Lecture 5: Dual graphs and algebraic duality

Anders Johansson

2011-10-22 lör

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ 臣 の�?

Outline

Eulers formula

Dual graphs

Algebraic duality

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ 臣 の�?

Eulers formula

Thm: For every plane map (V, E, F) we have

$$|V| - |E| + |F| = 2 + c(G) - 1,$$

where G = (V, E) and c(G) denotes the number of components in G. In particular, the right hand side is 2 if G is connected.

(Proof by edge-deletion.)

- 1. Prove that each planar graph has a vertex of degree at most 5. (The minimum degree $\delta(G) \leq 5$ for planar graphs.)
- 2. A *platonic solid* is a simple connected *d- regular* graph where each face contains the same number, *r*, of edges and which is not a cycle. What possibilities are there?

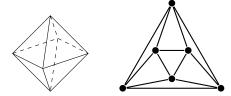


Figure: The octahedron

うして ふゆう ふほう ふほう うらう

The dual graph

Given a plane map G = (V, E, F), where $F = \{f_1, \ldots, \}$ is the set of faces, define the "abstract" graph $G^* = (F, E)$ where $e \in E$ is incident with $f \in F$ if and only if $e \subset F$.

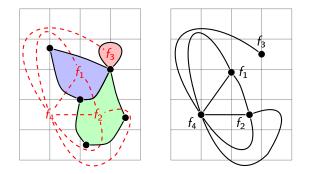
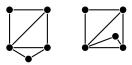


Figure: A dual map

Some problems regarding the definition of dual graphs

 $1. \ \mbox{Draw}$ the dual graphs to the following two maps:



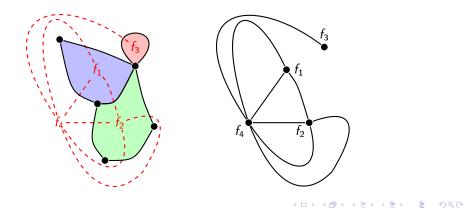
- 2. What is the dual of a *forest* (an acyclic graph)?
- 3. Show that he dual graph is planar and there is a natural dual map (F, E, V).
- 4. What is the dual to the octahedron? Will any platonic solid have a platonic solid as a dual graph?

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Duality between cuts and cycles in dual planar maps

A cut-set in a graph G = (V, E) is a set of edges $S \subset E$ such that $S = E(V_1, V_2)$ for some partition $V = V_1 \cup V_2$. A cut-set (or just cut) is minimal if either V_1 or V_2 are connected.

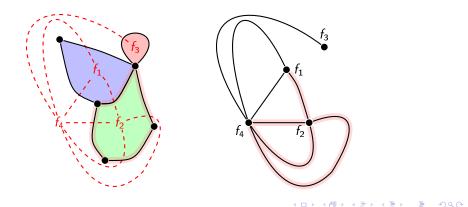
There is a one-to-one correspondence between minimal cuts in G and cycles in G^* and vice versa; between cycles in G and minimal cut-sets in G^* .



Duality between cuts and cycles in dual planar maps

A cut-set in a graph G = (V, E) is a set of edges $S \subset E$ such that $S = E(V_1, V_2)$ for some partition $V = V_1 \cup V_2$. A cut-set (or just cut) is minimal if either V_1 or V_2 are connected.

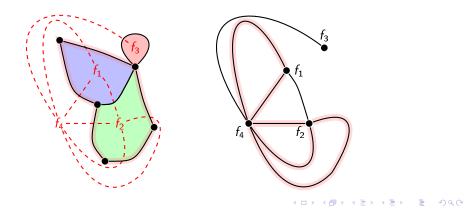
There is a one-to-one correspondence between minimal cuts in G and cycles in G^* and vice versa; between cycles in G and minimal cut-sets in G^* .



Duality between cuts and cycles in dual planar maps

A cut-set in a graph G = (V, E) is a set of edges $S \subset E$ such that $S = E(V_1, V_2)$ for some partition $V = V_1 \cup V_2$. A cut-set (or just cut) is minimal if either V_1 or V_2 are connected.

There is a one-to-one correspondence between minimal cuts in G and cycles in G^* and vice versa; between cycles in G and minimal cut-sets in G^* .



The incidence matrix of a graph

Let G = (V, E) be a connected (di-)graph (without loops) and, if G is undirected, let \vec{G} be a *reference orientation* of G.

Define the incidence matrix $B \in \mathbb{R}^{V \times E}$ (or B(G)) to G, (or \vec{G}) as follows: Let $e \in E$ index the columns and $v \in V(G)$ index the rows and let B(v, e) be +1 if v = tail e, -1 if v = head e and 0 otherwise. (We index using "function notation"!)

1. What is the incidence matrix of the following graph?

- 2. What does it say about the vector $\mathbf{x} \in \mathbb{R}^{E}$ that $B\mathbf{x}(v) = 0$? That $B^{\mathsf{T}}\mathbf{y} = 0$, $\mathbf{y} \in \mathbb{R}^{V}$, B^{T} is the transpose?
- 3. Compute the Laplacian $L = B^{T}B$, for some graphs. How would you describe the structure of L? What does it mean when Ly(v) = 0
- Describe a set of linearly *independent* columns in *B*. Describe a *minimal* set of linearly *dependent* columns in *B*.

The cycle space and the cut space

The cycle space Z(G) is the set of vectors $\mathbf{z} \in \mathbb{R}^{E}$, such that $B\mathbf{z} = 0$. The cut space $Z^{\perp}(G) \subset \mathbb{R}^{E}$ is the orthogonal complement to Z(G), with respect to the natural inner product

$$\langle \mathbf{u}, \mathbf{v} \rangle = \mathbf{u}^{\mathsf{T}} \mathbf{v} = u(e_1)v(e_1) + \cdots + u(e_m)v(e_m),$$

where we enumerate $E = \{e_1, e_2, \ldots, e_m\}$.

- 1. What are the dimensions of Z(G) and $Z^{\perp}(G)$?
- 2. The support of a vector $x \in \mathbb{R}^E$ in Z(G) is the set of $e \in E$, such that $x(e) \neq 0$. Show that the vectors of minimal support in Z(G) are the cycles.

Algebraic duality

Let G be a connected graph. An algebraic dual of G is a graph G^* so that G and G^* have the same set of edges and

$$Z(G)=Z^{\perp}(G^{\star}).$$

This means that any cycle of G is a cut of G^* , and any cut of G is a cycle of G^* .

Every planar graph has an algebraic dual and Whitney showed that any connected graph G is planar if and only if it has an algebraic dual.

Mac Lane showed that a graph is planar if and only if there is a *basis* of cycles for the cycle space, such that every edge is contained in at most two such basis-cycles.

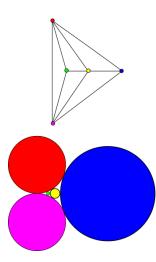
ション ふゆ アメリア メリア しょうくしゃ

Kissing graphs and complex analysis

Wagner's theorem (1936): A planar graph has a plane embedding using only straight lines as edges.

Koebe's theorem (1936): A graph is planar if and only if it is a intersection graph of circles in the plane, where each pair of circles are *tangent*.

Koebe-Andreev-Thurston theorem: If G is a finite triangulated planar graph, then the circle packing whose tangency graph is (isomorphic to) G is unique, up to Möbius transformations and reflections in lines.



・ロット 御マ とほど とほう