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Introduction

Graph theory can be said to have its beginning in

1736 when BLER considered the (general case of

the) Kénigsberg bridge problem: Is there a walk- W,C'(/":“:
ing route that crosses each of the seven bridges _

of Koénigsberg exactly once? (Solutio Problema- fj\

tis ad geometriam situs pertinenti€ommentarii /<\\\

Academiae Scientiarum Imperialis Petropolitartae

(1736), pp. 128-140.)
It took 200 years before the first book on graph theory wastewitThis was done by

KONIG in 1936. (“Theorie der endlichen und unendlichen Graph&elibner, Leipzig, 1936.

Translation in English, 1990.) Since then graph theory fa®&ldped into an extensive and
popular branch of mathematics, which has been applied to/ paoblems in mathematics,
computer science, and other scientific and not-so-scierdias. For the history of early
graph theory, see

N.L. BiGGs, R.J. LLoYD AND R.J. WILSON, “Graph Theory 1736 — 1936", Clarendon
Press, 1986.

There seem to be no standard notations or even definitiorgrdgh theoretical objects.
This is natural, because the names one uses for these olgflets the applications. So,
for instance, if we consider a communications network (fa&yemail) as a graph, then the
computers, which take part in this network, are called nadéser than vertices or points.
On the other hand, other names are used for molecular stegdtuchemistry, flow charts in
programming, human relations in social sciences, and so on.

These lectures studinite graphsand majority of the topics is included in
J.A. BONDY AND U.S.R. MURTY, “Graph Theory with Applications”, Macmillan, 1978.
R. DIESTEL, “Graph Theory”, Springer-Verlag, 1997.

F. HARARY, “Graph Theory”, Addison-Wesley, 1969.
D.B. WEsT, “Introduction to Graph Theory”, Prentice Hall, 1996.
R.J. WiLSON, “Introduction to Graph Theory”, Longman, (3rd ed.) 1985.

In these lectures we studymbinatorial aspectsf graphs. For moralgebraictopics and
methods, see

N. BIGGs, “Algebraic Graph Theory”, Cambridge University Pressid2d.) 1993.
and forcomputational aspectsee

S. BEVEN, “Graph Algorithms”, Computer Science Press, 1979.
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In these lecture notes we mention several open problem$idvatgained respect among
the researchers. Indeed, graph theory has the advantagfectirstains easily formulated open
problems that can be stated early in the theory. Findinguisalto any one of these problems
is on another layer of difficulty.

Sections with a star] in their heading are optional.

Notations and notions

e For afinite setX, | X| denotes its size (cardinality, the number of its elements).
e Let
1,n] ={1,2,...,n},
and in general,
[i,n] ={i,i+1,...,n}
for integersi < n.
¢ For a real number, thefloor and theceiling of « are the integers

|z =max{k € Z |k <z} and [z] = min{k € Z | = < k}.
o Afamily { X1, Xo,..., X} of subsetsX; C X of a setX is apartition of X, if

X = U X; and X, N X, =0 forall differenti and; .

e For two setsX andY’,
XxY ={(z,y) |lzeX,yeY}

is their Cartesian product.
e For two setsX andY,
XAY =(X\Y)u (Y \X)
is theirsymmetric difference HereX \ Y = {z |z € X,z ¢ Y'}.
e Two numbersn, k € N (oftenn = |X| andk = |Y| for setsX andY’) have thesame

parity, if both are even, or both are odd, that ispif= k (mod 2). Otherwise, they have
opposite parity.

Graph theory has abundant examplesiBfcomplete problems Intuitively, a problem is
in P L if there is an efficient (practical) algorithm to find a sotutito it. On the other hand,
a problem is in NP, if it is first efficient to guess a solution and then efficiemtheck that
this solution is correct. It is conjectured (and not knowmattP # NP. This is one of the
great problems in modern mathematics and theoretical ctanguience. If the guessing in
NP-problems can be replaced by an efficient systematictséara solution, then NP. For
any one NP-complete problem, if it is in P, then necessariNP.

! Solvable — by an algorithm — in polynomially many steps ondize of the problem instances.
2 Solvablenondeterministicallyn polynomially many steps on the size of the problem instanc
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1.1 Graphs and their plane figures

Let V be afinite set, and denote by
E(V) ={{u,v} [u,v eV, u#v}.

the subsets of of two distinct elements.

DEFINITION. A pair G = (V, E) with E C E(V) is called agraph (on V). The elements
of V are thevertices and those of the edgesof the graph. The vertex set of a graghis
denoted by and its edge set b¥;. ThereforeG = (V, E¢).

In literature, graphs are also callsithple graphsvertices are calledodesor points edges
are calledinesor links. The list of alternatives is long (but still finite).

A pair {u,v} is usually written simply as.v. Notice that therwv = wvu. In order to
simplify notations, we also write € G instead ofv € V.

DEeFINITION. For a graphG, we denote
vg = ‘VGf‘ and eg = ‘EGf’ .

The numbew of the vertices is called therder of G, ande is thesizeof GG. For an edge
e = uwv € Eg, the vertices:, andv are itsends Verticesu andv areadjacentor neighbours
if e = uv € Eg. Two edges:; = uv andes; = uw having a common end, aealjacent with
each other.

A graphG can be represented as a plane figure by drawing

a line (or a curve) between the pointsandv (representing () (v5) ()
vertices) ife = uv is an edge of7. The figure on the right is '

a drawing of the grapliz with Vo = {v1, v2, v3, v4, v5, v6 } © @ @
andEG = {1)11)2, V13, VU3, V204, 7)5?)6}.

Often we shall omit the identities (name}of the vertices in our figures, in which case
the vertices are drawn as anonymous circles.

Graphs can be generalized by allowingpswvv andparallel (or multiple) edgeshetween
vertices to obtain anultigraph G = (V, E,v¢), whereE = {ej,eq,...,e,} is a set (of
symbols), and): £ — E(V) U {vv | v € V}is afunction that attaches an unordered pair of
vertices to each € E: ¢(e) = uv.

Note that we can have(e;) = (eq). This is drawn in the

figure of G by placing two (parallel) edges that connect the @
common ends. On the right there is (a drawing of) a multi- \
graphG with verticesV = {a, b, c} and edgeg(e1) = aa, ‘

Y(eg) = ab, Y(eg) = be, andi)(eq) = be. < ©
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Later we concentrate on (simple) graphs.

DEFINITION. We also studydirected graphs or digraphs 7
D = (V,E), where the edges have a direction, that is, the
edges are ordered C V x V. In this caseyv # vu.

The directed graphs have representations, where the edgdsasn as arrows. A digraph
can contain edgesv andvu of opposite directions

Graphs and digraphs can also be coloured, labelled, andhteelig

DEeFINITION. A functiona: Vo — K is avertex colouring of G by a setK of colours. A
functiona: Eq — K is anedge colouringof G. Usually, K = [1, k] for somek > 1.
If K C R (often K C N), thena is aweight function or adistance function

Isomorphism of graphs

DEFINITION. Two graphsG and H areisomorphic, denoted byG = H, if there exists a
bijectiona: Vi — Vg such that

w € Eq <= a(u)a(v) € Ey

forall u,v € G.

HenceG and H are isomorphic if the vertices dff are renamings of those ¢f. Two
isomorphic graphs enjoy the same graph theoretical pliepedndthey are often identified
In particular, all isomorphic graphs have the same planadigy(excepting the identities of
the vertices). This shows in the figures, where we tend t@oepthe vertices by small circles,
and talk of ‘the graph’ although there are, in fact, infinitedany of such graphs.

Example 1.1.The following graphs are iso-  (v2) (03)
morphic. Indeed, the required isomorphism

is given byv; — 1, v9 — 3, v3 — 4, M
V4 — 2, U5 — D, @‘@

Isomorphism Problem. Does there exist an efficient algorithm to check whether amy t
given graphs are isomorphic or not?

The following table lists the numbeX:) of graphs on a given set of vertices, and the
number of nonisomorphic graphs arvertices. It tells that at least for computational purposes
an efficient algorithm for checking whether two graphs apenisrphic or not would be greatly
appreciated.
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n |1]2|3]4] 5| 6 | 7 | 8 \ 9
graphs 1]12]8[64]1024|32768 | 2097 152 | 268435456 | 236 > 6 - 1010
nonisomorphicl |2 (4| 11| 34 156 1044 12346 274668

Other representations

Plane figures catch graphs for our eyes, but if a problem gohgres to bgorogrammedthen
these figures are (to say the least) unsuitable. Matricestefiérs are ideal for computers,
since every respectable programming language has artefstes for these, and computers
are good in crunching numbers.

LetVg = {vy,...,v,} be ordered. Thadjacency matrix

of G is then x n-matrix M with entriesM;; = 1 or M;; =

0 according to whethev;v; € Eg or not. For instance,
the graphs of Example 1.1 has an adjacency matrix on the
right. Notice that the adjacency matrix is always symmetric
(with respect to its diagonal consisting of zeros).

_— O = = O
—_—_ 0 O R
SO =R OO
SO = = O
(el elell

A graph has usually many different adjacency matrices, onedch ordering of its séf;
of vertices. The following result is obvious from the defimrits.

Theorem 1.1.Two graphsG and H are isomorphic if and only if they have a common ad-
jacency matrix. Moreover, two isomorphic graphs have dydtte same set of adjacency
matrices.

Graphs can also be represented by sets. For thi§ let { X, Xs,..., X, } be a fam-
ily of subsets of a sek, and define théntersection graph G+ as the graph with vertices
X1,...,X,, and edges(; X for all i andj (i # j) with X; N X; # 0.

Theorem 1.2.Every graph is an intersection graph of some family of suhset
Proof. Let G be a graph, and define, for alle GG, a set
Xy = {{v,u} | vu € Eg}.
ThenX, N X, # 0 if and only if uv € Eg. O

Let s(G) be the smallest size of a base &&tuch thatG can be represented as an inter-
section graph of a family of subsets &f, that is,

5(G) = min{|X| | G = Gy for someX C 2X} .

How small cans(G) be compared to the ordeg; (or the sizez;) of the graph? It was shown
by Kou, STOCKMEYER AND WONG (1976) that it is algorithmically difficult to determine
the number(G) — the problem is NP-complete.
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Example 1.2.As yet another example, let C N be a finite set of natural numbers, and let
G4 = (A, E) be the graph defined or;, = A such that's € E (= E¢ ,) if and only if

r ands (for r # s) have a common divisor 1. As an exercise, we statall graphs can be
represented in the forr 4 for some sed of natural numbers.

1.2 Subgraphs

Ideally, in a problem the local properties of a graph detaard solution. In such a situation

we deal with (small) parts of the graph (subgraphs), anduisalcan be found to the problem

by combining the information determined by the parts. Fetance, as we shall see later on,
the existence of an Euler tour is very local, it depends onlyhe number of the neighbours

of the vertices.

Degrees of vertices
DEFINITION. Letv € G be avertex a grapty. Theneighbourhoodof v is the set
Ng(w) ={ue G|vue Eg}.
Thedegreeof v is the number of its neighbours:
da(v) = [Na(v)] -

If do(v) = 0, thenv is said to beasolatedin G, and ifds (v) = 1, thenwv is aleaf of the graph.
Theminimum degreeand themaximum degreeof G are defined as

(@) =min{dg(v) |ve G} and A(G)=max{dg(v)|v e G} .

The following lemma, due to &_ER (1736), tells that if several people shake hands, then
the number of hands shaken is even.

Lemma 1.1 (Handshaking lemma)For each graph,
ng(v) :2-EG .
veG

Moreover, the number of vertices of odd degree is even.

Proof. Every edgee € E¢ has two ends. The second claim follows immediately from the
first one. O

Lemma 1.1 holds equally well for multigraphs, whén(v) is defined as the number of
edges that have as an end, and whemloop vv is counted twice.

Note that the degrees of a graphdo not determings. Indeed, there are graplis =
(V,E¢) andH = (V, Ef) on the same set of vertices that a isomorphic, but for which
dg(v) =dg(v) forallv e V.
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DEFINITION. For a graphG, a 2-switch with re-
spect to the edgesv, zy € E¢ with uz,vy ¢ Eg
replaces the edgesv and xy by uz and vy. De- : ;
note G 2% H if there exists a finite sequence of ¥ O—0
2-switches that carrie§ to H.

Note that ifG' 25 H then alsoH =% G if we can apply the sequence in reverse order.
Before proving Berge’s switching theorem we need the falhgatool.

Lemma 1.2.LetG be a graph of ordern with a degree sequenek > dy > --- > d,, where
da(v;) = d;. Then there is a grapli”’ such thatG 2%, G’ with N (v1) ={v2, ..., v4,+1}

Proof. Denoted = A(G) (= d1). Suppose that there exists a vertexvith2 < i < d+1
such thaw,v; ¢ E¢. Sincedg(vi) = d, there exists a;
with j > d + 2 such thatv; € Eg. Hered; > d;, since
Jj > i. Sinceviv; € Eg, there exists ay (2 < ¢t < n)
such thaw;v, € Eg, butvjv, ¢ Eg. We can now perform i
a 2-switch with respect to the vertices, v;, v;, v;. This "
gives a new graplt/, wherev,v; € Eg andviv; ¢ Ep,
and the other neighbours of remain to be its neighbours.

When we repeat this process for all indi¢esith v,v; ¢ E¢ for 2 < i < d+ 1, we obtain
a graphG’ as required. O

Theorem 1.3 BERGE (1973)). Two graphsG and H on a common vertex sét satisfy
dg(v) = dg(v) for all v € V if and only if H can be obtained frondz by a sequence of
2-switches.

Proof. If G 25 H , then clearlyH has the same degrees@s
In converse, we use induction on the order. Let G and H have the same degrees. By

Lemma 1.2, we have a vertexand graphG’ and H’ such thatG =% G’ and H 2% H'
with Ng/(v) = Ny (v). Now the graphs?’—v and H'—v have the same degrees. By the

induction hypothesis;’ —v 2, H'—v, and thus als@’ Ny Finally, we observe that

alsoH’ 2 H by the ‘reverse 2-switches’, and this proves the claim. a
DEFINITION. Letdy,ds,...,d, be a descending sequence of nonnegative integers, that is,

dy > do > -+ > d,. Such a sequence is said to dpaphical, if there exists a graplyy =
(V,E) with V = {v,va,...,v,} such thatl; = dg(v;) for all 7.

Using the next result recursively one can decide whetheg@esee of integers is graphical
or not.
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Theorem 1.4 HAVEL (1955),HAakIMI (1962)).A sequencéy, do, ..., d, (withd; > 1 and
n > 2) is graphical if and only if

dy—1,ds—1,...,dg, 41— 1, dg,s2, dg,+3, ..., dn. (1.1)
is graphical (when put into nonincreasing order).
Proof. (<) ConsiderG of ordern — 1 with vertices (and degrees)
dg(v2) =d2 —1,...,dG(va+1) = day+1 — 1,
da(Viy+2) = ddgy+2, - - -, dg(vy) = dy

as in (1.1). Add a new vertex; and the edges;v; for all i € [2,d4, +1]. Then in this new
graphH, dg(v1) = dy, anddg (v;) = d; for all 4.

(=) Assumedg(v;) = d;. By Lemma 1.2 and Theorem 1.3, we can suppose that
N¢g(v1) = {va, ..., vq,+1}- But now the degree sequence®f-v; is in (1.1). 0

Example 1.3.Consider the sequenee= 4,4, 4,3,2,1. By Theorem 1.4,
sis graphical <= 3,3,2,1,1 is graphical

2,1,1,0 is graphical
0,0, 0 is graphical

The last sequence corresponds to a discrete giaphand
hence also our original sequengés graphical. Indeed, the
graphG on the right has this degree sequence.

Special graphs

DEFINITION. A graphG = (V, E) istrivial , if it has only one vertex,e., v = 1; otherwise
G is nontrivial .

The graphG = Ky is thecomplete graphon V, if every
two vertices are adjacentl = E(V'). All complete graphs
of ordern are isomorphic with each other, and they will be
denoted byk,,.

K

The complementof G is the graph on Vg;, whereEz = {e € E(V) | e ¢ Eg}. The
complements? = Ky of the complete graphs are calldidcrete graphs In a discrete graph
E¢ = 0. Clearly, all discrete graphs of orderare isomorphic with each other.

A graph( is said to baegular, if every vertex ofG has the same degree. If this degree is
equal tor, thenG is r-regular or regular of degreer.
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Note that a discrete graph is O-regular, and a complete gkgpis (n — 1)-regular. In
particular,e i, = n(n—1)/2, and thereforec < n(n—1)/2 for all graphsG that have order
n.

Example 1.4.The graph on the right is theetersen graph
that we will meet several times (drawn differently). It is a
3-regular graph of ordeto0.

Example 1.5.Letk > 1 be an integer, and consider the B&tof all binary strings of lengtl.
For instanceB? = {000,001,010,100,011,101,110,111}. Let Q; be the graph, called the
k-cube, with V, = B*, whereuv € Eq, if and only if the stringsu andv differ in exactly
one place.

The order ofQ isvg, = 2% the number of binary strings of 100,
length k. Also, Qy is k-regular, and so, by the handshaking
lemmacg, =k - 2k=1 On the right we have th&cube, or
simply the cube.

Example 1.6.Let n > 4 be any even number. We show by induction that there exists a
regular graph with v = n. Notice that all3-regular graphs have even order by the hand-
shaking lemma.

If n = 4, then K, is 3-regular. LetG be a 3-regular < 5

graph of order2m — 2, and suppose thatv,uw € FEg. @ é)
Let Vi = Vg U {z,y}, andEy = (Eg \ {uv,vw}) U v
{uz, zv,uy, yw, zy}. ThenH is 3-regular of ordem.

Subgraphs

DEFINITION. A graphH is asubgraph of a graphG, denoted byH C G, if Vi C Vi and
Ey C Eq. A subgraphH C G spansG (and H is a spanning subgraphof G), if every
vertex ofGisin H,i.e., Vg = V.

Also, a subgrapti{ C G is aninduced subgraph if Ey = Eq N E(Vy). In this caseH
is induced by its setV; of vertices.

In an induced subgrapl C @G, the setEy of edges consists of al € E¢ such that
e € E(Vy). To each nonempty subsétC V¢, there corresponds a unique induced subgraph

G[A] = (A, Eg N E(A)) .
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To each subset’ C E of edges there corresponds a unigue spanning subgragh of

G[F] = (Va, F) .
subgraph spanning induced

For a setF’ C E¢ of edges, let
G—F = G[Eg \ F]

be the subgraph off obtained by removing (only) the edgesc F' from G. In particular,
G—e is obtained fromG by removinge € E¢.
Similarly, we writeG + F, if eache € F (for F C E(V)) is added td=.

For a subsefd C V; of vertices, we lelG—A C G be the subgraph induced by; \ A,
that is,
G-A=GVa\ A,

and,e.g, G—uv is obtained fronG by removing the vertex together with the edges that have
v as their end.

Many problems concerning (induced) subgraphs are algoigtdly difficult. For instance,
to find a maximal complete subgraph (a subgr&fh of maximum order) of a graph is un-
likely to be even in NP.

Reconstruction Problem.The famous open problenkelly-Ulam problem or the Recon-
struction Conjecture, states thaa graph of order at leas3 is determined up to isomorphism
by its vertex deleted subgraplis—v (v € G): if there exists a bijectiomv: Vo — Vg such
thatG—v = H—a(v) for all v, thenG = H.

1.3 Paths and cycles

The most fundamental notions in graph theory are pradgficaiented. Indeed, many graph
theoretical questions ask for optimal solutions to proldesmch as: find a shortest path (in a
complex network) from a given point to another. This kind oflgems can be difficult, or
at least nontrivial, because there are usually choices bdaaich to choose when leaving an
intermediate point.
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Walks

DEFINITION. Lete; = wu;41 € Eg be edges ofy for i € [1,k]. Heree; ande;;, are
compatible in the sense thatis adjacent te;; for all i € [1, £ — 1]. The sequence

W =eres...¢

is awalk of length & from w; tO w1 1.

We write, more informally,
k
Wiug —ug— ... s up > ugrr OF W:iup — ugyq .

Write u = v to say that there is a walk of some length franto v. Here we understand that
W:u = v is always a specific waJkV = eje, ... e, although we sometimes do not care
to mention the edges it uses. The length of a walk’ is denoted byIV|.

DEFINITION. LetW = ejes. .. ek (e; = u;u;11) be awalk.
Wisclosed if u1 = uj1.
W is apath, if u; # u; for all 7 # j.
W is acycle ifitis closed, and:; # u; for i # j except thaty, = uy.
W is atrivial path , if its length is 0. A trivial path has no edges.
ForawalkW: u=wu; — ... — ugy1 = v, also

W_lzv:ukﬂ — .U =U
is awalk inG, called thanverse walk of 17/
A vertexu is anend of a pathP, if P starts or ends im.
Thejoin of two walksW;: © = v andWy: v = w is the walkiW{Ws: u = w. (Here
the endv must be common to the walks.)
PathsP and( aredisjoint, if they have no vertices in common, and theyiagependent
if they can share only their ends.

Clearly, the inverse wallP—! of a pathP is a path (theénverse pathof P). The join of
two paths need not be a path.

A (sub)graph, which is a path (cycle) of length

k — 1 (k, resp.) havingk vertices is denoted

by P, (Cy, resp.). Ifk is even (odd), we say

that the path or cycle isven (odd). Clearly,

all paths of lengthk are isomorphic. The same Ps Cs
holds for cycles of fixed length.

Lemma 1.3.Each walkiV: v =~ v with u # v contains a pathP: u — v, that is, there is
a pathP: v = v that is obtained froni¥ by removing edges and vertices.
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Proof. LetW: u = u1 — ... — w41 = v. Leti < j be indices such that; = u;. If
no such; andj exist, thenlV, itself, is a path. Otherwise, W = W1 WoW3: u = u; =
u; — v the portionU; = W1W3: u = u; = u; — v is a shorter walk. By repeating this

argument, we obtain a sequeriée Us, . .., Uy, of walksu = v with |W| > |Uy| > -+ >
|U |- When the procedure stops, we have a path as required. €\batin the above it may
very well be thatV; or W is a trivial walk.) O

DEeFINITION. If there exists a walk (and hence a path) frarto v in G, let
de(u,v) = min{k | u LN v}

be thedistancebetweeru andv. If there are no walkss = v, letdg(u, v) = oo by conven-
tion. A graphG is connected if dg(u,v) < oo forall u,v € G; otherwise, it igdisconnected
The maximal connected subgraphg#re itsconnected componentsDenote

¢(G) = the number of connected componentg-of

If ¢(G) = 1, thenG is, of course, connected.

The maximality condition means that a subgrapiC G is a connected component if and
only if H is connected and there are no edges leavihg.e., for every vertex ¢ H, the
subgraphG[Vy U{v}] is disconnected. Apparently, every connected componemt iisduced
subgraph, and

NG (v) ={u | dg(v,u) < oo}
istheconnected component 6fthat containg € G. In particular, the connected components
form a partition ofG.

Shortest paths

DEFINITION. Let G* be an edge weighted graph, thatds} is a graphG together with a
weight functiona: E¢ — R on its edges. FoH C G, let
alH) = Z afe)
ecFy

be the (total)weight of H. In particular, if P = ejes...ex is a path, then its weight is
a(P) = Zle a(e; ). Theminimum weighted distancebetween two vertices is

dg(u,v) = min{a(P) | P: u = v} .

In extremal problems we seek for optimal subgraphhs G satisfying specific conditions.
In practice we encounter situations whéfenight represent

e a distribution or transportation network (say, for mailheve the weights on edges are
distancestravelexpensesor rates of flowin the network;

e asystem of channels in (tele)communication or computdritecture, where the weights
present the rate afnreliability or frequency of actiof the connections;

e a model of chemical bonds, where the weights measure maleatriaction
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In these examples we look for a subgraph with the smallesghiweand which connects
two given vertices, or all vertices (if we want to travel andx On the other hand, if the graph
represents a network of pipelines, the weights are volumeaacities, and then one wants
to find a subgraph with the maximum weight.

We consider the minimum problem. For this, @tbe a graph with an integer weight
functiona: Eg — N. In this case, callv(uv) thelength of uv.

Theshortest path problem Given a connected grapf with a weight functiony: Eq — N,
find d% (u, v) for givenu,v € G.

