Probability: A Graduate Course, 2nd edition

Misprints and Corrections
21 oktober 2020

1. Misprints

Page	Line/Problem	Should be
26	L10_	$P(R)=\ldots \quad(\operatorname{not} P(\Omega))$
33	L5_	$\int_{a}^{p} g(x) d \gamma(x) . \quad(\gamma$ is missing)
57	L12	$\left\|\sum_{k=1}^{n} Y_{k}\right\| \leq X$ for all n
75	L10	$r \sum_{n=1}^{\infty} \cdots \leq E X^{r} \leq 1+r \sum_{n=1}^{\infty} \cdots$
76	L5	function, and that g^{\prime} is monotone. Then
321	L9	[239] (not [238])
338	L1	However, the absolute value of the real part of the ...
341	L2-	$L_{1}(n)=\cdots=\frac{1 / 2}{\cdots} \rightarrow \frac{1}{2} \neq 0$
342		The example on the lower piece has to be fixed
343	L15	$\sum_{n=1}^{\infty} P\left(\left\|Z_{n}\right\|>0\right)=\cdots$
353	L8_	$\xrightarrow{d} \quad(\operatorname{not} \xrightarrow{r})$
357	L10	$\sup _{x>0}\left(\left\|E X_{k}^{3} I\left\{\left\|X_{k}\right\| \leq x\right\}\right\|+x E X_{k}^{2} I\left\{\left\|X_{k}\right\|\right\}\right)$
361	L5, 11	Theorem 4.4.1 (not (4.4.1))
363	L4	$e^{1 / 18} \quad\left(\operatorname{not} e^{5 / 144}\right)$
392	L9	$\sum_{k=k_{0}}^{\infty} P\left(\left\|\sum_{j=1}^{k} X_{j} I\left\{\left\|X_{j}\right\|>\frac{1}{2} b_{n_{k}}\right\}\right\|>\eta \sqrt{n_{k} \log \log n_{k}}\right) \leq \ldots$
418	L4, 5	Williams' (not William's)
527	L4-	$\alpha=P($ Player B is the winner....) (not A)
527	L3	player A is the winner (not B)
528	L8	$\alpha=P($ Player B is the winner....) (not A)

2. Corrections

Letter from J. Prochno, hereby acknowledged:
Lemma 3.1, Page 14 Let $(\Omega, \mathcal{A}, \mu)$ be a finite measure space and \mathcal{F} be an algebra on Ω with $\sigma(\mathcal{F})=\mathcal{A}$. Then, for every $\varepsilon>0$ and any $A \in \mathcal{A}$, there exists $B \in \mathcal{F}$ such that

$$
\mu(A \triangle B)<\varepsilon .
$$

Proof. We define

$$
\mathcal{D}:=\left\{A \in \mathcal{A}: \forall \varepsilon>0 \exists A_{\varepsilon} \in \mathcal{F}: \mu\left(A \triangle A_{\varepsilon}\right)<\varepsilon\right\} .
$$

Obviously, $\mathcal{F} \subseteq \mathcal{D}$, because for if $A \in \mathcal{F}$ and $\varepsilon>0$, then we can just choose $A_{\varepsilon}:=A \in \mathcal{F}$, which gives $\mu\left(A \triangle A_{\varepsilon}\right)=0<\varepsilon$. We now show that \mathcal{D} is a Dynkin system. In view of the definition of a Dynkin system, we do this in three steps.

Step 1. $\Omega \in \mathcal{D}$, because \mathcal{F} contains Ω, as it is an algebra and, as we saw before, $\mathcal{F} \subseteq \mathcal{D}$.
Step 2. Let $A \in \mathcal{D}$. We need to show that $A^{c} \in \mathcal{D}$. So let $\varepsilon>0$. Since $A \in \mathcal{D}$, there exists some $A_{\varepsilon} \in \mathcal{F}$ so that $\mu\left(A \triangle A_{\varepsilon}\right)<\varepsilon$. Because $C \triangle D=C^{c} \triangle D^{c}$, we may choose $B_{\varepsilon}:=A_{\varepsilon}^{c} \in \mathcal{F}$ (because \mathcal{F} is an algebra) and obtain

$$
\mu\left(A^{c} \triangle B_{\varepsilon}\right)=\mu\left(A^{c} \triangle A_{\varepsilon}^{c}\right)=\mu\left(A \triangle A_{\varepsilon}\right)<\varepsilon .
$$

