An Intermediate Course in Probability

Misprints

Page	Line	Text	Should have been
25	15	$f_{u, v}(u, v)=0$	$f_{U, V}(u, v)=0$
27	5	diameter	radius
27	11	domain	range
49	14	The function $h(\mathbf{x})$	The function h
51	9	for $x, y>0,0<x, y<1$	for $0<x, y<1$
62	13	$\|t\|<1$	$\|t\| \leq 1$
65	9	Corollary 2.2 .1	Theorem 2.2
65	18	$t<\frac{1}{q}$	$\|t\|<\frac{1}{q}$
69	1	Let $X_{n} \in \operatorname{Bin}(n, p)$.	Let $X \in \operatorname{Bin}(n, p)$.
97	$3-$	persons	passengers
124	3	independent components	independent normal components
128	14	singular	nonsingular
140	$8-$	Rank $\left.Q_{i}=\right)$	$\left(\right.$ Rank $\left.Q_{i}=\right)$
141	4	$n=2$.	$k=2$.
141	6	$n=2:$	$k=2:$
141	9	By assumption,	Since A_{1} is nonnegative definite,
141	$4-$	$n=2$.	$k=2$.
151	5	Section 5	Section 6
156	8	Let X_{1}, X_{2}, \ldots	Let X_{2}, X_{3}, \ldots
156	9	$n \geq 1$	$n \geq 2$
162	6	in definition	in the definition
183	12	$g(X(\omega))$	$g\left(X_{n}(\omega)\right)$
183	12	$X(\omega)$	$X_{n}(\omega)$
183	14	$g(X)$	$g\left(X_{n}\right)$
183	14	X	X_{n}
184	8	$\sum_{k=1}^{n} X_{i}^{2}$	$\sum_{k=1}^{n} X_{k}^{2}$
184	10	$\sum_{k=1}^{n} X_{i}^{2}$	$\sum_{k=1}^{n} X_{k}^{2}$

184	13	$\sum_{k=1}^{n} X_{i}^{2}$	$\sum_{k=1}^{n} X_{k}^{2}$
187	14	$Y_{n}=\min \left\{X_{1}, X_{2}, \ldots, X_{n}\right\}$	$Y_{n}=\max \left\{X_{1}, X_{2}, \ldots, X_{n}\right\}$
188	11	and $n=1,2, \ldots$.	and $n=2,3, \ldots$.
196	5	$\leq<t_{n-1}$	$\leq t_{n-1}$
200	7_{-}	$g(t)$	$g(t, s)$
200	5_{-}	$P o$	Po
227	17_{-}	$T_{y} \in \operatorname{Exp}\left(\frac{1}{\lambda}\right)$.	$T_{y} \in \operatorname{Exp}\left(\frac{1}{\lambda}\right)$, that is, $E T_{y}=\frac{1}{\lambda}$.
235	15_{-}	picture $) \operatorname{such}$	picture $) \operatorname{such}$
247	1_{-}	$X_{1}(0)=9$	$X_{1}(3)=9$
248	1	$X_{2}(0)=5$	$X_{2}(3)=5$
266	$1-$	$x>0 n>2 n>2$	$x>0 n>2 n>4$
267	16	≈ 0.1006	≈ 0.1003
268	5	$27 . a=\frac{12}{7} \quad b=\frac{3}{14}$.	$27 . a=b=3 / 7$.

Corrections

Page 38: In Theorem 2.3 it must also be assumed that $E Y^{2}<\infty$ and that $E(g(X))<\infty$.
Page 72, line 13: Replace this line by the following: $\log t+\mu+$ $\frac{1}{2} \sigma^{2} n \geq \frac{1}{4} \sigma^{2} n$ for any fixed $t>0$ as $n \rightarrow \infty$ and $\exp \left\{c n^{2}\right\} / n!\rightarrow \infty$
Page 161, Theorem 3.3: We also assume that $E\left|X_{n}\right|^{r}<\infty$ for all n.
Page 184, Example 7.7: It is not necessary that V_{n} and Z_{n} are independent for the conclusion to hold. (It is, however, necessary in order for T_{n} to be t-distributed, which is of statistical importance; cf. Remark 7.3, page 185.)

Pages 203-204: Replace the piece following formula (1.13) until Remark 1.2 by the following:

This proves (a) for the case $k=2$. In the general case (a) follows similarly, but the computations become more (and more) involved. We carry out the details for $k=3$ below, and indicate the proof for the general case. Once (a) has been established (b) is immediate.