Assume that; is a connected graph. Dijkstra’s algorithm solves the mablor every pair
u, v, whereu is a fixed starting point and € G. Let us make the convention thatuv) = oo,
if uv ¢ Eq.

Dijkstra’s algorithm :

(i) Setug = u, t(up) = 0 andt(v) = oo for all v # wy.
(i) Fori € [0,vg — 1): for eachv ¢ {uy,...,u;},

replacet(v) by min{t(v),t(u;) + a(u;v)} .

Letw;+1 ¢ {u1,...,u;} beanyvertex with the least valugu;1).
(iii) Conclusion:d®(u,v) = t(v).

Example 1.7.Consider the following weighted grapB. Apply Dijkstra’s algorithm to the
vertexuy.

e ug = vo, t(ug) = 0, others arex.

e t(v1) = min{oo,2} = 2, t(v2) = min{oo,3} = 3,
others arex. Thusu; = v;.

o t(vy) = min{3, t(u1) + a(ujv2)} = min{3,4} = 3,
t(v3) == 2+1 == 3,t(v4) == 2+3 == 5,75(’05) == 2+2 =
4. Thus choose; = vs.

e t(vy) = min{3, 00} = 3, t(v4) = min{5,3+2} =5,
t(vs) = min{4,3 + 1} = 4. Thus setus = va.

e t(vg) = min{5,3 + 1} =4, t(vs) = min{4, oo} = 4. Thus choosey, = vy.
e t(v5) = min{4,4 + 1} = 4. The algorithm stops.

We have obtained:
t(?}l) =2, t(ve) = 3, t(?)g) =3, t(v4) =4, t(?)5) =4.

These are the minimal weights froeg to eachw;.
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The steps of the algorithm can also be rewritten as a table:

v 2 - - - -
v 3 33 - -
vgloo 3 - - -
vyloo 5 5 4 -
vs|loo 4 4 4 4

The correctness of Dijkstra’s algorithm can verified be digis.

Letv € V be any vertex, and l€®: ug — u — v be a shortest path fromy to v, where
u is any vertexu # v on such a path, possibly = ug. Then, clearly, the first part of the path,
ug —— u, is a shortest path from, to u, and the latter part = v is a shortest path from to
v. Therefore, the length of the pathequals the sum of the weights @f = v andu = v.
Dijkstra’s algorithm makes use of this observation iteslsi.



2

Connectivity of Graphs

2.1 Bipartite graphs and trees

In problems such as the shortest path problem we look forrmim solutions that satisfy
the given requirements. The solutions in these cases aslyusubgraphs without cycles.
Such connected graphs will be called trees, and they are eggdn search algorithms for
databases. For concrete applications in this respect, see

T.H. CorRMEN, C.E. LEISERSON ANDR.L. RIVEST, “Introduction to Algorithms”, MIT
Press, 1993.

. . . +
Certain structures with operations are representablesas.tr / \
These trees are sometimes calleohstruction treesde- ) y
composition treesfactorization treesor grammatical trees / \

Grammatical trees occur especially in linguistics, whgre s x 4+
tactic structures of sentences are analyzed. On the rigtd th / \
is a tree of operations for the arithmetic formutdy +z)+y. Yy z

Bipartite graphs

DEFINITION. A graph( is calledbipartite, if Viz has a partition to two subsefs andY
such that each edgey € E; connects a vertex ok and a vertex ot". In this case(X,Y")
is abipartition of G, andG is (X, Y)-bipartite .

A bipartite graphG (as in the above) is eomplete (m, k)-

bipartite graph, if | X| =m, |Y| = k, anduv € E for all

ue Xandv ey,

All complete (m, k)-bipartite graphs are isomorphic. Let

K, i, denote such a graph.

A subsetX C Vi is stable, if G[X] is a discrete graph. K
2,3

The following result is clear from the definitions.
Theorem 2.1.A graphG is bipartite if and only ifl; has a partition to two stable subsets.

Example 2.1.Thek-cube@y, of Example 1.5 is bipartite for ak. Indeed, consideA = {u |
u has an even number ofs} and B = {u | u has an odd number dfs}. Clearly, these sets
partitionB*, and they are stable if);,.
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Theorem 2.2.A graph( is bipartite if and only if it has no odd cycles.

Proof. (=) Let G be (X, Y)-bipartite. For a cycle’: vy — ... — vxy1 = vy Of lengthk,
vy € X impliesvy, € Y, v3 € X, ...,v9; € Y, v9;41 € X. Consequentlyk + 1 =2m + 11is
odd, andk = |C| is even.

(<) Suppose that all cycles i@ are even. First, we observe that it suffices to show the
claim for connected graphs. Indeedddfis disconnected, then each cycle(dfs contained in
one of the connected components,, ..., G,, of G. If G; is (X;,Y;)-bipartite, then(X; U
XoU---UX,, Y1 UYaU---UY)) is a bipartition ofG.

Assume thus that' is connected. Let € G be a chosen vertex, and define
X ={x | dg(v,z) isever}, Y ={y|dg(v,y) isodd} .

Sinced is connected}; = X UY. Also, by the definition of distance{ N Y = 0.

Letu,w € G be both inX or both inY, and letP: v = v and@: v = w be (among
the) shortest paths fromto v andw.

Assume thatc is the last common vertex d? andQ: P = PP, Q = Q1Q2, Where
Py: x = wandQ,: - w are independent. Sind@ andQ are shortest path$); andQ,
are shortest paths = x. Consequently,P; | = |Q1].

So|P,| and|Q2| have the same parity, i.eF»|+|Q2| is
even, and saw ¢ E¢. HenceG[X] andG[Y] are dis-
crete induced subgraphs, afids bipartite as claimed.

Checking whether a graph is bipartite is easy. Indeed,
this can be done by using two ‘opposite’ colours, say
1 and2. Start from any vertex,, and colour it byl.
Then colour the neighbours of by 2, and proceed by
colouring all neighbours of an already coloured vertex
by an opposite colour.

If the whole graph can be coloured, théhis (X, Y")-bipartite, whereX consists of those
vertices with colourl, andY of those vertices with colou?; otherwise, at some point one of
the vertices gets both colours, and in this c&sés not bipartite.

Example 2.2 ERDOS(1965)). We show that each graph has a bipartite subgrap C G
such thaty > Zeq.

Indeed, lefV; = X UY be a partition such that the number of edges betweemdY is as
large as possible. Denote

F=Esn{uw |ue X,veY},

and letH = G[F]. ObviouslyH is a spanning subgraph, and it is bipartite.
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By the maximum condition,
1
di(v) 2 5da (),

since, otherwisey is on the wrong side. (That is, if € X, then the pairX’ = X \ {v},
Y’ =Y U {v} does better that the pak,Y.) Now

1 1 1 1
€H:§ZdH(U)Z§Z§dG(U):§€G
veH veG

Bridges

DEFINITION. An edgee € E is abridge of the graphG,
if G—e has more connected components tlignthat is, if
c(G—e) > ¢(Q).

In particular, and most importantly, an edga a connected
G is a bridge if and only it7—e is disconnected. On the right
the two horizontal lines are bridges. The rest are not.

Theorem 2.3.An edgee € E is a bridge if and only it is not in any cycle of5.

Proof. First of all, note thae = wv is a bridge if and only ifu andv belong to different
connected components 6f—e.

(=) If there is a cycle inG containinge, then there is a cycl€ = eP: u — v = u,
whereP: v = u is a path inG—e, and sce is not a bridge.

(<) Assume that = wv is not a bridge. Hence andv are in the same connected com-
ponent ofG—e. If P: v = w is a path inG—e, theneP: v — v < w is a cycle inG that
containse. O

Lemma 2.1.Lete be a bridge in a connected gragh.

(i) Thenc(G—e) = 2.
(i) Let H be a connected component@f-e. If f € Eyy is a bridge ofH, thenf is a bridge
of G.

Proof. For (i), lete = wv. Sincee is a bridge, the endg andv are not connected i&'—e.
Letw € G. SinceG is connected, there exists a pdth w = v in G. This is a path of7—e,
unlessP: w - u — v containse = uw, in which case the patb = v is a path inG—e.
For (ii), if f € Fy belongs to a cycl€' of G, thenC' does not contair (sincee is in no
cycle), and thereforé€’' is inside H, and f is not a bridge ofA. a
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Trees

DEFINITION. A graph is calledacyclic, if it has no cycles. An acyclic graph is also called a
forest. A tree is a connected acyclic graph.

By Theorem 2.3 and the definition of a tree, we have
Corollary 2.1. A connected graph is a tree if and only if all its edges are geisl

Example 2.3.The following enumeration result for trees has many difiegroofs, the first
of which was given by @YLEY in 1889:There aren™ 2 trees on a vertex séf of n elements.
We omit the proof.

On the other hand, there are only a few trapgo isomorphism

trees) 1 |1 |12 |3]|6 /(11|23

n 910 | 11 |12 | 13 14 15 16
trees| 47| 106 | 235 | 551 | 1301 | 3159 | 7741 | 19 320

The nonisomorphic trees of ordemre:

EE s SR S & Blaas Gl

We say that a patl?: v 2 v is maximal in a graphG, if there are n@ € E for which
Pe oreP is a path. Such paths exist, becauges finite.

Lemma 2.2.Let P: u = v be a maximal path in a grapy. ThenNg(v) C P. Moreover, if
G is acyclic, thenig (v) = 1.

Proof. If e = vw € Eg with w ¢ P, then alsaPe is a path, which contradicts the maximality
assumption fo?. HenceN¢g(v) C P. For acyclic graphs, ifov € E¢, thenw belongs taP,
andwv is necessarily the last edge Bfin order to avoid cycles. a

Corollary 2.2. Each tre€l” with v > 2 has at least two leaves.
Proof. SinceT is acyclic, both ends of a maximal path have degree one. O

Theorem 2.4.The following are equivalent for a graghi.

() Tisatree.
(i) Any two vertices are connected by a unique path.
(i) T is acyclic andep = vp — 1.
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Proof. Letvr = n. If n = 1, then the claim is trivial. Suppose thus that 2.

()=-(ii) Let T be a tree. Assume the claim does not hold, and’l€p: « =~ v be two
different paths between the same verticesdv. Suppose tha| > |Q|. SinceP # Q, there
exists an edge which belongs taP but not toQ. Each edge of  is a bridge, and therefore
u andv belong to different connected componentdfe. Hencee must also belong t@; a
contradiction.

(iiy=-(iii) We prove the claim by induction on. Clearly, the claim holds fon = 2, and
suppose it holds for graphs of order less thahet 7" be any graph of ordes satisfying (ii).
In particular,T" is connected, and it is clearly acyclic.

Let P: v = v be a maximal path if". By Lemma 2.2, we havér(v) = 1. In this
case,P: u = w — v, wherevw is the unique edge having an endThe subgrapfl’—wv is
connected, and it satisfies the condition (ii). By inductiypothesisgr_, = n — 2, and so
er = er_y + 1 =n — 1, and the claim follows.

(i) =(i) Assume (iii) holds forT. We need to show thdf is connected. Indeed, let the
connected components &fbeT; = (V;, E;), for i € [1,k]. SinceT is acyclic, so are the
connected graphs;, and hence they are trees, for which we have proved Bat= |V;| — 1.
Now, vy = Zle |Vi|, ander = Zle |E;|. Therefore,

k

k
n—l=er=> (Vil-1)=> [Vil-k=n—k,
=1

i=1
which gives thak = 1, that is,T" is connected. O

Example 2.4.Consider a cup tournament nfteams. If during a round there akgdeams left
in the tournament, then these are divided iptd pairs, and from each pair only the winner
continues. Ifk is odd, then one of the teams goes to the next round withounhdpaw play.
How many plays are needed to determine the winner?

So if there ard 4 teams, after the first rouridteams continue, and after the second round
4 teams continue, thelh So13 plays are needed in this example.

The answer to our problem is — 1, since the cup tournament is a tree, where a play
corresponds to an edge of the tree.

Spanning trees

Theorem 2.5.Each connected graph hasspanning treg that is, a spanning graph that is a
tree.

Proof. Let H C G be a minimal connected spanning subgraph, that is, a cathepanning
subgraph ofz such thatH —e is disconnected for ak € Ep. Such a subgraph is obtained
from G by removing nonbridges:
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e To start with, letHy = G.

e Fori >0, letH;+1 = H;—e;, Wheree; is a not a bridge of;. Sincee; is not a bridge,
H,; ., is a connected spanning subgraphffhfand thus ofG.

e H = Hj;,when only bridges are left.

By Corollary 2.1,H is a tree. a

Corollary 2.3. For each connected grapfi, e > vo — 1. Moreover, a connected graph
isatree ifand only it = vg — 1.

Proof. LetT be a spanning tree @f. Theneg > e = vp — 1 = v — 1. The second claim
is also clear. O

Example 2.5.In Shannon’s switching gamea positive playerP and a negative playeiV

play on a graplz with two special vertices: sources and asink . P and N alternate turns

so thatP designates an edge by, and N by —. Each edge can be designated at most once.
It is P’s purpose to designate a path™— r (that is, to designate all edges in one such path),
andN tries to block all paths = r (that is, to designate at least one edge in each such path).
We say that a gam@=, s, r) is

e positive, if P has a winning strategy no matter who begins the game,
e negative if N has a winning strategy no matter who begins the game,
e neutral, if the winner depends on who begins the game.

The game on the right is neutral.

LEHMAN proved in 1964 thaShannon’s switching gan{é-, s, r) is positive if and only if
there existdd C G such thatH containss andr and H has two spanning trees with no edges
in common.

In the other direction the claim can be proved along the fadlg lines. Assume that there
exists a subgrapl# containings andr and that has two spanning trees with no edges in
common. TherP plays as follows. IfN marks by— an edge from one of the two trees, then
P marks by+ an edge in the other tree such that this edge reconnectsakerbiree. In this
way, P always has two spanning trees for the subgraptvith only edges marked by in
common.

In converse the claim is considerably more difficult to prove

There remains the problem to characterize those Shanneitthsg gamegG, s, r) that
are neutral (negative, respectively).
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The connector problem

To build a network connecting nodes (towns, computers, chips in a computer) it is desrabl
to decrease the cost of construction of the links to the minimThis is theconnector prob-
lem. In graph theoretical terms we wish to find gptimal spanning subgraphof a weighted
graph. Such an optimal subgraph is clearly a spanning togeotherwise a deletion of any
nonbridge will reduce the total weight of the subgraph.

Let thenG® be a graphG together with a weight function: E; — R™ (positive reals)
on the edges. Kruskal’s algorithm (also known asgreedy algorithm) provides a solution
to the connector problem.

Kruskal's algorithm : For a connected and weighted gra@h of ordern:

(i) Lete; be an edge of smallest weight, and 8gt= {e; }.

(i) Foreachi = 2,3,...,n — 1in this order, choose an edge¢ E;_; of smallest possible
weight such that; does not produce a cycle when addedA{&; ], and lett; = E;_; U
{ei}.

The final outcome i§" = (Vig, Ep—1).

By the construction]” = (V, E,,—1) is @ spanning tree of7, because it contains no
cycles, it is connected and has— 1 edges. We now show th&t has the minimum total
weight among the spanning treesof

Suppos€l] is any spanning tree a¥. Let e, be the first edge produced by the algorithm
that is not inT3. If we adde, to Ty, then a cycleC' containingey, is created. AlsoC' must
contain an edge that is not in7T". When we replace by e in T3, we still have a spanning
tree, sayl,. However, by the construction,(ey) < a(e), and thereforex(7:) < a(T}). Note
thatT, has more edges in common withthanT;.

Repeating the above procedure, we can transfbro 7' by replacing edges, one by one,
such that the total weight does not increase. We deducex{digt< o(71).

The outcome of Kruskal's algorithm need not be unique. lddégere may exist several
optimal spanning trees (with the same weight, of coursea foraph.

Example 2.6.When applied to the weighted
graph on the right, the algorithm produces the
sequencee; = VU4, €2 = U4Vs, €3 = U3V,
e4 = vou3 andes = vyvy. The total weight of the
spanning tree is thus 9.

Also, the selectiore; = vous, €9 = V405, €3 =
Usg, €4 = V3Vg, €5 = V1V gives another optimal
solution (of weight 9). 3
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Problem. Consider tree§” with weight functionsa: £ — N. Each treel” of ordern has
exactly (g) paths. (Why is this soT)oes there exist a weighted tr&&" of ordern such that
the (total) weights of its paths ate 2, ..., (})?

In such a weighted tre€® different paths have differ-
ent weights, and eache [1, ()] is a weight of one
path. Also,c must be injective.

No solutions are known for any > 7.

TAYLOR (1977) provedif T of order n exists, then necessarity = k2 or n = k> + 2 for
somek > 1.

Example 2.7.A computer network can be presented as a g@ptvhere the vertices are the
node computers, and the edges indicate the direct link$ &@aputen has areddressu(v),
a bit string (of zeros and ones). Thength of an address is the number of its bits. A message
that is sent ta is preceded by the addresgv). The Hamming distance h(a(v), a(u)) of
two addresses of the same length is the number of placesewher and a(u) differ. For
example /2(00010,01100) = 3 andh(10000,00000) = 1.

It would be a good way to address the vertices so that the Haghdistance of two vertices
is the same as their distancedh In particular, if two vertices were adjacent, their addess
should differ by one symbol. This would make it easier for @e@omputer to forward a
message.

A graph G is said to beaddressable if it @
has an addressing such thatdg(u,v) = @.@ @
h(a(u), a(v)). ©

We prove thaevery tre€l’ is addressable. Moreover, the addresses of the verticExah
be chosen to be of length- — 1.

The proof goes by induction. ly < 2, then the claim is obvious. In the cage = 2, the
addresses of the vertices are simply 0 and 1.

Let thenVy = {vy,...,vk11}, @and assume thatr(v;) = 1 (a leaf) andv,vy, € Ep.
By the induction hypothesis, we can address the Tree by addresses of length — 1.
We change this addressing: ket be the address af; in T—vq, and change it tda;. Set
the address of; to 1as. It is now easy to see that we have obtained an addressirif &sr
required.

The triangleKs is not addressable. In order to gain more generality, we fptue address-
ing for general graphs by introducing a special symbioladdition to 0 and 1. Atar address
will be a sequence of these three symbols. The Hamming distaamains as it was, that is,
h(u,v) is the number of places, wheteandv have a different symbol 0 or 1. The special
symbolx does not affect (u, v). S0,~A(10%%01,0%%101) = 1 andh (1 s, x00% %) = 0.
We still want to havéi(u, v) = dg(u,v).
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We star address this graph as follows:

a(v1) = 0000, a(vg) =10%0,
a(vg) =1 %01, a(vy) = *x11.

These addresses have length 4. Can you design a
star addressing with addresses of length 3?

WINKLER proved in 1983 a rather unexpected restiite minimum star address length of
a graphGis at mostg — 1.

For the proof of this, see AN LINT AND WILSON, “A Course in Combinatorics”.

2.2 Connectivity

Spanning trees are often optimal solutions to problemsyevbest is the criterion. We may
also wish to construct graphs that are as simple as posbililashere two vertices are always
connected by at least two independent paths. These proldeows especially in different
aspects of fault tolerance and reliability of networks, vehene has to make sure that a break-
down of one connection does not affect the functionalityhefietwork. Similarly, in a reliable
network we require that a break-down of a node (computen)lghmt result in the inactivity

of the whole network.

Separating sets

DEFINITION. Avertexv € G is acut vertex, if ¢(G—v) > ¢(G).

A subsetS C V; is aseparating setif G—S is disconnected. We
also say thafS separatesthe verticesu andv and it is a(u, v)-
separating set if u andv belong to different connected compo-
nents ofG—S.

If G is connected, then is a cut vertex if and only i&7—v is disconnected, that i$p} is
a separating set. The following lemma is immediate.

Lemma 2.3.If S C V; separates. andwv, then every pathP: v - v visits a vertex of.

Lemma 2.4.If a connected grapli- has no separating sets, then it is a complete graph.

Proof. If vg < 2, then the claim is clear. For; > 3, assume that? is not complete, and let
uv ¢ Eqg. Now Vi \ {u, v} is a separating set. The claim follows from this. 0
DEFINITION. The {ertex) connectivity number «(G) of G is defined as

k(G) = min{k | k = |S|, G—S disconnected or trivialsS C Vi } .
A graphG is k-connected if x(G) > k.
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In other words,

e k(G) =0, Iif G is disconnected,
e k(G) =vg —1,Iif Gisacomplete graph, and
e otherwisex(G) equals the minimum size of a separating setrof

Clearly, if G is connected, then it is 1-connected.

DEFINITION. An edge cutF of G consists of edges so that—F' is disconnected. Let
k' (G) = min{k | k = |F|, G—F disconnectedF C Eg} .

For trivial graphs, let’(G) = 0. A graphG is k-edge connectedf «/'(G) > k. A minimal
edge cutF' C E¢ is abond (F'\ {e} is not an edge cut for anyc F).

Example 2.8.Again, if G is disconnected, then
k' (G) = 0. On the right,x(G) = 2 andx'(G) =
2. Notice that the minimum degreed$G) = 3

Lemma 2.5.Let G be connected. ¥ = uv is a bridge, then eitheé = K> or one ofu or v
is a cut vertex.

Proof. Assume thatz # K and thus that > 3, sinceG is connected. Let, = N/ __(u)
andG, = N{__(v) be the connected components@f-e containingu andv. Now, either
va, > 2 (andu is a cut vertex) org, > 2 (andv is a cut vertex). O

Lemma 2.6.1f F' be a bond of a connected gragh thenc(G—F') = 2.

Proof. SinceG—F is disconnected, anél' is minimal, the subgrapltl = G—(F' \ {e}) is
connected for givem € F. Hencee is a bridge inH. By Lemma 2.1¢(H—e¢) = 2, and thus
¢(G—F) =2,sinceH—e = G—F. 0

Theorem 2.6 WHITNEY (1932)).For any graphG,
k(G) < K'(G) <6(Q) .

Proof. AssumeG is nontrivial. Clearlyx’(G) < §(G), since if we remove all edges with an
endv, we disconnect:. If ¥’ (G) = 0, thenG is disconnected, and in this case aig6/) = 0.
If x(G) = 1, thenG is connected and contains a bridge. By Lemma 2.5, efther K, or G
has a cut vertex. In both of these cases, alg&) = 1.

Assume then that/(G) > 2. Let F be an edge cut off with |F| = «/(G), and let
e =uv € F. ThenF is a bond, and7— F' has two connected components.
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Consider the connected subgraph al o< | o—<
H=Go(F\{e) = G-F)+e. ©|i o boe | o o
wheree is a bridge. o<___/o

F

Now for eachf € F'\ {e} choose an end different fromandv. (The choices for different
edges need not be different.) Note that sificg e, either end off is different fromu or v.
Let S be the collection of these choices. THS$ < |F| — 1 = £'(G) — 1, andG— S does not
contain edges fronk" \ {e}.

If G—S is disconnected, thefi is a separating set and 8¢G) < |S| < «/(G) — 1 and
we are done. On the other hand@@f-S is connected, then eithéi—S = K5 (= e), or either
u or v (or both) is a cut vertex off—S (since H—S = G—S, and therefor&Z—S C H is
an induced subgraph df). In both of these cases, there is a vertex;efS, whose removal
results in a trivial or a disconnected graph. In conclusigiy) < |S| + 1 < #'(G), and the
claim follows. O

Menger’s theorem

Theorem 2.7 MENGER (1927)).Letu, v € G be nonadjacent vertices of a connected graph
G. Then the minimum number of vertices separatiramdv is equal to the maximum number
of independent paths fromto v.

Proof. If a subsetS C V; is (u, v)-separating, then every path-— v of G visits S. Hence
|S| is at least the number of independent paths frota v.

Conversely, we use induction en = v + ¢ to show that ifS = {wq, we, ..., wi}isa
(u,v)-separating set of the smallest size, tiiehas at least (and thus exactly)ndependent
pathsu = v.

The case fok = 1 is clear, and this takes care of the small valueswpfequired for the
induction.

(1) Assume first that: and v have a common neighbous € Ng(u) N Ng(v). Then
necessarilyw € S. In the smaller grapl—w the setS'\ {w} is a minimum(u, v)-separating
set, and the induction hypothesis yields that therekarel independent paths = v in
G—w. Together with the path — w — v, there arek independent pathg = v in G as
required.

