Lecture 4: Bipartite graphs and planarity

Anders Johansson

2011-10-22 lör

Outline

Bipartite graphs

A graph G is bipartite — with bipartition V_1, V_2 — if $V = V_1 \dot{\cup} V_2$ and all edges $ij \in E$ has one end in V_1 and V_2 .

1. Which of the following graphs are bipartite?

- 2. Show that the hypercube Q_n is bipartite.
- 3. Show that a graph is bipartite if and only if every cycle has even length.

Definition of plane graphs and planar graphs

Let S be the plane \mathbb{R}^2 . How would you define a graph "drawn in the plane without edges crossing"? Here is one definition.

An arc is a curve $\gamma \subset S$ such that there is continuous map $\phi : [0,1] \to \gamma$ which is injective, except possibly that $\phi(0) = \phi(1)$, in which case γ is a

loop. The endpoints of the arc are $\phi(0)$ and $\phi(1)$.

8.0

Definition of plane graphs and planar graphs

Let S be the plane \mathbb{R}^2 . How would you define a graph "drawn in the plane without edges crossing"? Here is one definition.

An arc is a curve $\gamma\subset S$ such that there is continuous map $\phi:[0,1]\to\gamma$ which is injective, except possibly that $\phi(0)=\phi(1)$, in which case γ is a

loop. The endpoints of the arc are $\phi(0)$ and $\phi(1)$. 🗸

▶ 0.8

Questions

To solve this you may need

(**The Jordan Curve theorem:**) A simple closed curve *separates* the plane into two simply connected regions. (The inner and outer).

1. Are the following graphs planar?

- 2. Prove that K_5 and $K_{3,3}$ are non-planar?
- 3. Prove that planarity is preserved under edge- and vertex deletions and edge-contractions. Thus planarity is preserved under taking minors. Deduce that any graph with K_5 (or $K_{3,3}$) as a minor.

Kuratowski's theorem (Wagner's theorem) and homeomorphic graphs

Wagners Theorem: A graph is planar if and only if it does not contain K_5 or a $K_{3,3}$ as a minor.

A *subdivision* of a graph is obtained by replacing edges in the graph by paths, equivalently, by iteratively replacing edges •——• by 2-paths

Two graphs which can be transformed into each other by sequence insertions and "deletions" of vertices of degree two are called *homeomorphic*.

Kuratowskis Theorem: A graph is planar *if and only if* it does not contain a subgraph which is a *subdivision* of a K_5 or a $K_{3,3}$.

Plane maps and Euler's formula

A plane graph G=(V,E), give rise to a plane $map\ (V,E,F)$ — the union of the arcs the plane into a set of connected open regions. For each such open region call its closure a *face* and let F be the set of faces. Note that each face f is bounded by a unique set of edges $e_1,\ldots,e_r\}$, such that $e_i\subset f$. For all other edges, it holds that e_j either is disjoint from f or else $f\cap e_i\in V$.

- 1. If the graph is connected each face is *simply connected* "on the Riemann Sphere", i.e. we allow the hole at infinity.
- 2. If the graph is bridge-less, then every edge is contained in exactly two faces and every face is bounded by a cycle.

Eulers formula

Thm: For every plane map (V, E, F) we have

$$|V| - |E| + |F| = 2 + c(G) - 1,$$

where G = (V, E) and c(G) denotes the number of components in G. In particular, the right hand side is 2 if G is connected.

(Proof by edge-deletion.)

- 1. Prove that each planar graph has a vertex of degree at most 5. (The minimum degree $\delta(G) \leq 5$ for planar graphs.)
- 2. A *platonic solid* is a simple connected *d- regular* graph where each face contains the same number, *r*, of edges and which is not a cycle. What possibilities are there?

The dual graph

Given a plane map G = (V, E, F), where $F = \{f_1, \ldots, \}$ is the set of faces, define the "abstract" graph $G^* = (F, E)$ where $e \in E$ is incident with $f \in F$ if and only if $e \subset F$.

Figure: A dual map

Some problems regarding the definition of dual graphs

1. Draw the dual graphs to the following two maps:

- 2. What is the dual of a forest (an acyclic graph)?
- 3. Show that he dual graph is planar and there is a natural dual map (F, E, V).
- 4. What is the dual to the octahedron? Will any platonic solid have a platonic solid as a dual graph?

