D Colouring

How many colours do we need to colour the countries of a map in such
a way that adjacent countries are coloured differently? How many days
have to be scheduled for committee meetings of a parliament if every
committee intends to meet for one day and some members of parliament
serve on several committees? How can we find a school timetable of min-
imum total length, based on the information of how often each teacher
has to teach each class?

A wvertexr colouring of a graph G = (V, E) is a map : V — S such
that c(v) # c(w) whenever v and w are adjacent. The elements of the
set S are called the available colours. All that interests us about S is
its size: typically, we shall be asking for the smallest integer k& such that
G has a k-colouring, a vertex colouring ¢:V — {1,...,k}. This k is the
(vertex-) chromatic number of G; it is denoted by x(G). A graph G with
X(G) = k is called k-chromatic; if x(G) < k, we call G k-colourable.

Fig. 5.0.1. A vertex colouring V' —{1,...,4}

Note that a k-colouring is nothing but a vertex partition into k
independent sets, now called colour classes; the non-trivial 2-colourable
graphs, for example, are precisely the bipartite graphs. Historically,
the colouring terminology comes from the map colouring problem stated
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above, which leads to the problem of determining the maximum chro-
matic number of planar graphs. The committee scheduling problem, too,
can be phrased as a vertex colouring problem—how?

An edge colouring of G = (V, E) is a map ¢: E— S with c(e) # ¢(f)
for any adjacent edges e, f. The smallest integer k for which a k-edge-
colouring exists, i.e. an edge colouring c: E — {1,... k}, is the edge-
chromatic number, or chromatic indezx, of G; it is denoted by x'(G).
The third of our introductory questions can be modelled as an edge
colouring problem in a bipartite multigraph (how?).

Clearly, every edge colouring of G is a vertex colouring of its line
graph L(G), and vice versa; in particular, x'(G) = x(L(G)). The prob-
lem of finding good edge colourings may thus be viewed as a restriction
of the more general vertex colouring problem to this special class of
graphs. As we shall see, this relationship between the two types of
colouring problem is reflected by a marked difference in our knowledge
about their solutions: while there are only very rough estimates for vy,
its sister x" always takes one of two values, either A or A+ 1.

5.1 Colouring maps and planar graphs

If any result in graph theory has a claim to be known to the world
outside, it is the following four colour theorem (which implies that every
map can be coloured with at most four colours):

Theorem 5.1.1. (Four Colour Theorem)
Every planar graph is 4-colourable.

Some remarks about the proof of the four colour theorem and its history
can be found in the notes at the end of this chapter. Here, we prove the
following weakening:

Proposition 5.1.2. (Five Colour Theorem)
Every planar graph is 5-colourable.

Proof. Let G be a plane graph with n = 6 vertices and m edges. We
assume inductively that every plane graph with fewer than n vertices
can be 5-coloured. By Corollary 4.2.10,

d(G) =2m/n <2(3n—-06)/n < 6;

let v € G be a vertex of degree at most 5. By the induction hypothesis,
the graph H := G — v has a vertex colouring e: V(H) — {1,...,5}. If ¢
uses at most 4 colours for the neighbours of v, we can extend it to a 5-
colouring of G. Let us assume, therefore, that v has exactly 5 neighbours,

and that these have distinct colours.
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Let D be an open disc around v, so small that it meets only those
five straight edge segments of ¢ that contain v. Let us enumerate these
segments according to their cyclic position in D as sj,...,ss5, and let
vu; be the edge containing s; (7 = 1,...,5; Fig. 5.1.1). Without loss of
generality we may assume that ¢(v;) = ¢ for each i.
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Fig. 5.1.1. The proof of the five colour theorem

Let us show first that every v1—wv3 path P C H separates vy from
vq in H. Clearly, this is the case if and only if the cycle C' := vv Pugv
separates vg from vy in G. We prove this by showing that vy and vy lie
in different faces of C.

Let us pick an inner point xo of 59 in D and an inner point x4 of
s4in D. Then in D~ (s1Us3z) C R?~ C every point can be linked by
a polygonal arc to x2 or to x4. This implies that 22 and x4 (and hence
also vy and vy) lie in different faces of C': otherwise D would meet only
one of the two faces of €, which would contradict the fact that v lies on
the frontier of both these faces (Theorem 4.1.1).

