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1 History

Originally, Lyapunov functions were developed by A. Lyapunov in 1899 for the study of sta-
bility of dynamical systems described by ODE’s, mainly motivated by mechanical systems.
Since then, the methods based on Lyapunov functions have been extended to study stabil-
ity of dynamical systems of all kinds (chaotic systems, control systems, stochastic systems,
discrete systems, etc.)

2 Introduction

Our goal in this part of the lectures is to exemplify why and how Lyapunov functions work
for (Harris) Markov processes in a general state space. To avoid technicalities (which have
not fully resolved) we shall avoid continuous time.

The field of applications that interests us is those stochastic systems that appear to have
“simple evolution” “away from boundaries”. Highly-nonlinear but smooth stochastic sys-
tems are also interesting but more well-understood than our cases.

We start with a few examples of Lyapunov functions, for some classical dynamical systems.

Linear systems A linear system in R
d is another name for the ODE

ẋ = Ax

where A is a d× d matrix. The system is asymptotically stable (definition) if for all x0 in a
neighborhood of the origin the trajectory starting from x0 tends to 0 as t → ∞. This holds if
and only if all eigenvalues have real part strictly smaller than 0. Consider the scalar function
V (x) = xTQx, x ∈ R

d, where Q is a positive definite matrix. Think of this as an “energy
function”. Since energy of a dissipative system cannot increase, we expect that V (x) should
decrease along a trajectory. To see if this is true, we differentiate along a trajectory and
obtain

d

dt
V (x) = xTATQx + xTQAx.

We want this to be (strictly) negative. But this is also a quadratic form. So, equivalently,
we want to have find a positive definite matrix P such that

ATQ + QAT + P = 0.

It is well known that the latter (linear) equation has a solution in P,Q, s.t. both P and Q
are positive definite if and only if the eigenvalues of A have real part strictly less than 0.
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Asymptotic stability of nonlinear systems Consider the autonomous nonlinear sys-
tem described by an ODE

ẋ = f(x), x ∈ W open ⊆ R
d,

where f is Lipschitz continuous on W . Suppose that 0 is a stationary point: f(0) = 0.
We say that the system is asymptotically stable at 0, whenever there is a neighbourhood of
zero such that if we start at an x0 within this neghboourhood, the trajectory tends to 0 as
t → ∞.

Theorem 1 (Lyapunov’s theorem). If there exists a differentiable function V : W1 → R,

where W1 an open neighborhood of 0, W1 ⊆ W , such that V (0) = 0, V (x) > 0 for all

x ∈ W1 \ {0}, and 〈V ′(x), f(x)〉 < 0 for all x ∈ W1 \ {0} then asymptotic stability at 0 is

guaranteed.

The reason for this is that V (x) acts like a norm which is decreasing along a trajectory at
a rate bounded away from zero.

Example: nonlinear (van der Pol) oscillator This is an oscillator with nonlinear
damping:

ẍ + x + ε(ẋ − bẋ3) = 0,

where ε, b > 0. Let x1 = x, x2 = ẋ, and then

d

dt

(

x1

x2

)

=

(

x2

−x1 − ε(x2 − bx3
2)

)

Define

V (x1, x2) =
1

2

(

x2
1 + x2

2

)

.

Then

V ′ =

(

∂V

∂x1
,

∂V

∂x1

)

= (x1, x2),

〈V ′, f〉 = x1x2 − x1x2 + ε(bx4
2 − x2

2) = −ε(x2
2 − bx4

2)

Hence if x2 < 1/
√

b, then 0 is asymptotically stable. (The case b = 0 corresponds to a linear
oscillator with damping which is globally asymptotically stable without any constraint on
the velocity.)

Recursions We can ask about the stability of a recursion of the form

xn+1 = f(xn), xn ∈ R
d.

Lyapunov function methods can be defined here as well.
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Non-asymptotic stability of general dynamical systems Asymptotic stability is
often too restrictive. For instance, the periodic elliptic motion of a mass around a fixed
center is the result of a stable but not asymtotically so system. Or, if we have a differential
equation of the form ẋ = f(x, t), with explicit dependence on time, it is more reasonable to
talk about non-asymptotic stability. Imagine that (θs,t, 0 ≤ s ≤ t < ∞) is a flow in some
metric space M . This means that for all s < t, the map θs,t : M → M is measurable and
that

θs,u = θs,t◦θt,u θt,t = idM .

