Misprints and Corrections to

An Intermediate Course in Probability

Misprints

Page	Line	Text	Should have been
25	15	$f_{u,v}(u,v) = 0$	$f_{U,V}(u,v) = 0$
27	5	diameter	radius
27	11	domain	range
49	14	The function $h(\mathbf{x})$	The function h
51	9	for $x, y > 0, 0 < x, y < 1$	for $0 < x, y < 1$
62	13	t < 1	$ t \leq 1$
65	9	Corollary 2.2.1	Theorem 2.2
65	18	$t < \frac{1}{a}$	$ t < \frac{1}{a}$
69	1	Let $X_n \in \operatorname{Bin}(n,p)$.	Let $\vec{X} \in Bin(n, p)$.
97	3_{-}	persons	passengers
124	3	independent components	independent normal components
128	14	singular	nonsingular
140	8_	$(\operatorname{Rank} Q_i =)$	$(\operatorname{Rank} Q_i =)$
141	4	n=2.	k = 2.
141	6	n = 2:	k = 2:
141	9	By assumption,	Since A_1 is nonnegative definite,
141	4_{-}	n = 2.	k = 2.
151	5	Section 5	Section 6
	8	Let $X_1, X_2,$	Let X_2, X_3, \ldots
156	9	$n \ge 1$	$n \ge 2$
162	6	in definition	in the definition
183	12	$g(X(\omega))$	$g(X_n(\omega))$
183	12	$X(\omega)$	$X_n(\omega)$
183	14	g(X)	$g(X_n)$
183	14	X	X_n
184	8	$\frac{\sum_{k=1}^{n} X_i^2}{\sum_{k=1}^{n} X_i^2}$	$\frac{\sum_{k=1}^{n} X_{k}^{2}}{\sum_{k=1}^{n} X_{k}^{2}}$
184	10	$\sum_{k=1}^{n} X_i^2$	$\sum_{k=1}^{n} X_k^2$

184	13	$\sum_{k=1}^{n} X_i^2$	$\sum_{k=1}^{n} X_k^2$
187	14	$\overline{Y_n} = \min\{X_1, X_2, \dots, X_n\}$	
188	11	and $n = 1, 2,$	and $n = 2, 3,$
196	5	$\leq < t_{n-1}$	$\leq t_{n-1}$
200	7_{-}	g(t)	g(t,s)
200	5_{-}	Po	Ро
227	17_{-}	$T_y \in \operatorname{Exp}(\frac{1}{\lambda}).$	$T_y \in \operatorname{Exp}(\frac{1}{\lambda})$, that is, $ET_y = \frac{1}{\lambda}$.
235	15_{-}	picture)such	picture) such
247	1_	$X_1(0) = 9$	$X_1(3) = 9$
248	1	$X_2(0) = 5$	$X_2(3) = 5$
266	1_{-}	$x > 0 \ n > 2 \ n > 2$	$x > 0 \ n > 2 \ n > 4$
267	16	≈ 0.1006	≈ 0.1003
268	5	27. $a = \frac{12}{7}$ $b = \frac{3}{14}$.	27. $a = b = 3/7$.

Corrections

Page 38: In Theorem 2.3 it must also be assumed that $EY^2 < \infty$ and that $E(g(X)) < \infty$.

Page 72, line 13: Replace this line by the following: $\log t + \mu + \frac{1}{2}\sigma^2 n \geq \frac{1}{4}\sigma^2 n$ for any fixed t > 0 as $n \to \infty$ and $\exp\{cn^2\}/n! \to \infty$

Page 161, Theorem 3.3: We also assume that $E|X_n|^r < \infty$ for all n.

Page 184, Example 7.7: It is not necessary that V_n and Z_n are independent for the conclusion to hold. (It is, however, necessary in order for T_n to be *t*-distributed, which is of statistical importance; cf. Remark 7.3, page 185.)