(2) Assume then thaNg(u) N Ng(v) = 0, and denote byd,, = N_¢(u) andH, =
N¢._g(v) the connected components@f- S for v andv.

(2.1) Suppose next th&t ¢ Ng(u) andS ¢ Ng(v).
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Letv be a new vertex, and defiiie, to be the graph on
H, U S U{v} having the edges aF[H, U S] together
with vw; for all i € [1, k]. The graphG,, is connected
and it is smaller thawz. Indeed, in order foiS to be a
minimum separating set, all; € .S have to be adjacent sz >@
to some vertex if{,,. This shows thatg, < ¢¢, and,
moreover, the assumption (2.1) rules out the ddse-
{v}. So|H,| > 2 andvg, < vg.

If S"is any (u,v)-separating set of7,, thenS” will separateu from all w; € S\ S’
in G. This means that’ separates. andv in G. Sincek is the size of a minimunfu, v)-
separating set, we hay#’| > k. We noted tha€7,, is smaller tharz, and thus by the induction
hypothesis, there arfeindependent pathg — v in G,,. This is possible only if there exigt
pathsu = w;, one for eachi € [1, k], that have only the end in common.

R P

By the present assumption, algas nonadjacent to some vertex 8f A symmetric argu-
ment applies to the grapfi, (with a new vertexz), which is defined similarly ta@7,,. This
yields that there arg pathsw; = v that have only the endin common. When we combine
these with the above patlhis— w;, we obtaink independent paths - w; = vin G.

(2.2) There remains the case, where dtir(u, v)-separating setS of k& elements, either
S C Ng(u)orS C Ng(v). (Note that then, by (2)§ N Ng(v) = 0 or SN Ng(u) = 0.)

Let P = ef(Q be a shortest path = v in G, wheree = ux, f = zy, andQ: y = v.
Notice that, by the assumption (27| > 3, and soy # v. In the smaller graplé:— f, let S’
be a minimum set that separateandu.

If |S’| > k, then, by the induction hypothesis, there arimdependent pathgs = v in
G— f. But these are paths 6f, and the claim is clear in this case.

If, on the other hand|S’| < k, thenu andv are still connected irz—S’. Every path
u = v in G—S’ necessarily travels along the edfje- xy, and sar,y ¢ S'.

Let
S, =S8"u{x} and S, =S"U{y}.

These sets separateandv in G (by the above fact), and they have sizeBy our current
assumption, the vertices 6§, are adjacent to, since the patlP is shortest and soy ¢ Eg
(meaning that is not adjacent to all of,). The assumption (2) yields thatis adjacent to
all of S, sinceuzr € Eq. But now bothu andv are adjacent to the vertices §f, which
contradicts the assumption (2). O

Theorem 2.8 MENGER (1927)).A graphG is k-connected if and only if every two vertices
are connected by at leaktindependent paths.

Proof. If any two vertices are connected byndependent paths, then itis clear théat) > k.
In converse, suppose thatG) = k, but thatG has verticesu and v connected by at
mostk — 1 independent paths. By Theorem 2.7, it must be ¢hatuv € Eg. Consider the
graphG—e. Now u andv are connected by at mokt— 2 independent paths i@ —e, and by
Theorem 2.7y, andv can be separated iA—e by a setS with |S| = k — 2. Sincevg > k
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(because:(G) = k), there exists a € G that is not inS U {u, v}. The vertexw is separated
in G—e by S from u or from v; otherwise there would be a path— v in (G—e)—S. Say,
this vertex isu. The setS U {v} hask — 1 elements, and it separatefrom w in G, which
contradicts the assumption thatG) = k. This proves the claim. O

We state without a proof the corresponding separation pipf& edge connectivity.

DEFINITION. Let G be a graph. Auv-disconnecting setis a setF’ C FE¢ such that every
pathu = v contains an edge from.

Theorem 2.9.Letu,v € G withu # v in a graphG. Then the maximum number of edge-
disjoint pathsu = v equals the minimum numbérof edges in aiv-disconnecting set.

Corollary 2.4. A graph( is k-edge connected if and only if every two vertices are comaect
by at leastk edge disjoint paths.

Example 2.9.Recall the definition of the cub@;, from Example 1.5. We show that Q) =
k.

First of all, x(Qx) < 6(Qx) = k. In converse, we show the claim by induction. Extract
from Q). the disjoint subgraphs induced by{0u | v € B¥~!} andG; induced by{1u |
u € B*~1}. These are (isomorphic t@);_;, andQy, is obtained from the union af, and
G1 by adding the2*~! edges(0u, 1u) for all v € B*~1.

Let S be a separating set 6f;, with |.S| < k. If both Gy—S andG;—S were connected,
alsoQ—S would be connected, since one pdit:, 1u) necessarily remains i, —S. So we
can assume thdt,—S is disconnected. (The case G —S is symmetric.) By the induction
hypothesis,x(Gy) = k — 1, and henceS contains at leask — 1 vertices ofG, (and so
|S| > k —1). If there were no vertices froi@; in S, then, of course(z; — S is connected, and
the edgeg0u, 1u) of @, would guarantee thaD,—S is connected; a contradiction. Hence
|S| > k.

Example 2.10.We havex'(Qy) = k for the k-cube. Indeed, by Whitney’s theorem,G) <
K'(G) < §(G). Sincer(Qx) = k = 5(Qy,), alsor’(Qy,) = k.

Algorithmic Problem. The connectivity problems tend to be algorithmically diffic In the
disjoint paths problem we are given a sefu;, v;) of pairs of vertices fori = 1,2,...,k,
and it is asked whether there exist paths u; = v; that have no vertices in common. This
problem was shown to be NP-complete byikrH in 1975. (However, fofixedk, the problem
has a fast algorithm due todBERTSONand YMOUR (1986).)
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Dirac’s fans

DEFINITION. Letv € G andS C Vg such thatv ¢ S in
a graphG. A set of paths from to a vertex inS is called a L °
(v, S)-fan, if they have onlyv in common. -

Theorem 2.10 DIRAC (1960)).A graph( is k-connected if
and only ifvg > k and for everyw € G and S C Vg with
|S| > kandv ¢ S, there exists dv, S)-fan of k paths.

J

Proof. Exercise. O

Theorem 2.11 DIRAC (1960)).Let G be ak-connected graph fok > 2. Then for anyk
vertices, there exists a cycle Gfcontaining them.

Proof. First of all, sincex(G) > 2, G has no cut vertices, and thus no bridges. It follows that
every edge, and thus every vertex(dbelongs to a cycle.

Let S C Vi be such thatS| = k, and letC' be a cycle ofG that contains the maximum
number of vertices of. Let the vertices o6 N Vo bewy, ..., v, listed in order around” so
that each paifv;, v;11) (with indices modula-) defines a path alon@' (except in the special
case where = 1). Such a path is referred to asegmentf C. If C contains all vertices of
S, then we are done; otherwise, suppose S is not onC.

It follows from Theorem 2.10 that there is(a, V)-fan of at leastmin{k, |V¢|} paths.
Therefore there are two pattis: v = u and@: v = w in such a fan that end in the same
segmentv;, v;11) of C'. Then the patiV : © = w (orw = u) alongC contains all vertices
of SN V. But now PWQ~! is a cycle ofG that containg and allv; for i € [1,7]. This
contradicts the choice af, and proves the claim. O
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Tours and Matchings

3.1 Eulerian graphs

The first proper problem in graph theory was the Kénigsbeidglerproblem. In general, this
problem concerns about travels around a graph such thatriesetd avoid using the same
edge twice. In practice these eulerian problems occurp&iance, in optimizing distribution
networks — such as delivering mail, where in order to save gach street should be travelled
only once. The same problem occurs in mechanical graphmgotivhere one avoids lifting
the pen off the paper while drawing the lines.

Euler tours

DEFINITION. Awalk W = eqea... e, is atrail, if e; # e; for all i # j. An Euler trail of
a graphG is a trail that visits every edge once. A connected gr@pl eulerian, if it has a
closed trail containing every edge Gf Such a trail is called aRuler tour .

Notice that if W = ejeq...e, is an Euler tour (and s&c = {ej,e2,...,e,}), also
eieit1...epe1 ...e;—1 is an Euler tour for ali € [1,n]. A complete proof of the following
Euler's Theorem was first given by HERHOLZER in 1873.

Theorem 3.1 EULER (1736),HIERHOLZER (1873)).A connected graply is eulerian if and
only if every vertex has an even degree.

Proof. (=) SupposédV : u = w is an Euler tour. Let (# u) be a vertex that occurstimes
in /. Every time an edge arrives@tanother edge departs framand therefore (v) = 2k.
Also, dg(u) is even, sincéV starts and ends at

(<) AssumeG is a nontrivial connected graph such that(v) is even for all € G. Let

W =e1ey...€,: 090 =— v, With e =v;_1v;

be a longest trail irG. It follows that alle = v,w € Es are among the edges &, for,
otherwise, W could be prolonged tdVe. In particular,vy = v,, that is,I¥ is a closed trail.
(Indeed, if it werev,, # vy andv,, occursk times inW, thendg (v,) = 2(k — 1) + 1 and that
would be odd.)

If W is not an Euler tour, then, sin€g@ is connected, there exists an edfje- v;u € Eg
for somei, which is not inl¥. However, now

€i+1...€En€1 ezf

isatrail inG, and it is longer thaml’. This contradiction to the choice &F proves the claim.
0
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Example 3.1.The k-cube@);, is eulerian for even integefs because),, is k-regular.

Theorem 3.2.A connected graph has an Euler trail if and only if it has at inog vertices
of odd degree.

Proof. If G has an Euler trait = v, then, as in the proof of Theorem 3.1, each vertex
w ¢ {u,v} has an even degree.

Assume then that’ is connected and has at most two vertices of odd degréehHs no
vertices of odd degree then, by Theorem $1has an Euler trail. Otherwise, by the hand-
shaking lemma, every graph has an even number of vertichksodd degree, and therefore
G has exactly two such vertices, sayndv. Let H be a graph obtained fro@@ by adding a
vertexw, and the edgesw andvw. In H every vertex has an even degree, and hence it has an
Euler tour, sayu -~ v — w — u. Here the beginning patt = v is an Euler trail ofG. 0O

The Chinese postman

The following problem is due to GAN MEIGU (1962). Consider a village, where a postman
wishes to plan his route to save the legs, but still everyestias to be walked through. This
problem is akin to Euler’s problem and to the shortest pabblpm.

Let G be a graph with a weight function: E; — R*. TheChinese postman problem
is to find a minimum weighted tour i@ (starting from a given vertex, the post office).

If G is eulerian then any Euler tour will do as a solution, because such attauerses
each edge exactly once and this is the best one can do. Inathestice weight of the optimal
tour is the total weight of the grapHl, and there is a good algorithm for finding such a tour:

Fleury’'s algorithm:

e Letyy € G be a chosen vertex, and Bfy be the trivial path ony.

e Repeat the following procedure for= 1,2, ... as long as possible: suppose a ti&jl =
erez ... e; has been constructed, where= v;_1v;.
Choose an edge ; (# e; for j € [1,i]) so that

(i) e;+1 has an end;, and

(i) e;+1 is not a bridge of7; = G—{e, ..., e;}, unless there is no alternative.

Notice that, as is natural, the weighitée) play no role in the eulerian case.

Theorem 3.3.If G is eulerian, then any trail of7 constructed by Fleury’s algorithm is an
Euler tour ofG.

Proof. Exercise. O
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If G is not eulerian the poor postman has to walk at least one street twice. Hppédns,
e.g, if one of the streets is a dead end, and in general if theresigeat corner of an odd
number of streets. We can attack this case by reducing itet@ttterian case as follows. An
edgee = uv will be duplicated, if it is added toG parallel to an existing edgé = uv with
the same weighiy(e’) = a(e).

Q

)
4 3 4 3 4 3
X
2 2 2 2 .

Above we have duplicated two edges. The rightmost multigiagulerian.

There is a good algorithm byd#oNDS AND JOHNSON (1973) for the construction of
an optimal eulerian supergraph by duplications. Unforteiyathis algorithm is somewhat
complicated, and we shall skip it.

3.2 Hamiltonian graphs

In the connector problem we reduced the cost of a spannimndoeits minimum. There are
different problems, where the cost is measured by an actige of the graph. For instance,
in the travelling salesman problema person is supposed to visit each town in his district,
and this he should do in such a way that saves time and mongioby, he should plan the
travel so as to visit each town once, and so that the ovemgtiitftime is as short as possible.
In terms of graphs, he is looking for a minimum weighted Hawmnilcycle of a graph, the
vertices of which are the towns and the weights on the edgetharflight times. Unlike for
the shortest path and the connector problems no efficiegablelalgorithm is known for the
travelling salesman problem. Indeed, it is widely belietleat no practical algorithm exists
for this problem.

Hamilton cycles

DEFINITION. A path P of a graphG is a Hamilton path,

if P visits every vertex of7 once. Similarly, a cycle” is

a Hamilton cycle, if it visits each vertex once. A graph is
hamiltonian, if it has a Hamilton cycle.

Note that ifC : uy — us — --- — wu, IS a Hamilton cycle, then so is;, — ... u, —
u; — ...u;—; foreachi € [1,n], and thus we can choose where to start the cycle.

Example 3.2.1t is obvious that eacli,, is hamiltonian whenevet > 3. Also, as is easily
seen, K, ,, is hamiltonian if and only ifn = m > 2. Indeed, letk,, ,,, have a bipartition
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(X,Y), where| X| = n and|Y'| = m. Now, each cycle ir¥,, ,,, has even length as the graph
is bipartite, and thus the cycle visits the s&fsY” equally many times, sinc& andY are
stable subsets. But then necessdly = |Y|.

Unlike for eulerian graphs (Theorem 3.1) no good charazaédn is known for hamilto-
nian graphs. Indeed, the problem to determin@ i§ hamiltonian is NP-complete. There are,
however, some interesting general conditions.

Lemma 3.1.If G is hamiltonian, then for every nonempty subSet Vi,
c(G=S) <|5].

Proof. Let) # S C Vg, u € S, and letC: v = u be a Hamilton cycle ofs. AssumeG—S
has k connected components;, i € [1, k]. The caseé = 1 is trivial, and hence suppose that
k > 1. Letu; be the last vertex of’ that belongs td~;, and letv; be the vertex that follows
u; in C. Nowv; € S for eachi by the choice of;, andv; # v, for all j # ¢, because” is a
cycle andu;v; € E¢ for all 7. Thus|S| > k as required. O

Example 3.3.Consider the graph on the right. I,
c¢(G-S) = 3 > 2 = |S] for the setS of black ver-
tices. ThereforeG does not satisfy the condition of
Lemma 3.1, and hence it is not hamiltonian. Interest-
ingly this graph is(X, Y')-bipartite of even order with

| X| = |Y]. Itis also3-regular.

Example 3.4.Consider thePetersen graph on the
right, which appears in many places in graph theory as
a counter example for various conditions. This graph
is not hamiltonian, but it does satisfy the condition
¢(G-S) < |S| for all S # 0. Therefore the conclusion
of Lemma 3.1 imot sufficiento ensure that a graph is
hamiltonian.

The following theorem, due to RE, generalizes an earlier result by C (1952).
Theorem 3.4 ORE (1962)).Let GG be a graph of order > 3, and letu, v € G be such that
da(u) +da(v) > vg .

ThenG is hamiltonian if and only if7 + uv is hamiltonian.

Proof. Denoten = vg. Letu,v € G be such thatlg(u) + dg(v) > n. If uv € Eg, then
there is nothing to prove. Assume thus that¢ E.

(=) This is trivial since ifG has a Hamilton cycl€’, thenC' is also a Hamilton cycle of
G + uv.

(<) Denotee = wv and suppose thét + e has a Hamilton cycl€'. If C' does not use the
edgee, then it is a Hamilton cycle ofs. Suppose thus thatis on C. We may then assume
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thatC: v — v — u. Nowu = v1 — v — ... — v, = v is a Hamiltonpath of G.
There exists an with 1 < 7 < n such thatuv; € Eg and v;,_ijv € Eq. For, otherwise,
da(v) < n — dg(u) would contradict the assumption.

e 7 N N
V1 —V2— 0 — 0 —Vi—1—7Vj— 0 — 0 —Un

But nowu = v; = v;_1 — vy, — Up_1 —— Vi1 — v; — v1 = u IS a Hamilton cycle in

G. 0
Closure

DEerFINITION. For a graphi, define inductively a sequence,, G4, . .., G of graphs such
that

Gy =G and Gi+1 =G; +uv,
whereu andv are any vertices such that ¢ E, anddg, (u)+dg, (v) > vg. This procedure
stops when no new edges can be addedtéor somek, that is, inGy,, for all u, v € G either

wv € Eg, ordg, (u) + dg, (v) < vg. The result of this procedure is tlebosure of G, and it
is denoted byl (G) (= Gi) .

In each step of the construction @f{G) there are usually alternatives which edgeis to
be added to the graph, and therefore the above proceduré deteministic. However, the
final resultcl(G) is independent of the choices.

Lemma 3.2.The closure:l(G) is uniquely defined for all graph& of ordervg > 3.

Proof. Denoten = v. Suppose there are two ways to cl@sesay
H:G—i—{el,...,er} and H,:G—F{fl,...,fs},

where the edges are added in the given ordersH;et G + {e,...,e;} andH, = G +
{f1,..., fi}. For the initial values, we hav® = H, = H|. Lete, = uv be the first edge
such thaky, # f; for alli. Thendy, ,(u)+dn,_,(v) > n, sincee, € Ey, , bute, ¢ Ep, .
By the choice ok, we haveH;_; C H’, and thus alsdy (u) + dy+(v) > n, which means
thate = uv must be inH’; a contradiction. Thereforél C H’. Symmetrically, we deduce
that H' C H, and hencéd’ = H. a

Theorem 3.5.Let G be a graph of orders > 3.

(i) G is hamiltonian if and only if its closurel(G) is hamiltonian.
(i) If cl(G) is a complete graph, thefi is hamiltonian.

Proof. First,G C cl(G) andG spansl(G), and thus ifG is hamiltonian, so isl(G).

In the other direction, ler = Gy, G, ...,G = cl(G) be a construction sequence of the
closure ofG. If ¢l(G) is hamiltonian, then so a@j,_1, ..., G, andGy by Theorem 3.4.

The Claim (ii) follows from (i), since each complete graptih@miltonian. a
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Theorem 3.6.Let G be a graph of order > 3. Suppose that for all nonadjacent vertices
andv, d(u) + de(v) > vg. ThenG is hamiltonian. In particular, i(G) > 1vg, thenG is
hamiltonian.

Proof. Sincedq(u) +dg(v) > v for all nonadjacent vertices, we havigG) = K, forn =
v, and thugs is hamiltonian. The second claim is immediate, since dgWw)+dg(v) > va
for all u,v € G whether adjacent or not. O

Chvatal’s condition

The hamiltonian problem of graphs has attracted much a@terat least partly because the
problem has practical significance. (Indeed, the first examere DNA computing was
applied, was the hamiltonian problem.)

There are some general improvements of the previous resfuttss chapter, and quite
many improvements in various special cases, where the graghsomehow restricted. We
become satisfied by two general results.

Theorem 3.7 CHVATAL (1972)).LetG be a graph withVg = {vy,ve,...,v,}, forn > 3,
ordered so thatl; < ds < --- < d,, ford; = dg(v;). If for everyi < n/2,

then@ is hamiltonian.

Proof. First of all, we may suppose thétis closed,G = cl(G), becausé&r is hamiltonian if
and only ifcl(G) is hamiltonian, and adding edges@odoes not decrease any of its degrees,
that is, if G satisfies (3.1), so do&s -+ e for everye. We show that, in this casé&; = K,,, and
thusG is hamiltonian.

Assume on the contrary thét # K, and letuv ¢ E¢ with dg(u) < dg(v) be such that
dg(u)+dg(v) is as large as possible. Becau$eés closed, we must havi; (u)+dg(v) < n,
and thereforelg(u) =i < n/2.Let A = {w | vw ¢ Eg,w # v}. By our choicedg(w) < i
for all w € A, and, moreover,

Al = (n—1) —dg(v) > dg(u) =1i.

Consequently, there are at leaserticesw with dg(w) <4, and sad; < dg(u) =i
Similarly, for each vertex fromB = {w | uw ¢ Eg,w # u}, dg(w) < dg(v) <
n —dg(u) =n — i, and

Bl = (n—1) - do(u) = (n—1) — i

Also dg(u) < n — i, and thus there are at least— i verticesw with dg(w) < n — 1.
Consequentlyd,,_; < n — ¢. This contradicts the obtained bourgd < i and the condition
(3.12). O

Note that the condition (3.1) is easily checkable for anygigraph.
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3.3 Matchings

In matching problems we are given an availability relatietveen the elements of a set. The
problem is then to find a pairing of the elements so that eaetmexht is paired (matched)
uniguely with an available companion.

A special case of the matching problem is tharriage problem, which is stated as fol-
lows. Given a sefX of boys and a set” of girls, under what condition can each boy marry a
girl who cares to marry him? This problem has many variati@se of them is thgob as-
signment problem, where we are given applicants andn jobs, and we should assign each
applicant to a job he is qualified. The problem is that an applimay be qualified for several
jobs, and a job may be suited for several applicants.

Maximum matchings

DEFINITION. ForagrapiG, asubsef\/ C E¢ is amatching of G, if M contains no adjacent
edges. The two ends of an edge M arematched underM . A matchingM is amaximum
matching, if for no matchingM’, |[M| < |M’|.

The two vertical edges on the right constitute a matchifng
that isnot a maximum matchin@lthough you cannot add
any edges taV/ to form a larger matching. This matching

is not maximum because the graph has a matching of three
edges.

DEFINITION. A matchingM saturatesv € G, if v is an
end of an edge /. Also, M saturates A C Vg, if it sat-
urates every € A. If M saturated/;, thenM is aperfect
matching.

It is clear that every perfect matching is maximum.
On the right the horizontal edges form a perfect matching.

DEFINITION. Let M be a matching ofs. An odd pathP =
eresy ... et IS M-augmented if
e P alternates betweeh; \ M andM
(that iS,€2i+1 € Eq_p andey; € M), and
e the ends of? are not saturated.

Lemma 3.3.1f G is connected wittA(G) < 2, thenG is a path or a cycle.

Proof. Exercise. O
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We start with a result that gives a necessary and sufficiemditton for a matching to be
maximum. One can use the first part of the proof to construcagimum matching in an
iterative manner starting from any matchingy and from anyM -augmented path.

Theorem 3.8 BERGE (1957)). A matchingM of G is a maximum matching if and only if
there are naM -augmented paths i

Proof. (=) Let a matchingM have an)M-augmented patl® = ejes...eq 11 In G. Here
€2,€4,...,e2. € M,e1,e3,..., €041 ¢ M. DefineN C Eg by

N = (M\{BQZ | 1€ [1,]{;]}) U {€2i+1 | 1€ [0, k?]} .

Now, N is a matching of7, and|N| = | M| + 1. ThereforeM is not a maximum matching.

(<) AssumeN is a maximum matching, bu¥/ is not. Hencg N| > |M|. Consider the
subgraphd = G[M A N] for the symmetric differencé/ A N. We havely (v) < 2 for each
v € H, because is an end of at most one edge/ii and N. By Lemma 3.3, each connected
component4 of H is either a path or a cycle.

Since naw € A can be an end of two edges frakhor from M, each connected component
(path or a cycle| alternates betweeN and M. Now, since| N| > |M|, there is a connected
componentd of H, which has more edges frof than fromM. This A cannot be a cycle,
because an alternating cycle has even length, and it thugiosrequally many edges from
andM. HenceA: v = v is a path (of odd length), which starts and ends with an edwge fr
N. Becaused is a connected component &f, the ends: andv are not saturated by/, and,
consequentlyA is anM-augmented path. This proves the theorem. a

Example 3.5.Consider the:-cubeQ,, for k > 1. Each maximum matching @), has2+~!
edges. Indeed, the matchidg = {(Ou, 1u) | u € B*~1}, has2*~! edges, and it is clearly
perfect.

Hall's theorem

For a subsef C V; of a graph(, denote
Ng(S) ={v | uv € Eg forsomeu € S} .

If Gis (X,Y)-bipartite, andS C X, thenNg(S) C Y.