Thus, let $k=3$ and $0 \leq s \leq t \leq u$. By arguing as above, we have

$$
\begin{aligned}
P\left(T_{1}\right. & \left.\leq s<T_{2} \leq t, T_{3}>u\right) \\
& =P(X(s)=1, X(t)=2, X(u)<3) \\
& =P(X(s)=1, X(t)-X(s)=1, X(u)-X(t)=0) \\
& =P(X(s)=1) \cdot P(X(t)-X(s)=1) \cdot P(X(u)-X(t)=0) \\
& =\lambda s e^{-\lambda s} \cdot \lambda(t-s) e^{-\lambda(t-s)} \cdot e^{-\lambda(u-t)}=\lambda^{2} s(t-s) e^{-\lambda u},
\end{aligned}
$$

and

$$
\begin{aligned}
P\left(T_{1}\right. & \left.\leq s<T_{2} \leq t, T_{3} \leq u\right)+P\left(T_{1} \leq s<T_{2} \leq t, T_{3}>u\right) \\
& =P\left(T_{1} \leq s<T_{2} \leq t\right)=P(X(s)=1, X(t) \geq 2) \\
& =P(X(s)=1, X(t)-X(s) \geq 1) \\
& =P(X(s)=1) \cdot(1-P(X(t)-X(s)=0)) \\
& =\lambda s e^{-\lambda s} \cdot\left(1-e^{-\lambda(t-s)}\right)=\lambda s\left(e^{-\lambda s}-e^{-\lambda t}\right) .
\end{aligned}
$$

Next we note that

$$
\begin{aligned}
F_{T_{1}, T_{2}, T_{3}}(s, t, u) & =P\left(T_{1} \leq s, T_{2} \leq t, T_{3} \leq u\right) \\
& =P\left(T_{2} \leq s, T_{3} \leq u\right)+P\left(T_{1} \leq s<T_{2} \leq t, T_{3} \leq u\right),
\end{aligned}
$$

that

$$
\begin{aligned}
P\left(T_{2}\right. & \left.\leq s, T_{3} \leq u\right)+P\left(T_{2} \leq s, T_{3}>u\right) \\
& =P\left(T_{2} \leq s\right)=P(X(s) \geq 2)=1-P(X(s) \leq 1) \\
& =1-e^{-\lambda s}-\lambda s e^{-\lambda s},
\end{aligned}
$$

and that

$$
\begin{aligned}
P\left(T_{2} \leq s, T_{3}>u\right) & =P(X(s) \geq 2, X(u)<3) \\
& =P(X(s)=2, X(u)-X(s)=0) \\
& =P(X(s)=2) \cdot P(X(u)-X(s)=0) \\
& =\frac{(\lambda s)^{2}}{2} e^{-\lambda s} \cdot e^{-\lambda(u-s)}=\frac{(\lambda s)^{2}}{2} e^{-\lambda u} .
\end{aligned}
$$

We finally combine the above to obtain

$$
\begin{align*}
F_{T_{1}, T_{2}, T_{3}}(s, t, u)= & P\left(T_{2} \leq s\right)-P\left(T_{2} \leq s, T_{3}>u\right) \\
& +P\left(T_{1} \leq s<T_{2} \leq t\right)-P\left(T_{1} \leq s<T_{2} \leq t, T_{3}>u\right) \\
= & 1-e^{-\lambda s}-\lambda s e^{-\lambda s}-\frac{(\lambda s)^{2}}{2} e^{-\lambda u} \\
& +\lambda s\left(e^{-\lambda s}-e^{-\lambda t}\right)-\lambda^{2} s(t-s) e^{-\lambda u} \\
= & 1-e^{-\lambda s}-\lambda s e^{-\lambda t}-\lambda^{2}\left(s t-\frac{s^{2}}{2}\right) e^{-\lambda u}, \tag{1.14a}
\end{align*}
$$

and, after differentiation,

$$
\begin{equation*}
f_{T_{1}, T_{2}, T_{3}}(s, t, u)=\lambda^{3} e^{-\lambda u}, \quad \text { for } \quad 0<s<t<u \tag{1.14b}
\end{equation*}
$$

The change of variables $\tau_{1}=T_{1}, \tau_{1}+\tau_{2}=T_{2}$, and $\tau_{1}+\tau_{2}+\tau_{3}=T_{3}$ concludes the derivation, yielding

$$
\begin{equation*}
f_{\tau_{1}, \tau_{2}, \tau_{3}}\left(v_{1}, v_{2}, v_{3}\right)=\lambda e^{-\lambda v_{1}} \cdot \lambda e^{-\lambda v_{2}} \cdot \lambda e^{-\lambda v_{3}} \tag{1.14c}
\end{equation*}
$$

for $v_{1}, v_{2}, v_{3}>0$, which is the desired conclusion.
Before we proceed to the general case we make the crucial observation that the probability $P\left(T_{1} \leq s<T_{2} \leq t, T_{3}>u\right)$ was the only quantity containing all of s, t, and u and, hence, since differentiation is with respect to all variables, the only one that contributed to the density. This carries over to the general case, that is, it suffices to actually compute only the probability containing all variables.

