Probability: A Graduate Course, Corr. 2nd printing

Misprints and Corrections

13 mars 2012

1. Misprints

Page	Line/Problem	Should be
14	L11	$\{A_{k,\varepsilon} \in \mathcal{F}_0, 1 \le k \le n_*\}$
35	L6_	Lemma 2.1:
37	L11	For the proof of the theorem
37	L12	proof, in turn, of these facts we refer
42	L2-3	bution function on C_n defined by $F_n(0) = 0,$
42	L10	F(x) - F(y)
42	L12	$F'(x) = 0$ for all $x \notin C$.
51	L20	$\varepsilon < c$
56	L6	Since $0 \le X_1 - X_n \nearrow X_1 - X$
57	$L3_{-}$	converges a.s. (delete as $n \to \infty$)
61	L5	$\sum_{k=1}^{n} x_k P(A_k)$
77	L12	$\int_{0}^{n} \frac{\sum_{k=1}^{n} x_k P(A_k)}{\int_{0}^{\infty} \cdots dx = \frac{1}{\log \lambda} \int_{0}^{\infty} \cdots dy}$
77	$L1_{-}$	Theorem 12.3.
78	$L11_{-}$	such that $n_0 = 0$ and $n_{k+1} \ge \lambda n_k$
78	$L9_{-}$	$ \leq \sum_{k=1}^{\infty} \lambda^{-1} n_k P(X \geq n_k) + $
98	L9	following result
98	L14	The corollary therefore
106	L11	$=1 \qquad \text{(i.e. not } \to 1\text{)}$
108	L10	Theorem 18.7
108	L6_	Since $P(A_n) \to 0$ as $n \to \infty$, Theorem 18.7
133	· '	$P(\cdots) \le 1/2$
135	$ ule{L4}$	$C_k = \{X_k^s \ge x\}$
135	L13	$P(\bigcup_{k=1}^{n} C_k) \ge P(\bigcup_{k=1}^{n} \{A_k \cap B_k\}) = \sum_{k=1}^{n} P(A_k \cap B_k) = 0$
142	$L12_{-}$	$ S_n \le \cdots$ (not $ S_k \le \cdots$)
145	L12	$P(S_n > x) = \sum_{k=1}^n P(\cdots) + P(\{ S_n > x\} \cap A_n^c)$
150	L17	$T_n^s(t) = \sum_{k=1}^n X_k^s r_k(t).$
151	L8	$ B_p n^{p/2} E X ^p$
152	$L10_{-}$	Set $Q_n^*(X) = (\sum_{k=1}^n E X_k^2)^{1/2}$.
152	$L3_{-}, 2_{-}$	$\max\{,Q_n^*(X)\}$
166	$L3_{-}$	Section 2.11 (i.e. not Subsection 2.2.6)
168	$L6_{-}$	Section 2.11 (i.e. not Subsection 2.2.6)
172	L5	members with e^{-iuy} (i.e. not e^{-ity})
177	$L3_{-}$	n=2
185	L15	$\kappa_X(t) = \sum_{k=1}^n \cdots$ (i.e. delete 1+)
186	L7	$\kappa_X(t) = \sum_{k=1}^n \cdots \text{ (i.e. delete 1+)}$ $\gamma_1 = \frac{\varkappa_3}{\varkappa_2^{3/2}} \text{ (not } \varkappa_1^{3/2} \text{)}$

Allan Gut Office: Room 74113, Ångström
Uppsala University email: allan.gut@math.uu.se
Department of Mathematics Phone: +46-(0)18-471 3182
Box 480 FAX: +46-(0)18-471 3201
SE-751 06 Uppsala, Sweden URL: http://www.math.uu.se/~allan