The following result, known as the

Theorem 3.9 HALL (1935)).LetG be a(X, Y)-bipartite graph. Therts contains a matching
M saturating X if and only if

|S| < |Ng(S)| forall SC X. (3.2)
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Proof. (=) Let M be a matching that saturatés If |S| > |N¢(S)| for someS C X, then
not allz € S can be matched with differegte N (S).

(<) Let G satisfy Hall's condition (3.2). We prove the claim by indocton|X]|.

If | X| = 1, then the claim is clear. Let theéX' | > 2, and assume (3.2) implies the existence
of a matching that saturates every proper subséf.of

If [Ng(S)| > |S]| + 1 for every nonemptys C X with S # X, then choose an edge <
E¢ with v € X, and consider the induced subgrafih= G—{u,v}. ForallS C X \ {u},

[Nu(S)| = [Na(5)] -1 =5],

and hence, by the induction hypothedit,contains a matching/ saturatingX \ {«}. Now
M U {uv} is a matching saturating’ in G, as was required.

Suppose then that there exists a nonempty suBset X with R # X such that
|IN¢(R)| = |R|. The induced subgrapH; = G[R U N¢(R)] satisfies (3.2) (sincé&' does),
and hence, by the induction hypothedif, contains a matching/; that saturate® (with the
other ends inVg (R)).

Also, the induced subgrapti; = G[V¢ \ 4], for A = RU Ng(R), satisfies (3.2). Indeed,
if there were a subset C X \ R such that Ny, (S)| < |S|, then we would have

ING(S U R)[ = [N, (S)| + [Na (R)| < [S]+ [Na(R)| = [S|+ |R| = |SUR|

(since S N R = {)), which contradicts (3.2) fotz. By the induction hypothesisi, has a
matching), that saturateX \ R (with the other ends itV \ N (R)). Combining the match-
ings for H, and H, we get a matching/; U M> saturatingX in G. a

Second proof. This proof of the directior(<) uses Menger’s theorem. L&f be the graph
obtained fromG by adding two new vertices, y such thatr is adjacent to each € X andy

is adjacent to each € Y. There exists a matching saturatiAgif (and only if) the number of
independent paths = y is equal to| X |. For this, by Menger’s theorem, it suffices to show
that every sefb that separates andy in H has at leastX| vertices.

LetS = AU B, whered C X andB C Y. Now, vertices in@—[_ //@

X\ A are not adjacent to verticesBf\ B, and hence we have |X\4| |Y\B

Ng(X\A) C B,and thus thatX \ A| < |Ng(X\A)| < |B] IE3ER

using the condition (3.2).

We conclude thatS| = | 4| + |B| > | X]|. O

Corollary 3.1 (FROBENIUS (1917)).If GG is a k-regular bipartite graph withk > 0, thenG
has a perfect matching.

Proof. Let G bek-regular(X,Y)-bipartite graph. By regularity; - | X| = e¢ = k- |Y|, and
hence|X| = |Y|. Let S C X. Denote byE; the set of the edges with an endShand by
E, the set of the edges with an endN;(S). Clearly, E; C Es,. Thereforek - [Ng(95)| =
|Es| > |Eq| = E-|S|, and sdNg(S)| > |S|. By Theorem 3.9 has a matching that saturates
X. Since| X | = |Y|, this matching is necessarily perfect. ]
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Applications of Hall’s theorem

DEFINITION. Let8 = {51, 95,,...,S5,} be a family of finite nonempty subsets of a $et
(S; need not be distinct.) Aransversal (or asystem of distinct representativey of S is a
subsefl’ C S of m distinct elements one from eaéh.

As an example, leS = [1,6], and letS; = Sy = {1,2}, S5 = {2,3} and Sy =
{1,4,5,6}. For§ = {S1,S52,S53,54}, the setl" = {1,2,3,4} is a transversal. If we add
the setS; = {2, 3} to 8, then it is impossible to find a transversal for this new fgmil

The connection of transversals to the Marriage Theorem felksvs. Let S = Y and
X = [1,m]. Form an(X,Y")-bipartite graph& such that there is an edgg s) if and only if
s € S;. The possible transversdlsof § are then obtained from the matchings saturating
X in G by taking the ends iY’ of the edges of\/.

Corollary 3.2. Let 8 be a family of finite nonempty sets. Ttiehas a transversal if and only
if the union of any of the subsets); of § contains at leask elements.

Example 3.6.Anm xn latin rectangle is anm xn integer matrix)/ with entriesM;; € [1,n]
such that the entries in the same row and in the same colundifi@rent. Moreover, ifn = n,
thenM is alatin square. Note that in an x n latin rectanglelM, we always have that < n.

We show the followingLet M be anm x n latin rectangle (withm < n). Then M can be
extended to a latin square by the additionnof- m new rows.

The claim follows when we show thaf can be extended to dm -+ 1) x n latin rectangle.
Let A; C [1,n] be the set of those elements that do not occur iri-thecolumn of M . Clearly,
|A;| = n —m for eachi, and hence _,_; |A;| = |I|(n — m) for all subsetd C [1,n]. Now
|UierAi| > ||, since otherwise at least one element from the union woulith lbeore than
n—m of the sets4; with : € I. However, each row has all theelements, and therefore eaich
is missing from exactly: — m columns. By Marriage Theorem, the familyl;, A,,..., A, }
has a transversal, and this transversal can be added as awméw¥/. This proves the claim.

Tutte’s theorem
The next theorem is a classic characterization of perfettimays.
DEFINITION. A connected component of a graghis said to beodd (even), if it has an odd
(even) number of vertices. Denote hy;q(G) the number of odd connected components in
G.

Denote bym(G) be the number of edges in a maximum matching of a g@iph
Theorem 3.10 (Tutte-Berge Formula) Each maximum matching of a graghhas

m(@) = min ve + |5 _2Codd(G_S)
=VG

(3.3)

elements.
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Note that the condition in (ii) includes the case, whére: ().

Proof. We prove the result for connected graphs. The result théowsifor disconnected
graphs by adding the formulas for the connected components.
We observe first that holds in (3.3), since, for alt C V¢,
Ve \ S| = coad(G=S) _ ve + S| — coda(G—95)

m(G) <[S]+m(G=5) <5 + 5 = 5 :

Indeed, each odd component®@f-.S must have at least one unsaturated vertex.

The proof proceeds by induction og. If v = 1, then the claim is trivial. Suppose that
vg > 2.

Assume first that there exists a vertexc G such thatv is saturated by all maximum
matchings. Them(G—v) = m(G) — 1. For a subset” C G—v, denoteS = 5" U {v}. By
the induction hypothesis, for afi’ C G—v,

m(G)—1 > + (ve — 1) + 15| - coaa(G—(S' U {v}))) =

2 (v + |S] = coaa(G—5)))—1.

DO | —

The claim follows from this.

Suppose then that for each vertexthere is a maximum matching that does not saturate
v. We claim thatm(G) = (vg — 1)/2. Suppose to the contrary, and lef be a maximum
matching having two different unsaturated vertieemdwv, and choosé/ so that the distance
dg(u,v) is as small as possible. Naw: (u, v) > 2, since otherwisew € E¢ could be added
to M, contradicting the maximality af/. Let w be an intermediate vertex on a shortest path
u - v. By assumption, there exists a maximum matchighat does not saturate. We
can chooséV such that the intersectial/ N N is maximal. Sincelq (u, w) < dg(u,v) and
da(w,v) < dg(u,v), N saturates both andv. The (maximum) matchingd and M leave
equally many vertices unsaturated, and hence there existsax vertexe # w saturated by
M but which is unsaturated by. Lete = xzy € M. If y is also unsaturated b, then
N U {e} is a matching, contradicting maximality &f. It also follows thaty # w. Therefore
there exists an edg€ = yz in N, wherez # z. Butnow N’ = N U {e} \ {¢'} is a
maximum matching that does not saturateHowever,N N M C N’ N M contradicts the
choice of N. Therefore, every maximum matching leaves exactly on@xemsaturated, i.e.,
m(G) = (vg — 1)/2.

In this case, forS = (), the right hand side of (3.3) gets value; — 1)/2, and hence, by
the beginning of the proof, this must be the minimum of thétrigand side. O

For perfect matchings we have the following corollary, sitfior a perfect matching we
havem(G) = (1/2)vg.
Theorem 3.11 TUTTE (1947)).Let G be a nontrivial graph. The following are equivalent.

() G has a perfect matching.
(i) For every proper subse$ C Vi, coqq(G—S) < |S].
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Tutte’s theorem does not provide a good algorithm for cowesitng a perfect matching,
because the theorem requires ‘too many cases’. Its applisaare mainly in the proofs of
other results that are related to matchings. There is a dgodthm due to EMONDS (1965),
which uses ‘blossom shrinkings’, but this algorithm is serhat involved.

Example 3.7.The simplest connected graph that has no perfect matchthg gathP;. Here
removing the middle vertex creates two odd components.

The next 3-regular graph (known as thgvester

graph) does not have a perfect matching, because

removing the black vertex results in a graph with

three odd connected components. This graph is

the smallest regular graph with an odd degree that

has no perfect matching.

Using Theorem 3.11 we can give a short proof affBRSENSs result for 3-regular graphs
(1891).

Theorem 3.12 PETERSEN(1891)).If G is a bridgeless3-regular graph, then it has a perfect
matching.

Proof. Let S be a proper subset &t;, and letG;, i € [1, ], be the odd connected components
of G—S. Denote bym; the number of edges with one endGf and the other irb. SinceG
is 3-regular,

> daw)=3-ve, and Y da(v)=3-|S|.

veEG; veS
The first of these implies that
m; = Z dg(v) -2 es
veEG;

is odd. Furthermoremn; # 1, becaus&s has no bridges, and therefore; > 3. Hence the
number of odd connected componentss6f S satisfies

t
1 1
tﬁggmiggz:d(;(v):]ﬂ,

veES

and so, by Theorem 3.1& has a perfect matching. a

Stable Marriages

DEFINITION. Consider a bipartite grapy with a bipartition (X, Y") of the vertex set. In
addition, each vertex € G supplies an order of preferences of the verticevef{x). We
write u <, v, if z prefersv to u. (Hereu,v € Y, if x € X, andu,v € X,if x € Y.) A
matchingM of G is said to bestable, if for each unmatched pairy ¢ M (with = € X and

y € Y), itis not the case that andy prefer each other better than their matched companions:

zv € M andy <, v, or uy € M andz <, u.
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We omit the proof of the next theorem.

Theorem 3.13.For bipartite graphsG, a stable matching exists for all lists of preferences.

Example 3.8.That was the good news. There is a catch, of
course. A stable matching need not satutdtendY . For
instance, the graph on the right does have a perfect matching
(of 4 edges).

Suppose the preferences are the following:

1:5 2:6<8<7 3:8<5 4:7<5
5:4<1<3 6:2 7:2<4 8:3<2

Then there is no stable matchings of four edges. A stablelmmgtof G is the following:
M = {28, 35,47}, which leavesl and6 unmatched. (You should check that there is no stable
matching containing the edgés and26.)

Theorem 3.14.LetG = K, ,, be a complete bipartite graph. Théhhas a perfect and stable
matching for all lists of preferences.

Proof. Let the bipartition bg X, Y"). The algorithm by GLE AND SHAPLEY (1962) works
as follows.

Procedure.
SetMy =0, andP(z) = P for all z € X.
Then iterate the following process until all vertices areisged:
Choose a vertex € X that is unsaturated inf;_;. Lety € Y be the most
preferred vertex for such thaty ¢ P(x).

(1) Addy to P(x).
(2) If y is not saturated, then s&f; = M;_, U {xy}.
(3) If zy € M;_; andz <, z, then setM; = (M;_1 \ {zy}) U {zy}.

First of all, the procedure terminates, since a ventex X takes part in the iteration at
mostn times (once for each € Y'). The final outcome, say/ = M, is a perfect matching,
since the iteration continues until there are no unsatdregeticesr € X.

Also, the matchingV/ = M, is stable. Note first that, by (3), ify € M; andzy € M;
for somex # z andi < j, thenz <, z. Assume the thaty € M, buty <, z for some
z € Y. Thenzy is added to the matching at some step,c M;, which means that € P(x)
at this step (otherwise would have ‘proposed). Hencex took part in the iteration at an
earlier stepM;, k < i (wherez was put to the listP(z), but zz was not added). Thus, for
someu € X, uz € M,_; andx <, u, and so inM the vertexz is matched to some with
T <, w.

Similarly, if z <, v for somev € X, theny <, z for the vertexz € Y such thatz € M.

O
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Colourings

4.1 Edge colourings

Colourings of edges and vertices of a graplre useful, when one is interested in classifying
relations between obijects.

There are two sides of colourings. In the general case, engrawith a colouringa is
given, and we study the properties of this pa@it = (G, «). This is the situatione.g, in
transportation networks with bus and train links, where ¢bur (puss, train of an edge
tells the nature of a link.

In the chromatic theony is first given and then we search for a colouring that thefeadis
required properties. One of the important properties adwahgs is ‘properness’. In a proper
colouring adjacent edges or vertices are coloured diffgren

Edge chromatic number

DEFINITION. A k-edge colouringa: Eg — [1, k] of a graphG is an assignment df colours
to its edges. We writé&/* to indicate thatz has the edge colouring.

Avertexv € G and a coloui € [1, k] areincident with each other, itx(vu) = i for some
vu € Eg. If v € G is not incident with a colout, theni is available for v.

The colouringx is proper, if no two adjacent edges obtain the same colo(e; ) # a(ez)
for adjacent; andes.

Theedge chromatic numbery’(G) of G is defined as

X'(G) = min{k | there exists a propér-edge colouring o7} .

A k-edge colouringy can be thought of as a partitiof®y, Es, . .., Ex} of Eg, where
E; = {e | a(e) = i}. Note that it is possible thaf; = () for some:. We adopt a simplified
notation

Ga[il,ig, e ,it] = G[Ezl UE;,U---U Eit]

for the subgraph of consisting of those edges that have a colguis, ..., ori;. That is, the
edges having other colours are removed.

Lemma 4.1.Each colour setF; in a proper k-edge colouring is a matching. Moreover, for
each graphG, A(G) < X'(G) < eg.

Proof. This is clear. O
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Example 4.1.The three numbers in Lemma 4.1 can be equal. This happeng)stance,
whenG = K, is a star. But often the inequalities are strict.

A star, and a graph with’(G) = 4.

Optimal colourings
We show that for bipartite graphs the lower bound is alwaysmag: x'(G) = A(G).

Lemma 4.2.Let G be a connected graph that is not an odd cycle. Then theresexi8tedge
colouring (that need not be proper), in which both colours arcident with each vertaxwith
dg(v) > 2.

Proof. Assume that7 is nontrivial; otherwise, the claim is trivial.

(1) Suppose first that is eulerian. IfG is an even cycle, then a 2-edge colouring exists
as required. Otherwise, since nad(v) is even for allv, G has a vertex; with dg(vy) > 4.
Letejes ... e be an Euler tour of7, wheree; = v;v;41 (@ndvg1 = v1). Define

1, ifdisodd,
ale;) = o
2, if iiseven.

Hence the ends of the edgedor i € [2,¢— 1] are incident with both colours. All vertices are
among these ends. The conditién(v;) > 4 guarantees this far;. Hence the claim holds in
the eulerian case.

(2) Suppose then that is not eulerian. We define a new gra@y by adding a vertex
to G and connectingy to eachv € G of odd degree.

In Gy every vertex has even degree including (by
the handshaking lemma), and hen€g is eulerian. Let
epes - - - e, be an eulerian tour offy, wheree; = v;v;41.
By the previous case, there is a required colouringf G
as above. Nowg restricted toFE is a colouring ofG as
required by the claim, since each vertgxwith odd degree
da(v;) > 3is entered and departed at least once in the tour
by an edge of the original gragh: e;_1¢;.

DEFINITION. For ak-edge colouringy of G, let
co(v) = [{7 | vis incident withi € [1, k]}]| .

A k-edge colouring? is animprovement of o, if
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ZCQ(U) > an(v) .

veG veEG

Also, « is optimal, if it cannot be improved.

Notice that we always hawe,(v) < dg(v), and if « is proper, therr, (v) = dg(v), and
in this casen is optimal. Thus an improvement of a colouring is a changeatdw a proper
colouring. Note also that a graggh always has an optimal-edge colouring, but it need not
have any propek-edge colourings.

The next lemma is obvious.

Lemma 4.3.An edge colouringy of G is proper if and only ifc, (v) = dg(v) for all vertices
v € G.

Lemma 4.4.Let « be an optimalk-edge colouring of7, and letv € G. Suppose that the
colour is available forv, and the colouy is incident withv at least twice. Then the connected
componentd of G*[i, j] that containsv, is an odd cycle.

Proof. Suppose the connected componéhis not an odd cycle. By Lemma 4.2] has a
2-edge colouringy: Ex — {i,7}, in which bothi and; are incident with each vertexwith
di(z) > 2. (We have renamed the coloursand2 to i andj.) We obtain a recolouring of
G as follows:
Ble) = {'y(e), ?f ec Ey,
ale), ifed¢ Ey.

Sincedy(v) > 2 (by the assumption on the coloyy and in 3 both coloursi and j are
now incident withv, cg(v) = co(v) + 1. Furthermore, by the construction 6f we have
cg(u) > cqo(u) for all u # v. Therefore) |, . ca(u) > >, ca(u), which contradicts the
optimality of «. HenceH is an odd cycle. O

Theorem 4.1 KONIG (1916)).If G is bipartite, theny’(G) = A(G).

Proof. Let o be an optimalA-edge colouring of a bipartité/, whereA = A(G). If there
were av € G with ¢, (v) < dg(v), then by Lemma 4.4 would contain an odd cycle. But a
bipartite graph does not contain such cycles. Thereforalfwerticesv, ¢, (v) = dg(v). By
Lemma 4.3 is a proper colouring, and = x/(G) as required. a

Vizing’s theorem

In general we can havg’(G) > A(G) as one of our examples did show. The following
important theorem, due toI¥ING, shows that the edge chromatic number of a g@phisses
A(G) by at most one colour.

Theorem 4.2 {/1zING (1964)).For any graphG, A(G) < X' (G) < A(G) + 1.

Proof. Let A = A(G). We need only to show that (G) < A + 1. Suppose on the contrary
thaty'(G) > A + 1, and leta be an optimal A + 1)-edge colouring of.
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We have (trivially)dg(u) < A+ 1 < x/(G) forall w € G, and so
Claim 1. For eachu € G, there exists an available coloéfu) for w.

Moreover, by the counter hypothesisjs not a proper colouring, and hence there exists a
v € G with ¢, (v) < de(v), and hence a coloug that is incident withv at least twice, say

a(vuy) = i1 = afvr) . 4.1)

Claim 2. There is a sequence of vertices us, . .. such that

oz(vuj) = ij and Z’jJrl = b(uj) .

Indeed, letu; be as in (4.1). Assume we have already found the vertiges. ., u;, with
j > 1, such that the claim holds for these. Suppose, contrarydcockhim, thatv is not
incident withb(u;) = ij41.

We can recolour the edges:, by iy, for ¢ € [1, ], and Ur

obtain in this way an improvement af Herev gains a new
colouri; . Also, eachu, gains a new colouiy;; (and may
loose the colout,). Therefore, for each, either its num-

ber of colours remains the same or it increases by one. ThIS
contradicts the optimality of, and proves Claim 2.

Now, lett be the smallest index such that for some< ¢,
ir+1 = 1. Such an index exists, becauség;(v) is finite.

Let 8 be a recolouring of7 such that forl < j < r —1,
B(vu;) = ij41, and for all other edges 3(e) = a(e).

ip = it+.1.
Claim 3. 5 is an optimal(A + 1)-edge colouring of5.
Indeed,cg(v) = co(v) andcg(u) > cq(u) for all u, since

eachu; (1 < j <r — 1) gains a new colouj;; although it
may loose one of its old colours.

Let then the colouringy be obtained fronB by recolouring
the edgesiu; by i;q for r < j <t. Now,vu, is recoloured
by i, = i441.

Claim 4. v is an optimal(A + 1)-edge colouring of5.

Indeed, the fact, = i,y; ensures that, is a new colour
incident withu,, and thus that., (u;) > cg(u). For all other
vertices,c, (u) > cg(u) follows as forg.
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By Claim 1, there is a coloup = b(v) that is available for. By Lemma 4.4, the connected
componentdd; of G”[iy,4,] and Hy of G7]iy, i,] containing the vertex are cycles, that is,
H, isacycle(vu,—1)P; (u,v) andHsy is a cycle(vu, 1) Po (ugv), where bothP; : w1 = u,
andP,: u,._1 - u; are paths. However, the edgesigfand P, have the same colours with
respect tq3 and~y (eitherig or i,.). This is not possible, sincB ends inu, while P, ends in
a different vertexu;. This contradiction proves the theorem. O

Example 4.2.We show that\’(G) = 4 for the Petersen graph. Indeed, by Vizing’ theorem,
X'(G) = 3 or 4. Suppose colours suffice. LeC': vy — ... — v; — v; be the outer cycle
andC’: u; — ... — us — uq the inner cycle of7 such that,u; € E for all .

Observe that every vertex is adjacent to all colau 3. Now C' uses one colour (sab)
once and the other two twice. This can be done uniquely (ugtmptations):

1 2 3 2 3
V1 — V2 — V3 — U4 — VU5 — V1.

2 3 1 1 1 .
Hencev; = uq, v9 = us, v3 — us, v4 — u4, Vs — usz. However, this means thatcannot
be a colour of any edge i’. SinceC’ needs three colours, the claim follows.

Edge Colouring Problem. Vizing's theorem (nor its present proof) does not offer ahgire
acterization for the graphs, for whicll (G) = A(G) + 1. In fact, it is one of the famous
open problems of graph theory to find such a characterizalibe answer is known (only)
for some special classes of graphs. BgIMER (1981), the problem whethef (G) is A(G)
or A(G) + 1 is NP-complete.

The proof of Vizing’s theorem can be used to obtain a prop&ueing of G with at most
A(G) + 1 colours, when the word ‘optimal’ is forgotten: colour fireetedges as well as you
can (if nothing better, then arbitrarily in two colours) damse the proof iteratively to improve
the colouring until no improvement is possible — then theopsays that the result is a proper
colouring.

4.2 Ramsey Theory

In general, Ramsey theory studies unavoidable patternsrmbimatorics. We consider an
instance of this theory mainly for edge colourings (thattheet be proper). A typical example
of a Ramsey property is the following: given 6 persons eaahgfavhom are either friends
or enemies, there are then 3 persons who are mutual friendsutral enemies. In graph
theoretic terms this means that each colouring of the edgég evith 2 colours results in a
monochromatic triangle.

Turan’s theorem for complete graphs

We shall first consider the problem of finding a general comdlitor /&, to appear in a graph.
It is clear that every graph contais,, and that every nondiscrete graph contdifis
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DEFINITION. A completep-partite graph G
consists ofp discrete and disjoint induced sub-
graphsGi, Gs,...,G, C G, whereuv € Eg

if and only if uw andv belong to different parts,
G; ande with ¢ 75 j-

Note that a complete-partite graph is com-
pletely determined by its discrete paffs, i €

1, p].

Letp > 3, andletd = H,, , be the completép—1)-partite graph of order = t(p—1)+r,
wherer € [1,p — 1] and¢ > 0, such that there arepartsHy, ..., H, of ordert + 1 and
p—1—rpartsH,,1,...,H, 1 of ordert (whent > 0). (Herer is the positive residue of
modulo(p — 1), and is thus determined byandp.)

By its definition, X, ¢ H. One can compute that the number of edges off is equal to

T(n,p) = 1;_2 n2—f<1—pi1> . (4.2)

The next result shows that the above bo(fa, p) is optimal.

Theorem 4.3 TURAN (1941)).If a graph G of ordern haseg > T'(n,p) edges, therG
contains a complete subgrapti,.

Proof. Letn = (p — 1)t +rfor1 <r < p—1andt > 0. We prove the claim by induction
ont. If t =0, thenT'(n,p) = n(n — 1)/2, and there is nothing to prove.

Suppose then that> 1, and letG be a graph of ordet such that is maximum subject
to the conditionk, ¢ G.

Now G contains a complete subgraghA] = K,_i, since adding any one edge
results in ak,, andp — 1 vertices of thisk, induce a subgrapk,_; C G.

