Probability: A Graduate Course, 2nd edition

Misprints and Corrections

21 oktober 2020

1. Misprints

Page	Line/Problem	Should be
26	L10_	$P(R) = \dots \qquad (\text{not } P(\Omega))$
33	$L5_{-}$	$\int_{a}^{p} g(x) d\gamma(x). \qquad (\gamma \text{ is missing})$
57	$L12_{-}$	$\left \sum_{k=1}^{n} Y_k\right \leq X$ for all n
75	L10	$r\sum_{n=1}^{\infty}\cdots \leq E X^r \leq 1 + r\sum_{n=1}^{\infty}\cdots$
76	L5-	function, and that g' is monotone. Then
321	L9	[239] (not $[238]$)
338	L1	However, the absolute value of the real part of the
341	$L2_{-}$	$L_1(n) = \dots = \frac{1/2}{\dots} \rightarrow \frac{1}{2} \neq 0$
342		The example on the lower piece has to be fixed
343	L15	$\sum_{n=1}^{\infty} P(Z_n > 0) = \cdots$
353	$L8_{-}$	$\stackrel{d}{\rightarrow} \pmod{\frac{r}{\rightarrow}}$
357	$L10_{-}$	$\sup_{x>0} (E X_k^3 I\{ X_k \le x\} + xE X_k^2 I\{ X_k \})$
361	L5, 11	Theorem $4.4.1 \pmod{(4.4.1)}$
363	L4	$e^{1/18}$ (not $e^{5/144}$)
392	L9	$\left \sum_{k=k_0}^{\infty} P\left(\left \sum_{j=1}^{k} X_j I\{ X_j > \frac{1}{2} b_{n_k} \} \right > \eta \sqrt{n_k \log \log n_k} \right) \le \dots \right $
418	L4, 5	Williams' (not William's)
527	$L4_{-}$	$\alpha = P(\text{Player } B \text{ is the winner}) \qquad (\text{not } A)$
527	$L3_{-}$	player A is the winner (not B)
528	L8	$\alpha = P(\text{Player } B \text{ is the winner}) \qquad (\text{not } A)$

2. Corrections

Letter from J. Prochno, hereby acknowledged:

Lemma 3.1, Page 14 Let $(\Omega, \mathcal{A}, \mu)$ be a finite measure space and \mathcal{F} be an algebra on Ω with $\sigma(\mathcal{F}) = \mathcal{A}$. Then, for every $\varepsilon > 0$ and any $A \in \mathcal{A}$, there exists $B \in \mathcal{F}$ such that

$$\mu(A \triangle B) < \varepsilon.$$

Proof. We define

$$\mathcal{D} := \big\{ A \in \mathcal{A} : \forall \varepsilon > 0 \,\exists \, A_{\varepsilon} \in \mathcal{F} : \, \mu(A \triangle A_{\varepsilon}) < \varepsilon \big\}.$$

Obviously, $\mathcal{F} \subseteq \mathcal{D}$, because for if $A \in \mathcal{F}$ and $\varepsilon > 0$, then we can just choose $A_{\varepsilon} := A \in \mathcal{F}$, which gives $\mu(A \triangle A_{\varepsilon}) = 0 < \varepsilon$. We now show that \mathcal{D} is a Dynkin system. In view of the definition of a Dynkin system, we do this in three steps.

Step 1. $\Omega \in \mathcal{D}$, because \mathcal{F} contains Ω , as it is an algebra and, as we saw before, $\mathcal{F} \subseteq \mathcal{D}$.

Step 2. Let $A \in \mathcal{D}$. We need to show that $A^c \in \mathcal{D}$. So let $\varepsilon > 0$. Since $A \in \mathcal{D}$, there exists some $A_{\varepsilon} \in \mathcal{F}$ so that $\mu(A \triangle A_{\varepsilon}) < \varepsilon$. Because $C \triangle D = C^c \triangle D^c$, we may choose $B_{\varepsilon} := A_{\varepsilon}^c \in \mathcal{F}$ (because \mathcal{F} is an algebra) and obtain

$$\mu(A^c \triangle B_{\varepsilon}) = \mu(A^c \triangle A_{\varepsilon}^c) = \mu(A \triangle A_{\varepsilon}) < \varepsilon.$$

This means $A^c \in \mathcal{D}$.