Suppose that 0 ∈ M is a stationary point, namely, θs,t0 = 0 for all (initial times s) and all
t ≥ s. We can say that 0 is stable if for each open neighbourhood U of 0 there is another
open neghbourhood V of 0 such that, for all s and all x ∈ V we have θs,tx ∈ U for all t ≥ s.

3 Lyapunov functions for Markov processes

The problem of stability for a stochastic system described by a Markov process often (most
of the time?) boils down to proving that some set is positive recurrent.

The setup Our object of study is a Markov process (Xn) with values in some general
state space S which will be assumed to be Polish.1

A time-homogeneous Markov process with values in S can be described either by its tran-
sition probability kernel

P (x,B) = P (Xn+1 ∈ B | Xn = x)

or by a stochastic recursion
Xn+1 = f(Xn, ξn),

where the ξn are i.i.d. random variables. The existence of this explicit representation is
simple when S is countable (and technical when S is a Polish space).

Stationarity This means existence of a stationary Markov process with the given transi-
tion kernel or, equivalently, existence of a stationary probability measure π on S:

π(B) =

∫

S

π(dx)P (x,B).

Uniqueness is also often desirable.

Stability This means convergence of Xn, as n → ∞, in some sense.

We first realise that a.s. convergence is impossible, except in trivial situations when we have
absorbing states.2

1Polish=a separable topological space which is complete under some metric.
2Compare, however, with time-inhomogeneous chains, such as the ones encountered in simulated anneal-

ing, where a.s. convergence IS possible AND desirable.
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The weakest notion of converngence is that, for some x, the probability Px(Xn ∈ ·) converges
(weakly), as n → ∞, to some honest probability.

A stonger notion is to claim the above for all x ∈ S.

An even stronger notion is convergence in total variation.

Drift Let V : S → R be some function on the state space S of a Markov process (Xn).
The drift of V in n steps is defined by

DV (x, n) := Ex[V (Xn) − V (X0)]

(provided the expectations exist)3 There is a space and a time argument in DV (x, n). It
is much more general and convenient to define the drift for a state-dependent time-horizon,
i.e. make n a function of x.

So, given a function g : S → N, we let

DV (x, g) := Ex[V (Xg(x)) − V (x)].

(Positive) Recurrence of a set For a measurable set B ⊆ S define

τB = inf{n ≥ 1 : Xn ∈ B}
to be the first return time4 to B.

• The set B is called recurrent if

Px(τB < ∞) = 1, for all x ∈ B.

• It is called positive recurrent if
sup
x∈B

ExτB < ∞.

It is this last property that is determined by a suitably designed Lyapunov function.

Roughly speaking, we want to prove that if we can find a function V (the Lyapunov function)
such that the drift is negative outside a set, then the set is positive recurrent.

This is the content of Theorem 2 below. That this property can be translated into a stability
statement is the subject of a next lecture.

First we impose a number of assumptions.

3In continuous time, for example for a Markov jump process (Xt), the drift of V in t time units equals
DV (x, t) = Ex[V (Xt)−V (X0)]. This can also be written as (PtV )(x) in operator notation. Under additional
assumptions, DV (x, t) =

R t

0
QV (Xs)ds, where Q is the generator of the process. So the (infinitesimal) drift

of V is simply QV (x), and if q(x, y) denotes the rate from state x to state y, we have QV (x) =
P

y
[V (y) −

V (x)]q(x, y). Note that, if V is smooth enough, we can write Ex[V (Xt) − V (X0)] = Ex

R t

0

d

ds
V (Xs)ds, from

which it is, at least intuitively, clear why QV (x) corresponds to differentiation in time and why this notion
of drift is the correct stochastic analogue of what we defined earlier for deterministic ODEs. In discrete
time we avoid the “technicalities” of taking derivatives or of defining the process from its generator, so the
whole exposition here will be in discrete time. It should be noticed, however, that in applications, Markov
processes are often more natural in continuous rather than in discrete time.

