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(a) An intersection graph (b) An interval graph

Def: Let V = {A1,A2, . . . ,An} be a set system � a �nite set of subsets
Ai ⊂ X of a set X . We say that G = (V ,E ) is the intersection graph of
V , if {Ai ,Aj} ∈ E precisely if Ai ∩ Aj 6= ∅.
There are many specialisations depending on which type of sets one
considers. In particular, interval graphs.



The Petersen graph as a complement to the intersection

graphs

1. Prove that every graph is an intersection graph for some set system.



Edge- and vertex deletion

Given a graph G = (V ,E ), we de�ne the graph obtained by deletion of
edge e ∈ E as the graph G − e := (V ,E \ {e}). The graph obtained by
deletion of vertex v ∈ V gives the graph
G − v := (V \ {v},E \ E (v ,G )).
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Edge contractions

Given a graph G = (V ,E ), we de�ne the graph obtained by contraction
of edge e = uv ∈ E as a graph G/e := (V \ {u, v} ∪ {v ′},E ), where
e ∈ E now is incident with the �new� vertex v ′ if and only if e is incident
with u or v . Sometimes one remove multiple edges and loops to keep the
graphs simple.
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(b) The graph G/bd
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(c) The simpli�ed graph
G/bd



Subgraphs and spanning subgraphs

Let G and H be two graphs. We say that H is a subgraph of G , write it
H ⊂ G , if

V (H) ⊂ V (G ) and E (H) ⊂ E (G ).

If V (H) = V (G ) then H is a spanning subgraph, and H is just a subset
of edges. We can write H ⊂sp G and obtain H from G by deleting edges.

(a) The Petersen graph G (b) The subgraph H ⊂ G
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Subgraphs and spanning subgraphs

Let G and H be two graphs. We say that H is a subgraph of G , write it
H ⊂ G , if

V (H) ⊂ V (G ) and E (H) ⊂ E (G ).

If V (H) = V (G ) then H is a spanning subgraph, and H is just a subset
of edges. We can write H ⊂sp G and obtain H from G by deleting edges.

(a) The Petersen graph G (b) The spanning subgraph H ⊂sp G



Subgraphs induced by a set of vertices

We say that H is an induced subgraph of G if V (H) = S ⊂ V (G ) and
E (H) consists of all edges with both endpoints in V (H). We write
H = G [S ] and H / G and it means that H can be obtained from G by
deleting vertices.

S

(c) G and S (d) The induced subgraph H



Questions about subgraphs and induced subgraphs

1. How many spanning subgraphs does a graph G = (V ,E ) have? How
many induced subgraphs? The number of subgraphs is harder to
determine . . .

2. If every induced subgraph of a graph is connected. What is the
graph?

3. Show that the shortest cycle in any graph is an induced cycle, if it
exists.



Minors

A �nal �subgraph� relation is the minor relation. A graph H is minor in G

if we can obtain H by deleting edges and vertices and contracting edges.

Figure: The Petersen graph has a K5-minor

1. Show that the Petersen graph has a K3,3-minor.
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Independence number and clique number
The clique number, ω(G ), is the largest k such that G has a subgraph
isomorphic to a complete graph Kk on k-vertices. (A k-clique.)

The independence number, α(G ), is the largest k such that G has a set
of k vertices no two of which are adjacent. Note that α(G ) = ω(G ).

Both α(G ) ≤ k and ω(G ) ≤ k can be stated as forbidden induced
subgraphs.

(a) A graph with ω(G) = 4 (b) An independent set of size 9

1. Is the independent set in (b) above a maximum independent set, i.e.
is α(G ) = 9 for the graph described.

2. Does it hold for every graph that ω(G )α(G ) ≤ |V (G )|?



Monotone properties

Each notion of subgraphs, subgraphs, spanning subgraphs, induced
subgraphs and the minor relation, give rise to a partial order (≺) on the
set G of graphs where ≺ can be ⊂,⊂sp or /.

We say that graph parameter f : G → R is increasing (decreasing) in ≺ if
G ≺ H implies f (G ) ≤ f (H) (f (G ) ≥ f (H)). For instance, the number
of components, c(G ), is decreasing under the spanning subgraph partial
order.

Usually: a property is monotone increasing if the property is not
destroyed under addition of edges. This means that it is increasing visavi
the spanning subgraph property.

A property is hereditary if it holds under deletion of vertices. It is thus
monotone decreasing under the induced subgraph relation /.

1. Give examples of properties that are monotone/not monotone under
these relations.



Degrees and parity
Def: For a general digraph D = (V ,A) and a vertex v ∈ V , de�ne the

out-degree, deg+(v ,
~G ) (deg−(v ,

~G )) as the number of out-edges
(in-edges) to v , i.e. the number of edges e ∈ A such that v = tail e
(v = head v).

Def: For a graph G and v ∈ V (G ), let the degree

deg(v ,G ) := deg+(v ,
~G ) + deg−(v ,

~G ),

where ~G is any admissable orientation of G .