Eachv ¢ A is adjacent to at most — 2 vertices ofA; otherwiseG[A U {v}] = K.
FurthermoreX,, ¢ G—A,andvg_s =n—p+1.Becauser —p+1=(t—1)(p—1) +r,
we can apply the induction hypothesis to obtain 4 < T'(n —p + 1, p). Now

(p—1(p—2)

g <Th—p+Lp)+n—-—p+1)(p—2)+ 5

=T(n,p)
which proves the claim. O
When Theorem 4.3 is applied to triangl&s, we have the following interesting case.

Corollary 4.1 ( MANTEL (1907)).If a graph G hasesg > iué edges, therG contains a
triangle K.
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Ramsey’s theorem

DEFINITION. Let o be an edge colouring of/. A subgraphH C G is said to be )
monochromatic, if all edges ofH have the same colour

The following theorem is one of the jewels of combinatorics.

Theorem 4.4 RAMSEY (1930)).Letp, g > 2 be any integers. Then there exists a (smallest)
integer R(p, ¢) such that for alln > R(p, q), any 2-edge colouring dk,, — [1, 2] contains a
1-monochromatids’, or a 2-monochromatidy,.

Before proving this, we give an equivalent statement. Rebat a subsetX C 1 is
stable, ifG[X] is a discrete graph.

Theorem 4.5.Letp, ¢ > 2 be any integers. Then there exists a (smallest) int&jet ¢) such
that for all n > R(p, ¢), any graphG of ordern contains a complete subgraph of orgeor
a stable set of ordey.

Be patient, this will follow from Theorem 4.6. The numb(p, ¢) is known as thdkam-
sey numberfor p andgq.

Itis clear thatR(p,2) = pandR(2,q) = q.

Theorems 4.4 and 4.5 follow from the next result which shanductively) that an upper
bound exists for the Ramsey numbét®, ¢).

Theorem 4.6 ERDOS and SzZEKERES (1935)). The Ramsey numbek(p, q) exists for all
p,q > 2,and

R(p,q) < R(p,q— 1)+ R(p—1,q) .

Proof. We use induction op + q. It is clear thatR(p, q) exists forp = 2 orq = 2, and it is
thus exists fop + ¢ < 5.

It is now sufficient to show that if7 is a graph of ordeR(p,q — 1) + R(p — 1, q), then it
has a complete subgraph of orgeor a stable subset of order

Letv € G, and denote byd = Vi \ (Ng(v) U {v}) the set of vertices that are not
adjacent tov. SinceG hasR(p,q — 1) + R(p — 1,q) — 1 vertices different fronv, either
[Ne(v)| > R(p — 1,q) or |A| > R(p,q — 1) (or both).

Assume first thatNg(v)| > R(p—1, ¢). By the definition of Ramsey numbeG|[N¢ (v)]
contains a complete subgraphof orderp — 1 or a stable subsét of orderq. In the first case,
B U {v} induces a complete subgrapf), in G, and in the second case the same stable set of
ordergq is good forG.

If |A] > R(p,q— 1), thenG[A] contains a complete subgraph of orger a stable subset
S of orderq — 1. In the first case, the same complete subgraph of griegood forG, and
in the second casé, U {v} is a stable subset @f of ¢ vertices. This proves the claim. O

A concrete upper bound is given in the following result.
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Theorem 4.7 (ERDOSand SzEKERES (1935)).For all p, ¢ > 2,

R(p,q) < <p—;—z;2> .

Proof. Forp = 2 or ¢ = 2, the claim is clear. We use induction @+ ¢ for the general
statement. Assume thatq > 3. By Theorem 4.6 and the induction hypothesis,

< p+q—3 + p+q—3 _ pP+q—2 ’
T\ p-1 p—2 p—1
which is what we wanted. O

In the table below we give some known values and estimatethéoRamsey numbers
R(p, q). As can be read from the tablenot so much is known about these numbers.

Pof3[a] 5 [ 6 ] 7 [ 8 | 9 | 10 |
3] 6|9 14 | 18 | 23 | 28 | 36 | 4043
4|9 18| 25 |35-41] 4961 | 55-84 | 69-115 | 80-149
5 || 14| 25| 43-49] 58-87| 80-143 95-216| 121-316| 141-442

The first unknownR(p, p) (Wherep = gq) is for p = 5. It has been verified that3 <
R(5,5) < 49, but to determine the exact value is an open problem.

Generalizations

Theorem 4.4 can be generalized as follows.

Theorem 4.8.Let ¢; > 2 be integers fori € [1,k] with & > 2. Then there exists an inte-
ger R = R(q1,99,---,qr) such that for alln > R, any k-edge colouring ofi,, has an
i-monochromatids,, for somei.

Proof. The proof is by induction ott. The casé = 2 is treated in Theorem 4.4. Fér> 2,
we show that?(qy, ..., qx) < R(q1,- - ., qk—2,p), Wwherep = R(qr—1, qx)-

Let n = R(qi,...,qx—2,p), and leta: Ex, — [1,k] be an edge colouring. Let
B: Ek, — [1,k — 1] be obtained froma by identifying the colourg — 1 andk:

_Jale) ifale)<k-1,
ﬁ(e)_{k—l if a(e) =k — Lork.

By the induction hypothesisf{,f has ani-monochromatids,, for somel <i < k—2 (and we

are done, since this subgraph is monochromatik§f) or K. has a(k — 1)-monochromatic
subgraphH” = K,. In the latter case, by Theorem 4H¢ and thusK¢ has a(k — 1)-
monochromatic or &-monochromatic subgraph, and this proves the claim. O

L' S.P. RDzISZOWSKI, Small Ramsey numbers, Electronic J. of Combin., 2000 oh\tble
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Since for each grapl, H C K,, for m = vy, we have

Corollary 4.2. Letk > 2and H4, Ho, . .., H;, be arbitrary graphs. Then there exists an inte-
ger R(Hy, Hs, . .., Hy) such that for all complete graph®,, withn > R(Hy, Ho, ..., Hy)
and for all k-edge colouringsy of K,,, K¢ contains ani-monochromatic subgrapf; for
somei.

This generalization is trivial from Theorem 4.8. Howevée generalized Ramsey num-
bersR(H,, Hs, ..., Hy) can be much smaller than their counter parts (for compleiptgy)
in Theorem 4.8.

Example 4.3.We leave the following statement as an exercisé: i$ a tree of ordern, then
RT,Ky,)=(m—-1)(n—1)+1,

that is, any grapltz of order at leasR(7, K,,) contains a subgraph isomorphicy or the
complement of7 contains a complete subgrapi),.

Examples of Ramsey numbers

Some exact values are known in Corollary 4.2, even in moremgércases, for some dear
graphs (see RDzISzOWSKI's survey). Below we list some of these results for casesrevhe
the graphs are equal. To this end, let

Ri(G) = R(G,G,...,Q) (k timesG).

The best known lower bound dt,(G) for connected graphs was obtained byRR AND
ERDOS(1976),

Ry(G) > {4% — IJ (G connectedl

- 3
Here is a list of some special cases:

Ratr) =+ 2] -1,

6 if n =3o0rn =4,
Ry (Cp) =< 2n—1 if n > 5 andn odd,
3n/2 -1 if n>6andneven

Ro(K1) = 2n—1 if niseven
S if n is odd

Ry (K 3) = 10, Ry(K33) = 18.

The valuesRs (K> ,,) are known forn < 16, and in generalRs (K2 ,) < 4n — 2. The value
Ry (K5 17) is either65 or 66.

Let IW,, denote thavheelon n vertices. It is a cycle”,, _;, where a vertex with degree
n — 1 is attached. Note thal’, = K. ThenRy(W5) = 15 and Ry (Ws) = 17.
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For three colours, much less is known. In fact, the only rigafrresult for complete
graphs isiR3(K3) = 17. Also, 128 < R3(Ky) < 235, and385 < R3(Kj3), but no nontrivial
upper bound is known faRs3(K5). For the squar€’y, we know thatRs(Cy) = 11.

Needless to say that no exact values are knowtRfdik’, ) for £ > 4 andn > 3.

It follows from Theorem 4.4 that for any complei€,, thereexistsa graphG (well, any
sufficiently large complete graph) such that @&gdge colouring of7 has a monochromatic
(induced) subgrapk,,. Note, however, that in Corollary 4.2 the monochromatiagsaph H;
is not required to be induced.

The following impressive theorem improves the results weelmaentioned in this chapter
and it has a difficult proof.

Theorem 4.9 DEUBER, ERDOS HAJNAL, POsA, and R6DL (around 1973)).Let H be any
graph. Then there exists a graghsuch that ang-edge colouring ofs has an monochromatic
induced subgrapli.

Example 4.4.As an application of Ramsey’s theorem, we shortly descritieuBs theorem.
For this, consider the partitiofil, 4,10, 13}, {2,3,11,12}, {5,6,7,8,9} of the setN;3 =
[1,13]. We observe that in no partition class there are three irdegigch thatr + y = =.
However, if you try to partitionN,4 into three classes, then you are bound to find a class,
wherex + y = z has a solution.

SCHUR (1916) solved this problem in a general setting. The follmwgives a short proof
using Ramsey'’s theorem.

For eachn > 1, there exists an intege§(n) such that any partitiors, . . ., S, of Ng(,) has
a classS; containing two integers;, y such thatr + y € S;.

Indeed, letS(n) = R(3,3,...,3), where3 occursn times, and letx” be a complete on
Ng(n). For a partitionSy, . .., S, of Ng(,), define an edge colouring of K by

alij) =k, if |i —j] € Sy .
By Theorem 4.8 K* has a monochromatic triangle, that is, there are threecesrti < i <

j <t < S(n)suchthat — j,j —i,t —i € Sy for somek. But(t —j) + (j —i) =t —i
proves the claim.

There are quite many interesting corollaries to Ramsegsréim in various parts of math-
ematics including not only graph theory, but aleqy, geometry and algebra, see

R.L. GRAHAM, B.L. ROTHSCHILD AND J.L. SPENCER “Ramsey Theory”, Wiley, (2nd ed.)
1990.

4.3 Vertex colourings

The vertices of a grapti¥ can also be classified using colourings. These colourirbthse
certain vertices have a common property (or that they ardasiim some respect), if they
share the same colour. In this chapter, we shall concerrgbeoper vertex colourings, where
adjacent vertices get different colours.
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The chromatic number

DEFINITION. A k-colouring (or ak-vertex colouring) of a graphG is a mappingy: Vg —
[1, k]. The colouringe is proper, if adjacent vertices obtain a different colour: for all €
Eq, we havea(u) # a(v). A colouri € [1,k] is said to beavailable for a vertexv, if no
neighbour ofv is coloured byi.

A graphG is k-colourable, if there is a propek-colouring forG. The (vertex)chromatic
number x(G) of G is defines as

X(G) = min{k | there exists a propé-colouring ofG} .

If x(G) = k, thenG is k-chromatic.

Each proper vertex colouring: Vi — [1, k| provides a partitio V1, V4, ..., Vi } of the
vertex sel/;, whereV; = {v | a(v) = i}.

Example 4.5.The graph on the right, which is often called a
wheel (of orderr), is 3-chromatic.

By the definitions, a grapty’ is 2-colourable if and only if it
is bipartite.
Again, the ‘names’ of the colours are immaterial:

Lemma 4.5.Leta be a properk-colouring of G, and letr be any permutation of the colours.
Then the colouringg = wa is a properk-colouring ofG.

Proof. Indeed, ifa: Vg — [1,k| is proper, and ifr: [1,k] — [1,k] is a bijection, then
uv € E¢g implies thata(u) # «(v), and hence also thato(u) # ma(v). It follows thatma
is a proper colouring. a

Example 4.6.A graph istriangle-free, if it has no subgraphs isomorphic #63. We show
thatthere are triangle-free graphs with arbitrarily large chrmatic numbers.

The following construction is due to ETZEL: Let G be any triangle-free graph with
Vg = {v1,v9,...,v,}. Let G! be a new graph obtained by addingt+ 1 new verticesy and
uy,us, . . ., u, sSuch thatg* has all the edges @f plus the edges;v andu;z forall x € N (v;)
and for alli € [1,n].

Claim. G is triangle-free and it i + 1-chromatic
Indeed, letV = {uy,...,u,}. We show first thaG" is triangle-free. Now{/ is stable, and
so a triangle contains at most (and thus exactly) one vestex U. If {u;,v;,v;} induces a
triangle, so doegv;, v;, v} by the definition ofG?, but the latter triangle is already @; a
contradiction.
For the chromatic number we notice first thatz*)

< (k+1). If ais a properk-colouring
of G, extend it by settingv(u;) = a(v;) anda(v) = k + 1.
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Secondly,x(G*) > k. Assume that is a properk-colouring of G, say witha(v) = k.
Thena(u;) # k. Recolour each; by a(u;). This gives a propetk — 1)-colouring toG; a
contradiction. Thereforg(G?) = k + 1.

Now using inductively the above construction starting fribve triangle-free grapk’s, we
obtain larger triangle -free graphs with high chromatic bens.

Critical graphs

DEFINITION. A k-chromatic graphG is said to bek-critical , if x(H) < kforal H C G
with H # G.

In a critical graph an elimination of any edge and of any vewdl reduce the chromatic
number:x(G—e) < x(G) andx(G—v) < x(G) fore € Eg andv € G. EachkK,, is n-
critical, since inK,,— (uv) the vertices, andv can gain the same colour.

Example 4.7.The graphK,; = P, is the only 2-critical graph. The 3-critical graphs are ex-
actly the odd cycleg’s,, 1 for n > 1, since a 3-chromati¢ is not bipartite, and thus must
have a cycle of odd length.

Theorem 4.10.If G is k-critical for k£ > 2, then it is connected, ant(G) > k — 1.

Proof. Note that for any grapli* with the connected components, Go, ..., G, x(G) =
max{x(G;) | i € [1,m]} . Connectivity claim follows from this observation.

Let thenG be k-critical, butd(G) = dg(v) < k — 2 for v € G. SinceG is critical, there
is a proper(k — 1)-colouring ofG—v. Now v is adjacent to only(G) < k — 1 vertices. But
there arée: colours, and hence there is an available cofdor v. If we recolourv by i, then a
proper(k — 1)-colouring is obtained fo€; a contradiction. O

The case (iii) of the next theorem is due toEXERES ANDWILF (1968).

Theorem 4.11.LetG be any graph withk = x(G).

() G has ak-critical subgraphH.
(ii) G has at least vertices of degree> k& — 1.
(i) £ <14+ maxpca 0(H).

Proof. For (i), we observe that &-critical subgraphd C G is obtained by removing vertices
and edges frond: as long as the chromatic number remdins

For (i), let H C G be k-critical. By Theorem 4.10dy (v) > k — 1 for everyv € H.
Of course, alsal;(v) > k — 1 for everyv € H. The claim follows, because, clearly, every
k-critical graphH must have at leadt vertices.

For (iii), let H C G bek-critical. By Theorem 4.10y(G) — 1 < 6(H ), which proves this
claim. O
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Lemma 4.6.Letv be a cut vertex of a connected gragh and letA;, for i € [1,m], be the
connected components Gf-v. DenoteGG; = G[A4; U {v}]. Theny(G) = max{x(G;) | i €
[1,m]}. In particular, a critical graph does not have cut vertices.

Proof. Suppose eacti; has a propek-colouringa;. By Lemma 4.5, we may take; (v) = 1
for all . Thesek-colourings give &-colouring ofG. O

Brooks’ theorem

Foredgecolourings we have Vizing’s theorem, but no such strongltesue known for vertex
colouring.

Lemma 4.7.For all graphs G, x(G) < A(G) + 1. In fact, there exists a proper colouring
a: Vg — [1, A(G) + 1] such thata(v) < dg(v) + 1 for all verticesv € G.

Proof. We usegreedy colouringto prove the claim. LeV; = {v1,...,v,} be ordered in
some way, and define: V; — N inductively as followsu(v;) = 1, and

a(v;)) = min{j | a(vy) # j forall t < iwith v;v, € Eg} .
Thena is proper, andv(v;) < dg(v;) + 1 for all i. The claim follows from this. O

Although, we always havg(G) < A(G) + 1, the chromatic numbey(G) usually takes
much lower values — as seen in the bipartite case. Moredwemaximum valued(G) + 1 is
obtained only in two special cases as was shown Rp@&sin 1941.

The next proof of Brook’s theorem is bydvAsz (1975) as modified by BYANT (1996).

Lemma 4.8.LetG be a2-connected graph. Then the following are equivalent:

() G is a complete graph or a cycle.
(i) For all u,v € G, ifuv ¢ E¢, then{u,v} is a separating set.
(iii) For all u,v € G, if dg(u,v) = 2, then{u, v} is a separating set.

Proof. Itis clear that (i) implies (ii), and that (ii) implies (iiiMe need only to show that (jii)
implies (i). Assume then that (iii) holds.

We shall show that eithe® is a complete graph ai;(v) = 2 for all v € G, from which
the theorem follows.

First of all, dg(v) > 2 for all v, sinceG is 2-connected. Letv be a vertex of maximum
degreedq(w) = A(G).

If the neighbourhoodV¢ (w) induces a complete subgraph, th@ns complete. Indeed,
otherwise, sincé is connected, there exists a verie¥ N¢(w)U{w} such that is adjacent
to a vertexv € Ng(w). But thendg(v) > dg(w), and this contradicts the choice of

Assume then that there are different vertieces € Ng(w) such thatuv ¢ E¢. This
means that (u, v) = 2 (the shortest path is — w — v), and by (iii),{u, v} is a separating
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set of G. Consequently, there is a partitidly = W U {u,v} U U, wherew € W, and all
paths from a vertex dfi’” to a vertex ofU' go through eithet; or v.

We claim thatiV = {w}, and thus thatA(G) = 2 as required. Suppose on the contrary
that|WW| > 2. Sincew is not a cut vertex (sinc& has no cut vertices), there exists.ae W
with 2 # w such thattu € Eg or zv € E¢g, sayzu € Egq.

Sincew is not a cut vertex, there existsyac U such

thatuy € E¢. Hencedg(z,y) = 2, and by (iii),{z, y} 7@\

is a separating set. Accordinglyy = W1U{z, y}UU1, f

where all paths fromiV; to U; pass throughe or y. @ \@
Assume thaiv € W7, and hence that alse, v € W;. ~®

(Sinceuw, vw € Ey,,_(;41)-

There exists a vertex € U;. Note thatt; C W U U. If z € W (or z € U, respectively),
then all paths from to « must pass through (or y, respectively), and (or y, respectively)
would be a cut vertex aofi. This contradiction, proves the claim. O

Theorem 4.12 (BROOKS (1941)).Let G be connected. Thep(G) = A(G) + 1 if and only
if either G is an odd cycle or a complete graph.

Proof. (<) Indeed,x(Car+1) = 3, A(Cor+1) = 2, andx(K,) = n, A(K,) =n— 1.

(=) Assume that = x(G). We may suppose thdt is k-critical. Indeed, assume the
claim holds fork-critical graphs. Lek = A(G) + 1, and letH C G be ak-critical proper
subgraph. Sincg(H) = k = A(G) +1 > A(H), we must have((H) = A(H) + 1, and
thus H is a complete graph or an odd cycle. N@iis connected, and therefore there exists
an edgewv € Eg with w € H andv ¢ H. But thendg(u) > dg(u), andA(G) > A(H),
sinceH = K,, or H = C,,.

Let thenG be anyk-critical graph fork > 2. By Lemma 4.6, it i2-connected. I{7 is an
evencycle, thenk = 2 = A(G). Suppose now tha¥ is neither complete nor a cycle (odd or
even). We show that(G) < A(G).

By Lemma 4.8, there exist;,vo € G with dg(vi,v2) = 2, sayviw,wvy € Eg with
vivy ¢ Eg, such thatd = G—{v1, vy} is connected. Orddry = {vs,vy,...,v,} such that
v, = w, and for all; > 3,

di (v, w) > di(vig1,w) .

Therefore for each € [1,n — 1], we find at least ong > i such that;v; € Eq (possibly
vj = w). In particular, for alll <i < n,

|Ng(vi)ﬂ{’01,...,’0i,1}| < dg(’UZ') < A(G) . (43)
Then colourv;, ve, . . ., v, in this order as followsx(v;) = 1 = a(v2) and

a(v;) = min{r | r # a(v;) for all v; € Ng(v;) with j < i} .
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The colouringe is proper.

By (4.3),a(v;) < A(G) foralli € [1,n — 1]. Also, w = v, has two neighbours;; and
vy, Of the same colout, and sincev,, has at mostA(G) neighbours, there is an available
colour forv,, and sox(v,) < A(G). This shows tha& has a properA(G)-colouring, and,
consequentlyy(G) < A(G). 0

Example 4.8.Suppose we have objectsV = {vy,...,v,}, some of which are not compati-
ble (like chemicals that react with each other, or worseplgtaeorists who will fight during a
conference). In thetorage problemwe would like to find a partition of the sét with as few
classes as possible such that no class contains two inciepglements. In graph theoretical
terminology we consider the gragh = (V, E), wherev;v; € E just in casey; andv; are
incompatible, and we would like to colour the verticestoproperly using as few colours as
possible. This problem requires that we fip@>).

Unfortunately, no good algorithms are known for deterniniiG), and, indeed, the chro-
matic number problem is NP-complete. Already the problem (&) = 3 is NP-complete.
(However, as we have seen, the problem whefliéf) = 2 has a fast algorithm.)

The chromatic polynomial

A given graphG has many different proper vertex colourings Vi — [1, k| for sufficiently
large natural numbers. Indeed, see Lemma 4.5 to be certain on this point.

DEFINITION. Thechromatic polynomial of GG is the functionys: N — N, where

xc(k) = {a | a: Vo — [1, k] a proper colouring| .

This notion was introduced by IBKHOFF (1912), BRKHOFF AND LEWIS (1946), to at-
tack the famoug-Colour Theorem, but its applications have turned out tolbevehere.

If £ < x(G), then clearlyyq(k) = 0, and, indeed,

X(G) = min{k | xg(k) # 0} .

Therefore, if we can find the chromatic polynomial @f then we easily compute the chro-
matic numbery(G) just by evaluatingy¢ (k) for £ = 1,2,... until we hit a nonzero value.
Theorem 4.13 will give the tools for constructing:.

Example 4.9.Consider the complete graghy, on {v;, va, v3,v4}. Letk > y(K,) = 4. The
vertex v; can be first given any of thg colours, after whichk — 1 colours are available
for vy. Thenwvsg hask — 2 and finallyv, hask — 3 available colours. Therefore there are
k(k —1)(k — 2)(k — 3) different ways to properly colouk’y with & colours, and so

Xy (k) = k(k = 1)(k = 2)(k = 3) .

On the other hand, in the discrete gragh has no edges, and thus admygolouring is a proper
colouring. Therefore

X?Zl(k:) = k4 *
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Remark. The considered method for checking the number of pos$#siliio colour a ‘next
vertex' is exceptional, and for more nonregular graphsaust be avoided.

DEFINITION. LetG be a graphe = wv € Eg, and letz = z(uv) be a newcontracted
vertex. The graphG * e on

Vare = (Vo \ {u,v}) U{z}
is obtained fromG by contracting the edge:, when

Egwe ={f | f € Eg, fhasnoend.orv} U{wz | wu € Egorwv € Eg} .

HenceG x e is obtained by introducing a new

vertexax, and by replacing all edgesu andwv

by wz, and the vertices andv are deleted. e
(Of course, no loops or parallel edges are al-
lowed in the new grapli: x e.)

Theorem 4.13.LetG be a graph, and let € E. Then

xa(k) = xa—e(k) = Xaxe(F)-

Proof. Lete = wv. The properk-colouringsa: Vg — [1, k] of G—e can be divided into two
disjoint cases, which together show that_. (k) = xa (k) + xGxe(k):

(1) If a(u) # «a(v), thena corresponds to a unique propeicolouring of G, namelya.
Hence the number of such colouringsyig(k).

(2) If a(u) = a(v), thena corresponds to a unique propecolouring of G x e, namely
a, when we setv(z) = «a(u) for the contracted vertex = z(uv). Hence the number of such
colourings isygxe (k). 0

Theorem 4.14.The chromatic polynomial is a polynomial.

