Lecture 4: Bipartite graphs and planarity

Anders Johansson

2011-10-22 lör

Outline
-ロ〉4司〉4 三•

Bipartite graphs

A graph G is bipartite - with bipartition V_{1}, V_{2} - if $V=V_{1} \cup V_{2}$ and all edges $i j \in E$ has one end in V_{1} and V_{2}.

1. Which of the following graphs are bipartite?

2. Show that the hypercube Q_{n} is bipartite.
3. Show that a graph is bipartite if and only if every cycle has even length.

Definition of plane graphs and planar graphs

Let S be the plane \mathbb{R}^{2}. How would you define a graph "drawn in the plane without edges crossing'? Here is one definition.

An arc is a curve $\gamma \subset S$ such that there is continuous map $\phi:[0,1] \rightarrow \gamma$ which is injective, except possibly that $\phi(0)=\phi(1)$, in which case γ is a
loop. The endpoints of the arc are $\phi(0)$ and $\phi(1)$.

- 0.8

Definition of plane graphs and planar graphs

Let S be the plane \mathbb{R}^{2}. How would you define a graph "drawn in the plane without edges crossing'? Here is one definition.

An arc is a curve $\gamma \subset S$ such that there is continuous map $\phi:[0,1] \rightarrow \gamma$ which is injective, except possibly that $\phi(0)=\phi(1)$, in which case γ is a loop. The endpoints of the arc are $\phi(0)$ and $\phi(1)$.

- 0.8

Questions

To solve this you may need
(The Jordan Curve theorem:) A simple closed curve separates the plane into two simply connected regions. (The inner and outer).

1. Are the following graphs planar?

2. Prove that K_{5} and $K_{3,3}$ are non-planar?
3. Prove that planarity is preserved under edge- and vertex deletions and edge-contractions. Thus planarity is preserved under taking minors. Deduce that any graph with K_{5} (or $K_{3,3}$) as a minor.

Kuratowski's theorem (Wagner's theorem) and homeomorphic graphs

Wagners Theorem: A graph is planar if and only if it does not contain K_{5} or a $K_{3,3}$ as a minor.

A subdivision of a graph is obtained by replacing edges in the graph by paths, equivalently, by iteratively replacing edges $\bullet —$ by 2-paths

Two graphs which can be transformed into each other by sequence insertions and "deletions" of vertices of degree two are called homeomorphic.

Kuratowskis Theorem: A graph is planar if and only if it does not contain a subgraph which is a subdivision of a K_{5} or a $K_{3,3}$.

Plane maps and Euler's formula

A plane graph $G=(V, E)$, give rise to a plane $\operatorname{map}(V, E, F)$ - the union of the arcs the plane into a set of connected open regions. For each such open region call its closure a face and let F be the set of faces. Note that each face f is bounded by a unique set of edges $\left.e_{1}, \ldots, e_{r}\right\}$, such that $e_{i} \subset f$. For all other edges, it holds that e_{j} either is disjoint from f or else $f \cap e_{j} \in V$.

1. If the graph is connected each face is simply connected "on the Riemann Sphere", i.e. we allow the hole at infinity.
2. If the graph is bridge-less, then every edge is contained in exactly two faces and every face is bounded by a cycle.

Eulers formula

Thm: For every plane map (V, E, F) we have

$$
|V|-|E|+|F|=2+c(G)-1,
$$

where $G=(V, E)$ and $c(G)$ denotes the number of components in G. In particular, the right hand side is 2 if G is connected.
(Proof by edge-deletion.)

1. Prove that each planar graph has a vertex of degree at most 5. (The minimum degree $\delta(G) \leq 5$ for planar graphs.)
2. A platonic solid is a simple connected d-regular graph where each face contains the same number, r, of edges and which is not a cycle. What possibilities are there?

Figure: The octahedron

The dual graph

Given a plane map $G=(V, E, F)$, where $F=\left\{f_{1}, \ldots,\right\}$ is the set of faces, define the "abstract" graph $G^{*}=(F, E)$ where $e \in E$ is incident with $f \in F$ if and only if $e \subset F$.

Figure: A dual map

Some problems regarding the definition of dual graphs

1. Draw the dual graphs to the following two maps:

2. What is the dual of a forest (an acyclic graph)?
3. Show that he dual graph is planar and there is a natural dual map (F, E, V).
4. What is the dual to the octahedron? Will any platonic solid have a platonic solid as a dual graph?

