Lecture 6: Hamiltonian graphs

Anders Johansson

2011-10-22 lör

Contents

1 Dual graphs

2 Algebraic duality

3 Hamilton cycles

Definition of a Hamilton cycle

Let $G=(V, E)$, where $|V|=n$. A cyclic subgraph $C \subset G$ such that $C \cong C_{n}$ is called a Hamilton cycle in G. It is thus a cycle passing through every vertex. If G has a Hamilton cycle it is said to be Hamiltonian.

1. How many Hamilton cycles does K_{4} have?
2. Show that the dodecahedron is Hamiltonian.
3. Show that the following graph is non-Hamiltonian.
4. What about the Petersen graph?
5. Show that a bipartite graph is Hamiltonian only if it is balanced.
6. Show that Q_{n} has a Hamilton cycle. Use induction on n.

Independent sets of Hamiltonian graphs

Let G be a graph with independent set $S \subset V$. An independent set must not take up to many edges for the graph to be Hamiltonian.

1. Show that
2. Show that the following graph is non-hamiltonian

Tournaments and ranking path

After an all-meets-all table-tennis tournament, show that we can rank the players so that every player (except the last one) beat the following player in the ranking.

A tournament on n vertices is an orientation T of the complete graph K_{n}.

1. Show that there is a directed Hamilton path in T. (Redei's theorem)

Diracs theorem

Theorem Given $G=(V, E),|V|=n$, if the minimum degree $\delta(G) \geq n / 2$ then G is Hamiltonian.

Proof sketch: Take a edge-maximal counterexample G. Then $G+u v, u v \in E$, has a H-path $P: u=x_{1} x_{2} x_{3} \ldots x_{n}=v$.

We aim to get the following construction.
Let \vec{P} be the orientation of P from u to v. Then

$$
\left|N_{+}(N(v, G), \vec{P}) \cap N(v)\right|>0
$$

Here $N_{+}(S, \vec{P})$ means the set S shifted one step along the path \vec{P}.

4 Graph colourings

Definition of (proper) colourings and k-colourability.

A proper colouring of a (simple) graph is a labeling of vertices where adjacent vertices never share a label. The labels are then often called colours. We say that a graph is k-colourable if it can be coloured using (at most) k colours.

The complete K_{4} is an example of a planar simple graph which is not 3colourable.

1. Determine $\chi(G)$ for $G=K_{n}, \overline{K_{n}}, C_{n}$?.

Let $[k]:=\{1,2, \ldots, k\}$ (or any set with k elements). An (improper) k /colouring/ is an element of $[k]^{V}:=\{f: V \rightarrow[k]\}$. It is thus a proper k colouring if u adjacent to v implies that $f(u) \neq f(v)$. Equivalently, the inverse image $f^{-1}(\alpha)$ of each colour $\alpha \in[k]$ is an independent set.

The smallest number k for which the graph G is k-colourable, is called the chromatic number of G, denoted by $\chi(G)$.

The chromatic number

The chromatic number, $\chi(G)$, of G is sthe smallest k such that G has a proper [k]-colouring.

Thus $\chi(G) \leq k$ if and only if there exists a proper k-colouring. We say that G is k-colourable or k-partite; it means that we can partition the vertex set into k independent sets. A graph is bipartite is the same stating that $\chi(G) \leq 2$.

1. Give example of a K_{3}-free graph such that $\chi(G) \geq 3$.

The Four-Colour theorem and Heawoods Five-Colour theorem

There is the celebrated Theorem (The Four-Color Theorem) Every simple planar graph is 4-colourable.

The only known proofs require extensive computer runs. The first such proof was obtained by Kenneth Appel and Wolfgang Haken in 1976.

If we require only 5 -colourability, then there is Theorem 6.6. (Heawood's Theorem or The Five-Color Theorem) Every simple planar graph is 5colourable.

- Proof We may think of $G=(V, E)$ as a plane graph. Use induction on the number $n=|V|$. (Induction Basis: $n=1$ is 1-colourable since there are no edges.) We assum the theorem is true for $1 \leq|V| \leq n$ and aim to show theorem is true for $|V|=n+1$.
Recall the Minimum Degree Bound for Planar Graph (Derived from Euler's theorem), i.e. there is $v \in V(G)$ of degree at most 5 . On the
other hand, according to the Induction Hypothesis the graph $G-v$ is 5 -colourable. If, in this colouring, the set of vertices adjacent to $v, N(v)$, are coloured using at most four colours, then clearly we can 5 -colour G.
So we are left with the case where the neighbours $N(v)=\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}\right\}$ are coloured using different colours. We may assume that the indexing of the vertices proceeds clockwise, and we label the colours with the numbers $1,2,3,4,5$ (in this order). We show that the colouring of $G-v$ can be changed so that (at most) four colours suffice for colouring $N(v)$. We denote by

$$
H_{i, j}:=(G-v)\left[f^{-1}(\{i, j\})\right]
$$

the bichromatic subgraph of $G-v$ induced by the vertices coloured with i and j. We have two cases:

1. v_{1} and v_{3} are in different components H_{1} and H_{3} of $H_{1,3}$. We then interchange the colours 1 and 3 in the vertices of, say, H_{3} leaving the other colours untouched. In the resulting 5 -colouring of $G-v$ the vertices v_{1} and v_{3} both have the colour 1 . We can then give the colour 3 to v.
2. v_{1} and v_{3} are connected in $H_{1,3}$. Then there is a $v_{1}-v_{3}$ path in $H_{1,3}$. Including the vertex v we get from this path a circuit C. Now, since we indexed the vertices $\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}\right\}$ clockwise, exactly one of the vertices v_{2} and v_{4} is inside C. We deduce that v_{2} and v_{4} are in different components of $H_{2,4}$, and we have a case similar to the previous one.

Note that he proof gives a simple algorithm for 5-colouring a planar graph.

Brook's theorem

Another theorem we will talk about is Brook's theorem.

- (Brook's theorem) A connected graph G has chromatic number bounded by the maximum degree, i.e.

$$
\chi(G) \leq \Delta(G)=\max _{v} \operatorname{deg}(v, G)
$$

unless it is a complete graph or an odd cycle.

- The proof is quite similar in many ways to the 5 -color theorem: One works with bichromatic components, etc.