Given i,j € {1,...,5}, let H;; be the subgraph of H induced by
the vertices coloured i or j. We may assume that the component €7 of
H; 3 containing vy also contains vz. Indeed, if we interchange the colours
1 and 3 at all the vertices of 'y, we obtain another 5-colouring of H;
if 3 ¢ Cq, then v; and vz are both coloured 3 in this new colouring,
and we may assign colour 1 to v. Thus, H; 3 contains a v;—wv3 path P.
As shown above, P separates vo from vy in H. Since PN Hyy = 0,
this means that v; and vy lie in different components of Hg 4. In the
component containing v, we now interchange the colours 2 and 4, thus
recolouring vs with colour 4. Now v no longer has a neighbour coloured 2,
and we may give it this colour. [l

As a backdrop to the two famous theorems above, let us cite another
well-known result:

Theorem 5.1.3. (Grotasch 1959)
Every planar graph not containing a triangle is 3-colourable.
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5.2 Colouring vertices

How do we determine the chromatic number of a given graph? How can
we find a vertex-colouring with as few colours as possible? How does
the chromatic number relate to other graph invariants, such as average
degree, connectivity or girth?

Straight from the definition of the chromatic number we may derive
the following upper bound:

Proposition 5.2.1. Every graph G with m edges satisfies

x(G) € 3+4/2m+ 7.

Proof. Let ¢ be a vertex colouring of G with ¥ = x(G) colours. Then
(& has at least one edge between any two colour classes: if not, we could
have used the same colour for both classes. Thus, m > 1k(k—1). Solving
this inequality for k, we obtain the assertion claimed. O

One obvious way to colour a graph ¢ with not too many colours is
the following greedy algorithm: starting from a fixed vertex enumeration
v1,...,0, of G, we consider the vertices in turn and colour each v; with
the first available colour—e.g., with the smallest positive integer not
already used to colour any neighbour of v; among vy,...,v;_1. In this
way, we never use more than A(G) + 1 colours, even for unfavourable
choices of the enumeration vy, ..., v,. If G is complete or an odd cycle,
then this is even best possible.

In general, though, this upper bound of A + 1 is rather generous,
even for greedy colourings. Indeed, when we come to colour the vertex v;
in the above algorithm, we only need a supply of dgy, ... v.] (v;) + 1 rather
than dg(v;) + 1 colours to proceed; recall that, at this stage, the algo-
rithm ignores any neighbours v; of v; with j > i. Hence in most graphs,
there will be scope for an improvement of the A+ 1 bound by choosing a
particularly suitable vertex ordering to start with: one that picks vertices
of large degree early (when most neighbours are ignored) and vertices
of small degree last. Locally, the number d(}[m,...,m](vi) + 1 of colours
required will be smallest if v; has minimum degree in G[vy, ..., v;]. But
this is easily achieved: we just choose v, first, with d(v,) = §(G), then
choose as v,_1 a vertex of minimum degree in G — v,,, and so on.

The least number k such that G has a vertex enumeration in which
each vertex is preceded by fewer than k of its neighbours is called
the colouring number col(G) of G. The enumeration we just discussed
shows that col(G) €< maxpycgd(H)+ 1. But for H C G clearly also
col(G) = col(H) and col(H) = 6(H) + 1, since the ‘back-degree’ of the
last vertex in any enumeration of H is just its ordinary degree in H,
which is at least 6(H). So we have proved the following:
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Proposition 5.2.2. Every graph G satisfies

X(G) € col(G) =max{§(H) | HC G}+1.
O

Corollary 5.2.3. Every graph GG has a subgraph of minimum degree at
least x(G) — 1. O

The colouring number of a graph is closely related to its arboricity; see
the remark following Theorem 2.4.4.

As we have seen, every graph G satisfies x(G) < A(G) + 1, with
equality for complete graphs and odd cycles. In all other cases, this
general bound can be improved a little:

Theorem 5.2.4. (Brooks 1941)
Let G be a connected graph. If G is neither complete nor an odd cycle,
then

X(G) < A(G).

Proof. We apply induction on |G|. If A(G) < 2, then G is a path or
a cycle, and the assertion is trivial. We therefore assume that A :=
A(G) =z 3, and that the assertion holds for graphs of smaller order.
Suppose that x(G) > A.

Let v € G be a vertex and H := G —v. Then x(H) < A: by
induction, every component H' of H satisfies x (H') < A(H’) < A unless
H' is complete or an odd cycle, in which case x(H') = A(H')+1 < A
as every vertex of I’ has maximum degree in H' and one such vertex is
also adjacent to v in G.

Since H can be A-coloured but G cannot, we have the following:

Every A-colouring of H uses all the colours 1,..., A on
the neighbours of v; in particular, d(v) = A.

(1)

Given any A-colouring of H, let us denote the neighbour of v col-
oured i by v;, ¢ = 1,...,A. For all ¢ # j, let H; ; denote the subgraph
of H spanned by all the vertices coloured i or j.

