Lecture 3: Degrees and parity

Anders Johansson

2011-10-22 lör

◆□ > < 個 > < E > < E > E 9 < 0</p>

Outline

The Petersen graph as Kneser graph and Intersection graphs

Various notions of subgraphs

Vertex degree: Euler trails and Euler circuits

Euler circuits and cycle covers

Planar and plane graphs

Duality

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - 釣�?

Intersection graphs

Def: Let $V = \{A_1, A_2, \dots, A_n\}$ be a set system — a finite set of subsets $A_i \subset X$ of a set X. We say that G = (V, E) is the *intersection graph* of V, if $\{A_i, A_j\} \in E$ precisely if $A_i \cap A_j \neq \emptyset$.

There are many specialisations depending on which type of sets one considers. In particular, *interval graphs*.

The Petersen graph as a complement to the intersection graphs

1. Prove that every graph is an intersection graph for some set system.

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Edge- and vertex deletion

Given a graph G = (V, E), we define the graph obtained by **deletion of** edge $e \in E$ as the graph $G - e := (V, E \setminus \{e\})$. The graph obtained by deletion of vertex $v \in V$ gives the graph $G - v := (V \setminus \{v\}, E \setminus E(v, G))$.

うして ふゆう ふほう ふほう うらつ

Edge contractions

Given a graph G = (V, E), we define the graph obtained by **contraction** of edge $e = uv \in E$ as a graph $G/e := (V \setminus \{u, v\} \cup \{v'\}, E)$, where $e \in E$ now is incident with the "new" vertex v' if and only if e is incident with u or v. Sometimes one remove multiple edges and loops to keep the graphs simple.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Subgraphs and spanning subgraphs

Let G and H be two graphs. We say that H is a subgraph of G, write it $H \subset G$, if

$$V(H) \subset V(G)$$
 and $E(H) \subset E(G)$.

If V(H) = V(G) then H is a spanning subgraph, and H is just a subset of edges. We can write $H \subset_{sp} G$ and obtain H from G by deleting edges.

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Subgraphs and spanning subgraphs

Let G and H be two graphs. We say that H is a subgraph of G, write it $H \subset G$, if

$$V(H) \subset V(G)$$
 and $E(H) \subset E(G)$.

If V(H) = V(G) then H is a spanning subgraph, and H is just a subset of edges. We can write $H \subset_{sp} G$ and obtain H from G by deleting edges.

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Subgraphs and spanning subgraphs

Let G and H be two graphs. We say that H is a subgraph of G, write it $H \subset G$, if

$$V(H) \subset V(G)$$
 and $E(H) \subset E(G)$.

If V(H) = V(G) then H is a spanning subgraph, and H is just a subset of edges. We can write $H \subset_{sp} G$ and obtain H from G by deleting edges.

Subgraphs induced by a set of vertices

We say that H is an *induced subgraph* of G if $V(H) = S \subset V(G)$ and E(H) consists of all edges with both endpoints in V(H). We write H = G[S] and $H \triangleleft G$ and it means that H can be obtained from G by *deleting vertices*.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Questions about subgraphs and induced subgraphs

- 1. How many spanning subgraphs does a graph G = (V, E) have? How many induced subgraphs? The number of subgraphs is harder to determine ...
- 2. If every induced subgraph of a graph is connected. What is the graph?
- 3. Show that the shortest cycle in any graph is an induced cycle, if it exists.

Minors

A final "subgraph" relation is the minor relation. A graph H is *minor* in G if we can obtain H by deleting edges and vertices and *contracting* edges.

Figure: The Petersen graph has a K_5 -minor

・ロト ・ 日 ・ エ = ・ ・ 日 ・ うへつ

1. Show that the Petersen graph has a $K_{3,3}$ -minor.

Minors

A final "subgraph" relation is the minor relation. A graph H is *minor* in G if we can obtain H by deleting edges and vertices and *contracting* edges.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

1. Show that the Petersen graph has a $K_{3,3}$ -minor.

Independence number and clique number

The *clique number*, $\omega(G)$, is the largest k such that G has a subgraph isomorphic to a complete graph K_k on k-vertices. (A k-clique.)

The *independence number*, $\alpha(G)$, is the largest k such that G has a set of k vertices no two of which are adjacent. Note that $\alpha(G) = \omega(\overline{G})$.

Both $\alpha(G) \leq k$ and $\omega(G) \leq k$ can be stated as forbidden induced subgraphs.

.

Monotone properties

Each notion of subgraphs, subgraphs, spanning subgraphs, induced subgraphs and the minor relation, give rise to a *partial order* (\prec) on the set \mathcal{G} of graphs where \prec can be \subset, \subset_{sp} or \triangleleft .

We say that graph parameter $f : \mathcal{G} \to \mathbb{R}$ is *increasing* (decreasing) in \prec if $G \prec H$ implies $f(G) \leq f(H)$ ($f(G) \geq f(H)$). For instance, the number of components, c(G), is decreasing under the spanning subgraph partial order.

Usually: a property is *monotone increasing* if the property is not destroyed under addition of edges. This means that it is increasing visavi the spanning subgraph property.

A property is *hereditary* if it holds under deletion of vertices. It is thus monotone decreasing under the *induced subgraph* relation \triangleleft .