Proof. The proof is by induction or. Indeed,x% (k) = k" for the discrete graph, and
for two polynomialsP; and P, alsoP; — P, is a polynomial. The claim follows from Theo-
rem 4.13, since ther@—e andG x e have less edges than O

The connected components of a graph can be coloured indepgndind so

Lemma 4.9.Let the graphG have the connected compone6ts G, ..., G,,. Then

xc(k) = xa, (k)xe, (k) - .- xG,. (k) -
Theorem 4.15.LetT be a tree of orden. Thenyr(k) = k(k — 1)" L.

Proof. We use induction om. Forn < 2, the claim is obvious. Suppose that> 3, and
lete = vu € Er, wherev is a leaf. By Theorem 4.137(k) = x7—e(k) — x1+e(k). Here
T * e is a tree of orden — 1, and thus, by the induction hypothesis;.. (k) = k(k — 1)" 2.
The graphl'—e consists of the isolated and a tree of order — 1. By Lemma 4.9, and the
induction hypothesisyr_.(k) = k - k(k — 1)"~2. Thereforexr (k) = k(k — 1) L. O
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Example 4.10.Consider the grapty of order4 from the above. Then we have the following

reductions.

Gxe

XIAI\I

G—e G—{e, f} (G—e)x

Theorem 4.13 reduces the computationyef to the discrete graphs. However, we know
the chromatic polynomials for trees (and complete graphaneexercise), and so there is no
need to prolong the reductions beyond these. In our exampldave obtained

XG—e(k) = XG—{e,f} (k) = X(G=e)xs (k)
=k(k—12—k(k—1)?=k(k -1k -2),

and so

X6 (k) = XG-e(k) = XGre(k) = k(k = 1)*(k = 2) — k(k — 1)(k - 2)
= k(k—1)(k —2)? = k* — 5k + 8k* — 4k .

For instance, foB colours, there aré proper colourings of the given graph.

Chromatic Polynomial Problems. It is difficult to determiney of a given graph, since the
reduction method provided by Theorem 4.13 is time consunfiigp, there is known no char-
acterization, which would tell from any polynomiBI(k) whether it is a chromatic polynomial
of some graph. For instance, the polynomiial— 33 + 3k is not a chromatic polynomial
of any graph, but it seems to satisfy the general propetttied &re known or conjectured) of
these polynomials. BED (1968) conjectured that the coefficients of a chromatic patyial
should first increase and then decrease in absolute vaked RL968) and TTTE (1974)
proved that for eaclt” of ordervg = n:

e The degree ok (k) equalsn.

e The coefficient o™ equalsl.

The coefficient ok™ ! equals—e.

The constant term i8.

The coefficients alternate in sign.

xa(m) < m(m —1)" — 1 for all positive integersn, whenG is connected.
e xqg(z) # 0for all real number$ < = < 1.
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Graphs on Surfaces

5.1 Planar graphs

The plane representations of graphs are by no means unigie=d, a grapliy can be drawn
in arbitrarily many different ways. Also, the propertiesaofraph are not necessarily immedi-
ate from one representation, but may be apparent from andthere are, however, important
families of graphs, theurface graphs that rely on the (topological or geometrical) properties
of the drawings of graphs. We restrict ourselves in this t#rajo the most natural of these,
the planar graphs. The geometry of the plane will be treattdtively.

A planar graph will be a graph that can be drawn in the planeaio two edges intersect
with each other. Such graphs are used, in the design of electrical (or similar) circuits,
where one tries to (or has to) avoid crossing the wires or lasams. Planar graphs come into
use also in some parts of mathematics, especially in greegrytand topology.

There are fast algorithms (linear time algorithms) foritegtvhether a graph is planar or
not. However, the algorithms are all rather difficult to imuplent. Most of them are based on
an algorithm designed by WsLANDER AND PARTER (1961) see Section 6.5 of

S. XIENA, “Implementing Discrete Mathematics: Combinatorics amapgh Theory with
Mathematica”, Addison-Wesley, 1990.

Definition

DEFINITION. A graphG is aplanar graph, ifit has

a plane figureP(G), called theplane embedding

of G, where the lines (or continuous curves) corre-
sponding to the edges do not intersect each other ex-
cept at their ends.

The complete bipartite graphi, 4 is a planar graph.

DEFINITION. An edgee = uv € E¢ is subdivided, when it is replaced by a path— = —
v of length two by introducing aewvertexz. A subdivision H of a graphG is obtained from
G by a sequence of subdivisions.
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vV

The following result is clear.

Lemma 5.1.A graph is planar if and only if its subdivisions are planar.

Geometric properties

Itis clear that the graph theoretical propertieg:adre inherited by all of its plane embeddings.
For instance, the way we draw a grafdhin the plane does not change its maximum degree
or its chromatic number. More importantly, there are — as haill see — some nontrivial
topological (or geometric) properties that are shared byptane embeddings.

We recall first some elements of the plane geometry. A_dte anopen setof the plane
R x R, that is, every point: € F' has a disk centred at and contained irf’. ThenF is a
region, if any two pointsz,y € F can be joined by a continuous curve the points of which
are all in F. The boundary 9(F') of a regionF' consists of those points for which every
neighbourhood contains points frofand its complement.

Let G be a planar graph, anl(G) one of its plane embeddings. Regard now each edge
e = uv € Eg as aline fromu to v. The set(R x R) \ Eg is open, and it is divided into a
finite number of disjoint regions, called tifecesof P(G).

DEFINITION. Aface of P(G) is aninterior face, if it is bounded.
The (unique) face that is unbounded is calledeRkeerior face of
P(G). The edges that surround a faEeconstitute the boundary
O(F) of F. Theexterior boundary is the boundary of the exte-
rior face. The vertices (edges, resp.) on the exterior bayndre
called exterior vertices exterior edges resp.). Vertices (edges,
resp.) that are not on the exterior boundary iaterior vertices
interior edges resp.).

EmbeddingsP(G) satisfy some properties that we accepts at face value.

Lemma 5.2.Let P(G) be a plane embedding of a planar graph

(i) Two different faces; and F» are disjoint, and their boundaries can intersect only on
edges.
(i) P(G) has a unique exterior face.
(iif) Each edgee belongs to the boundary of at most two faces.
(iv) Each cycle of7 surrounds (that is, its interior contains) at least one & face of P(G).
(v) A bridge ofG belongs to the boundary of only one face.
(vi) An edge that is not a bridge belongs to the boundary oftyxawvo faces.
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If P(G)is aplane embedding of a graphthen so is any drawing’ (G) which is obtained
from P(G) by an injective mapping of the plane that preserves contiswarves. This means,
in particular, thatevery planar graph has a plane embedding inside any geotneitdle of
arbitrarily small radius, or inside any geometric triangle

Euler's formula

Lemma 5.3.A plane embeddin@(G) of a planar graphG has no interior faces if and only
if G is acyclic, that is, if and only if the connected componehts are trees.

Proof. This is clear from Lemma 5.2. O
The next general form dtuler’s formula was proved by EGENDRE(1794).

Theorem 5.1 (Euler’s formula). Let G be a connected planar graph, and B{G) be any of
its plane embeddings. Then
vg—ecte=2,

wherey is the number of faces ét(G).

Proof. We shall prove the claim by induction on the number of faged a plane embedding
P(G). First, notice thatp > 1, since eachP(G) has an exterior face.

If ¢ = 1, then, by Lemma 5.3, there are no cyclegidpand since5 is connected, it is a
tree. In this case, by Theorem 2.4, we haye= v — 1, and the claim holds.

Suppose then that the claim is true for all plane embeddinis less thany faces for
¢ > 2. Let P(G) be a plane embedding of a connected planar graph suclPtidat hase
faces.

Lete € FE¢ be an edge that is not a bridge. The subgréfhe is planar with a plane
embeddingP(G—e) = P(G)—e obtained by simply erasing the edgeNow P(G—e) has
¢ — 1 faces, since the two faces 6G) that are separated leyare merged into one face of
P(G—e). By the induction hypothesi$;_. —ec—. + (¢ — 1) = 2, and hence/g — (¢ —
1) + (¢ — 1) = 2, and the claim follows. 0

In particular, we have the following invariant property ddupar graphs.

Corollary 5.1. Let G be a planar graph. Then every plane embedding~dfas the same
number of faces:

g =g —vg+2

Maximal planar graphs

Lemma 5.4.1f G is a planar graph of orders > 3, theneg < 3vg — 6. Moreover, ifG has
no trianglesCs, theneg < 2vg — 4.
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Proof. If G is disconnected with connected componeftsfor i € [1, k], and if the claim
holds for these smaller (necessarily planar) graghghen it holds forG, since

vG vG

e =) ea, <3 g —6k=3vg— 6k <3vg—6.
=1 =1
It is thus sufficient to prove the claim for connected planapgs.

Also, the case wherg; < 2 is clear. Suppose thus that > 3.

Each faceF' of an embedding?(G) contains at least three edges on its boundHi).
Hence3yp < 2¢¢, since each edge lies on at most two faces. The first claimavislifrom
Euler’s formula.

The second claim is proved similarly except that, in thigcaach facé’ of P(G) contains
at least four edges on its boundary (wh&iis connected ane > 4). O

An upper bound fob(G) for planar graphs was achieved bygkvoOD.
Theorem 5.2 HEAWOOD (1890)).If G is a planar graph, therd (G) < 5.

Proof. If vo < 2, then there is nothing to prove. Suppege> 3. By the handshaking lemma
and the previous lemma,

5(G)va < da(v) =2eq < bug —12.

It follows thatd(G) < 5. 0
Theorem 5.3.K5 and K3 3 are not planar graphs.

Proof. By Lemma 5.4, a planar graph of order 5 has at most 9 edgedypbis 5 vertices
and 10 edges. By the second claim of Lemma 5.4, a triangéegi@nar graph of order 6 has
at most 8 edges, but; 3 has 6 vertices and 9 edges. ad

DEFINITION. A planar graphG is maximal, if G + e is nonplanar for every ¢ E¢.

Example 5.1.Clearly, if we remove one edge froids, the result is a maximal planar graph.
However, if an edge is removed frof; 3, the result is not maximal!

Lemma 5.5.Let F' be a face of a plane embeddidi G) that has at least four edges on its
boundary. Then there are two nonadjacent vertices on thadbny of £.

Proof. Assume that the set of the boundary verticeg'ohduces a complete subgragh.
The edges of< are either on the boundary or they are not ingitdésince F' is a face.) Add a
new vertexx inside F', and connect the vertices éf to x. The result is a plane embedding of
a graphH with Vi = Vi U {z} (that hasG as its induced subgraph). The induced subgraph
H[K U{x}] is complete, and sincH is planar, we havéK| < 4 as required. 0
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By the previous lemma, if a face has a boundary of at leastddges, then an edge can
be added to the graph (inside the face), and the graph rentales planar. Hence we have
proved

Corollary 5.2. If G is a maximal planar graph witlvg > 3, then( is triangulated, that is,
every face of a plane embeddift{ G) has a boundary of exactly three edges.

Theorem 5.4.For a maximal planar grapltz of ordervg > 3,6 =3vg — 6 .

Proof. Each faceF' of an embedding”(G) is a triangle having three edges on its boundary.
Hence3y = 2¢¢, since there are now no bridges. The claim follows from Esifermula.
O

Kuratowski's theorem

Theorem 5.5 will give a simple criterion for planarity of gres. This theorem (due touRA-
TOWSKI in 1930) is one of the jewels of graph theory. In fact, the theowas proven earlier
by PONTRYAGIN (1927-1928), and also independently bgikk AND SMITH (1930). For
history of the result, see

J.W. KENNEDY, L.V. QUINTAS, AND M.M. SysLoO, The theorem on planar grapltistoria
Math. 12 (1985), 356 — 368.

The graphsK; and K33 are the smallest nonplanar graphs, and, by Lemma 54, if
contains a subdivision &f’5 or K3 3 as a subgraph, theris not planar. We prove the converse
of this result in what follows. Therefore

Theorem 5.5 KURATOWSKI (1930)).A graph is planar if and only if it contains no subdivi-
sion of K5 or K3 3 as a subgraph.

We prove this result along the lines oHDMASSEN (1981) using-connectivity.

Example 5.2.The cubeQ is planar only fork = 1,2, 3. Indeed, the graply), contains a
subdivision ofK3 3, and thus by Theorem 5.5 it is not planar. On the other haruth @a with
k > 4 hasQ, as a subgraph, and therefore they are nonplanar. The shibgié}y, that is a
subdivision ofK’3 3 is given below.

0000 1010 1001

100
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DEFINITION. A graphG is called aKuratowski graph, if it is a subdivision ofK’s or K3 3.

Lemma 5.6.Let E C E¢ be the set of the boundary edges of a fatim a plane embedding
of G. Then there exists a plane embeddif@~), where the edges @ are exterior edges.

Proof. This is a geometric proof. Choose a circle that containsygpeint of the plane em-
bedding (including all points of the edges) such that thereesf the circle is inside the given
face. Then use geometric inversion with respect to thidecifichis will map the given face as
the exterior face of the image plane embedding. O

Lemma 5.7.LetG be a nonplanar graph without Kuratowski graphs such #hais minimal
in this respect. Thefy is 3-connected.

Proof. We show first thats is 2-connected. On the contrary, assume thi a cut vertex of
G, and let4y, ..., A; be the connected components(of-v.

SinceG is minimal nonplanar with respect tg;, the sub-
graphsG,; = G[A; U {v}] have plane embedding3(G;),
wherewv is an exterior vertex. We can glue these plane em-
beddings together atto obtain a plane embedding &f and
this will contradict the choice ofr.

Assume then that? has a separating sét= {u,v}. Let G; andG, be any subgraphs of
G such thattg = Eg, U Eg,, S = Vg, N Vg,, and bothG; andGs contain a connected
component of7—S. SinceG is 2-connected (by the above), there are paths- v in G; and
G4. Indeed, both, andv are adjacent to a vertex of each connected componetit-df. Let
H;, = G; + wv. (Maybeuv € FE¢.)

If both H, and H,, are planar, then, by Lemma 5.6, they have
plane embeddings, whete is an exterior edge. It is now
easy to glueff; and H, together on the edgev to obtain a
plane embedding aff + uv, and thus of5.

We conclude thakf; or H, is nonplanar, sayf;. Nowe g, < £, and so, by the minimality
of G, H; contains a Kuratowski graph/. However, there is a path = v in Hs, since
G, C H,. This path can be regarded as a subdivisiomgfand thus& contains a Kuratowski
graph. This contradiction shows th@tis 3-connected. a

Lemma 5.8.LetG be a3-connected graph of order; > 5. Then there exists an edgec E¢
such that the contractiofy x ¢ is 3-connected.

Proof. On the contrary suppose that for any¥ E¢, the graphG = e has a separating sét
with |S| = 2. Lete = uv, and letr = z(uv) be the contracted vertex. Necessaiily S, say
S = {x, z} (for, otherwise,S would separat&; already). Therefor@ = {u, v, z} separates
G. Assume that and.S are chosen such th&t—T has a connected compone#twith the
least possible number of vertices.
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There exists a vertey € A with zy € Eqg. (Otherwise
{u,v} would separate=.) The graphG * (zy) is not 3- B
connected by assumption, and hence, as in the above, there
exists a vertexv such that? = {z,y, w} separate&;. It can A

be thatw € {u,v}, but by symmetry we can suppose that ® ®

w # u.

Sinceuv € E¢, G—R has a connected compondgsuch that, v ¢ B. For each)/ € B,
there exists a patl’: © = 3’ in G—{z, w}, sinceG is 3-connected, and hence thisgoes
throughy. Thereforey’ is connected tg also inG—T, that is,;y’ € A, and soB C A. The
inclusion is proper, sincg ¢ B. Hence|B| < |A|, and this contradicts the choice 4f O

By the next lemma, a Kuratowski graph cannot be created biyaiions.

Lemma 5.9.Let G be a graph. If for some € FE the contractionG * ¢ has a Kuratowski
subgraph, then so do€&s.

Proof. The proof consists of several cases depending on the Kuskigraph, and how the
subdivision is made. We do not consider the details of thasesx

Let H be a Kuratowski graph off x e, wherex = z(uv) is the contracted vertex for
e = wv. If dg(x) = 2, then the claim is obviously true. Suppose then thatx) = 3 or 4. If
there exists at most one edgg € Fy such thatuy € F¢ (orvy € Eg), then one easily sees
thatG contains a Kuratowski graph.

There remains only one case, whéfeis a subdivision ofi5, and bothu andv have3
neighbours in the subgraph 6f corresponding td4. In this case(F contains a subdivision
of K373. g

Lemma 5.10.Every3-connected grapld: without Kuratowski subgraphs is planar.

Proof. The proof is by induction owg. The only3-connected graph of orddris the planar
graphK,. Therefore we can assume that > 5.

By Lemma 5.8, there exists an edge- uv € Eg such that xe (with a contracted vertex
x) is 3-connected. By Lemma 5.9; x e has no Kuratowski subgraphs, and hettee has a
plane embeddind’(G x e) by the induction hypothesis. Consider the paf(z *x ¢)—x, and
let C' be the boundary of the face &f(G * e)—x containingz (in P(G xe¢)). HereC'is a cycle
of G (sinced is 3-connected).

Now sinceG—{u,v} = (G * e)—zx, P(G x e)—x is a plane embedding ¢f—{u, v}, and
Neg(u) € VeU{v} andNg(v) C Vo U{u}. Assume, by symmetry, thdt: (v) < dg(u). Let
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Ng(v) \ {u} = {vi,v2,...,v;} in order along the cycl€'. Let P; ;: v; = v; be the path
alongC from v; to v;. We obtain a plane embedding Gf-u by drawing (straight) edgesy;
forl <i<k.

(1) If Ng(u) \ {v} € Pi;y1 (@ + 1 is taken modulat) for somei, then, clearly,G has a
plane embedding (obtained froR(G)—u by puttingu inside the triangl€v, v;, v;+1) and by
drawing the edges with an endnside this triangle).

(2) Assume there arg, z € Ng(u) \ {v} such thaty
P;; andz ¢ P;; for somei andj, wherey, z ¢ {v;,v;}.
Now, {u, v;, viy1} U {v, z,y} form a subdivision ofs 3.

By (1) and (2), we can assume thét: (u)\{v} C Ng(v).
Therefore N (u)\{v} = Ng(v)\{u} by the assumption
dg(v) < dg(u) Also, by (1),dg(v) = dg(u) > 3. But
now u, v, v1, U2, v3 give a subdivision of5. O

Proof of Theorem 5.5. By Theorem 5.3 and Lemma 5.1, we need to show that each nonpla-
nar graphGG contains a Kuratowski subgraph. On the contrary, suppaaestiis a nonplanar
graph that has a minimal size; such thatG does not contain a Kuratowski subgraph. Then,
by Lemma 5.7( is 3-connected, and by Lemma 5.10, it is planar. This contraxatigiroves

the claim. O

Example 5.3.Any graphG can be drawn in the plane so that three of its edges neveséuter
at the same point. Therossing number x(G) is the minimum number of intersections of its
edges in such plane drawings @f ThereforeG is planar if and only ifx(G) = 0, and, for
instance x(K5) = 1.

We show thatx(K) = 3. For this we need to show that /s) > 3. For the equality, one
is invited to design a drawing with exactdycrossings.

Let X (K¢) be a drawing ofs usingc crossings so that two edges cross at most once.
Add a new vertex at each crossing. This results in a planghgtaon ¢ + 6 vertices and
2¢ + 15 edges. Now: > 3, sincesg = 2¢ + 15 < 3(¢ + 6) — 6 = 3vg — 6.

5.2 Colouring planar graphs

The most famous problem in the history of graph theory is dfidhe chromatic number of
planar graphs. The problem was known as4f@olour Conjecture for more than 120 years,
until it was solved by &PEL AND HAKEN in 1976: if G is a planar graph, thep(G) < 4.
The4-Colour Conjecture has had a deep influence on the theornyaphgrduring the last 150
years. The solution of thé-Colour Theorem is difficult, and it requires the assistaota
computer.
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The 5-colour theorem
We prove HEAWOOD's result (1890) that each planar graph is propérlyolourable.
Lemma 5.11.If G is a planar graph, thern((G) < 6.

Proof. The proof is by induction ong. Clearly, the claim holds farg < 6. By Theorem 5.2,
a planar grapltz has a vertex with dg(v) < 5. By the induction hypothesig;(G—v) < 6.
Sincedg(v) < 5, there is a colout available forv in the6-colouring of G—v, and sox(G) <
6. a

The proof of the following theorem is partly geometric inunat
Theorem 5.6 HEawoOOD (1890)).If G is a planar graph, therny(G) < 5.

Proof. Suppose the claim does not hold, anddebe a6-critical planar graph. Recall that for
k-critical graphsH, 6(H) > k — 1, and thus there exists a vertexvith dg(v) = 6(G) > 5.
By Theorem 5.2dq(v) = 5.

Let o be a propers-colouring of G—v. Such a colouring
exists, becausé& is 6-critical. By assumptiony(G) > 5,
and therefore for each € [1,5], there exists a neighbour
v; € Ng(v) such thata(v;) = i. Suppose these neighbours
v; of v occur in the plane in the geometric order of the figure.

Consider the subgrapfi[i, j] C G made of colours andj. The vertices); andv; are in
the same connected componentf, j] (for, otherwise we interchange the colodrand j
in the connected component containimgto obtain a recolouring ofs, wherev; andv; have
the same coloui, and then recolous with the remaining colouy).

Let P;;: v; = v; be a path inG[i, j], and letC' = (vvy)Pi3(v3v). By the geometric
assumption, exactly one of, v4 lies inside the region enclosed by the cy€leNow, the path
Py, must meetC' at some vertex of, sinceG is planar. This is a contradiction, since the
vertices of P4 are coloured by and4, butC contains no such colours. O

The final word on the chromatic humber of planar graphs waseardy APPEL AND
HAKEN in 1976.

Theorem 5.7 (4-Colour Theorem)lIf G is a planar graph, thern(G) < 4.
By the following theorem, each planar graph can be decongpose two bipartite graphs.

Theorem 5.8.Let G = (V, E) be a4-chromatic graph,x(G) < 4. Then the edges &f can
be partitioned into two subsefs; and £ such that(V, E; ) and (V, E5) are both bipartite.

Proof. Let V; = a~!(i) be the set of vertices coloured byn a proper4-colouring « of G.
The defineF; as the subset of the edges@that are between the séts andVs; Vi andV;
V3 andVy. Let E; be the rest of the edges, that is, they are between th&satadV3; V5 and
Vi, Vo andVy. Itis clear thatV, E,) and(V, E5) are bipartite, since the setsare stable. O
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Map colouring*

The4-Colour Conjecture was originally stated for maps. In tiigp-colouring problem we
are given several countries with common borders, and we twisblour each country so that
no neighbouring countries obtain the same colbiaw many colours are needed?

A border between two countries is assumed to have a poséingth — in particular, coun-
tries that have only one point in common are not allowed imtiag@ colouring.

Formally, we define anap as a connected planar (embedding of a) graph with no bridges.
The edges of this graph represent the boundaries betweatriesuHence a country is a face
of the map, and two neighbouring countries share a commoa @dg just a single vertex).
We deny bridges, because a bridge in such a map would be adgundide a country.

The map-colouring problem is restated as fol-
lows:

How many colours are needed for the faces of a
plane embedding so that no adjacent faces obtain
the same colour.

The illustrated map can becoloured, and it can-
not be coloured using only colours, because ev-
ery two faces have a common border.

Let Fy, Fy,..., F, be the countries of a map/, and define a grapl& with Vo =
{v1,v2,...,v,} such thatw;v; € Eg if and only if the countriest; and F; are neighbours.
It is easy to see that is a planar graph. Using this notion of a dual graph, we cate $te
map-colouring problem in new fornrWwhat is the chromatic number of a planar grapB9
the4-Colour Theorem it is at most four.

Map-colouring can be used in rather generic topologicdlrggtwhere the maps are de-
fined by curves in the plane. As an example, consider finitepyrsimple closed curves in
the plane. These curves divide the plane into regidhs.regions ar@-colourable

That is, the graph where the vertices corre-
spond to the regions, and the edges correspond ﬂ

to the neighbourhood relation, is bipartite. To
see this, colour a region ly if the region is in- Ad
side an odd number of curves, and, otherwise, ) ‘I

colour it by 2.