Page	Line/Problem	Should be
190	$L7_{-}$	for (i.e. not fot)
196	L2	$\sim C(\cdots)^{(\beta+k)/\alpha}/\sqrt{\cdots}$ (divided by $\sqrt{\cdots}$)
196	L4	$=\sum_{k=1}^{\infty} \left(\cdots\right)^{\cdots} \left(\frac{\beta+k}{\alpha}\right)^{1/4k}$
199	$L6_{-}$	(Section 2.15)
202	$L10_{-}$	(or mean-square (i.e. delete to the)
217	L8	integrable random variables.
218	$L5_{-}$	Let $r > 0$, and suppose that $E X_n ^r < \infty$ for all n .
219	L3_	The third term converges to 0 as $n \to \infty$ by Theorem
221	L2	Let $r > 0$, and suppose that $E X_n ^r < \infty$ for all n .
224	ight L4	Proposition 2.2.1(c) (i.e. not Theorem 2.2.1(iii))
224	L12	Let $r > 0$, and suppose that $E X_n ^r < \infty$ for all n .
229	$L10_{-}$	$n \ge 2 \qquad (\text{not } n \ge 1)$
236	L3	Proposition 2.2.1 (i.e. not Lemma 2.2.1)
257	L8_	$X_m - X_{n_k} \stackrel{a.s.}{\to} X_m - X \text{ as } k \to \infty.$
262	P12, L4	$n=2,3,\ldots$
262	P12, L5	$n \ge 2$
271	$L1_{-}$	Theorem 5.3.3
285	L6	where here and in the following, $S_n = \sum_{k=1}^n X_k$, $n \ge 1$, then this
285	L18	Then (delete "with partial sums S_n , $n \ge 1$ ")
286	L18	random variables. (delete "with partial sums S_n , $n \ge 1$ ")
293	L3	$\prod_{k=1}^{n} \varphi_{X_k^s}(t) = \prod_{k=1}^{n} \varphi_{X_k}(t) ^2 \to \varphi(t) ^2 \text{as} n \to \infty,$
297	L4	$\left(\frac{n-1}{n} \cdot \frac{S_{n-1}}{n-1}\right) \left(\text{not } \frac{n-1}{n} \cdot \frac{S_n}{n}\right)$
		$n n-1 \langle n n \rangle$
325	$L1_{-}$	$n \ge 2 \qquad (\text{not } n \ge 1)$
337	L3_	delete $\rightarrow 0$
338	$L2_{-}$	Theorem 4.4.1
346	L1	given $\epsilon > 0$ and $\eta > 0$, there exist $\delta > 0$ and n_0 ,
355	L15	$\gamma^3 = E X - \mu ^3$ (not just $E X ^3$)
357	L5	with mean 0 and partial
375	L8	$+\frac{t-(k-1)/n}{1/n}\frac{\xi_k(\omega)}{\sigma\sqrt{n}}$
380	P23, L9	In terms of L^p -norms (not Euclidean)
386	$oxed{L4}^{'}$	apply Lemma 3.1.1 (not Markov's inequality)
386	L9_,8_	application of Lemma 3.1.1 (not Markov's inequality)
392	L8_,6_	$(EX'_{1,n})^2$ (not $(EX_{1,n})^2$)
392	L6_	$E(X_{1,n}^{1,n})^2 \pmod{E(X_{1,n}^2)}$
393	$ m L7_{-}$	delete almost surely
		V
401	L3,4	$P(\cdots > \varepsilon \sqrt{\cdots})$ (ε is missing)
402	L8	since the two other
403	L13_8	From here on one can argue
404	L7	dense, and, in Subsection 7.2, some that are not covered
415	L6	visible, since the new
420	P4c	as $t \to \infty$ (not $n \to \infty$)
425	m L~12	$= P(S_{n^k} > c_{n^k} x) \le 2P(S_{(n+1)^k} > c_{n^k} x)$ (delete c in the index)
425	L 5_	established
428	L 11_	(a) $V_n \stackrel{d}{\to} \frac{U-b}{a}$
429	$ m L1_{-}$	$j \to \infty$
430	L6	The proof of the theorem
	I	A