This means $A^{c} \in \mathcal{D}$.
Step 3. Let $\left(A_{i}\right)_{i \in \mathbb{N}} \in \mathcal{D}^{\mathbb{N}}$ be a sequence of (pairwise disjoint) sets. We need to show that $A:=\bigcup_{i=1}^{\infty} A_{i} \in \mathcal{D}$, that is, if $\varepsilon>0$, then we need to find a set $B_{\varepsilon} \in \mathcal{F}$ so that $\mu\left(A \triangle B_{\varepsilon}\right)<\varepsilon$. So let $\varepsilon>0$. First of all, by the continuity from below, there exists an $n_{\varepsilon} \in \mathbb{N}$ so that

$$
\begin{equation*}
\mu\left(A \backslash \bigcup_{i=1}^{n_{\varepsilon}} A_{i}\right)<\frac{\varepsilon}{2} \tag{S.0.1}
\end{equation*}
$$

In fact, the sequence $\bigcup_{i=1}^{n} A_{i}, n \in \mathbb{N}$ is increasing and $\bigcup_{i=1}^{n} A_{i} \uparrow A$, that is, $\lim _{n} \bigcup_{i=1}^{n} A_{i}=$ A, which means that by the continuity from below, there exists $n_{\varepsilon} \in \mathbb{N}$ so that

$$
\mu(A)-\mu\left(\bigcup_{i=1}^{n_{\varepsilon}} A_{i}\right)<\frac{\varepsilon}{2}
$$

Therefore, from the basic properties of a measure, it follows that

$$
\mu\left(A \backslash \bigcup_{i=1}^{n_{\varepsilon}} A_{i}\right)=\mu(A)-\mu\left(\bigcup_{i=1}^{n_{\varepsilon}} A_{i}\right)<\frac{\varepsilon}{2}
$$

Now, since $\left(A_{i}\right)_{i \in \mathbb{N}} \in \mathcal{D}^{\mathbb{N}}$, for $\delta:=\frac{\varepsilon}{2 n_{\varepsilon}}$ there exists a sequence $\left(A_{i, \delta}\right)_{i \in \mathbb{N}} \in \mathcal{F}^{\mathbb{N}}$ so that, for all $i \in \mathbb{N}$,

$$
\begin{equation*}
\mu\left(A_{i} \triangle A_{i, \delta}\right)<\delta \tag{S.0.2}
\end{equation*}
$$

Because

$$
\left(\bigcup_{i=1}^{n_{\varepsilon}} A_{i}\right) \triangle\left(\bigcup_{i=1}^{n_{\epsilon}} A_{i, \delta}\right) \subseteq \bigcup_{i=1}^{n_{\varepsilon}}\left(A_{i} \triangle A_{i, \delta}\right)
$$

we obtain from Inequality S.0.2,

$$
\begin{equation*}
\mu\left(\left(\bigcup_{i=1}^{n_{\varepsilon}} A_{i}\right) \triangle\left(\bigcup_{i=1}^{n_{\varepsilon}} A_{i, \delta}\right)\right) \leq \sum_{i=1}^{n_{\varepsilon}} \mu\left(A_{i} \triangle A_{i, \delta}\right)<n_{\varepsilon} \delta \tag{S.0.3}
\end{equation*}
$$

It now follows from Inequalities (S.0.1) and (S.0.3) that, choosing $B_{\epsilon}:=\bigcup_{i=1}^{n_{\epsilon}} A_{i, \delta}$,

$$
\mu\left(A \triangle B_{\varepsilon}\right)<\frac{\varepsilon}{2}+n_{\varepsilon} \delta=\frac{\varepsilon}{2}+n_{\varepsilon} \frac{\varepsilon}{2 n_{\varepsilon}}=\varepsilon
$$

This shows that $A \in \mathcal{D}$ and completes the proof of the theorem.