4This τB is a random variable. Were we working in continuous time, this would not, in general, be true,
unless the paths of X and the set B were sufficiently “nice” (another instance of what technical complexities
may arise in a continuous-time setup).
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Assumptions

(L0) V is unbounded from above: supx∈S V (x) = ∞.

(L1) h is bounded from below: infx∈S h(x) > −∞.

(L2) h is eventually positive: limV (x)→∞ h(x) > 0.

(L3) g is locally bounded from above: supV (x)≤N g(x) < ∞, for all N > 0.

(L4) g is eventually bounded by h: limV (x)→∞ g(x)/h(x) < ∞.

Theorem 2. Suppose that the drift of V in g(x) steps satisfies

Ex[V (Xg(x)) − V (X0)] ≤ −h(x),

where V, g, h satisfy (L0)–(L4). Let

τ ≡ τN = inf{n ≥ 1 : V (Xn) ≤ N}.

Then there exists N0 > 0, such that for all N > N0 and any x ∈ S, we have

Exτ < ∞,

sup
V (x)≤N

Exτ < ∞.

Proof. We follow an idea that is essentially due to Tweedie (1976). From the drift condition,
we obviously have that V (x)−h(x) ≥ 0 for all x. We choose N0 such that infV (x)>N0

h(x) >
0. Then, for, N ≥ N0, we set

d = sup
V (x)>N

g(x)/h(x), −H = inf
x∈S

h(x), c = inf
V (x)>N

h(x).

We define an increasing sequence tn of stopping times recursively by

t0 = 0, tn = tn−1 + g(Xtn−1
), n ≥ 1.

By the strong Markov property, the variables

Yn = Xtn

form a (possibly time-inhomogeneous) Markov chain with, as easily proved by induction on
n, ExV (Yn+1) ≤ ExV (Yn) + H, and so ExV (Yn) < ∞ for all n and x. Define the stopping
time

γ = inf{n ≥ 1 : V (Yn) ≤ N} ≤ ∞,

for which
τ ≤ tγ , a.s.,

and so proving Extγ < ∞ is enough. Let Fn be the sigma field generated by Y0, . . . , Yn.
Note that γ is a “predictable” stopping time in that 1(γ ≥ i) ∈ Fi−1 for all i. We define
the “cumulative energy” between 0 and γ ∧ n by

En =

γ∧n
∑

i=0

V (Yi) =

n
∑

i=0

V (Yi)1(γ ≥ i),
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and estimate the change Ex(En − E0) (which is finite) in a “martingale fashion”:5

Ex(En − E0) = Ex

n
∑

i=1

Ex(V (Yi)1(γ ≥ i) | Fi−1)

= Ex

n
∑

i=1

1(γ ≥ i)Ex(V (Yi) | Fi−1)

≤ Ex

n
∑

i=1

1(γ ≥ i)Ex(V (Yi−1) − h(Yi−1) | Fi−1)

≤ Ex

n+1
∑

i=1

1(γ ≥ i − 1)Ex(V (Yi−1) − h(Yi−1) | Fi−1)

= ExEn − Ex

n
∑

i=0

h(Yi)1(γ ≥ i),

where we used that V (x) − h(x) ≥ 0 and, for the last inequality, we also used 1(γ ≥ i) ≤
1(γ ≥ i − 1) and replaced n by n + 1. From this we obtain

Ex

n
∑

i=0

h(Yi)1(γ ≥ i) ≤ ExV (X0) = V (x). (1)

Assume V (x) > N . Then V (Yi) > N for i < γ, by the definition of γ, and so

h(Yi) ≥ c > 0, for i < γ, (2)

by the definition of c. Also,
h(Yγ) ≥ −H, (3)

by the definition of H. Write h(Yi) = h(Yi)
+ − h(Yi)

− and use (2) and (3) in (1) to obtain

Ex

n
∑

i=0

h(Yi)1(γ > i) ≤ V (x) + H.