For all i # j, the vertices v; and v; lie in a common com-
ponent C; ; of H; ;.

(2)

Otherwise we could interchange the colours i and j in one of those com-
ponents; then v; and v; would be coloured the same, contrary to (1).

C; ; Is always a v;—v; path. (3)

Indeed, let P be a v;—v; pathin C; ;. Asdy(v;) < A—1, the neighbours
of v; have pairwise different colours: otherwise we could recolour wv;,
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contrary to (1). Hence the neighbour of v; on P is its only neighbour
in C; ;, and similarly for v;. Thus if C;; # P, then PP has an inner
vertex with three identically coloured neighbours in H; let u be the first
such vertex on P (Fig. 5.2.1). Since at most A — 2 colours are used
on the neighbours of u, we may recolour w. But this makes Pu into a
component of H; ;, contradicting (2).
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Fig. 5.2.1. The proof of (3) in Brooks’s theorem
For distinct 4, j, k, the paths C; ; and C;  meet only in v;. (4)

For if v; # uw € C; ;NC g, then u has two neighbours coloured j and two
coloured k, so we may recolour u. In the new colouring, v; and v; lie in
different components of H; ;, contrary to (2).

The proof of the theorem now follows easily. If the neighbours of v
are pairwise adjacent, then each has A neighbours in N(v) U {v} already,
so G = G[N(v)U{v}] = K2*L. As G is complete, there is nothing to
show. We may thus assume that vive ¢ G, where v1,...,va derive their
names from some fixed A-colouring ¢ of H. Let u # v5 be the neighbour
of v1 on the path (') 5; then ¢(u) = 2. Interchanging the colours 1 and 3
in C1 3, we obtain a new colouring ¢’ of H; let v}, H; ;, C} ; etc. be defined
with respect to ¢’ in the obvious way. As a neighbour of v; = v}, our
vertex w now lies in CY 5, since ¢/(u) = ¢(u) = 2. By (4) for ¢, however,
the path 0,C » retained its original colouring, so u € 0,015 C Cf ,.
Hence u € C3 3N CY 5, contradicting (4) for ¢ O

As we have seen, a graph G of large chromatic number must have
large maximum degree and colouring number, both at least y(G) — 1.
What else does large x(G) imply about ¢, in terms of other invariants
or in structural terms? Are there, as in Kuratowski’s theorem, some
‘canonical’ highly chromatic types of subgraph that must occur in every
graph of large enough chromatic number?

One obvious possible cause for larger chromatic number, x(G) = k
say, is the presence of a K* subgraph. This is a local property of G,
compatible with arbitrary values of global invariants such as £ and .
Hence, an assumption of x(G) = k does not tell us anything about
those invariants for G itself. It does, however, imply the existence of
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a subgraph where those invariants are large: by Corollary 5.2.3, G has
a subgraph H with §(H) = k — 1, and hence by Theorem 1.4.3, also a
subgraph H' with x(H') = [1k].

But the presence of just any such subgraph is not equivalent to x(G)
being large, not even in a weak qualitative sense: as complete bipartite
graphs show, no assumption of high! values of § or x alone can force y
to exceed 2, let alone to get arbitrarily large.

In particular, the collection of graphs of minimum degree at least
k —1 or connectivity at least f%]ﬂ cannot, as a whole, play the role of an
easily identifiable Kuratowski-type set of minimal k-chromatic graphs.
It may have a subclass that can. But no such set can be finite. Indeed,
the following fundamental theorem of Erdds implies that for no k does
there exist a finite set H of graphs of chromatic number at least 3 such
that every graph of chromatic number at least k has a subgraph in H:

Theorem 5.2.5. (Erdds 1959)
For every integer k there exists a graph G with girth g(G) > k and
chromatic number x(G) > k.

Theorem 5.2.5 was first proved non-constructively using random
graphs, and we shall give this proof in Chapter 11.2. Constructing graphs
of large chromatic number and girth directly is not easy; cf. Exercise 24
for the simplest case.

The message of Erdds’s theorem is that, contrary to our initial guess,
large chromatic number can occur as a purely global phenomenon: note
that locally, around each vertex, a graph of large girth looks just like a
tree, and in particular is 2-colourable there. But what exactly can cause
high chromaticity as a global phenomenon remains a mystery.

Nevertheless, there exists a simple—though not always short—
procedure to construct all the graphs of chromatic number at least k. For
each k € N, let us define the class of k-constructible graphs recursively
as follows:

(i) K* is k-constructible.

1 1s k-constructible and two vertices x, y of G are non-adjacent,

i) IfGis k ibl d i yof G dj
then also (G + xy)/xy is k-constructible.

