Lecture 2: Isomorphism and subgraphs

Anders Johansson

2011-10-22 lör

<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ < ○

Outline

Coda from previous lecture

Graph homomorphisms isomorphisms

Various notions of subgraphs

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Important classes of graphs

Components, connectedness

A vertex $u \in V$ is *reachable* from $v \in V$ if there exists an oriented/directed *uv*-path.

For oriented paths — or for undirected graphs — this is an equivalence relation on V.

The equivalence classes are called *connected* components. The number of components of a graph G is denoted by c(G). ($\kappa(G)$ in the book) A graph is *connected* if c(G) = 1.

For digraphs we can say that two vertices u an v are *strongly connected* if there are both a directed uv-walk and a directed vu-walk. This is again an equivalence relation; partitioning V into *strong components*.

Components, connectedness

A vertex $u \in V$ is *reachable* from $v \in V$ if there exists an oriented/directed *uv*-path.

For oriented paths — or for undirected graphs — this is an equivalence relation on V.

The equivalence classes are called *connected* components. The number of components of a graph G is denoted by c(G). ($\kappa(G)$ in the book) A graph is *connected* if c(G) = 1.

For digraphs we can say that two vertices u an v are *strongly connected* if there are both a directed uv-walk and a directed vu-walk. This is again an equivalence relation; partitioning V into *strong components*.

Strong components

Distance, diameter and girth

Given a graph G = (V, E) the length (or $+\infty$) of a *shortest path* between u and $v, u, v \in V$, is called the *distance* between u and v. It is denoted dist_G(u, v).

The diameter, diam(G), of a graph is the maximum distance between two vertices.

The girth, g(G), of a graph is the length of the smallest cycle. (If the graph contains no cycles it is called acyclic.) 1. What is the diameter and girth of the Petersen graph?

・ロト ・ 日 ・ モート ・ 田 ・ うへで

More questions

1. Prove that dist_G is a *metric* on V(G): Prove the triangle inequality

$$\operatorname{dist}_G(u, v) \leq \operatorname{dist}_G(u, w) + \operatorname{dist}_G(w, v).$$

2. Let G be a connected loop-free undirected graph and let e be an edge. Prove that that the graph

$$G - e := (V, E \setminus \{e\})$$

is connected if and only if e is a part of a cycle in G.

3. Show that if a graph G = (V, E) is not connected then its *complement*

$$\overline{G} := (V, \binom{V}{2} \setminus E)$$

ション ふゆ アメリア メリア しょうくの

is connected.

4. Prove that for every non-acyclic graph $g(G) \leq 2 \operatorname{diam}(G) + 1$.

Graph homomorphism

For graphs G and H (possibly with loops), a graph homomorphism is a map $f: V(G) \rightarrow V(H)$ which take edges to edges, i.e.

$$(u, v) \in E(G) \implies (f(u), f(v)) \in E(H).$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Example and questions about homomorphisms

・ロト ・ 日本 ・ 日本 ・ 日本

-

- 1. Could we have D in the image f(V(G)) of f above?
- 2. Describe the set $Hom(P_n, G)$ of homomorphisms between the *n*-path P_n and G. $Hom(C_n, G)$? Injective?
- 3. How should we define homomorphisms for general multigraphs?

Graph isomorphism

A graph isomorphism between graphs G and H is a bijective map $f: V(G) \rightarrow V(H)$ such that

$$\{u,v\} \in E(G) \iff \{f(u),f(v)\} \in E(H).$$

We write $G \cong H$ and consider in many circumstances two such graphs as the same.

If G = H, we talk of an *automorphism*. Makes up a permutation group.

Questions about isomorphisms

- 1. Show that (c) and (d) are not isomorphic and show that (a) and (b) are.
- 2. Show that the number of automorphisms in the Petersen graph (b) is at least 30.

Subgraphs and spanning subgraphs

Let G and H be two graphs. We say that H is a subgraph of G, write it $H \subset G$, if

$$V(H) \subset V(G)$$
 and $E(H) \subset E(G)$.

If V(H) = V(G) then H is a spanning subgraph, and H is just a subset of edges. We can write $H \subset_{sp} G$ and obtain H from G by deleting edges.

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Subgraphs and spanning subgraphs

Let G and H be two graphs. We say that H is a subgraph of G, write it $H \subset G$, if

$$V(H) \subset V(G)$$
 and $E(H) \subset E(G)$.

If V(H) = V(G) then H is a spanning subgraph, and H is just a subset of edges. We can write $H \subset_{sp} G$ and obtain H from G by deleting edges.

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Subgraphs and spanning subgraphs

Let G and H be two graphs. We say that H is a subgraph of G, write it $H \subset G$, if

$$V(H) \subset V(G)$$
 and $E(H) \subset E(G)$.

If V(H) = V(G) then H is a spanning subgraph, and H is just a subset of edges. We can write $H \subset_{sp} G$ and obtain H from G by deleting edges.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへの

Subgraphs induced by a set of vertices

We say that *H* is an *induced subgraph* of *G* if $V(H) = S \subset V(G)$ and E(H) consists of all edges with both endpoints in V(H). We write H = G[S] and $H \triangleleft G$. It corresponds to deletion or addition of vertices.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

Monotone properties

Each notion of subgraphs, subgraphs, spanning subgraphs and induced subraphs, give rise to a *partial order* (\prec) on the set \mathcal{G} of graphs where \prec can be \subset, \subset_{sp} or \triangleleft .

We say that graph parameter $f : \mathcal{G} \to \mathbb{R}$ is *increasing* (decreasing) if $G \prec H$ implies $f(G) \leq f(H)$ ($f(G) \geq f(H)$). For instance, the number of components, c(G), is decreasing under the spanning subgraph partial order.

Usually: a property is *monotone increasing* if the property is not destroyed under addition of edges. This means that it is increasing visavi the spanning subgraph property.

A property is *hereditary* if it holds under deletion of vertices. It is thus monotone decreasing under the *induced subgraph* relation \triangleleft .

Questions about subgraphs and induced subgraphs

- 1. How many spanning subgraphs does a graph G = (V, E) have? How many induced subgraphs? The number of subgraphs is harder to determine ...
- 2. If every induced subgraph of a graph is connected. What is the graph?
- 3. Show that the shortest cycle in any graph is an induced cycle, if it exists.
- 4. Fill in the diagram

Property/parameter	\subset	\sub{sp}	\triangleleft
Chromatic number $\chi(G)$	\nearrow	\nearrow	\nearrow
Diameter diam(<i>G</i>)	-	\searrow	-
Number of components $c(G)$?	\searrow	?
Size of automorphism group	?	?	?
Girth $g(G)$?	?	?
Size of max K_n -subgraph	?	?	?
Longest cycle	?	?	?

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()