Using the monotone convergence theorem and (2), we have

cExγ ≤ V (x) + H < ∞.

Using h(x) ≥ dg(x) for V (x) > N , we also have

γ−1
∑

i=0

h(Yi) ≥ d

γ−1
∑

i=0

g(Yi) = dtγ ,

whence tγ < ∞, a.s., and so

Exτ ≤ Extγ ≤ V (x) + H

d
.

It remains to see what happens if V (x) ≤ N . By conditioning on Y1, we have

Exτ ≤ V (x) + Ex(d−1(V (Y1) + H)1(V (Y1) > N)) ≤ V (x) + d−1H + d−1(V (x) + H).

5albeit we do not make use of explicit martingale theorems
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Hence,
sup

V (x)≤N

Exτ ≤ N + d−1(2H + N).

Discussion: The theorem we just proved shows something quite strong about the set
BN = {x ∈ S : V (x) ≤ N}. Namely, this set is positive recurrent. It is worth seeing that
the theorem is a generalization of many more standard methods.

I. Pakes’s lemma: This is the case above with S = Z, g(x) = 1 and h(x) = ε−C11(V (x) ≤
C2).

II. The Foster-Lyapunov criterion: Here S is general, and g(x) = 1 and h(x) = ε −
C11(V (x) ≤ C2), Equivalently, the Foster-Lyapunov criterion seeks a function V such that

Ex(V (X1) − V (X0)) ≤ −ε < 0, when V (x) > C2,

and
sup

V (x)≤C2

ExV (X1) < ∞.

III. Dai’s criterion: When g(x) = dV (x)e (where dte = inf{n ∈ N : t ≤ n}, t > 0), and
h(x) = εV (x) − C11(V (x) ≤ C2), we have Dai’s criterion which is the same as the “fluid
limits” criterion. More on this will be seen at a next lecture.

IV. The Meyn-Tweedie criterion: Finally, when h(x) = g(x) − C11(V (x) ≤ C2) we
have the Meyn-Tweedie criterion.

V. Fayolle-Malyshev-Menshikov: Similar state-dependent drift conditions, for count-
able Markov chains, were considered by these authors.

The indispensability of the “technical” conditions. It is clear why (L0)–(L3) are
needed. As for condition (L4), this is not only a technical condition. Its indispensability
can be seen in the following simple example: Consider S = N, and transition probabilities

p1,1 = 1, pk,k+1 ≡ pk, pk,1 = 1 − pk ≡ qk, k = 2, 3, . . . ,

where 0 < pk < 1 for all k ≥ 2 and pk → 1, as k → ∞. Thus, jumps are either of size +1 or
−k, till the first time state 1 is hit. Assume

qk = 1/k, k ≥ 2.

Then 1 is an absorbing state, and there is C > 0, such that

P (Xn+1 = Xn + 1 for all n) ≤ C exp

(

−
∑

k

qk

)

= 0.

But, for τ = inf{n : Xn = 1},

∑

n

P (τ ≥ n) ≥
∑

n

exp

n
∑

2

qi ∼
∑

n

1

n
= ∞.
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Therefore, the Markov chain cannot be positive recurrent. Take now

V (k) = log(1 ∨ log k), g(k) = k2.

We can estimate the drift and find

Ek[V (Xg(k)) − V (k)] ≤ −h(k), (4)

where h(k) = c1V (k) − c2, and c1, c2 are positive constants. It is easily seen that (L1)-
(L3) hold, but (L4) fails. This makes Theorem 2 inapplicable in spite of the negative drift
(4). Physically, the time horizon g(k) over which the drift was computed is far too large
compared to the estimate h(k) for the size of the drift itself.

4 Instability criteria

We first give a simple instability criterion due to Tweedie.

Theorem 3. Suppose there is a non-constant function V : S → R+ such that

DV (x, 1) ≥ 0 when V (x) ≥ K, for some K > 0,
supx∈S Ex|V (X1) − V (x)| < ∞. Then the process cannot be positive recurrent.

Proof. The second condition implies that Ex|V (Xn)| < ∞ for all x ∈ S. Now let τ = inf{n :
V (Xn) < K}. The first condition can be written as

(V (Xτ∧n), n ≥ 0) is a submartingale under Px.