Thus, let $k \geq 3$ and let $0 \leq t_{1} \leq t_{2} \leq \ldots \leq t_{k}$. In analogy with the above we find that the crucial probability is precisely the one in which the T_{i} are separated by the t_{i}. It follows that

$$
\begin{align*}
F_{T_{1}, T_{2}, \ldots, T_{k}} & \left(t_{1}, t_{2}, \ldots, t_{k}\right) \\
= & -P\left(T_{1} \leq t_{1}<T_{2} \leq t_{2}<\ldots<T_{k-1} \leq t_{k-1}, T_{k}>t_{k}\right) \\
& \quad+R\left(t_{1}, t_{2}, \ldots, t_{k}\right) \\
& =-\lambda^{k-1} t_{1}\left(t_{2}-t_{1}\right)\left(t_{3}-t_{2}\right) \cdots\left(t_{k-1}-t_{k-2}\right) e^{-\lambda t_{k}}, \tag{1.15a}
\end{align*}
$$

where $R\left(t_{1}, t_{2}, \ldots, t_{k}\right)$ is a remainder containing the probabilities of lower order, that is, those for which at least one t_{i} is missing.

Differentiation now yields

$$
\begin{equation*}
f_{T_{1}, T_{2}, \ldots, T_{k}}\left(t_{1}, t_{2}, \ldots, t_{k}\right)=\lambda^{k} e^{-\lambda t_{k}} \tag{1.15b}
\end{equation*}
$$

which, after the transformation $\tau_{1}=T_{1}, \tau_{2}=T_{2}-T_{1}, \tau_{3}=T_{3}-T_{2}, \ldots$, $\tau_{k}=T_{k}-T_{k-1}$, shows that

$$
\begin{equation*}
f_{\tau_{1}, \tau_{2}, \ldots, \tau_{k}}\left(u_{1}, u_{2}, \ldots, u_{k}\right)=\prod_{i=1}^{k} \lambda e^{-\lambda u_{i}} \tag{1.15c}
\end{equation*}
$$

for $u_{1}, u_{2}, \ldots, u_{k}>0$, and we are done.
Page 207: Formula (1.21) only works for (and, hence, (1.22) has only been strictly demonstrated for) $j>1$. The following modifications show that (1.22) holds for $j=0,1$ (actually, these cases are easier):

Let $i=0$ and $j=0$. We have

$$
\begin{aligned}
P(X(s)=0, X(s+t)-X(s)=0) & =P(X(s+t)=0) \\
& =P\left(T_{1}>s+t\right)=e^{-\lambda(s+t)} \\
& =e^{-\lambda s} \cdot e^{-\lambda t}
\end{aligned}
$$

which is (1.22) for that case.
For $i=0$ and $j=1$ we have

$$
\begin{aligned}
P(X(s)=0, X(s+t)-X(s)=1) & =P(X(s)=0, X(s+t)=1) \\
& =P\left(s<T_{1} \leq s+t<T_{2}\right) \\
& =\int_{s+t}^{\infty} \int_{s}^{s+t} f_{T_{1}, T_{2}}\left(t_{1}, t_{2}\right) d t_{1} d t_{2}
\end{aligned}
$$

Inserting the expression for the density as given by (1.20) (with $k=1$) and integration yields

$$
P(X(s)=0, X(s+t)-X(s)=1)=e^{-\lambda s} \cdot \lambda t e^{-\lambda t}
$$

which is (1.22) for that case.
Page 209-210, Example 2.1.(b): The solution should be replaced by (b) Let $\tau_{1}, \tau_{2}, \ldots$ be the times between cars. Then $\tau_{1}, \tau_{2}, \ldots$ are independent, $\operatorname{Exp}\left(\frac{1}{15}\right)$-distributed random variables. The actual waiting times, however, are $\tau_{k}^{*}=\tau_{k} \mid \tau_{k} \leq 0.1$, for $k \geq 1$. Since there are N cars passing before she can cross, we obtain

$$
T=\tau_{1}^{*}+\tau_{2}^{*}+\ldots+\tau_{N}^{*}
$$

which equals zero when N equals zero. It follows from Section III. 5 that

$$
E T=E N \cdot E \tau_{1}^{*}=\left(e^{1.5}-1\right) \cdot\left(\frac{1}{15}-\frac{0.1}{e^{1.5}-1}\right)=\frac{e^{1.5}-2.5}{15}
$$