History of the 4-Colour Theorem

That four colours suffice planar maps was conjectured ard@s0 by RRANCIS GUTHRIE,

a student of B MORGAN at University College of London. During the following 120are
many outstanding mathematicians tried to solve the projderd some of them even thought
that they had been successful.
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In 1879 CayLEY pointed out some difficulties that lie in the conjecture. Baene year
ALFRED KEMPE published a paper, where he claimed a proof of the 4CC. Thie loBs in
KEMPES argument (known later aéempe chainswas the same as later used bgAivooD
to prove thes-Colour Theorem, (Theorem 5.6).

For more than 10 yearsBPES proof was considered to be valid. For instance|1T
published two papers on the 4CC in the 1880'’s that contaitedkicideas, but also some
further errors. In 1890 HAwoOD showed that lkkMPES proof had serious gaps. As we shall
see in the next chapter,AwooD discovered the number of colours needed for all maps on
othersurfaces than the plane. Also, he proved that if the numbedgés around each region
is divisible by3, then the map id-colourable.

One cantriangulate any planar grapldz (drawn in the plane), by adding edges to divide
the faces into triangles. IBKHOFF introduced one of the basic notions (reducibility) needed
in the proof of the 4CC. In a triangulation,canfigurationis a part that is contained inside a
cycle. Anunavoidable seis a set of configurations such that any triangulation mustaio
one of the configurations in the set. A configuration is satoeb@ducible if it is not contained
in a triangulation of a minimal counter example to the 4CC.

The search for avoidable sets began in 1904 with work &IMEKE, and in 1922
FRANKLIN showed that the 4CC holds for maps with at m@istregions. This number was
increased t@7 by REYNOLDS (1926), to35 by WINN (1940), to39 by ORE AND STEMPLE
(1970), to95 by MAYER (1976).

The final notion for the solution was due t&EscH who in 1969 introducedischarging
This consists of assigning to a vertexthe charge6 — dg(v). From Euler’s formula we see
that for the sum of the charges, we have

> (6 —da(v) =12.

v

Now, a given sefS of configurations can be proved to be unavoidable, if forantyulation,
that does not contain a configuration frad8none can ‘redistribute’ the charges so thatino
comes up with a positive charge.

According to HEEscHone might be satisfied with a set 800 configurations to prove
the 4CC. There were difficulties with his approach that weteesl in 1976 by APEL AND
HAKEN. They based the proof on reducibility using Kempe chaing, emded up with an
unavoidable set with ovei900 configurations and son880 discharging rules. The proof used
1200 hours of computer time. (&cH assisted with the computer calculations.) A simplified
proof by ROBERTSON SANDERS, SEYMOUR AND THOMAS (1997) use$33 configurations
and32 discharging rules. Because of these simplifications alsadmputer time is much less
than in the original proof.

The following book contains the ideas of the proof of th€olour Theorem.

T.L. SAATY AND P.C. KAINEN, “The Four-Color Problem”, Dover, 1986.
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List colouring

DEFINITION. Let G be a graph so that each of its verticess given a list (set)A(v) of
colours. A proper colouring:: Vi — [1,m] of G is a (A-)list colouring, if each vertexs gets
a colour from its lista(v) € A(v).

Thelist chromatic number x,(G) is the smallest integér such thatz has aA-list colour-
ing for all lists of sizek, |A(v)| = k}. Also, G is k-choosable if x,(G) < k.

Example 5.4.The bipartite graphkKs s is not 2-
choosable. Indeed, let the bipartition &fs 3 be
(X,Y), where X = {zy,z9,23} and Y =
{y1,y2,y3}. The lists for the vertices shown in the
figure show thaf,(K33) > 2.

Obviously x(G) < x¢(G), since proper colourings are special cases of list colgarin
but equality does not hold in general. However, it was prdwe®1zING (1976) and RDOS,
RUBIN AND TAYLOR (1979) that

xe(G) < AG) +1.

For planar graphs wdo nothave a 4-list colour theorem’. Indeed, it was shown byYO\GT
(1993) that there exists a planar graph wit{G) = 5. At the moment, the smallest such a
graph was produced by IMzAKHANI (1996), and it is of orde63.

Theorem 5.9 THOMASSEN (1994)).Let GG be a planar graph. Theg,(G) < 5.
In fact, THOMASSEN proved a stronger statement:

Theorem 5.10.Let G be a planar graph and le€’ be the cycle that is the boundary of the
exterior face. Letd consist of lists such thatl(v)| = 3 for all v € C, and|A(v)| = 5 for all
v ¢ C. ThenG has aA-list colouring .

Proof. We can assume that the planar graplis connected, and that it is given bynaar-
triangulation ; an embedding, where the interior faces are trianglesh€lboundary of a face
has more thas edges, then we can add an edge inside the face.) This is lecaddisig edges
to a graph can only make the list colouring more difficult. &lttat the exterior boundary is
unchanged by a triangulation of the interior faces.

The proof is by induction omg under the additional constraint that one of the vertices of
C has a fixed colour. (Thus we prove a stronger statement tlz@mexd.) Forvgs < 3, the
claim is obvious. Suppose then that > 4.

Letx € C be a vertex, for which we fix a colour(z) € A(x). Letv € C be a vertex
adjacent tar, that is,C: v — 2 = v.
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Let Ng(v) = {z,v1,...,v,y}, wherey € C, andv;

are ordered such that the faces are triangles as in the (2
figure. It can be thafVg(v) = {x,y}, in which case @' ‘9
xy € Eg. @
Consider the subgrapi = G—v. The exterior bound- ®) O,
aryof Histhecycler — vy — -+ — v, —» y = .
Since|A(v)| = 3, there are two colours, s € A(v)
that differ froma(z).

We define new lists foff as follows: A’ (v;) C A(v;) \ {r, s} such thatA’(v;)| = 3 for
eachi € [1, k], and otherwisel’(z) = A(z).
Now vy = v — 1, and by the induction hypothesis (with(x) still fixed), H has aA’-list
colouring «. For the vertexs, we choosex(v) = r or s such thaix(v) # «a(y). This gives a
A’-list colouring forG. SinceA’(z) C A(z) for all z, we have thatv is a A-list colouring of
G. 0

Straight lines and kissing circles

We state an interesting result of AWNER, the proof of which can be deduced from the above
proof of Kuratowski’'s theorem. The result is knownFéy’s Theorem.

Theorem 5.11 WAGNER (1936)).A planar graphG has a plane embedding, where the edges
are straight lines.

This raises a difficult problem:

Integer Length Problem. Can all planar graphs be drawn in the plane such that the edges
straight lines of integer lengths?

We say that two circlekiss in the plane, if they in-
tersect in one point and their interiors do not intersect.
For a set of circles, we draw a graph by putting an edge
between two midpoints of kissing circles.

The following improvement of the above theorem is
due to KOEBE (1936), and it was rediscovered indepen-
dently by ANDREEV (1970) and HURSTON (1985).

Theorem 5.12 KOEBE(1936)).A graph is planar if and only if it is a kissing graph of circles

Graphs can be represented as plane figures in many diffeestst wor this, consider a set
S of curves of the plane (that are continuous between theipeits). Thestring graph of
S is the graph? = (S, F), whereuv € E if and only if the curves: andwv intersect. At first
it might seem that every graph is a string graph, but this ishecase.

It is known that all planar graphs are string graphs (thistisval result).
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Line Segment Problem. A graph is dine segment graphif it is a string graph for a sel of
straight line segments in the plaig.every planar graph a line segment graph for somelset
of lines?

Note that there are also nonplanar graphs that are line segraphs. Indeed, all complete
graphs are such graphs.

The above question remains open even in the case

when the slopes of the lines afd, —1, 0 andoo. J:yo ‘\_Ol 0 IOO
A positive answer to thig-slope problem for pla- o—o

nar graphs would prove thiColour Theorem.

The Minor Theorem*

DEFINITION. A graphH is aminor of G, denoted byH < G, if H is isomorphic to a graph
obtained from aubgraphof GG by successively contracting edges.

A recent result of RBERTSON AND SEYMOUR (1983-2000) on graph minors is (one of)
the deepest results of graph theory. The proof goes beyase thctures. Indeed, the proof of

Theorem 5.13 is around 500 pages long.

G a subgraph a contraction

Note that every subgrapi C G is a minor,H < G.
The following properties of the minor relation are easiltabtished:

) GG,
(i) H<xGandG < Himply G = H,
(i) H < LandL < Gimply H < G.
The conditions (i) and (iii) ensure that the relatigns aquasi-order, that is, it is reflexive and

transitive. It turns out to bewell-quasi-order, that is, every infinite sequencg,, Go, . .. of
graphs has two graplfs; andG; with 7 < j such that; < G;.

Theorem 5.13 (Minor Theorem). The minor order< is a well-quasi-order on graphs. In
particular, in any infinite family# of graphs, one of the graphs is a (proper) minor of another.

Each propertyP of graphs defines a family of graphs, namely, the family oéhgraphs
that satisfy this property.



5.3 Genus of a graph 74

DerFINITION. A family F of graphs is said to bminor closed, if every minor H of a graph
G € Fis also inF. A property? of graphs is said to bieherited by minors, if all minors of
a graphG satisfyP wheneverG does.

The following families of graphs are minor closed: the fanaf (1) all graphs, (2) planar
graphs (and their generalizations to other surfaces),cfg)lia graphs.
The acyclic graphs include all trees. However, the familyreés is not closed under taking
subgraphs, and thus it is not minor closed. More importanitlg subgraph order of trees
(Ty C Ty) is nota well-quasi-order.

WAGNER proved a minor version of Kuratowski's theorem:

Theorem 5.14 YWAGNER (1937)).A graphG is nonplanar if and only ifKs < G or K33 <
G.

Proof. Exercise. 0
ROBERTSON ANDSEYMOUR (1998) proved th&Vagner’s conjecture

Theorem 5.15 (Minor Theorem 2).Let P be a property of graphs inherited by minors. Then
there exists dinite setd of graphs such thaf’ satisfiesP if and only if G does not have a
minor from%.

One of the impressive application of Theorem 5.15 concemigeeldings of graphs on
surfaces, see the next chapters. By Theorem 5.15, one ¢dwitbsa fastalgorithm) whether
a graph can be embedded onto a surface.

Every graph can be drawn in ttiedimensional space without crossing edges. An old
problem asks if there exists an algorithm that would deteerwvhether a graph can be drawn
so that its cycles do not form (nontrivial) knots. This perhlis solved by the above results,
since the property ‘knotless’ is inherited by minors: thexestsa fast algorithm to do the job.
However, this algorithm is not known!

Hadwiger's Problem. HADWIGER conjectured in 1943 that for every gragh
Ko =G,

that is,if x(G) > r, thenG has a complete grapk’, as its minor The conjecture is trivial
for r = 2, and it is known to hold for all < 6. The cases for = 5 and6 follow from the
4-Colour Theorem.

5.3 Genus of a graph

A graph is planar, if it can be drawn in the plane without clogsdges. A plane is an im-
portant special case of a surface. In this section we studstlgtdrawing graphs in other
surfaces.
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There are quite many interesting surfaces many of whichaher difficult to draw. We
shall study the ‘easy surfaces’ —those that are compactr@ntable. These are surfaces that
have both an inside and an outside, and can be entirely ¢aerad by the number of holes in
them. This number is thgenusof the surface. There are also non-orientable compactcasfa
such as the Klein bottle and the projective plane.

Background on surfaces

We shall first have a quick look at the general surfaces ariddlassification without going
into the details. Consider the spake, which has its (usual) distance functidtw,y) € R of
its points.

Two figures (i.e., sets of pointg) and B aretopologically equivalent(or homeomorphic
if there exists a bijectiorf : A — B such thatf and its inversef~!: B — A are continuous.
In particular, two figures are topologically equivalent ifeocan be deformed to the other by
bending, squeezing, stretching, and shrinking withouirigdt apart or gluing any of its parts
together. All these deformations should be such that theyoeaundone.

A set of pointsX is asurface, if X is connected (there is a continuous line insidée-
tween any two given points) and every painE X has a neighbourhood that is topologically
equivalent to an open planar digka) = {z | dist(a,z) < 1}.

We deal with surfaces of the real space, and in this case acsuxf is compact if X is
closed and bounded. Note that the plane is not compact, giitaeot bounded. A subset of
a compact surfac& is atriangle if it is topologically equivalent to a triangle in the plane.
A finite set of trianglesl;, i = 1,2,...,m, is atriangulation of X if X = U",T; and any
nonempty intersectioff; N 7); with i # j is either a vertex or an edge.

The following is due to RDO (1925).

Theorem 5.16.Every compact surface has a triangulation.

Each triangle of a surface can be oriented by choosing am todiés vertices up to cyclic
permutations. Such a permutation induces a direction foetlges of the triangle. A triangu-
lation is said to beriented if the triangles are assigned orientations such that conedges
of two triangles are always oriented in reverse directidnsurface isorientable if it admits
an oriented triangulation.

Equivalently, orientability can be described as follows.

Theorem 5.17.A compact surfaceX is orientable if and only if it has no subsets that are
topologically equivalent to the Mébius band.

In the M6bius band (which itself is not a surface according
the above definition) one can travel around and return to the
starting point with left and right reversed.

A connected sumX#Y of two compact surfaces is obtained by cutting an open disk
off from both surfaces and then gluing the surfaces togetlmary the boundary of the disks.
(Such a deformation is not allowed by topological equiveéen

The next result is known as tlotassification theorem of compact surfaces
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Theorem 5.18 DEHN AND HEEGAARD (1907)).Let X be a compact surface. Then

() if X is orientable, then it is topologically equivalent to a sgh& = S, or a connected
sum of tori: S,, = S1#S1# ... #S5; for somen > 1, whereS; is a torus.

(i) if X is nonorientable, therX is topologically equivalent to a connected sum of projectiv
planes:P, = P#P+#...#P for somen > 1, whereP is a projective plane.

It is often difficult to imagine how a figure (say, a graph) candoawn in a surface. There
is a helpful, and difficult to prove, result due toaRO (1920), stating that every compact
surface (orientable or not) has a description Ipfeane model| which consists of a polygon in
the plane such that

e each edge of the polygon is labelled by a letter,
e each letter is a label of exactly two edges of the polygon, and
e each edge is given an orientation (clockwise or counterkelise).

Given a plane model/, a compact surface is obtained by gluing together the edadad
the same label in the direction that they have.

a a a a
a b b b b b a b
b a a b
Sphere Torus Klein bottle Projective plane

From a plane model one can easily determine if the surfaceested or not. It is nonori-
ented if and only if, for some label, the edges labelled by have the same direction when
read clockwise. (This corresponds to the Mébius band.)

A plane model, and thus a compact surface, can also be repgdday a (circular) word
by reading the model clockwise, and concatenating the salvith the convention thai—!
is chosen if the direction of the edge is counter clockwisent¢, the sphere is represented
by the wordabb~'a~!, the torus byuba—1b~!, the Klein bottle byaba~'b and the projective
plane byabb'a.

These surfaces, as do the other surfaces, have many
other plane models and representing words as well. A
word representing a connected sum of two surfaces,
represented by wordd’; andW,, is obtained by con-
catenating these words W7, W,. By studying the rela-
tions of the representing words, Theorem 5.18 can be
proved.

Klein bottle
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Drawing a graph (or any figure) in a surface can be elaboraiatpared to drawing in a
plane model, where a line that enters an edge of the polygat eoatinue by the correspond-
ing point of the other edge with the same label (since thesdgare identified when we glue
the edges together).

Example 5.5.0n the right we have drawfs
in the Klein bottle. The black dots indicate,
where the lines enter and leave the edges of they “1 '81‘
pe2 | b

3

plane model. Recall that in the plane model for | “*1
€1

the Klein bottle the vertical edges of the square
have the same direction.

Sphere

DEFINITION. In general, ifS is a surface, then a gragh has anS-embedding if G can be
drawn inS without crossing edges.

Let Sy be (the surface of) sphere According to the next
theorem a sphere has exactly the same embeddings as do
the plane. In the one direction the claim is obviousy iis

a planar graph, then it can be drawn in a bounded area of
the plane (without crossing edges), and this bounded area
can be ironed on the surface of a large enough sphere.

Clearly, if a graph can be embedded in one sphere, then iteamibedded in any sphere —
the size of the sphere is of no importance. On the other h&igljs embeddable in a sphere
So, then there is a small area of the sphere, where there areims pb the edges. We then
puncture the sphere at this area, and stretch it open ulttdks like a region of the plane. In
this process no crossings of edges can be created, and Gaéaganar.

Another way to see this is to use projection
of the sphere to a plane:

Theorem 5.19.A graphG has anSy-embedding if and only if it is planar.

Therefore instead of planar embeddings we can equally weliysembeddings of graphs
in a sphere. This is sometimes convenient, since the sphekesed and it has no boundaries.
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Most importantly, a planar graph drawn in a sphere has neiexface — all faces are bounded
(by edges).

If a sphere is deformed by pressing or stretching, its emddaitity properties will remain
the same. In topological terms the surface has been didtoyta continuous transformation.

Torus

Consider next a surface which is obtained from the sphere

Sp by pressing a hole in it. This istarus S; (or anori- .
entable surface of genud). TheS;-embeddable graphs

are said to havgenusequal to 1.

Sometimes it is easier to consider handles than holes: a $graan be deformed (by a con-
tinuous transformation) into sphere with a handle

© @

If a graphG is S1-embeddable, then it can be drawn in any one of the abovecggriaithout

crossing edges.

Example 5.6.The smallest nonplanar graphs;
and K3 3 have genus. Also, K7 has genug as can

be seen from the plane model (of the torus) on the
right.

Genus

Let S, (n > 0) be a sphere witln holes in it. The drawing of ai$; can already be quite
complicated, because we do not put any restrictions on #eeplof the holes (except that we
must not tear the surface into disjoint parts). Howevergaagain arS,, can be transformed
(topologically) into a sphere with handles.
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Q

DEFINITION. We define thgenusg(G) of a graphG as the smallest integer, for which G
is S,,-embeddable.

For planar graphs, we havgéG) = 0, and, in particularg(K,) = 0. For K5, we have
g(K5) = 1, sinceKs is nonplanar, but is embeddable in a torus. Algdss 3) = 1.
The next theorem states that any grapban be embedded in some surfagewith n > 0.

Theorem 5.20.Every graph has a genus.

This result has an easy intuitive verification. Indeed,
consider a grapliz and any of its plane (or sphere)

drawing (possibly with many crossing edges) such that

no three edges cross each other in the same point (such

a drawing can be obtained). At each of these crossing -
points create a handle so that one of the edges goes be-

low the handle and the other uses the handle to cross
over the first one.

We should note that the above argument does not deter-

mine g(G), only thatG can be embedded in sonsg. N
However, clearlyg(G) < n, and thus the genug G)

of G exists. %
The same handle can be utilized by several edges. {

Euler’s formula with genus*

The drawing of a planar grafh in a sphere has the advantage that the faces of the embedding
are not divided into internal and external. The externat faloG becomes an ‘ordinary face’
after G has been drawn if.

In general, daceof an embedding afr in S,, (with g(G) = n) is a region ofS,, surrounded
by edges of>. Let againps denote the number of faces of an embedding afi .S,,. We omit
the proof of the next generalization of Euler’s formula.

Theorem 5.21.If G is a connected graph, then

vg —eq+yea =2-29(G) .
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If G is a planar graph, thesn(G) = 0, and the above formula is the Euler’s formula for
planar graphs.

DEFINITION. A face of an embedding(G) in a surface is &-cell, if every simple closed
curve (that does not intersect with itself) can be contislypdeformed to a single point.

The complete graplky can be embedded in a torus such that it has a face that is no¢la 2-
But this is because(K,) = 0, and the genus of the torus is We omit the proof of the
general condition discovered byOYNGS

Theorem 5.22 Y OUNGS (1963)). The faces of an embedding of a connected gr&pin a
surface of genug(G) are 2-cells.

Lemma 5.12.For a connected~ with v > 3 we have3pg < 2e.

Proof. If v = 3, then the claim is trivial. Assume thus that > 4. In this case we need the
knowledge thatys is counted in a surface that determines the genus @nd in no surface
with a larger genus). Now every face has a border of at leeet thdges, and, as before, every
nonbridge is on the boundary of exactly two faces. O

Theorem 5.23.For a connected~ with vz > 3,

1 1
g(G) 2 656‘ — §(VG — 2) .
Proof. By the previous lemma&ps < 2e¢g, and by the generalized Euler's formulag =
eq — vg + 2 — 2¢9(G). Combining these we obtain that, — 3vg + 6 — 69(G) < 2e¢, and
the claim follows. O

By this theorem, we can compute lower bounds for the geiG§ without drawing any
embeddings. As an example, [8t= Kg. In this case/g = 8, e¢ = 28, and sog(G) > g
Since the genus is always an integgiiz) > 2. We deduce thak’s cannot be embedded in
the surfaces; of the torus.

If H C G, then clearlyg(H) < ¢(G), sinceH is obtained fromG by omitting vertices
and edges. In particular,

Lemma 5.13.For a graphG of ordern, ¢(G) < g(K,).
For the complete graphs,, a good lower bound was found early.

Theorem 5.24 HeEawoOD (1890)).1f n > 3, then

(n—3)(n—4).

K,) >
9(Kn) > 1

Proof. The number of edges iR, is equal tae =
g(Ky) = (1/6)eq — (1/2)(n = 2) = (1/12)(n = 3)

(n —1). By Theorem 5.23, we obtain

in
(n—4). 0
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This result was dramatically improved to obtain
Theorem 5.25 RINGEL AND YOUNGS(1968)).If n > 3, then

oK) = {(n—?;i;n—él)-‘ |

Thereforeg(Kg) = [3-2/12] = [1/2] = 1. Also, g(K7) = 1, butg(Kg) = 2.
By Theorem 5.25,

Theorem 5.26.For all graphsG of ordern > 3,
(n—3)(n —4)
< | 7.
9(G) { 1

Also, we know the exact genus for the complete bipartite fysap

Theorem 5.27 (RINGEL (1965)).For the complete bipartite graphs,

) = [ L2202

Chromatic numbers*

For the planar graph&, the proof of thed-Colour Theoremy (G) < 4, is extremely long
and difficult. This in mind, it is surprising that the genézation of the4-Colour Theorem for
genus> 1 is much easier. HAwooD proved a hundred years ago:

Theorem 5.28 HEawoOD). If g(G) = g > 1, then

x(G) < {”—WJ :

Notice that forg = 0 this theorem would be thé-colour theorem. I[HAwWOOD proved it
‘only’ for g > 1.

Using the result of RNGEL AND YOUNGS and some elementary computations we can
prove that the above theorem is the best possible.

Theorem 5.29.For eachg > 1, there exists a grapli’ with genusy(G) = ¢ so that

x(G) = {—7+ X/IQJFTSQJ :

If a nonplanar grapliz can be embedded in a torus, thgit?) = 1, andx(G) < [(7 +
V1+148g)/2] = 7. Moreover, forG = K; we have thak(K7) = 7 andg(K7) = 1.
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Three dimensiong

Every graph can be drawn without crossing edges ir3tdanensional space. Such a drawing

is calledspatial embeddingof the graph. Indeed, such an embedding can be achieved by
putting all vertices of7 on a line, and then drawing the edges in different planesciratiain

the line. Alternatively, the vertices @ can be put in a sphere, and drawing the edges as
straight lines crossing the sphere inside.

A spatial embedding of a graghi is said to havdinked cycles if two cycles ofG form a
link (they cannot be separated in the space). ByW@AY and GORDONIN 1983 every spatial
embedding ofi{s contains linked cycles.

It was shown by RBERTSON SEYMOUR AND THOMAS (1993) that there is a set Gf
graphs such that a grapgh has a spatial embedding without linked cycles if and onlg if
does not have a minor belonging to this set.

This family of forbidden graphs was originally found bya&s (without proof), and it
containsK and the Petersen graph. Every graph in the sel haslges, which is curious.

For further results and proofs concerning graphs in susfasee

B. MOHAR AND C. THOMASSEN, “Graphs on Surfaces”, Johns Hopkins, 2001.
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Directed Graphs

6.1 Digraphs

In some problems the relation between the objects is not |
symmetric. For these cases we need directed graphs, whersD I
the edges are oriented from one vertex to another. | D D D E L
As an example consider a map of a small town. Can you | D L] D C ]
L]
||

make the streets one-way, and still be able to drive from one
house to another (or exit the town)?

