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De�nition of a Hamilton cycle

Let G = (V,E), where |V | = n. A cyclic subgraph C ⊂ G such that C ∼= Cn is
called a Hamilton cycle in G. It is thus a cycle passing through every vertex. If
G has a Hamilton cycle it is said to be Hamiltonian.

1. How many Hamilton cycles does K4 have?

2. Show that the dodecahedron is Hamiltonian.

3. Show that the following graph is non-Hamiltonian.

4. What about the Petersen graph?

5. Show that a bipartite graph is Hamiltonian only if it is balanced.

6. Show that Qn has a Hamilton cycle. Use induction on n.
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Independent sets of Hamiltonian graphs

Let G be a graph with independent set S ⊂ V . An independent set must not
take up to many edges for the graph to be Hamiltonian.

1. Show that

2. Show that the following graph is non-hamiltonian

Tournaments and ranking path

After an all-meets-all table-tennis tournament, show that we can rank the play-
ers so that every player (except the last one) beat the following player in the
ranking.

A tournament on n vertices is an orientation T of the complete graph Kn.

1. Show that there is a directed Hamilton path in T . (Redei's theorem)

Diracs theorem

Theorem Given G = (V,E), |V | = n, if the minimum degree δ(G) ≥ n/2 then
G is Hamiltonian.

Proof sketch: Take a edge-maximal counterexample G. Then G + uv, uv ∈ E,
has a H-path P : u = x1x2x3 . . . xn = v.

We aim to get the following construction.

Let ~P be the orientation of P from u to v. Then

|N+(N(v,G), ~P ) ∩N(v)| > 0.

Here N+(S, ~P ) means the set S shifted one step along the path ~P .

4 Graph colourings

De�nition of (proper) colourings and k-colourability.

A proper colouring of a (simple) graph is a labeling of vertices where adjacent
vertices never share a label. The labels are then often called colours. We say
that a graph is k-colourable if it can be coloured using (at most) k colours.
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The complete K4 is an example of a planar simple graph which is not 3-
colourable.

1. Determine χ(G) for G = Kn, Kn, Cn?.

Let [k] := {1, 2, . . . , k} (or any set with k elements). An (improper) k-
/colouring/ is an element of [k]V := {f : V → [k]}. It is thus a proper k-
colouring if u adjacent to v implies that f(u) 6= f(v). Equivalently, the inverse
image f−1(α) of each colour α ∈ [k] is an independent set.

The smallest number k for which the graph G is k-colourable, is called the
chromatic number of G, denoted by χ(G).

The chromatic number

The chromatic number, χ(G), of G is sthe smallest k such that G has a proper
[k]-colouring.

Thus χ(G) ≤ k if and only if there exists a proper k-colouring. We say that G
is k-colourable or k-partite; it means that we can partition the vertex set into k
independent sets. A graph is bipartite is the same stating that χ(G) ≤ 2.

1. Give example of a K3-free graph such that χ(G) ≥ 3.

The Four-Colour theorem and Heawoods Five-Colour theorem

There is the celebrated Theorem (The Four-Color Theorem) Every simple
planar graph is 4-colourable.

The only known proofs require extensive computer runs. The �rst such proof
was obtained by Kenneth Appel and Wolfgang Haken in 1976.

If we require only 5-colourability, then there is Theorem 6.6. (Heawood's
Theorem or The Five-Color Theorem) Every simple planar graph is 5-
colourable.

� Proof We may think of G = (V,E) as a plane graph. Use induction on
the number n = |V |. (Induction Basis: n = 1 is 1-colourable since there
are no edges.) We assum the theorem is true for 1 ≤ |V | ≤ n and aim to
show theorem is true for |V | = n+ 1.

Recall the Minimum Degree Bound for Planar Graph (Derived from Eu-
ler's theorem), i.e. there is v ∈ V (G) of degree at most 5. On the
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other hand, according to the Induction Hypothesis the graph G − v is
5-colourable. If, in this colouring, the set of vertices adjacent to v, N(v),
are coloured using at most four colours, then clearly we can 5-colour G.

So we are left with the case where the neighboursN(v) = {v1, v2, v3, v4, v5}
are coloured using di�erent colours. We may assume that the indexing of
the vertices proceeds clockwise, and we label the colours with the numbers
1, 2, 3, 4, 5 (in this order). We show that the colouring of G − v can be
changed so that (at most) four colours su�ce for colouring N(v). We
denote by

Hi,j := (G− v)[f−1({i, j})]

the bichromatic subgraph of G− v induced by the vertices coloured with
i and j. We have two cases:

1. v1 and v3 are in di�erent components H1 and H3 of H1,3. We then
interchange the colours 1 and 3 in the vertices of, say, H3 leaving
the other colours untouched. In the resulting 5-colouring of G − v
the vertices v1 and v3 both have the colour 1. We can then give the
colour 3 to v.

2. v1 and v3 are connected in H1,3. Then there is a v1 − v3 path in
H1,3. Including the vertex v we get from this path a circuit C. Now,
since we indexed the vertices {v1, v2, v3, v4, v5} clockwise, exactly one
of the vertices v2 and v4 is inside C. We deduce that v2 and v4 are
in di�erent components of H2,4, and we have a case similar to the
previous one.

Note that he proof gives a simple algorithm for 5-colouring a planar graph.

Brook's theorem

Another theorem we will talk about is Brook's theorem.

� (Brook's theorem) A connected graph G has chromatic number bounded
by the maximum degree, i.e.

χ(G) ≤ ∆(G) = max
v

deg(v,G),

unless it is a complete graph or an odd cycle.

� The proof is quite similar in many ways to the 5-color theorem: One works
with bichromatic components, etc.
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