A graph is k-regular if every vertex has degree k.

We can also say that deg(v ,G ) is the number of regular
edges incident with v plus 2 times the number of loops
incident with v .
For simple graphs without loops, we have

degG (v) = |N(v ,G )| = |E (v ,G )|,

where N(v ,G ) is the set of neighbours to v and E (v ,G )
the set of edges incident to v .



Handshake lemma
If we sum all the degrees, we count each edge twice.
Thm: (Handshake Lemma) The sum of degrees equals twice the
number of edges, i.e. ∑

v∈V (G)

deg(v ,G ) = 2|E (G )|.

Cor: Reducing mod 2 gives that the number of vertices with odd

degree is even.

Figure: A graph with four odd vertices.

1. What is |V (G )| if |E (G )| = 9 and all edges have degree 3.
(3-regular graph)



Some problems

1. What is the number of edges in the hypercube Qn?

2. Can the sequence 1, 1, 1, 2, 3, 4, 5, 7 be a degree sequences in a
simple loop-free connected graph? What about loop-free connected
multigraphs?

3. Let e be a bridge in a connected graph G as in the �gure. Show
that each of the graphs G1, G2 has an odd number of odd vertices.

G1 G2

v1 v2

e

4. Let D be an orientation of the undirected complete graph Kn. (Such
a digraph is called a tournament.) Prove that∑

v∈V (D)

(
deg+(v ,G )

)2
=

∑
v∈V (D)

(
deg−(v ,G )

)2
.



Euler circuits and Euler trails
Problem: Can we draw a graph G on paper without lifting the pen? Can
we do it so that we return to the starting point?

Def: An Euler circuit (trail) is an circuit using all edges.

Thm: An Euler circuit exists if and only if the graph is connected and all
vertices have even degree.

1. Find an Euler circuit for the graph below.
2. Prove the theorem.



Euler circuits as cycle covers and the CDC conjecture
An Euler circuit in a connected graph is equivalent to the existence of a
cycle cover: A set of cycles C1,C2, · · · ⊂ G , such that every edge
e ∈ E (G ) is contained in exactly one of these cycles.

A famous and still unsolved conjecture in Graph Theory states that every
bridge-less graph has a cycle double cover, i.e. a set of, not necessarily
distinct, cycles C1,C2, . . . ,Cr ⊂ G such that every edge e ∈ E (G ) is
contained in exactly two cycles.

1. For a minimum counterexample (with respect to number of edges)
to the CDC conjecture, show that all vertices have degree three.



Bipartite graphs

A graph G is bipartite � with bipartition V1,V � if V = V1∪̇V2 and all
edges ij ∈ E has one end in V1 and V2.

1. Show that the hypercube Qn is bipartite.

2. Show that a graph is bipartite if and only if every cycle has even
length.



Planar graph

Check this game The game Planarity

http://www.planarity.net


De�nition of plane graphs and planar graphs

We de�ne a more general concept.

Def: Let S be a topological space. An S-drawing is a pair (V ,E ) if V is
a �nite set of points in S and where each e ∈ E is a arc in S connecting
points in V . We interpret this as a graph G , where the edge (arc) e ∈ E

is incident with its endpoints.

If the edges of an S-drawing are disjoint except at the endpoints, then G

is S-embedded. A graph is S-embeddable if G is isomorphic to some
S-embedded graph.

When S is the plane R2 (or S is the sphere S2), we say that G is plane if
it is S-embedded and planar if it is S-embeddable.



Questions

1. Are the following graphs planar?

2. Is K5 (K3,3) planar? Toroidal?

Thm: The Jordan Curve theorem.



Euler's formula

A plane graph G = (V ,E ), give rise to a plane map (V ,E ,F ) � the
union of the edges subdivides the plane into a set F of open regions
called faces such that each face is bounded by a �nite set of edges.



Kuratowski's theorem and homeomorphic graphs

A subdivision of a graph is obtained by replacing edges in the graph by

paths, equivalently, by iterativel replacing edges by 2-paths

Two graphs which can be transformed into each other by sequence
insertions and �deletions� of vertices of degree two are called
homemorphic.

Kuratowskis Theorem: A graph is planar if and only if it does not
contain a subgraph which is a subdivision of a K5 or a K3,3.

Wagners Theorem: A graph is planar if and only if it does not contain
K5 or a K3,3 as minors.



Kissing graphs

Wagner's theorem (1936): A planar graph has a
plane embedding using only straight lines as edges.

Koebe's theorem (1936): A graph is planar if and
only if it is a intersection graph of circles in the
plane, where each pair of circles are tangent.

Koebe�Andreev�Thurston theorem: If G is a �nite
triangulated planar graph, then the circle packing
whose tangency graph is (isomorphic to) G is
unique, up to Möbius transformations and
re�ections in lines.



The dual graph
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