Duality between cuts and cycles in dual planar maps

 A cut-set in a graph $G=(V, E)$ is a set of edges $S \subset E$ such that $S=E\left(V_{1}, V_{2}\right)$ for some partition $V=V_{1} \cup V_{2}$. A cut-set (or just cut) is minimal if either V_{1} or V_{2} are connected.There is a one-to-one correspondence between minimal cuts in G and cycles in G^{*} and vice versa; between cycles in G and minimal cut-sets in G^{*}.

Duality between cuts and cycles in dual planar maps

 A cut-set in a graph $G=(V, E)$ is a set of edges $S \subset E$ such that $S=E\left(V_{1}, V_{2}\right)$ for some partition $V=V_{1} \cup V_{2}$. A cut-set (or just cut) is minimal if either V_{1} or V_{2} are connected.There is a one-to-one correspondence between minimal cuts in G and cycles in G^{*} and vice versa; between cycles in G and minimal cut-sets in G^{*}.

Duality between cuts and cycles in dual planar maps

 A cut-set in a graph $G=(V, E)$ is a set of edges $S \subset E$ such that $S=E\left(V_{1}, V_{2}\right)$ for some partition $V=V_{1} \cup V_{2}$. A cut-set (or just cut) is minimal if either V_{1} or V_{2} are connected.There is a one-to-one correspondence between minimal cuts in G and cycles in G^{*} and vice versa; between cycles in G and minimal cut-sets in G^{*}.

The incidence matrix of a graph

Let $G=(V, E)$ be a connected (di-)graph (without loops) and, if G is undirected, let \vec{G} be a reference orientation of G.

Define the incidence matrix $B \in \mathbb{R}^{V \times E}$ (or $B(G)$) to G, (or \vec{G}) as follows: Let $e \in E$ index the columns and $v \in V(G)$ index the rows and let $B(v, e)$ be +1 if $v=$ tail $e,-1$ if $v=$ head e and 0 otherwise. (We index using "function notation"!)

1. What is the incidence matrix of the following graph?

2. What does it say about the vector $\mathbf{x} \in \mathbb{R}^{E}$ that $B \mathbf{x}(v)=0$? That $B^{\top} \mathbf{y}=0, \mathbf{y} \in \mathbb{R}^{V}, B^{\top}$ is the transpose?
3. Compute the Laplacian $L=B^{\top} B$, for some graphs. How would you describe the structure of L ? What does it mean when $L \mathbf{y}(v)=0$
4. Describe a set of linearly independent columns in B. Describe a minimal set of linearly dependent columns in B.

The cycle space and the cut space

The cycle space $Z(G)$ is the set of vectors $\mathbf{z} \in \mathbb{R}^{E}$, such that $B \mathbf{z}=0$. The cut space $Z^{\perp}(G) \subset \mathbb{R}^{E}$ is the orthogonal complement to $Z(G)$, with respect to the natural inner product

$$
\langle\mathbf{u}, \mathbf{v}\rangle=\mathbf{u}^{\top} \mathbf{v}=u\left(e_{1}\right) v\left(e_{1}\right)+\cdots+u\left(e_{m}\right) v\left(e_{m}\right)
$$

where we enumerate $E=\left\{e_{1}, e_{2}, \ldots, e_{m}\right\}$.

1. What are the dimensions of $Z(G)$ and $Z^{\perp}(G)$?
2. The support of a vector $x \in \mathbb{R}^{E}$ in $Z(G)$ is the set of $e \in E$, such that $x(e) \neq 0$. Show that the vectors of minimal support in $Z(G)$ are the cycles.

Algebraic duality

Let G be a connected graph. An algebraic dual of G is a graph G^{\star} so that G and G^{\star} have the same set of edges and

$$
Z(G)=Z^{\perp}\left(G^{\star}\right)
$$

This means that any cycle of G is a cut of G^{\star}, and any cut of G is a cycle of G^{\star}.

Every planar graph has an algebraic dual and Whitney showed that any connected graph G is planar if and only if it has an algebraic dual.

Mac Lane showed that a graph is planar if and only if there is a basis of cycles for the cycle space, such that every edge is contained in at most two such basis-cycles.

Kissing graphs and complex analysis

Wagner's theorem (1936): A planar graph has a plane embedding using only straight lines as edges.

Koebe's theorem (1936): A graph is planar if and only if it is a intersection graph of circles in the plane, where each pair of circles are tangent.

Koebe-Andreev-Thurston theorem: If G is a finite triangulated planar graph, then the circle packing whose tangency graph is (isomorphic to) G is unique, up to Möbius transformations and reflections in lines.