Duality between cuts and cycles in dual planar maps

A cut-set in a graph G=(V,E) is a set of edges $S\subset E$ such that $S=E(V_1,V_2)$ for some partition $V=V_1\dot{\cup}V_2$. A cut-set (or just cut) is minimal if either V_1 or V_2 are connected.

There is a one-to-one correspondence between minimal cuts in G and cycles in G^* and vice versa; between cycles in G and minimal cut-sets in G^* .

Duality between cuts and cycles in dual planar maps

A cut-set in a graph G=(V,E) is a set of edges $S\subset E$ such that $S=E(V_1,V_2)$ for some partition $V=V_1\dot{\cup}V_2$. A cut-set (or just cut) is minimal if either V_1 or V_2 are connected.

There is a one-to-one correspondence between minimal cuts in G and cycles in G^* and vice versa; between cycles in G and minimal cut-sets in G^* .

Duality between cuts and cycles in dual planar maps

A cut-set in a graph G=(V,E) is a set of edges $S\subset E$ such that $S=E(V_1,V_2)$ for some partition $V=V_1\dot{\cup}V_2$. A cut-set (or just cut) is minimal if either V_1 or V_2 are connected.

There is a one-to-one correspondence between minimal cuts in G and cycles in G^* and vice versa; between cycles in G and minimal cut-sets in G^* .

The incidence matrix of a graph

Let G = (V, E) be a connected (di-)graph (without loops) and, if G is undirected, let \vec{G} be a reference orientation of G.

Define the *incidence matrix* $B \in \mathbb{R}^{V \times E}$ (or B(G)) to G, (or \vec{G}) as follows: Let $e \in E$ index the columns and $v \in V(G)$ index the rows and let B(v,e) be +1 if v= tail e, -1 if v= head e and 0 otherwise. (We index using "function notation"!)

1. What is the incidence matrix of the following graph?

- 2. What does it say about the vector $\mathbf{x} \in \mathbb{R}^E$ that $B\mathbf{x}(v) = 0$? That $B^T\mathbf{y} = 0$, $\mathbf{y} \in \mathbb{R}^V$, B^T is the transpose?
- 3. Compute the Laplacian $L = B^T B$, for some graphs. How would you describe the structure of L? What does it mean when Ly(v) = 0
- 4. Describe a set of linearly *independent* columns in B. Describe a *minimal* set of linearly *dependent* columns in B.

The cycle space and the cut space

The cycle space Z(G) is the set of vectors $\mathbf{z} \in \mathbb{R}^E$, such that $B\mathbf{z} = 0$. The cut space $Z^{\perp}(G) \subset \mathbb{R}^E$ is the orthogonal complement to Z(G), with respect to the natural inner product

$$\langle \mathbf{u}, \mathbf{v} \rangle = \mathbf{u}^\mathsf{T} \mathbf{v} = u(e_1) v(e_1) + \cdots + u(e_m) v(e_m),$$

where we enumerate $E = \{e_1, e_2, \dots, e_m\}$.

- 1. What are the dimensions of Z(G) and $Z^{\perp}(G)$?
- 2. The support of a vector $x \in \mathbb{R}^E$ in Z(G) is the set of $e \in E$, such that $x(e) \neq 0$. Show that the vectors of minimal support in Z(G) are the cycles.

Algebraic duality

Let G be a connected graph. An algebraic dual of G is a graph G^* so that G and G^* have the same set of edges and

$$Z(G)=Z^{\perp}(G^{\star}).$$

This means that any cycle of G is a cut of G^* , and any cut of G is a cycle of G^* .

Every planar graph has an algebraic dual and Whitney showed that any connected graph G is planar if and only if it has an algebraic dual.

Mac Lane showed that a graph is planar if and only if there is a *basis* of cycles for the cycle space, such that every edge is contained in at most two such basis-cycles.

Kissing graphs and complex analysis

Wagner's theorem (1936): A planar graph has a plane embedding using only straight lines as edges.

Koebe's theorem (1936): A graph is planar if and only if it is a intersection graph of circles in the plane, where each pair of circles are *tangent*.

Koebe—Andreev—Thurston theorem: If G is a finite triangulated planar graph, then the circle packing whose tangency graph is (isomorphic to) G is unique, up to Möbius transformations and reflections in lines.