11 11, (o are k-constructible and there are vertices x, vy, ys suc

i) If G1,G k ibl d tl i Y1, Y h
that G1 N G2 = {z} and 2y € E(G1) and zy2 € E(G2), then also
(G1UG2) —2y1 — xy2 + y1y2 is k-constructible (Fig. 5.2.2).

. High in absolute terms. In Chapter 7 we shall study the effect of edge densities
that let ¢ get large also relative to the order of the graph. That is a much stronger
assumption.

[9.2.3]

k-con-
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Fig. 5.2.2. The Hajds construction (iii)

One easily checks inductively that all k-constructible graphs—and hence
their supergraphs—are at least k-chromatic. For example, any colouring
of the graph (G +xy)/zy in (ii) induces a colouring of G, and hence by
inductive assumption uses at least k colours. Similarly, in any colouring
of the graph constructed in (iii) the vertices y; and yo do not both have
the same colour as x, so this colouring induces a colouring of either ()
or (G2 and hence uses at least & colours.
It is remarkable, though, that the converse holds too:

Theorem 5.2.6. (Hajoés 1961)
Let G be a graph and k € N. Then x(G) = k if and only if G has a
k-constructible subgraph.

Proof. Let G be a graph with x(G) = k; we show that G has a k-
constructible subgraph. Suppose not; then &£ > 3. Adding some edges
if necessary, let us make GG edge-maximal with the property that none
of its subgraphs is k-constructible. Now ( is not a complete r-partite
graph for any r: for then x(G) = k would imply » = k, and G would
contain the k-constructible graph K*.

Since G is not a complete multipartite graph, non-adjacency is not
an equivalence relation on V(). So there are vertices y;, x, yo2 such that
nz.xy2 ¢ E(G) but y1y2 € E(G). Since G is edge-maximal without
a k-constructible subgraph, each edge zy; lies in some k-constructible
subgraph H; of G+zy; (i = 1,2).

Let H) be an isomorphic copy of Hy that contains z and Hy — Hy
but is otherwise disjoint from G, together with an isomorphism v — v’
from H, to H} that fixes Hy N Hj pointwise. Then Hy N H = {z}, so

H := (HiUH;) -y — 2y5 + 1y
is k-constructible by (iii). One vertex at a time, let us identify in H each
vertex v’ € H) — G with its partner v; since vv’ is never an edge of H,

each of these identifications amounts to a construction step of type (ii).
Eventually, we obtain the graph

(HiUHy) —zy1 —zy2 + 1192 C G

this is the desired k-constructible subgraph of G. ]
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Does Hajés’s theorem solve our Kuratowski-type problem for highly
chromatic graphs, which was to find a class of graphs of chromatic num-
ber at least & with the property that every such graph has a subgraph in
this class? Formally, it does—albeit with an infinite characterizing set
(the set of k-constructible graphs). Unlike Kuratowski’s characterization
of planar graphs, however, this does not—at least not obviously—make
Hajds’s theorem a ‘good characterization’ of the graphs of chromatic
number < k, in the sense of complexity theory. See the notes for details.

5.3 Colouring edges

Clearly, every graph ( satisfies x'(G) = A(G). For bipartite graphs, we
have equality here:

Proposition 5.3.1. (Konig 1916)
Every bipartite graph G satisfies X'(G) = A(G).

Proof. We apply induction on ||G||. For |G| = 0 the assertion holds.
Now assume that ||G|| = 1, and that the assertion holds for graphs with
fewer edges. Let A := A({), pick an edge ry € G, and choose a A-
edge-colouring of G — xy by the induction hypothesis. Let us refer to
the edges coloured « as «-edges, etc.

In G — xy, each of z and y is incident with at most A — 1 edges.
Hence there are o, 3 € {1,...,A} such that z is not incident with an
a-edge and y is not incident with a F-edge. If o = 3, we can colour the
edge xy with this colour and are done; so we may assume that o« # 3,
and that « is incident with a F-edge.

Let us extend this edge to a maximal walk W from x whose edges are
coloured (3 and « alternately. Since no such walk contains a vertex twice
(why not?), W exists and is a path. Moreover, W does not contain y:
if it did, it would end in y on an a-edge (by the choice of 3) and thus
have even length, so W + zy would be an odd cycle in G (cf. Proposition
1.6.1). We now recolour all the edges on W, swapping « with 3. By the
choice of @ and the maximality of W, adjacent edges of G — xy are still
coloured differently. We have thus found a A-edge-colouring of G — xy
in which neither z nor y is incident with a F-edge. Colouring xy with /3,
we extend this colouring to a A-edge-colouring of G. O

Theorem 5.3.2. (Vizing 1964)
Every graph G satisfies

AlG) £X(G)

VAl

AGY41.

