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Literature, teaching format and examination

Literature Grimaldi, Ralph P.; Discrete and combinatorial
mathematics, 5th edition, Pearson Addison Wesley, 2004.
Chapters 11-13 Extra material handed out. (Not too
demanding)

Teaching format: We have twenty combined lectures and tutorials.
Weight will be put on problem solving.

Examination We will have four “problem sessions”, where you can
present your own solutions to problems. Problem sheets
will be handed out and posted at least a week in advance.
Details about dates etc., will be posted on the course page
later.
Participation in the problem sessions (at least 2/4) will
give bonus at the written exam in December; the first
exam-question will automatically be graded with full
points.



Lesson and exercise planning

No Section Content Proposed exercises
1 11.1 Definitions and examples, paths and cycles 2,4,6,7,8,10,13,14,15,16
2 11.2 Subgraphs and graph-homomorphisms 1,2,4,5,7,8,10,11,13
3 11.3 Degrees, parity and euler tours 1,2,3,5,8,11,13,16,26,27,30,32,33,37
4 11.4 (+) Planar graphs, cycles and cuts 1,2,11,13,17,19,21,22,23,27,28
5 11.5 Hamiltonian graphs 1,2,4,10,12,18,20,21,25,26
6 11.6 Chromatic properties 1,2,4,7,8,9,14,16,17,18,19
7 11.6 (+) More about colourings S11 17,18,21,22, (+)
8 12.1 Acyclic graphs and trees 2,4,5,7,9,10,11,18,19,21,22,23,25
9 12.2 Rooted trees and search 1,2,5,7,9,10,12,14,15,16,19,20
10 12.3 Trees and sorting 1,3,4
11 12.4 Trees and codes 1,3,6,7
12 12.5 Decomposition into blocks 1,4,5,6,7,8,12,13 S12 5,6,7,8,11,14
13 13.1 Shortest path problems 1,2,4,5,6,7,9
14 13.2 Greedy algorithms and minimum spanning

tree
1,2,4,5,6,7,9

15 13.3 Transport networks 1,3,6 (+)
16 13.3 (+) Transport problems
17 13.4 Matchings in bipartite graphs 1,2,4,5,7,13 S13 5,6,8,9
18 13.4 (+) Duality principles in linear programming
19 (+) Random graphs and random graph statis-

tics
20 Tutorial (buffer)
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A simple symmetric relation (undirected graphs)

(a) A symmetric graph on 30 vertices (b) Another 3-regular graph

Figure: Undirected simple graphs: Main object



Automata and state transition graphs
Directed graphs, where arrows stand for a transition in time between
states are also very common: Markov chains, automata, game theory, . . .
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Dependency graphs, factor graphs, etc.
Many application of graphs starts from graphs where nodes representing
variables are connected if they are dependent in some way. Examples are
Bayesian networks, graphical models, factor graphs, . . .

Figure: A Baeysian network



Relationship diagrams, data base models, . . .
In Computer Science the use of graphs has a long tradition. Here is an
example of a entity–relation diagram used in database constructions.
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Naive set theory

Examples of sets are {1, 2}, {1, 1, 2} = {1, 2},
{3n ∈ Z : n is prime }, {{1, 3}, {2}}, etc.

The statement that x is an element of A, is written
x ∈ A.

Two sets A and B are equal when they have
precisely the same elements, that is,
x ∈ A ⇐⇒ x ∈ B.

A set encode as a “geometric” object a unary
relation on objects — or a proposition about
outcomes. Logic is obtained by set operations.

A ∩ Bx

A ∪ B

A \ B



Sets of sets and the power set 2X

Given a set X , we obtain the power set 2X consisting of all subsets of X .
The set

(X
k

)
is the set of all k-subsets of X .

If X = {1, 2, 3} then

2X = {∅, {1}, {2}, {3}, {1, 2}, {2, 3}, {3, 1}, {1, 2, 3}} .

and (
X
2

)
= {{1, 2}, {2, 3}, {3, 1}} and

(
X
3

)
= {{1, 2, 3}}.

Note the cardinalities (=number of elements)

|2X | = 2|X |,
∣∣∣∣(Xk

)∣∣∣∣ = (
|X |
k

)
.



The Cartesian product of sets
Given two sets A and B, the Cartesian
product, A× B is the set of pairs
(two-tuples) (a, b) such that a ∈ A and
b ∈ B.
For example, given the set of playing card
ranks and suits

R = {A,K ,Q, J, 10, 9, . . . , 3, 2}

and
S = {♠,♥,♦,♣}

we obtain the 52-element set

R × S = {(A,♠), (K ,♠), . . . ,
(2,♠), (A,♥), ..., (3,♣), (2,♣)}.

A poker-hand is thus a 5-subset of R × S ,
i.e. an element in

(R×S
5

)
.
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Relations: Subsets of a cartesian product

A (binary) relation R between elements of
A and elements of B is (can be interpreted
as) a subset R ⊂ A× B, where aRb
precisely if (a, b) ∈ R.

If A = B = X , we say a relation
Q ⊂ X × X is a relation on X .
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Functions

A relation f ⊂ A× B is a function from A to B if
for every a ∈ A there is exactly one element in B
related to a. This element is written f (a).

A function is surjective if every element in B is
related to at least one element in A.

A function is injective if no element in B is related
to more than one element in A.

A bijective function f : A→ B is one which is both
surjective and injective. In this case we have
|B| = |f (A)| = |A|.
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Symmetric, transitive and reflexive relations

A relation Q on X is symmetric if, for all
x , y ∈ X , xQy implies yQx .