Step 3. Let $(A_i)_{i\in\mathbb{N}} \in \mathcal{D}^{\mathbb{N}}$ be a sequence of (pairwise disjoint) sets. We need to show that $A := \bigcup_{i=1}^{\infty} A_i \in \mathcal{D}$, that is, if $\varepsilon > 0$, then we need to find a set $B_{\varepsilon} \in \mathcal{F}$ so that $\mu(A \triangle B_{\varepsilon}) < \varepsilon$. So let $\varepsilon > 0$. First of all, by the continuity from below, there exists an $n_{\varepsilon} \in \mathbb{N}$ so that

$$\mu\left(A \setminus \bigcup_{i=1}^{n_{\varepsilon}} A_i\right) < \frac{\varepsilon}{2} \,. \tag{S.0.1}$$

In fact, the sequence $\bigcup_{i=1}^{n} A_i$, $n \in \mathbb{N}$ is increasing and $\bigcup_{i=1}^{n} A_i \uparrow A$, that is, $\lim_{n \to \infty} \bigcup_{i=1}^{n} A_i = A$, which means that by the continuity from below, there exists $n_{\varepsilon} \in \mathbb{N}$ so that

$$\mu(A) - \mu\Big(\bigcup_{i=1}^{n_{\varepsilon}} A_i\Big) < \frac{\varepsilon}{2}.$$

Therefore, from the basic properties of a measure, it follows that

$$\mu\Big(A\setminus\bigcup_{i=1}^{n_{\varepsilon}}A_i\Big)=\mu(A)-\mu\Big(\bigcup_{i=1}^{n_{\varepsilon}}A_i\Big)<\frac{\varepsilon}{2}.$$

Now, since $(A_i)_{i\in\mathbb{N}}\in\mathcal{D}^{\mathbb{N}}$, for $\delta:=\frac{\varepsilon}{2n_{\varepsilon}}$ there exists a sequence $(A_{i,\delta})_{i\in\mathbb{N}}\in\mathcal{F}^{\mathbb{N}}$ so that, for all $i\in\mathbb{N}$,

$$\mu(A_i \triangle A_{i,\delta}) < \delta. \tag{S.0.2}$$

Because

$$\left(\bigcup_{i=1}^{n_{\varepsilon}} A_i\right) \bigtriangleup \left(\bigcup_{i=1}^{n_{\epsilon}} A_{i,\delta}\right) \subseteq \bigcup_{i=1}^{n_{\varepsilon}} \left(A_i \bigtriangleup A_{i,\delta}\right),$$

we obtain from Inequality $\mathbf{S}.0.2$,

$$\mu\left(\left(\bigcup_{i=1}^{n_{\varepsilon}} A_{i}\right) \bigtriangleup\left(\bigcup_{i=1}^{n_{\varepsilon}} A_{i,\delta}\right)\right) \le \sum_{i=1}^{n_{\varepsilon}} \mu\left(A_{i} \bigtriangleup A_{i,\delta}\right) < n_{\varepsilon}\delta.$$
(S.0.3)

It now follows from Inequalities (S.0.1) and (S.0.3) that, choosing $B_{\epsilon} := \bigcup_{i=1}^{n_{\epsilon}} A_{i,\delta}$,

$$\mu\left(A\triangle B_{\varepsilon}\right) < \frac{\varepsilon}{2} + n_{\varepsilon}\delta = \frac{\varepsilon}{2} + n_{\varepsilon}\frac{\varepsilon}{2n_{\varepsilon}} = \varepsilon.$$

This shows that $A \in \mathcal{D}$ and completes the proof of the theorem. \Box