Correction to “Limit theorems for a generalized St. Petersburg game”

Allan Gut
Uppsala University

Peter Kevei has drawn my attention to the fact that formula (3.1) in my paper [2] is not correct. The aim of this note is to point out this fact and to make the necessary corrections.

The model behind the game is a sequence of i.i.d. random variables X, X_1, X_2, \ldots with

$$P(X = sr^{(k-1)/\alpha}) = pq^{k-1}, \quad k = 1, 2, \ldots,$$

where $p + q = 1, s = p^{-1}, r = q^{-1} = (1 - p)^{-1}$, and $\alpha > 0$.

The correct expression for the tail probability is

$$P(X > x) = q^{[\alpha \log_r (x/s)]+1},$$

instead of (3.1) in my paper [2]; see [1], formula (1). The tail probabilities are not regularly varying.

This invalidates Theorem 2.1(ii) and (iii) of [2].

For further results that in this context one may consult [3].

Finally, the limits in (6.2) and (6.3) should be $-\log_{1/q} b$ (not $-\log_{1/q} b/\alpha$).

Acknowledgement

I wish to thank Peter Kevei for drawing my attention to the flaw mentioned in the introductory lines, and to Keisuke Matsumoto and Toshio Nakata for pointing out the “misprints” in (6.2) and (6.3); cf. also [4]

References

Allan Gut, Department of Mathematics, Uppsala University, Box 480, SE-751 06 Uppsala, Sweden; allan.gut@math.uu.se URL: http://www.math.uu.se/~allan

AMS 2000 subject classifications. Primary 60F05, 60G50; Secondary 26A12.

Keywords and phrases. St. Petersburg game, sums of i.i.d. random variables, Feller WLLN, domains of attraction, convergence along subsequences, extremes, stable law, slow variation, regular variation.

Abbreviated title. A generalized St. Petersburg game.

Date. July 16, 2013