It is reflexive if xQx for all x ∈ X .

A relation Q on X is transitive if, for all
x , y , z ∈ X ,

xQy ∧ yQz =⇒ xQz .

A symmetric, reflexive and transitive
relation is an equivalence relation.
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Definition of simple directed graphs

Def: Let V be a set and E ⊂ V × V a binary
relation on V . A simple digraph G is the pair
G = (V ,E ), where V is called the set of vertices
and E the set of directed edges or arcs.

We say i ∈ V is adjacent to j ∈ V if ij = (i , j) ∈ E
and adjacent from k ∈ V if (k, i) ∈ E .

The edge (i , j) ∈ E is an out-edge at i and an
in-edge at j ; j is an out-neighbour of i and i is an
in-neighbour of j .

If E does not include edges of the form (i , i), the
graph is without loops.
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Undirected simple graph

Def: An undirected simple graph is a pair
G = (V ,E ), where direction E ⊂

(V
2

)
. We often

write elements {i , j} of E as ij — direction is
disregarded.

An undirected graph corresponds to a symmetric
adjacency relation; i adjacent to j and vice versa
precisely if {i , j} ∈ E .

This correspond to an underlying symmetric
reflexive or anti-reflexive relation.

We say that a vertex v is incident with an edge
e ∈ E if v ∈ e.
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General multigraphs; head and tail functions; incidence
relation

Let V and E be two finite sets. A general (multi-)
digraph G = (V ,E , head× tail) is given by two
functions

head : E → V and tail : E → V .

The multiplicity of an edge (u, v) ∈ V × V is the
number edges e such that head e = u and
tail e = v .

The incidence relation, Inc, from E to V , is defined
as follows: e is incident with v if v = head e or
v = tail e.

An undirected multi-graph G = (V ,E ) is an
equivalence class with a fixed incidence relation.
Multiplicity of edge {u, v} is the number of edges
such that Inc({e}) = {u, v}. Every digraph ~G with
the same incidence relation is called an orientation
of G .

E head tail
e1 A B
e2 A B
e3 B C
e4 C D
e5 B E
e6 E F
e7 B E
e8 A F
e9 E D
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The Cashier/Guard problem
Consider the following (simple, undirected) graph. (The normal case!)

a b c

d e f g

h i j k

Figure: A graph of cashiers connected by aisles

Place a minimum set of guards so that each cashier has at least one
guard in some neighbouring aisle. Find a minimum set S such that every
vertex is either in S or adjacent to some vertex in S .

What is the minimum size of a set S ⊂ V , such that every edge is
incident with at least one vertex in S?
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Walks and reachability

The problem of Reachability

Can we reach vertex v from vertex u by “walking around” in the graph?
If so, in how many ways can we do this?

Def: An uv -walk W of length n in the (multi-di-) graph G = (V ,E ) is
an alternating sequence of vertices xi ∈ V , i = 0, 1, . . . , n, and edges
ej ∈ E , j = 1, . . . , n,

W : u = x0, e1, x1, e2, x2, . . . , en−1, xn−1, en, xn = v ,

such that, for all i = 1, . . . , n, both xi−1 and xi are incident with ei .

If for all i , xi−1 = head ei and xi = tail ei it is a directed walk otherwise it
is an oriented walk.

If G is simple then a walk W is specified by the sequence

W := (x0, x1, . . . , xn) ∈ V ∗ := V ∪ V 2 ∪ · · · ∪ V n ∪ . . . .



Closed walks, trails, circuits, paths and cycles

An uv -walk

u = x0, x1, . . . , xn = v ,

is
closed if a = b
a trail if all edges are

distinct
a circuit if it is a closed

trail
a path if all vertices

are distinct
a cycle if it is a closed

path
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Compute the number of closed walks in a lollipop graph

Consider the following graph with a loop.

v w

Figure: The lollipop graph

Determine a recursion formula for an — the number of closed vv -walks in
this graph.



Paths determine the connectivity structure

We can describe a path/cycle in any type of graph as a subset of edges
and (possibly) the starting point.

Paths and cycles are also subgraphs. (More next time)

Theorem (Paths are enough)

There exists an (directed/oriented) uv-walk if and only if there exists a
(directed/oriented) uv-path.

Task: Prove this!



Components, connectedness

A vertex u ∈ V is reachable from v ∈ V if there
exists an oriented/directed uv -walk — or a path.

For oriented walks/paths — for undirected graphs
— this is an equivalence relation on V .

The equivalence classes are called connected
components. The number of components of a
graph G is denoted by c(G ). (κ(G ) in the book) A
graph is connected if c(G ) = 1.

For digraphs we can say that two vertices u an v
are strongly connected if there are both a directed
uv -walk and a directed vu-walk. This is again an
equivalence relation; partitioning V into strong
components.
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Distance, diameter and girth

Given a graph G = (V ,E ) the
length (or +∞) of a shortest path
between u and v , u, v ∈ V , is called
the distance between u and v . It is
denoted distG (u, v).

The diameter, diam(G ), of a graph
is the maximum distance between
two vertices.

The girth, g(G ), of a graph is the
length of the smallest cycle. (If the
graph contains no cycles it is called
acyclic.)

1. What is the diameter and girth
of the Petersen graph?

2. Prove that for every non-acyclic
graph g(G ) ≤ 2 diam(G ) + 1.

Figure: The Petersen graph
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