Lecture 2: Isomorphism and subgraphs

Anders Johansson

2011-10-22 lör

Outline

Coda from previous lecture

Graph homomorphisms isomorphisms

Various notions of subgraphs

Important classes of graphs

(a) A complete bipartite $K_{3,2}$

(b) A complete graph K_{5}

(c) A cycle C_{8}

(d) A path P_{n}

(e) A hypercube Q_{3}

(f) A 4×5 grid

Components, connectedness

A vertex $u \in V$ is reachable from $v \in V$ if there exists an oriented/directed $u v$-path.

For oriented paths - or for undirected graphs this is an equivalence relation on V.

The equivalence classes are called connected components. The number of components of a graph G is denoted by $c(G) .(\kappa(G)$ in the book) A graph is connected if $c(G)=1$.

For digraphs we can say that two vertices u an v are strongly connected if there are both a directed $u v$-walk and a directed $v u$-walk. This is again an

Components, connectedness

A vertex $u \in V$ is reachable from $v \in V$ if there exists an oriented/directed $u v$-path.

For oriented paths - or for undirected graphs this is an equivalence relation on V.

The equivalence classes are called connected components. The number of components of a graph G is denoted by $c(G) .(\kappa(G)$ in the book) A graph is connected if $c(G)=1$.

For digraphs we can say that two vertices u an v are strongly connected if there are both a directed $u v$-walk and a directed $v u$-walk. This is again an equivalence relation; partitioning V into strong components.

Strong components

Distance, diameter and girth

Given a graph $G=(V, E)$ the length (or $+\infty$) of a shortest path between u and $v, u, v \in V$, is called the distance between u and v. It is denoted $\operatorname{dist}_{G}(u, v)$.

The diameter, $\operatorname{diam}(G)$, of a graph is the maximum distance between two vertices.

The girth, $g(G)$, of a graph is the length of the smallest cycle. (If the graph contains no cycles it is called acyclic.)

1. What is the diameter and girth of the Petersen graph?

More questions

1. Prove that dist_{G} is a metric on $V(G)$: Prove the triangle inequality

$$
\operatorname{dist}_{G}(u, v) \leq \operatorname{dist}_{G}(u, w)+\operatorname{dist}_{G}(w, v)
$$

2. Let G be a connected loop-free undirected graph and let e be an edge. Prove that that the graph

$$
G-e:=(V, E \backslash\{e\})
$$

is connected if and only if e is a part of a cycle in G.
3. Show that if a graph $G=(V, E)$ is not connected then its complement

$$
\bar{G}:=\left(V,\binom{V}{2} \backslash E\right)
$$

is connected.
4. Prove that for every non-acyclic graph $g(G) \leq 2 \operatorname{diam}(G)+1$.

Graph homomorphism

For graphs G and H (possibly with loops), a graph homomorphism is a map $f: V(G) \rightarrow V(H)$ which take edges to edges, i.e.

$$
(u, v) \in E(G) \Longrightarrow(f(u), f(v)) \in E(H) .
$$

H

Example and questions about homomorphisms

1. Could we have D in the image $f(V(G))$ of f above?
2. Describe the set $\operatorname{Hom}\left(P_{n}, G\right)$ of homomorphisms between the n-path P_{n} and G. $\operatorname{Hom}\left(C_{n}, G\right)$? Injective?
3. How should we define homomorphisms for general multigraphs?

Graph isomorphism

A graph isomorphism between graphs G and H is a bijective map $f: V(G) \rightarrow V(H)$ such that

$$
\{u, v\} \in E(G) \Longleftrightarrow\{f(u), f(v)\} \in E(H) .
$$

We write $G \cong H$ and consider in many circumstances two such graphs as the same.
If $G=H$, we talk of an automorphism. Makes up a permutation group.

Figure: A graph isomorphism

Questions about isomorphisms

1. Show that (c) and (d) are not isomorphic and show that (a) and (b) are.
2. Show that the number of automorphisms in the Petersen graph (b) is at least 30 .

(a)

(b)

(d)

Subgraphs and spanning subgraphs

Let G and H be two graphs. We say that H is a subgraph of G, write it $H \subset G$, if

$$
V(H) \subset V(G) \text { and } E(H) \subset E(G)
$$

If $V(H)=V(G)$ then H is a spanning subgraph, and H is just a subset of edges. We can write $H \subset_{s p} G$ and obtain H from G by deleting edges.

(a) The Petersen graph G

(b) The subgraph $H \subset G$

Subgraphs and spanning subgraphs

Let G and H be two graphs. We say that H is a subgraph of G, write it $H \subset G$, if

$$
V(H) \subset V(G) \text { and } E(H) \subset E(G)
$$

If $V(H)=V(G)$ then H is a spanning subgraph, and H is just a subset of edges. We can write $H \subset_{s p} G$ and obtain H from G by deleting edges.

(a) The Petersen graph G

(b) The subgraph $H \subset G$

Subgraphs and spanning subgraphs

Let G and H be two graphs. We say that H is a subgraph of G, write it $H \subset G$, if

$$
V(H) \subset V(G) \text { and } E(H) \subset E(G)
$$

If $V(H)=V(G)$ then H is a spanning subgraph, and H is just a subset of edges. We can write $H \subset_{s p} G$ and obtain H from G by deleting edges.

(a) The Petersen graph G

(b) The spanning subgraph $H \subset_{s p} G$

Subgraphs induced by a set of vertices

We say that H is an induced subgraph of G if $V(H)=S \subset V(G)$ and $E(H)$ consists of all edges with both endpoints in $V(H)$. We write $H=G[S]$ and $H \triangleleft G$. It corresponds to deletion or addition of vertices.

(c) G and S
(d) The induced subgraph H

Monotone properties

Each notion of subgraphs, subgraphs, spanning subgraphs and induced subraphs, give rise to a partial order (\prec) on the set \mathcal{G} of graphs where \prec can be $\subset, \subset_{s p}$ or \triangleleft.
We say that graph parameter $f: \mathcal{G} \rightarrow \mathbb{R}$ is increasing (decreasing) if $G \prec H$ implies $f(G) \leq f(H)(f(G) \geq f(H))$. For instance, the number of components, $c(G)$, is decreasing under the spanning subgraph partial order.
Usually: a property is monotone increasing if the property is not destroyed under addition of edges. This means that it is increasing visavi the spanning subgraph property.
A property is hereditary if it holds under deletion of vertices. It is thus monotone decreasing under the induced subgraph relation \triangleleft.

Questions about subgraphs and induced subgraphs

1. How many spanning subgraphs does a graph $G=(V, E)$ have? How many induced subgraphs? The number of subgraphs is harder to determine ...
2. If every induced subgraph of a graph is connected. What is the graph?
3. Show that the shortest cycle in any graph is an induced cycle, if it exists.
4. Fill in the diagram

Property/parameter	\subset	$\subset_{s p}$	\triangleleft
Chromatic number $\chi(G)$	\nearrow	\nearrow	\nearrow
Diameter diam (G)	-	\searrow	-
Number of components $c(G)$	$?$	\searrow	$?$
Size of automorphism group	$?$	$?$	$?$
Girth $g(G)$	$?$	$?$	$?$
Size of max K_{n}-subgraph	$?$	$?$	$?$
Longest cycle	$?$	$?$	$?$