Pages 203-204: Replace the piece following formula (1.13) until Remark 1.2 by the following:

This proves (a) for the case k = 2. In the general case (a) follows similarly, but the computations become more (and more) involved. We carry out the details for k = 3 below, and indicate the proof for the general case. Once (a) has been established (b) is immediate.

Thus, let k = 3 and $0 \le s \le t \le u$. By arguing as above, we have

$$P(T_1 \le s < T_2 \le t, T_3 > u)$$

= $P(X(s) = 1, X(t) = 2, X(u) < 3)$
= $P(X(s) = 1, X(t) - X(s) = 1, X(u) - X(t) = 0)$
= $P(X(s) = 1) \cdot P(X(t) - X(s) = 1) \cdot P(X(u) - X(t) = 0)$
= $\lambda s e^{-\lambda s} \cdot \lambda(t - s) e^{-\lambda(t - s)} \cdot e^{-\lambda(u - t)} = \lambda^2 s(t - s) e^{-\lambda u}$,

 $\mathbf{2}$

Corrections

and

$$P(T_1 \le s < T_2 \le t, T_3 \le u) + P(T_1 \le s < T_2 \le t, T_3 > u)$$

= $P(T_1 \le s < T_2 \le t) = P(X(s) = 1, X(t) \ge 2)$
= $P(X(s) = 1, X(t) - X(s) \ge 1)$
= $P(X(s) = 1) \cdot (1 - P(X(t) - X(s) = 0))$
= $\lambda s e^{-\lambda s} \cdot (1 - e^{-\lambda(t-s)}) = \lambda s (e^{-\lambda s} - e^{-\lambda t}).$

Next we note that

$$F_{T_1,T_2,T_3}(s,t,u) = P(T_1 \le s, T_2 \le t, T_3 \le u)$$

= $P(T_2 \le s, T_3 \le u) + P(T_1 \le s < T_2 \le t, T_3 \le u),$

that

$$P(T_2 \le s, T_3 \le u) + P(T_2 \le s, T_3 > u)$$

= $P(T_2 \le s) = P(X(s) \ge 2) = 1 - P(X(s) \le 1)$
= $1 - e^{-\lambda s} - \lambda s e^{-\lambda s}$,

and that

$$P(T_2 \le s, T_3 > u) = P(X(s) \ge 2, X(u) < 3)$$

= $P(X(s) = 2, X(u) - X(s) = 0)$
= $P(X(s) = 2) \cdot P(X(u) - X(s) = 0)$
= $\frac{(\lambda s)^2}{2} e^{-\lambda s} \cdot e^{-\lambda(u-s)} = \frac{(\lambda s)^2}{2} e^{-\lambda u}.$

We finally combine the above to obtain

$$F_{T_1,T_2,T_3}(s,t,u) = P(T_2 \le s) - P(T_2 \le s,T_3 > u) + P(T_1 \le s < T_2 \le t) - P(T_1 \le s < T_2 \le t,T_3 > u) = 1 - e^{-\lambda s} - \lambda s e^{-\lambda s} - \frac{(\lambda s)^2}{2} e^{-\lambda u} + \lambda s (e^{-\lambda s} - e^{-\lambda t}) - \lambda^2 s (t-s) e^{-\lambda u} = 1 - e^{-\lambda s} - \lambda s e^{-\lambda t} - \lambda^2 (st - \frac{s^2}{2}) e^{-\lambda u}, \qquad (1.14a)$$

and, after differentiation,

$$f_{T_1, T_2, T_3}(s, t, u) = \lambda^3 e^{-\lambda u}, \quad \text{for} \quad 0 < s < t < u.$$
 (1.14b)

The change of variables $\tau_1 = T_1$, $\tau_1 + \tau_2 = T_2$, and $\tau_1 + \tau_2 + \tau_3 = T_3$ concludes the derivation, yielding

$$f_{\tau_1,\tau_2,\tau_3}(v_1,v_2,v_3) = \lambda e^{-\lambda v_1} \cdot \lambda e^{-\lambda v_2} \cdot \lambda e^{-\lambda v_3}, \qquad (1.14c)$$

for $v_1, v_2, v_3 > 0$, which is the desired conclusion.