Definitions

DEFINITION. A digraph (or adirected graph) D = (Vp, Ep) consists of the verticeBp
and (directed) edge8p C Vp x Vp (without loopsvv). We still write wv for (u, v), but note
that nowuv # vu. For each paie = uv define thanverseof e ase™! = vu (= (v, u)).

Note thate € Ep doesnotimply e=! € Ep.

DEFINITION. LetD be a digraph. Thed is its

e subdigraph, if V4 C VpandE4 C Ep,
e induced subdigraph A = D[X],if V4 = X andE4 = Ep N (X x X).

The underlying graph U(D) of a digraphD

is the graph ori/p such that ife € Ep, then
the undirected edge with the same ends is i
U(D).

A digraph D is anorientation of a graphG, if G = U(D) ande € Ep impliese™! ¢ Ep.
In this case D is said to be awriented graph.

DEFINITION. LetD be a digraph. A walkV = ejey...ex: u = v of U(D) is adirected
walk, if e; € Ep forall i € [1, k]. Similarly, we definadirected pathsanddirected cyclesas
directed walks and closed directed walks without repetitiof vertices.

The digraphD is di-connected if, for all v # v, there exist directed paths = v and
v = u. The maximal induced di-connected subdigraphs aréittemponentsof D.



6.1 Digraphs 84

Note that a graptG = U(D) might be connected, although the digraphis not di-
connected.

DEFINITION. Theindegreeand theoutdegreeof a vertex are defined as follows

dh(v) = |{e € Ep | e = zv}|, d9(w)=|{e € Ep | e =vx}| .

We have the followindghandshaking lemma (You offer and accept a handshake.)

Lemma 6.1.Let D be a digraph. Then

S db(w) = |Bpl = Y- a5 ().

veD veD

Directed paths

The relationship between paths and directed paths is in gen
eral rather complicated. This digraph has a path of length
five, but its directed paths are of length one. &
There is a nice connection between the lengths of directind gad the chromatic number
x(D) = x(U(D)).

Theorem 6.1 Roy (1967)GALLAI (1968)). A digraph D has a directed path of length
x(D) — 1.

Proof. Let A C Ep be a minimal set of edges such that the subdigrBphA contains no
directed cycles. Let be the length of the longest directed patiin- A.

For each vertexw € D, assign a colour(v) = 1, if a longest directed path from has
lengthi — 1in D—A. Herel <i<k+ 1.

First we observe that iP = e¢jes ... e, (r > 1) is any directed path = v in D—A, then
a(u) # a(v). Indeed, ifa(v) = 1, then there exists a directed p&ph v = w of lengthi —1,
and P(Q is a directed path, sincB— A does not contain directed cycles. Sime@: u - w,
a(u) # i = a(v). In particular, ife = uv € Ep_4, thena(u) # a(v).

Consider then an edge = vu € A. By the minimality of A, (D—A) + e contains a
directed cycleC': u = v — u, where the partt = v is a directed path i — A, and hence
a(u) # a(v). This shows that is a proper colouring of/ (D), and therefore((D) < k + 1,
thatis,k > x(D) — 1. O

The boundy (D) — 1 is the best possible in the following sense:

Theorem 6.2.Every graphG has an orientationD, where the longest directed paths have
lengthsy (G) — 1.
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Proof. Letk = x(G) and leta be a propelk-colouring of G. As usual the set of colours is
[1,k]. We orient each edgev € E¢ by settinguv € Ep, if a(u) < a(v). Clearly, the so
obtained orientatiorD has no directed paths of lengthk — 1. a

DEFINITION. An orientation D of an undirected graply is acyclic, if it has no directed
cycles. Leta(G) be the number of acyclic orientations Gf

The next result is charming, singe;(—1) measures the number of proper colourings of
G using—1 colours!

Theorem 6.3 STANLEY (1973)).LetG be a graph of order.. Then the number of the acyclic
orientations ofG is

a(G) = (=1)"xa(-1) ,
wherey is the chromatic polynomial af.

Proof. The proof is by induction ong. First, if G is discrete, theng (k) = k", anda(G) =
1=(-1)"(—-1)" = (-1)"xe(—1) as required.

Now x (k) is a polynomial that satisfies the recurrene k) = xg—e(k) — XGse (k). TO
prove the claim, we show thatG) satisfies the same recurrence.

Indeed, if
a(G) = a(G—e) + a(G x¢e) (6.1)

then, by the induction hypothesis,
a(G) = (=1)"xG—e(=1) + (=1)" " xgre(=1) = (=1)"xc(~1) -

For (6.1), we observe that every acyclic orientatiortzafives an acyclic orientation @¥—e.
On the other hand, iD is an acyclic orientation off —e for e = uw, it extends to an acyclic
orientation ofG by puttinge;: © — v 0orey: v — wu. Indeed, if D has no directed path
u - v, we choosess, and if D has no directed path = w, we chooses;. Note that since
D is acyclic, it cannot have both ways— v andv = w.

We conclude that(G) = a(G—e) + b, whereb is the number of acyclic orientatiord3 of
G—e that extend in both ways, andes. The acyclic orientation® that extend in both ways
are exactly those that contain

neitheru = v norv = wu as a directed path. (6.2)

Each acyclic orientation af * e corresponds in a natural way to an acyclic orientafidbn
of G—e that satisfies (6.2). Therefobe= a(G * €), and the proof is completed. O

One-way traffic

Every graph can be oriented, but the result may not be diexded. In theone-way traffic
problem the resulting orientation should be di-connected, for wtfge someone is not able
to drive home. RBBINS' theorem solves this problem.
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DEFINITION. A graph@ is di-orientable, if there is a di-connected oriented graphsuch
thatG = U(D).

Theorem 6.4 ROBBINS (1939)).A connected grapld’ is di-orientable if and only iflZ has
no bridges.

Proof. If G has a bridge:, then any orientation off has at least two di-components (both
sides of the bridge).

Suppose then that has no bridges. Henag has a cycle, and a cycle is always di-
orientable. Let thedd C G be maximal such that it has a di-orientatibyy;. If H = G, then
we are done.

Otherwise, there exists an edge= vu € Eg such that
u € H butv ¢ H (because? is connected). The edgeis €
not a bridge and thus there exists a cycle pl P

C'=ePQ:v—u-——>w->v

in G, wherew is the last vertex insidéf .
In the di-orientationD 5 of H there is a directed path’: © = w. Now, we orient: v —
u and the edges @ in the direction)): w = v to obtain a directed cycleP’'Q: v — u =
w = v. In conclusion,G[Vy U V| has a di-orientation, which contradicts the maximality
assumption orf. This proves the claim. a

Example 6.1.Let D be a digraph. Adirected Euler tour of D is a directed closed walk that
uses each edge exactly oncediected Euler trail of D is a directed walk that uses each
edge exactly once.

The following two results are left as exercises.

(1) Let D be a digraph such thad’ (D) is connected. TheP has a directed Euler tour if and
only if dl,(v) = d%(v) for all verticesw.

(2) Let D be a digraph such that/ (D) is connected. The has a directed Euler trail if and
only if 5, (v) = d%(v) for all verticesv with possibly excepting two verticesy for which
|dp (v) — dp(v)| = 1.

The above results hold equally well forultidigraphs that is, for directed graphs, where
we allow parallel directed edges between the vertices.

Example 6.2.The following problem was first studied bydiCHINSON AND WILF (1975)
with a motivation from DNA sequencing. Consider words oveaphabetd = {aq, as,...,a,}
of n letters, that is, each word is a sequence of letters. In the case of DNA, the let-
ters areA, T, C, G. In a problem instance, we are given nonnegative integeasdr;; for
1 < i,j < n, and the question is: does there exist a worth which each letter; occurs
exactlys; times, andq; is followed bya; exactlyr;; times.

For instance, ifh = 2, 51 = 3, andry; = 1, 712 = 2,791 = 1, 7990 = 0, then the word
aiasaiaias is a solution to the problem.
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Consider a multidigraptD with Vp = A for which there are;; edgesa;a;. It is rather
obvious that a directed Euler trail @ gives a solution to the sequencing problem.

Tournaments

DEFINITION. A tournament T is an orientation of a complete graph.

Example 6.3.There are four tournaments of four vertices that are not @phic with each
other. (Isomorphism of directed graphs is defined in themlwivay.)

> XXX

Theorem 6.5 REDEI (1934)).Every tournament has a directed Hamilton path.

Proof. The chromatic number ot is x(K,,) = n, and hence by Theorem 6.1, a tournament
T of ordern has a directed path of length— 1. This is then a directed Hamilton path visiting
each vertex once. 0

The vertices of a tournament can be easily reached from atex@sometimes called the
king).

Theorem 6.6 CLAUDAU (1953)).Letv be a vertex of a tournamefit of maximum outdegree.
Then for allu, there is a directed path = w of length at most two.

Proof. Let T be an orientation of<,,, and letd?.(v) = d be the maximum outdegree i
Suppose that there exists anfor which the directed distance fromto z is at least three.
It follows thatzv € Er andzu € Ep for all v with vu € Ep. But there arel vertices in
A ={y|vy € Er}, and thusi + 1 vertices in{y | zy € Er} = AU {v}. It follows that the
outdegree of: is d + 1, which contradicts the maximality assumption madeufor O

Problem. Adam’s conjecturestates thain every digraphD with a directed cycle there exists
an edgeuv the reversal of which decreases the number of directed €ytlere the new
digraph has the edge: instead ofuv.

Example 6.4.Consider a tournament af teams that play once against each other, and sup-
pose that each game has a winner. The situation can be pdsena tournament, where the
vertices correspond to the teams and there is an edgguv;, if v; won v; in their mutual
game.

DEFINITION. A teamu is awinner (there may be more than one winner)y ifomes out with
the most victories in the tournament.
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Theorem 6.6 states that a winnereither defeated a team or v defeated a team that
defeated..

A ranking of a tournament is a linear ordering of the teams > v;, > --- > v;,
that should reflect the scoring of the teams. One way of rgn&itournament could be by a
Hamilton path: the ordering can be obtained from a directathiton pathP: v;, — v;, —

. — v;,. However, a tournament may have several directed Hamil&hsp and some of
these may do unjust for the ‘real’ winner.

Example 6.5.Consider a tournament of six teams
1,2,...,6, and letT be the scoring digraph as in

the figure. Herd — 2 — 4 — 5 — 6 — 3is a di-
rected Hamilton path, but this extends to a directed @
Hamilton cycle (by addingd — 1)! So for every

team there is a Hamilton path, where it is a winner,
and in another, it is a looser.

Lets1(j) = d9(j) be thewinning number of the teamy (the number of teams beaten by
7). In the above tournament,

81(1) = 4, 81(2) = 3, 81(3) = 3, 81(4) = 2, 81(5) = 2, 81(6) =1.

So, is team 1 the winner? If so, is 2 or 3 next? Definestheond-level scorindor each team
by
s2() = D s1(i) .
JiebET

This tells us how good teamjsbeat. In our example, we have
82(1) == 8, 82(2) == 5, 82(3) == 9, 82(4) == 3, 82(5) == 4, 82(6) =3.

Now, it seems that 3 is the winner,but 4 and 6 have the same.sdr continue by defining
inductively themth-level scoring by

sm(J) = Z Sm—1(7) -

JiebET

It can be proved (using matrix methods) that for a di-coreg:edburnament with at least four
teamsthe level scorings will eventually stabilize in a rankinglud tournamentthere exits an
m for which themth-level scoring gives the same ordering as do(thet k)th-level scorings
forall £ > 1. If T"is not di-connected, then the level scoring should be ahig with respect
to the di-components.

In our example the level scoring givés— 3 — 2 — 5 — 4 — 6 as the ranking of the
tournament.
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6.2 Network Flows

Various transportation networks or water pipelines arevepigently represented by weighted
directed graphs. These networks usually possess also silitieaal requirements. Goods are
transported from specific places (warehouses) to finalitmesimarketing places) through a
network of roads. In modeling a transportation network bygaaghh, we must make sure that
the number of goods remains the same at each crossing ofats. rfbhe problem setting for
such networks was proposed by T.E. Harris in the 1950s. Theeamion toKirchhoff's Cur-
rent Law(1847) is immediate. According to this law, in every eleztinetwork the amount
of current flowing in a vertex equals the amount flowing out treatex.

Flows

DEFINITION. A network N consists of

anunderlying digraph D = (V, E),
two distinct verticess andr, called thesourceand 5
thesink of NV, and G

e acapacity functiona: V x V — R (nonnegative
real numbers), for which(e) = 0, if e ¢ E.

DenoteVy =V andEy = E.

Let A C Viy be a set of vertices, anfl: Viy x Vy — R any function such thaf(e) = 0,
if e ¢ En. We adopt the following notations:

[A,A]={e€ Ep|le=uv, uc A, v ¢ A},
A= > fley and f(A)= > flo).

e€[A,A] e€[A,A]

In particular,

fr)=" flw) and f~(u)=) f(ou).

vEN veEN
DEeFINITION. A flow in a network/V is a functionf: Viy x Vy — R, such that
0< f(e)<ale) forall e, and f~(v)=f"(v) forall v¢ {s,r}.

Example 6.6.The valuef(e) can be taught of as the rate at which transportation actually
happens along the channelwhich has the maximum capacity(e). The second condition
states that there should be no loss.
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If N = (D,s,r,a) is a network of water
pipes, then the valuex(e) gives the capacity
(z m?/min) of the pipee.

The previous network has a flow that is indicated
on the right.

A flow f in N is something that the network can handieg, in the above figure the
source should not try to feed the network the full capacitys¢.* /min) of its pipes, because
the junctions cannot handle this much water.

DEFINITION. Every networkN has azero flow defined byf(e) = 0 for all e. For a flow f
and each subset C Vy, define thaesultant flow from A and thevalue of f as the numbers

val(fa) = fH(A) - f7(4) and  val(f) = val(fs) (= f(s) = f(s)) -
A flow f of a network N is amaximum flow, if there does not exist any floW such that

val(f) < val(f’).

The valueval(f) of a flow is the overall number of goods that are (to be) trartepo
through the network from the source to the sink. In the abeeenple,val(f) = 9.

Lemma6.2.LetN = (D, s, r, ) be a network with a flovy.
(i) If AC N\ {s,r}, thenval(fa) = 0.

(i) val(f) = —val(f,).

Proof. Let A C N\ {s,r}. Then

0= (fT@) = f () =D w)=> f ()= fT(A) = [ (4) = val(fa),

vEA vEA vEA
where the third equality holds since the values of the edgesith u, v € A cancel each out.
The second claim is also clear. O

Improvable flows

Let f be a flow in a networkV, and letP = eje, ... e, be anundirectedpath in N where an
edgee; isalong P, if e; = v;v;41 € En, andagainst P, if e; = v;11v; € EN.
We define a nonnegative numbépP) for P as follows:

a(e) — f(e) if eisalongP ,

L(P) = min(e), wherec(e) = {f(e) if e is againstP.

€

DEFINITION. Let f be a flow in a networkvV. A
pathP: s = ris (f-)improvable, if .(P) > 0.

On the right, the bold path has valug”) = 1,
and therefore this path is improvable.
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Lemma 6.3.Let V be a network. Iff is a maximum flow ofV, then it has no improvable
paths.

Proof. Define
f(e)+u(P) if eisalong P,
f'(e) =< f(e) —u«(P) if eis against P
f(e) if e is notin P.

Then f’ is a flow, since at each intermediate ver-
texv ¢ {s,r}, we have(f" )~ (v) = (f)"(v),
and the capacities of the edges are not exceeded.
Now val(f") = val(f)+¢(P), sinceP has exactly S
one edgesv € E for the sources. Hence, if
t(P) > 0, then we can improve the flow.

Max-Flow Min-Cut Theorem

DEFINITION. LetN = (D, s,r,«) be anetwork. For a subs8tC Vy with s € S andr ¢ S,
let thecut by S be

[S]=1[5,5] (={uw € En|ucSve¢S}).

The capacity of the cut[S] is the sum

e€[S]

A cut [S] is aminimum cut, if there is no cufR]
with o[R] < a5].

Example 6.7.In our original network the capac-
ity of the cut for the indicated vertices is equal
to 10.

Lemma 6.4.For a flow f and a cut[S] of V,

val(f) = val(fs) = £ (S) = £(5)

Proof. Let.S; = S\ {s}. Nowval(S;) = 0 (sinceS; C N \ {s,r}), andval(f) = val(fs).
Hence

val(fs) =val(f,) = 3 f(sv)+ 3 f(vs)

vEST veST

+ val(fs,) + Z f(sv) — Z fvs)

veST vEST

=val(fs) = val(f) .
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Theorem 6.7.For a flow f and any cu{S] of N, val(f) < «[S]. Furthermore, equality holds
if and only if for eachu € S andv ¢ S,

(i) if e =uv € En, thenf(e) = a(e),
(i) if e=vu € En, thenf(e) = 0.

Proof. By the definition of a flow,

)= fle) < 3 ale) = als].
]

e€lS e€[S]

and f~(S) > 0. By Lemma 6.4yal(f) = val(fs) = fT(S) — f~(5), and henceal(f) <
alS], as required. Also, the equalityl(f) = «[S] holds if and only if

(1) £(S) = a[S] and (2) f~(S) = 0. This holds if and only iff (¢) = «a(e) for all e € [5]
(sincef(e) < a(e)), and
(2) f(e) =0foralle =vuwithu € S,v ¢ S.

This proves the claim. O
In particular, if f is a maximum flow andlS] a minimum cut, then
val(f) < a[S] .

Corollary 6.1. If fis a flow andS] a cut such thatal(f) = «[S], thenf is a maximum flow
and[S] a minimum cut.

The following main result of network flows was proved indegiemtly by E.IAS, FEIN-
STEIN, SHANNON, by FORD AND FULKERSON, and by ROBACKERin 1955 —56. The present
approach is due to Ford and Fulkerson.

Theorem 6.8.A flow f of a networkN is maximum if and only if there are nGimprovable
paths inNV.

Proof. By Lemma 6.3, a maximum flow cannot have improvable paths.
Conversely, assume that contains ngf-improvable paths, and let

S;r={u € N | for some pathP: s = u, «(P) > 0} .

SetS = SrU{s}.

Consider an edge = wv € Ey, Whereu € S andv ¢ S. Sinceu € S, there exists a
pathP: s = u with (P) > 0. Moreover, since ¢ S, ((Pe) = 0 for the pathPe: s = v.
Thereforei(e) = 0, and sof (e) = a(e).

By the same argument, for an edge- vu € Ey withv ¢ S andu € S, f(e) = 0.

By Theorem 6.7, we haveal(f) = «[S]. Corollary 6.1 implies now thaf is a maximum
flow (and[S] is @ minimum cut). 0
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Theorem 6.9.Let N be a network, where the capacity functian V' x V' — N has integer
values. ThenV has a maximum flow with integer values.

Proof. Let fj be the zero flowfy(e) = 0 foralle € V' x V. A maximum flow is constructed
using Lemma 6.3 by increasing and decreasing the valueg @dbes by integers only. O

The proof of Theorem 6.8 showed also

Theorem 6.10 (Max-Flow Min-Cut). In a networkN, the valueval(f) of a maximum flow
equals the capacity[S] of a minimum cut.

Applications to graphs*

The Max-Flow Min-Cut Theorem is a strong result, and manywfgmrevious results follow
from it.

We mention a connection to the Marriage Theorem, TheoremFR2Bthis, letG be a
bipartite graph with a bipartitiofiX,Y"), and consider a network with vertices{s,r} U
X UY. Let the edges (with their capacities) bec En (a(sx) = 1), yr € Eny (a(yr) = 1)
forall z € X, y € Y together with the edgesy € En (a(zy) = | X| + 1), if 2y € Eg for
x € X,y €Y. ThenG has a matching that saturat&sif and only if N has a maximum flow
of value|X'|. Now Theorem 6.10 gives Theorem 3.9.

Next we apply the theorem it networks, where the capacities of the edges are equal
to one ((e) = 1 for all e € En). We obtain results for (directed) graphs.

Lemma 6.5.Let N be a unit network with sourceand sinkr.

(i) The valueval(f) of a maximum flow equals the maximum number of edge-disjoéuted
pathss = r.

(i) The capacity of a minimum cyb] equals the minimum number of edges whose removal
destroys the directed connections™— r from s to r.

Proof. Exercise. O

Corollary 6.2. Letu andv be two vertices of a digraplv. The maximum number of edge-
disjoint directed paths = v equals the minimum number of edges, whose removal destroys
all the directed connections = v from D.

Proof. A network IV with sources and sinkr is obtained by setting the capacities equal.to
The claim follows from Lemma 6.5 and Corollary 6.10. O

Corollary 6.3. Let v and v be two vertices of a graplt’. The maximum number of edge-
disjoint pathsu = v equals the minimum number of edges, whose removal desltdizs a
connections, = v from D.

Proof. Consider the digrapl® that is obtained frontz by replacing each (undirected) edge
uv € Eg by two directed edgesv € Ep andvu € Ep. The claim follows then easily from
Corollary 6.2. a
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The next corollary idvienger’'s Theoremfor edge connectivity.

Corollary 6.4. A graph( is k-edge connected if and only if any two distinct vertice§ afre
connected by at leagtindependent paths.

Proof. The claim follows immediately from Corollary 6.3. a

Seymour’s 6-flows

DEFINITION. A k-flow (H, «) of an undirected graply is an orientationH of G together
with an edge colouring:: Ey — [0,k — 1] such that for all vertices € V,

Yooale= > af), 6.3)
e=vuelEy f=uweEy

that is, the sum of the incoming values equals the sum of tihgomg values. Ak-flow is
nowhere zerq if a(e) # O forall e € Ey.

In the k-flows we do not have any source or sink. For convenieletey(e 1) = —a(e)
for all e € Ey in the orientationH of G so that the condition (6.3) becomes
Z ale) =0. (6.4)
e=vucel

Example 6.8.A graph with a nowhere zer-flow.

The condition (6.4) generalizes to the subséts Vi in a natural way,

Z ale) =0, (6.5)

eC[AA]
since the values of the edges insidle&ancel out each other. In particular,

Lemma 6.6.If G has a nowhere zerb-flow for somek, thenG has no bridges.

Tutte’'s Problem. It was conjectured by UTTE (1954) thatevery bridgeless graph has a
nowhere zerd-flow. The Petersen graph has a nowhere Zeflow but does not have any
nowhere4-flows, and sd is the best one can think of. Tutte’s conjecture resembled-th
Colour Theorem, and indeed, the conjecture is known to hwlthie planar graphs. The proof
of this uses thd-Colour Theorem.

In order to fully appreciate Seymour’s result, Theorem pvild mention that it was proved
as late as 1976 (bya8GER) that every bridgeless; has a nowhere zerb-flow for some
integerk.

SEYMOUR'’s remarkable result reads as follows:
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Theorem 6.11 GEYMOUR'’s (1981)).Every bridgeless graph has a nowhere zéiow.

Proof. Omitted. O

DerINITION. Theflow number f(G) of a bridgeless grap&' is the least integek for which
G has a nowhere zerio-flow.

Theorem 6.12.A connected grapli has a flow numbef(G) = 2 if and only if it is eulerian.

Proof. Supposé?= is eulerian, and consider an Euler tddif of G. Let D be the orientation
of G corresponding to the direction &f . If an edgeuv € Ep, leta(e) = 1. SinceW arrives
and leaves each vertex equally many times, the funetiea nowhere zer@-flow.
Conversely, letv be a nowhere zer®-flow of an orientationD of GG. Then necessarily the
degrees of the vertices are even, and-sSs eulerian. O

Example 6.9.For each3-regular bipartite graplz, we havef(G) < 3. Indeed, letG be
(X,Y)-biparte. By Corollary 3.1, &-regular graph has a perfect matching. Orient the
edges € M from X toY, and setx(e) = 2. Orient the edges ¢ M from Y to X, and set
a(e) = 1. Since eachr € X has exactly one neighboyi € Y such thatry; € M, and two
neighboursys, y3 € Y such thatey,, zys ¢ M, we have thayf (G) < 3.

Theorem 6.13.We havef(K,) = 4, and ifn > 4, then

FKL) = {2 if n is odd,

3 ifniseven.

Proof. Exercise. O
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