Hence
ExV (Xτ∧n) ≥ ExV (Xτ∧0) = V (x) ≥ K.

If the process is positive recurrent then Exτ < ∞ and, by the martingale convergence
theorem, V (Xτ∧n) → V (Xτ ) in L1. Therefore,

ExV (Xτ ) ≥ K.

But V (Xτ ) < K a.s., and so we arrived at a contradiction.

We now pass to a more general criterion. First, a definition.

Transient set A set B ⊆ S is called transient if Px(τB = ∞) > 0 for all x ∈ S, where
τB = inf{n ≥ 1 : Xn ∈ B} is the first return time to B.

By instability, here, we mean that the members of a certain class of sets is transient.

Let L : S → R+ be a “norm-like” function, i.e., suppose (at least) that L is unbounded.
We say that the chain is transient if each set of the form BN = {x ∈ S : L(x) ≤ N} is
transient.

In the sequel, we will present criteria that decide whether limn→∞ L(Xn) = ∞, Px-a.s.
Clearly then, this will imply transience of each BN .
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Thinking of L as a Lyapunov function, it is natural to seek criteria that are, in a sense,
opposite to those of Theorem 2. One would expect that if the drift Ex[L(X1) − L(X0)]
is bounded from below by a positive constant, outside a set of the form BN , then that
would imply instability. However, this is not true and this has been a source of difficulty
in formulating a general enough criterion thus far. To the best of our knowledge, the
most general criterion is Theorem 2.2.7. of Fayolle et al. (1995) which is, however, rather
restrictive because (i) it is formulated for countable state Markov chains and (ii) it requires
that a transition from a state x to a state y, with L(x)−L(y) larger than a certain constant,
is not possible. However, it gives insight as to what problems one might encounter: one
needs to regulate, not only the drift from below, but also its size when the drift is large.

The theorem below is a generalization of the one mentioned above. First, define

σN := τBc
N

= inf{n ≥ 1 : L(Xn) > N}
∆ := L(X1) − L(X0).

We then have:

Theorem 4. Suppose there exist N,M, ε > 0 and a measurable h : [0,∞) → [1,∞) with

the property that h(t)/t be concave-increasing on 1 ≤ t < ∞, and
∫∞

1 h(t)−1dt < ∞, such

that

(I1) Px(σN < ∞) = 1 for all x.

(I2) infx∈Bc
N

Ex[∆,∆ ≤ M ] ≥ ε.

(I3) The family {Px(h(∆) ∈ ·), x ∈ Bc
N} is uniformly integrable,

i.e., limK→∞ supx∈Bc
N

∫∞

K
tP (h(∆) ∈ dt) = 0.

Then Px(limn→∞ L(Xn) = ∞) = 1, for all x ∈ S.

This theorem is proved in detail by Foss and Denisov (2001). We remark that there are
extensions for non-homogeneous Markov chains. Condition (I1) says that the set B c

N is
recurrent. Of course, if the chain itself forms one communicating class, then this condition
is automatic. Condition (I2) is the positive drift condition. Condition (I3) is the condition
that regulates the size of the drift. We also note that an analog of this theorem, with state-
dependent drift can also be derived. (The theorem of Fayolle et al. does use state-dependent
drift.)

To see that (I3) is essential, consider the following example: Let S := Z+, and {Xn} a
Markov chain with transition probabilities

pi,i+1 = 1 − pi,0, i ≥ 1,

p0,1 = p0,0 = 1/2.

Suppose that 0 < pi,0 < 1 for all i, and
∑

i pi,0 < ∞. Then the chain forms a single
communicating class. Also, with τ0 the first return to 0, we have

Pi(τ0 = ∞) =
∏

j≥i

(1 − pj,0) > 0.

So the chain is transient. However not that the natural choice for L, namely L(x) ≡ x
trivially makes (I2) true.
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5 Topics for discussion and problems

1. Give a geometric interpretation of the Lyapunov condition 〈V ′(x), f(x)〉 < 0 in terms
of the two vector fields V ′(x) and f(x). Recall that V ′(x) is normal to a level surface
of the function V .