Before we proceed to the general case we make the crucial observation that the probability $P(T_1 \leq s < T_2 \leq t, T_3 > u)$ was the only quantity containing *all* of s, t, and u and, hence, since differentiation is with respect to *all* variables, the only one that contributed to the density. This carries over to the general case, that is, it suffices to actually compute only the probability containing all variables.

Thus, let $k \ge 3$ and let $0 \le t_1 \le t_2 \le \ldots \le t_k$. In analogy with the above we find that the crucial probability is precisely the one in which the T_i are separated by the t_i . It follows that

$$F_{T_1,T_2,\dots,T_k}(t_1,t_2,\dots,t_k)$$

$$= -P(T_1 \le t_1 < T_2 \le t_2 < \dots < T_{k-1} \le t_{k-1}, T_k > t_k)$$

$$+ R(t_1,t_2,\dots,t_k)$$

$$= -\lambda^{k-1}t_1(t_2-t_1)(t_3-t_2)\cdots(t_{k-1}-t_{k-2})e^{-\lambda t_k}, \quad (1.15a)$$

where $R(t_1, t_2, \ldots, t_k)$ is a remainder containing the probabilities of lower order, that is, those for which at least one t_i is missing.

Differentiation now yields

$$f_{T_1, T_2, \dots, T_k}(t_1, t_2, \dots, t_k) = \lambda^k e^{-\lambda t_k},$$
 (1.15b)

which, after the transformation $\tau_1 = T_1$, $\tau_2 = T_2 - T_1$, $\tau_3 = T_3 - T_2$, ..., $\tau_k = T_k - T_{k-1}$, shows that

$$f_{\tau_1,\tau_2,...,\tau_k}(u_1, u_2, ..., u_k) = \prod_{i=1}^k \lambda e^{-\lambda u_i},$$
 (1.15c)

for $u_1, u_2, \ldots, u_k > 0$, and we are done.

Page 207: Formula (1.21) only works for (and, hence, (1.22) has only been strictly demonstrated for) j > 1. The following modifications show that (1.22) holds for j = 0, 1 (actually, these cases are easier):

Let i = 0 and j = 0. We have

$$P(X(s) = 0, X(s+t) - X(s) = 0) = P(X(s+t) = 0)$$

= $P(T_1 > s+t) = e^{-\lambda(s+t)}$
= $e^{-\lambda s} \cdot e^{-\lambda t}$,

which is (1.22) for that case.

For i = 0 and j = 1 we have

$$P(X(s) = 0, X(s+t) - X(s) = 1) = P(X(s) = 0, X(s+t) = 1)$$

= $P(s < T_1 \le s + t < T_2)$
= $\int_{s+t}^{\infty} \int_{s}^{s+t} f_{T_1,T_2}(t_1, t_2) dt_1 dt_2.$

Inserting the expression for the density as given by (1.20) (with k = 1) and integration yields

$$P(X(s) = 0, X(s+t) - X(s) = 1) = e^{-\lambda s} \cdot \lambda t e^{-\lambda t},$$

which is (1.22) for that case.

Page 209-210, Example 2.1.(b): The solution should be replaced by (b) Let τ_1, τ_2, \ldots be the times between cars. Then τ_1, τ_2, \ldots are independent, $\operatorname{Exp}(\frac{1}{15})$ -distributed random variables. The actual waiting times, however, are $\tau_k^* = \tau_k \mid \tau_k \leq 0.1$, for $k \geq 1$. Since there are N cars passing before she can cross, we obtain

$$T = \tau_1^* + \tau_2^* + \ldots + \tau_N^*,$$

which equals zero when N equals zero. It follows from Section III.5 that

$$ET = EN \cdot E\tau_1^* = (e^{1.5} - 1) \cdot \left(\frac{1}{15} - \frac{0.1}{e^{1.5} - 1}\right) = \frac{e^{1.5} - 2.5}{15}.$$

Uppsala, 20 August, 2008

Allan Gut