Correction to "Limit theorems for a generalized St. Petersburg game"

Allan Gut
Uppsala University

Peter Kevei has drawn my attention to the fact that formula (3.1) in my paper [2] is not correct. The aim of this note is to point out this fact and to make the necessary corrections.

The model behind the game is a sequence of i.i.d. random variables X, X_{1}, X_{2}, \ldots with

$$
P\left(X=s r^{(k-1) / \alpha}\right)=p q^{k-1}, \quad k=1,2, \ldots
$$

where $p+q=1, s=p^{-1}, r=q^{-1}=(1-p)^{-1}$, and $\alpha>0$.
The correct expression for the tail probability is

$$
P(X>x)=q^{\left[\alpha \log _{r}(x / s)\right]+1}
$$

instead of (3.1) in my paper [2]; see [1], formula (1). The tail probabilities are not regularly varying.
This invalidates Therorem 2.1(ii) and (iii) of [2].
For further results that in this context one may consult [3].
Finally, the limits in (6.2) and (6.3) should be $-\log _{1 / q} b \quad\left(\right.$ not $\left.-\log _{1 / q} b / \alpha\right)$.

Acknowledgement

I wish to thank Peter Kevei for drawing my attention to the flaw mentioned in the introductory lines, and to . Keisuke Matsumoto and Toshio Nakata for pointing out the "misprints" in (6.2) and (6.3); cf. also [4]

References

[1] Csörgő, S. (2007). Merging asymptotic expansions in generalized St. Petersburg games. Acta Sci. Math. (Szeged) 73, 297-331.
[2] Gut, A. (2010). Limit theorems for a generalized St. Petersburg game. J. Appl. Prob. 47, 752-760.
[3] Gut, A., and Martin-Löf, A. (2013). Generalized St. Petersburg games revisited (submitted).
[4] Matsumoto, K. and Nakata, T. (2013). Limit theorems for a generalized Feller game. J. Appl. Prob. 50, 54-63.

Allan Gut, Department of Mathematics, Uppsala University, Box 480, SE-751 06 Uppsala, Sweden; allan.gut@math.uu.se URL: http://www.math.uu.se/~allan