2. Finding an appropriate Lyapunov function is an art. Discuss how the geometric picture
may help you guess the form of a Lyapunov function.

3. What is the geometric picture for the van der Pol oscillator?

4. Find an example of a discrete-time deterministic recursion whose stability can be
deduced by an appropriate Lyapunov function.

5. Give an example of a stable but not asymptotically stable dynamical system (e.g. an
ODE).

6. Consider (ξn) to be i.i.d. Gaussian, say, random vectors in R
d with zero mean, and

define the Markov chain
Xn+1 = AXn + ξn,

where A is a d × d matrix with eigenvalues having magnitude strictly smaller than 1.
Show that the unit ball is positive recurrent by means of an appropriate Lyapunov
function.

7. Now let d = 1 and, instead of A, consider a time-dependent An, where (An) are i.i.d.
positive random variables:

Xn+1 = AnXn + ξn.

Show that the unit ball is positive recurrent if E log A1 < 0.

8. Consider a Markov chain in Z+ with E(Xn+1−Xn | Xn = x) ∼ −c/x, and E((Xn+1−
Xn)2 | Xn) → b, as x → ∞, where c, b are positive constants. Use an appropriate
Lyapunov function in order to deduce that the chain is positive recurrent if 2c > b.
(Also prove that it is transient if 2c < b. The “critical case” 2c = b is a tough one and
what happens there depends on other conditions as well.)

9. The classical Lindley recursion is

Xn+1 = (Xn + ξn)+.

Assume that the (ξn) are i.i.d. integrable random variables with Eξ1 < 0. Show that
the set [0, 1] is positive recurrent.

10. Suppose Xt is a Markov Jump Process (i.e. a Markov chain in continuous time with at
most finitely many jumps on each bounded time interval, almost surely). Recall that
such a process is defined (in distribution) through its transition rates q(x, y), x 6= y.
Formulate a Lyapunov function criterion directly in terms of the rates.

11. A 2-station Jackson network is a Markov chain in Z
2
+ with q(x, x + e1) = λ, q(x +

e1, x + e2) = µ1, q(x + e2, x) = µ2, x ∈ Z
2
+. Here e1 = (1, 0), e2 = (0, 1) are the

standard unit vectors. Find Lyapunov function when λ < µ1 < µ2 that shows that
the unit ball is positive recurrent. Repeat when λ < µ2 < µ1. Hint: You may choose
linear or piecewise linear functions. To do so, it is helpful to consider the geometric
point of view.
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12. Lyapunov functions can also be defined for continuous-time Markov processes in gen-
eral state space (e.g. diffusions). Consider i.i.d. random variables τn, n ≥ 1, and let
Tn = τ1 + · · · + τn. Then Xt = t − max{Tn : Tn ≤ t, n ≥ 0}, t ≥ 0, is a Markov
process in S = [0,∞) known as the “age of the renewal process”. The generator A of
the process is defined as the set of pairs of measurable real functions (h, g) for which
h(Xt) −

∫ t

0 g(Xs)ds is a local martingale with respect to the filtration of the process
itself. Assume Eτ1 = 1/λ ∈ (0,∞) and that τ1 is absolutely continuous with density
f , distribution function F , and let r = f/(1−F ). Taking h to be a C 1 function there
is essentially a unique g := Ah for which h(Xt) −

∫ t

0 g(Xs)ds is a local martingale.
Show that Ah(x) = h′(x) − (h(x) − h(0))r(x). Now let

m(x) := E(τ1 − x | τ1 > x), V (x) := F (x)(1 + m(x)).

Show that, outside a compact set, AV (x) ≤ −G(x), for some function G such that
infx G(x) > 0. This can be recognised as a Lyapunov criterion. Let N(B) :=
∑

n 1(Tn ∈ B). Using the results of Tuominen and Tweedie (1994), show that
limt→∞ ExN(B + t) = λ|B|, uniformly over all Borel ssubsets of a compact interval
[0, T ]. (See Konstantopoulos and Last (1999) for rates of convergence to this renewal
theorem.)
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