 $L8_{-}$

566

with a positive finite limit

```
Fréchet:  \Phi_{\alpha}(x) = \begin{cases} 0, & \text{for } x \leq 0, \\ \cdots, & \text{for } x > 0, \end{cases} 
Weibull:  \Psi_{\alpha}(x) = \begin{cases} \cdots, & \text{for } x \leq 0, \\ \cdots, & \text{for } x \leq 0, \\ 1, & \text{for } x > 0, \end{cases} 
452
            L3_{-}
            L2_{-}
452
            L2
457
457
            L5_{-}
                         distributions for record values are
                         \sum_{k=1}^{n} P(X_k \neq Y_k)
            L6_{-}
459
                                                         (\text{not } Y_n)
            P2,L1
                         i.i.d. strictly stable
464
                         \frac{\log |S_n|}{\log n} \stackrel{p}{\to} \frac{1}{\alpha} \text{ as } n \to \infty.
            P8,L3
464
                         canonical representation of Theorem 4.4 of the
            P8,L2
466
474
            L5_{-}
                         = E\{E(YE(Y \mid \mathcal{G}) \mid \mathcal{G})\}
                                                                      (one E(\text{too many})
475
            L6
                         of \mathcal{F}. If g(X) is \mathcal{G}-measurable, then
494
            L10_{-}
                         the answer to (c) is negative
            L14
                         Subsection 10.2
508
            L12
                         Kolmogorov-Doob inequality
509
            L14
                         Kolmogorov-Doob inequality
516
            L4_{-}
                         Subsection 10.4
516
                         \stackrel{a.s.}{\rightarrow} \sum_{k=1}^{\tau} |Y_k|
523
            L8_{-}
                                                   (\cot \tau \wedge n)
                         converges to pE\,\tau
525
            L4_{-}
                         E u^{\tau} = \frac{pu}{1 - (1 - p)u}
\stackrel{a.s.}{\to} \frac{1}{EY} \cdot E S_{\tau}
526
            L12
530
            L9_{-}
                         ment of the theorem.
532
            L14
                                                                (not proposition)
            L14_{-}
534
                         \{|X_0|, |X_{\tau \wedge n}|, |X_n|\}
                         Then, for u \in G = \{y : g(y) < \infty\}, with g'(u) \ge 0, we have
539
            L11
            L16
                         We begin by proving a.s. convergence.
539
            L17
                         Suppose that 2u \in G. Since 0 \in G, it follows, via strict convexity, that
539
539
            L10_{-}
                         as n \to \infty. However, recalling that 2g(u) - g(2u), we conclude that
                         X_{\infty} \stackrel{a.s.}{\leftarrow} \exp\{2uS_n - ng(2u)\} = \exp\{2(uS_n - ng(u))\} \cdot \exp\{n(2g(u) < g(2u))\}
            L9_{-}
539
                         \stackrel{a.s.}{\to} X_{\infty}^2 \cdot 0 \text{ as } n \to \infty,
            L8_{-}
539
539
            L7_{-}
                         from which it follows that X_{\infty} = 0 a.s.
                         L10_{-}
540
            L8_{-}
540
544
            L8
            L8_{-}
                         (a) \{X_n, n \leq 0\}
                                                      (not n \ge 1)
544
                         For n \ge 1 (not n \le -1)

\rightarrow a (not \rightarrow 0)
544
            L1_{-}
564
            L5_{-}
                        \limsup_{n \to \infty} \left| \frac{1}{n} \sum_{k=1}^{n} \cdots \right| \quad (\text{not } \sum_{k=1}^{n_0})
\frac{1}{\log \log n} \sum_{k=2}^{n} \cdots \quad (\text{not } \sum_{k=1}^{n})
            L 2
565
            L 7
565
566
            L3
                         Following is a continuous version.
566
            L4
                         real valued, uniformly bounded functions
566
            L9
                         prove a version
```

2. Corrections

- Page 106: Delete Theorem 18.9.
- Page 293: Lemma 4.4.1, the fact that $1-x < -\log x$ for 0 < x < 1, and (5.1), together show that

$$\begin{split} &\sum_{n=1}^{\infty} P(|X_n^s| > 2/h) \leq \sum_{n=1}^{\infty} \frac{1}{h} \int_{|t| < h} (1 - |\varphi_{X_n}(t)|^2) \, dt \\ &= \frac{1}{h} \int_{|t| < h} \left(\sum_{n=1}^{\infty} (1 - |\varphi_{X_n}(t)|^2) \right) dt \leq \frac{1}{h} \int_{|t| < h} - \sum_{n=1}^{\infty} \log \left(|\varphi_{X_n}(t)|^2 \right) dt \\ &= \frac{1}{h} \int_{|t| < h} - \log \left(\prod_{n=1}^{\infty} |\varphi_{X_n}(t)|^2 \right) dt = \frac{1}{h} \int_{|t| < h} - \log \left(|\varphi(t)|^2 \right) dt < \infty. \end{split}$$

This proves that the first sum in Theorem 5.5 converges.

The second sum vanishes since we consider symmetric random variables. For the third sum we exploit (the second half of) Lemma 4.4.2 to obtain

$$\sum_{n=1}^{\infty} E|X_n^s|^2 I\{|X_n^s| < 2/h\} \le \sum_{n=1}^{\infty} 3(1 - \varphi_{X_n^s}(h)) \le 3\sum_{n=1}^{\infty} \log(|\varphi_{X_n}(h)|^2)$$

$$\le -3\log\left(\prod_{n=1}^{\infty} |\varphi_{X_n}(h)|^2\right) = -3\log\left(|\varphi(h)|^2\right) < \infty.$$

• Page 505: Finally, let a < 1 < b. Since $\log a < 0$ in this case, the previous argument degenerates into

$$a \log^+ b \le a \log^+(b/a) \le a \log^+ a + b \cdot \frac{\log^+(b/a)}{b/a},$$

and (9.1) follows again.