Proof. We prove the second inequality by induction on ||G||. For ||G|| =0
it is trivial. For the induction step let G = (V, E) with A := A(G) > 0 be

[5.4.5]

(1.6.1)
A zy

a-edge
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given, and assume that the assertion holds for graphs with fewer edges.
Instead of ‘(A 4 1)-edge-colouring’ let us just say ‘colouring’.

For every edge e ¢ (& there exists a colouring of G — e, by the
induction hypothesis. In such a colouring, the edges at a given vertex
v use at most d(v) £ A colours, so some colour 8 e {1,..., A+ 1} is
missing at v. For any other colour «, there is a unique maximal walk
(possibly trivial) starting at v, whose edges are coloured alternately «
and 3. This walk is a path; we call it the o/ - path from v.

Suppose that GG has no colouring. Then the following holds:

Given zy € E, and any colouring of G — xy in which the
colour « is missing at x and the colour 3 is missing at y, (1)
the a/ 3 - path from y ends in z.

Otherwise we could interchange the colours o and 3 along this path and
colour zy with a, obtaining a colouring of G (contradiction).

Let xyg € G be an edge. By induction, Gy := G — zyy has a
colouring ¢g. Let a be a colour missing at x in this colouring. Further,
let yo,...,yr be a maximal sequence of distinct neighbours of = in G
such that co(xy;i+1) is missing in ¢g at y; for every i < k. For each of
the graphs G; := G — xy; we define a colouring ¢;, setting

for e = xy; with j € {0,...,i—1}
otherwise;

eife) = {Co(fnym)

cole)

note that in each of these colourings the same colours are missing at x
as in eg.

Now let 3 be a colour missing at yx in ¢g. By (1), the o/3-path P
from g, in Gy, (with respect to c¢x) ends in z, with an edge yx coloured 3
since ¢ is missing at x. Since y cannot serve as yi+1, by the maximality
of the sequence yg, ..., Yy, we thus have y = y; for some 0 < 7 < k&
(Fig. 5.3.1). By definition of ¢y, therefore, 3 = cp(zy;) = co(2yit1). By

e
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Fig. 5.3.1. The a/3-path P in Gy, = G — zyx
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the choice of y;41 this means that [ was missing at y; in ¢y, and hence
also in ¢;. Now the av/3-path P’ from y; in G; starts with y; Py, since
the edges of Pz are coloured the same in ¢; as in ¢;. But in ¢y, and
hence in ¢;, there is no edge at yi coloured 3. Therefore P’ ends in y,
contradicting (1). O

Vizing’s theorem divides the finite graphs into two classes according
to their chromatic index; graphs satisfying x’ = A are called (imagina-
tively) class 1, those with x' = A +1 are class 2.

5.4 List colouring

In this section, we take a look at a relatively recent generalization of the
concepts of colouring studied so far. This generalization may seem a little
far-fetched at first glance, but it turns out to supply a fundamental link
between the classical (vertex and edge) chromatic numbers of a graph
and its other invariants.

Suppose we are given a graph G = (V| E), and for each vertex of
G a list of colours permitted at that particular vertex: when can we
colour G (in the usual sense) so that each vertex receives a colour from
its list? More formally, let (S,)scy be a family of sets. We call a vertex
colouring ¢ of G with c¢(v) € S, for all v € V a colouring from the
lists S,. The graph G is called k-list-colourable, or k-choosable, if, for
every family (S,)ycv with |S,| = k for all v, there is a vertex colouring
of GG from the lists 5,. The least integer k for which G is k-choosable is
the list-chromatic number, or choice number ch(G) of G.

List-colourings of edges are defined analogously. The least integer
k such that G has an edge colouring from any family of lists of size k
is the list-chromatic indexr ch'(G) of G; formally, we just set ch'(G) :=
ch(L(G)), where L(G) is the line graph of G.

In principle, showing that a given graph is k-choosable is more diffi-
cult than proving it to be k-colourable: the latter is just the special case
of the former where all lists are equal to {1,...,k}. Thus,

ch(G) = x(G) and ch'(G) = ¥'(G)

for all graphs G.

In spite of these inequalities, many of the known upper bounds for
the chromatic number have turned out to be valid for the choice num-
ber, too. Examples for this phenomenon include Brooks’s theorem and
Proposition 5.2.2; in particular, graphs of large choice number still have
subgraphs of large minimum degree. On the other hand, it is easy to con-
struct graphs for which the two invariants are wide apart (Exercise 26).
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