iberoamericana, Madrid, 1995.

[19] H. Iwaniec and E. Kowalski. Analytic Number Theory. American Mathematical Society, Colloquium
Publications, 53, 2004.

[20] H.H. Kim. Functoriality for the exterior square of GL4 and the symmetric fourth of GL2. J. Amer.
Math. Soc., 16(1):139–183 (electronic), 2003. With appendix 1 by D.Ramakrishnan and appendix 2
by Kim and P. Sarnak.

[21] R. P. Langlands. Beyond endoscopy. In Contributions to automorphic forms, geometry, and number
theory, pages 611–697. Johns Hopkins Univ. Press, Baltimore, MD, 2004.

[22] E. Lindenstrauss and A. Venkatesh. Existence and Weyl’s law for spherical cusp forms.
math.NT/0503724, to appear in GAFA.

[23] MPFI, version 1.3.3, 2005. available from http://perso.ens-lyon.fr/nathalie.revol/

software.html.
[24] MPFR, version 2.1.1, 2005. available from http://www.mpfr.org/mpfr-current/.
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