1. Give examples of properties that are monotone/not monotone under these relations.

Degrees and parity

Def: For a general digraph D = (V, A) and a vertex $v \in V$, define the *out-degree*, deg₊ (v, \vec{G}) (deg₋ (v, \vec{G})) as the number of out-edges (in-edges) to v, i.e. the number of edges $e \in A$ such that v = tail e (v = head v).

Def: For a graph G and $v \in V(G)$, let the *degree*

$$\deg(v, G) := \deg_+(v, \vec{G}) + \deg_-(v, \vec{G}),$$

where \vec{G} is any admissable orientation of G.

A graph is *k*-regular if every vertex has degree *k*.

We can also say that deg(v, G) is the number of regular edges incident with v plus 2 times the number of loops incident with v.

For simple graphs without loops, we have

$$\deg_G(v) = |N(v,G)| = |E(v,G)|,$$

where N(v, G) is the set of *neighbours* to v and E(v, G)the set of edges incident to v.

Handshake lemma

If we sum all the degrees, we count each edge twice.

Thm: (Handshake Lemma) The sum of degrees equals twice the number of edges, i.e.

$$\sum_{v \in V(G)} \deg(v, G) = 2|E(G)|.$$

Cor: Reducing mod 2 gives that *the number of vertices with odd degree is even*.

Figure: A graph with four odd vertices.

1. What is |V(G)| if |E(G)| = 9 and all edges have degree 3. (3-regular graph)

Some problems

- 1. What is the number of edges in the hypercube Q_n ?
- 2. Can the sequence 1, 1, 1, 2, 3, 4, 5, 7 be a degree sequences in a simple loop-free connected graph? What about loop-free connected multigraphs?
- 3. Let e be a *bridge* in a connected graph G as in the figure. Show that each of the graphs G_1 , G_2 has an odd number of odd vertices.

4. Let D be an orientation of the undirected complete graph K_n . (Such a digraph is called a *tournament*.) Prove that

$$\sum_{\nu \in V(D)} \left(\mathsf{deg}_+(\nu, G) \right)^2 = \sum_{\nu \in V(D)} \left(\mathsf{deg}_-(\nu, G) \right)^2.$$

・ロト ・ 日 ・ エ = ・ ・ 日 ・ うへつ

Euler circuits and Euler trails

Problem: Can we draw a graph G on paper without lifting the pen? Can we do it so that we return to the starting point?

Def: An *Euler* circuit (trail) is an circuit using all edges.

Thm: An Euler circuit exists if and only if the graph is connected and all vertices have even degree.

- 1. Find an Euler circuit for the graph below.
- 2. Prove the theorem.

Euler circuits as cycle covers and the CDC conjecture

An Euler circuit in a connected graph is equivalent to the existence of a cycle cover: A set of cycles $C_1, C_2, \dots \subset G$, such that every edge $e \in E(G)$ is contained in exactly one of these cycles.

A famous and still unsolved conjecture in Graph Theory states that every *bridge-less* graph has a cycle *double cover*, i.e. a set of, not necessarily distinct, cycles $C_1, C_2, \ldots, C_r \subset G$ such that every edge $e \in E(G)$ is contained in exactly two cycles.

A graph G is *bipartite* — with bipartition V_1 , V — if $V = V_1 \cup V_2$ and all edges $ij \in E$ has one end in V_1 and V_2 .

- 1. Show that the hypercube Q_n is bipartite.
- 2. Show that a graph is bipartite if and only if every cycle has even length.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Planar graph

Check this game The game Planarity

Definition of plane graphs and planar graphs

We define a more general concept.

Def: Let S be a topological space. An S-drawing is a pair (V, E) if V is a finite set of points in S and where each $e \in E$ is a arc in S connecting points in V. We interpret this as a graph G, where the edge (arc) $e \in E$ is incident with its endpoints.

If the edges of an S-drawing are *disjoint* except at the endpoints, then G is S-embedded. A graph is S-embeddable if G is isomorphic to some S-embedded graph.

When S is the plane \mathbb{R}^2 (or S is the sphere S^2), we say that G is *plane* if it is S-embedded and *planar* if it is S-embeddable.

Questions

1. Are the following graphs planar? 2. Is K_5 ($K_{3,3}$) planar? Toroidal?

(ロ)、

Thm: The Jordan Curve theorem.

Euler's formula

A plane graph G = (V, E), give rise to a plane map (V, E, F) — the union of the edges subdivides the plane into a set F of open regions called *faces* such that each face is bounded by a finite set of edges.

Kuratowski's theorem and homeomorphic graphs

A *subdivision* of a graph is obtained by replacing edges in the graph by paths, equivalently, by iterativel replacing edges •——•• by 2-paths

Two graphs which can be transformed into each other by sequence insertions and "deletions" of vertices of degree two are called *homemorphic*.

Kuratowskis Theorem: A graph is planar *if and only if* it does not contain a subgraph which is a *subdivision* of a K_5 or a $K_{3,3}$.

Wagners Theorem: A graph is planar *if and only if* it does not contain K_5 or a $K_{3,3}$ as *minors*.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Wagner's theorem (1936): A planar graph has a plane embedding using only straight lines as edges.

Koebe's theorem (1936): A graph is planar if and only if it is a intersection graph of circles in the plane, where each pair of circles are *tangent*.

Koebe-Andreev-Thurston theorem: If G is a finite triangulated planar graph, then the circle packing whose tangency graph is (isomorphic to) G is unique, up to Möbius transformations and reflections in lines.

The dual graph

▲□▶ ▲圖▶ ▲ 差▶ ▲ 差 ● のQ@