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Warning: These notes are not complete and many �gures are missing.

Hamilton cycles

� De�nition of a Hamilton cycle Let G = (V,E), where |V | = n. A cyclic
subgraph C ⊂ G such that C ∼= Cn is called a Hamilton cycle in G. It is
thus a cycle passing through every vertex. If G has a Hamilton cycle it is
said to be Hamiltonian.

1. How many Hamilton cycles does K4 have?

2. Show that the dodecahedron is Hamiltonian.

3. Show that the following graph is non-Hamiltonian.

4. What about the Petersen graph?

5. Show that a bipartite graph is Hamiltonian only if it is balanced.

6. Show that Qn has a Hamilton cycle. Use induction on n.

� Independent sets of Hamiltonian graphs Let G be a graph with indepen-
dent set S ⊂ V . An independent set must not take up to many edges for
the graph to be Hamiltonian.

1. Show that |E| −
∑

v∈S deg(v) < |V | − 2|S| implies that G is non-
hamitonian.

2. Show that the Herschel graph is non-hamiltonian.

� Tournaments and ranking path After an all-meets-all table-tennis tourna-
ment, show that we can rank the players so that every player (except the
last one) beat the player that immediately follows in the ranking.

A tournament on n vertices is an orientation T of the complete graph Kn.
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1. Show that there is a directed Hamilton path in T . (Redei's theorem)

� Diracs theorem

Theorem 1. Given G = (V,E), |V | = n, if the minimum degree δ(G) ≥
n/2 then G is Hamiltonian.

Proof. Sketch: Take a edge-maximal counterexample G. Then G + uv,
uv ∈ E, has a H-path P : u = x1x2x3 . . . xn = v.

We aim to prove the existence of a cycle of the following form. (Figure)

Let ~P be the orientation of P from u to v. Then

|N+(N(v,G), ~P ) ∩N(v)| > 0.

Here N+(S, ~P ) means the set S shifted one step along the path ~P .

Graph colourings

� De�nition of (proper) colourings and k-colourability. How can schedule
meetings for n committees into k time-slots (parallell sessions are OK) so
that no delegate is double booked?

Think of each committee as the corresponding set of delegates and con-
struct the intersection graph on n vertices. We shall label so that no
adjacent vertices get the same label.

A proper colouring of a (simple) graph is a labeling of vertices where
adjacent vertices never share a label. The labels are called colours. We
say that a graph is k-colourable if it can be coloured using (at most) k
colour and say then that the chromatic number χ(G) ≤ k.
If a graph is colourable for any k then it obviously can not have loops.
Equally obviously, parallel edges can be reduced to one, so we may assume
our graphs here to be simple.

The complete K4 is an example of a planar simple graph which is not
3-colourable.

1. Determine χ(G) for G = Kn, Kn, Cn?.

� Equivalent formulations Let [k] := {1, 2, . . . , k} (or any set with k el-
ements). An (improper) k-/colouring/ is an element of [k]V := {f :
V → [k]}. It is thus a proper k-colouring if u adjacent to v implies
that f(u) 6= f(v). Equivalently, the inverse image f−1(α) of each colour
α ∈ [k] is an independent set.

The smallest number k for which the graph G is k-colourable, is called the
chromatic number of G, denoted by χ(G).
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� The chromatic number The chromatic number, χ(G), of G is the smallest
k such that G has a proper [k]-colouring.

We say that G is k-colourable or k-partite; it means that we can partition
the vertex set into k independent sets. A graph is bipartite is the same
stating that χ(G) ≤ 2.

1. Give example of a K3-free graph such that χ(G) ≥ 3.

� The Four-Colour theorem and Heawoods Five-Colour theorem There is
the celebrated Theorem (The Four-Color Theorem) Every simple
planar graph is 4-colourable.

The only known proofs require extensive computer runs. The �rst such
proof was obtained by Appel and Haken in 1976.

If we require only 5-colourability, then there is.

Theorem 2 ((Heawood's Theorem or The Five-Color Theorem)). Every

simple planar graph is 5-colourable.

We may think of G = (V,E) as a plane graph. Use induction on the
number n = |V |. (Induction Basis: n = 1 is 1-colourable since there are
no edges.) Assume the statement is true for 1 ≤ |V | ≤ n − 1 and aim to
show it for |V | = n.

Recall δ(G) ≤ 5 for a planar graph. By induction, the graph G − v is
5-colourable. If, in this colouring, the set of vertices adjacent to v, N(v),
are coloured using less than �ve colours, then clearly we can 5-colour G.

So we are left with the case where the neighboursN(v) = {v1, v2, v3, v4, v5}
are coloured using di�erent colours. We may assume that the indexing of
the vertices proceeds clockwise, and we label the colours with the numbers
1, 2, 3, 4, 5 (in this order). We show that the colouring of G − v can be
changed so that (at most) four colours su�ce for colouring N(v). We
denote by

Hi,j := (G− v)[f−1({i, j})]
the bichromatic subgraph of G− v induced by the vertices coloured with
i and j. We have two cases:

1. v1 and v3 are in di�erent components H1 and H3 of H1,3. We then
interchange the colours 1 and 3 in the vertices of, say, H3 leaving
the other colours untouched. In the resulting 5-colouring of G − v
the vertices v1 and v3 both have the colour 1. We can then give the
colour 3 to v.

2. v1 and v3 are connected in H1,3. Then there is a v1 − v3 path in
H1,3. Including the vertex v we get from this path a circuit C. Now,
since we indexed the vertices {v1, v2, v3, v4, v5} clockwise, exactly one
of the vertices v2 and v4 is inside C. We deduce that v2 and v4 are
in di�erent components of H2,4, and we have a case similar to the
previous one.
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Note that he proof gives a simple algorithm for 5-colouring a planar graph.

� Greedy colouring Perhaps the simplest way to obtain a proper colouring
is to use a greedy colouring : For a given (perhaps random) vertex-order
V = {v1, v2, . . . , vn}, de�ne recursively f : V → Z+ by f(v1) = 1 and

f(vi) := min f (N(vi) ∩ {v1, v2, . . . , vn}.

This is a proper colouring! Note that f(vi) ≤ d(vi)+1 and thus the greedy
colouring uses at least ∆(G) + 1 colours.

1. Show that for some ordering {v1, v2, . . . , vn} of the vertices the greedy
colouring uses χ(G) colours.

� Bounding the chromatic number Recall ω(G) is the largest clique (com-
plete subgraph) in G. We have the basic duality

ω(G) ≤ χ(G).

This is a type of broken LP-duality. If you de�ne rational relaxations with
fractional colourings, then the corresponding quantities are equal. (Note:
Perfect graphs.)

What about upper bounds? We saw that a greedy colouring gave χ(G) ≤
∆(G) + 1. This is sharp for cycles and complete graphs.

Theorem 3 (Brook's theorem). A connected graph G has chromatic num-

ber bounded by the maximum degree, i.e.

χ(G) ≤ ∆(G) = max
v

deg(v,G),

unless it is a complete graph or an odd cycle.

The proof is quite similar in many ways to the 5-color theorem: One works
with bichromatic components in hte neighbourhood

� Enumeration of colourings: The chromatic polynomial P (G,λ).

1. In how many ways can we colour Kn (K̄n) with k colours?

2. In how many ways can we colour Pn (Cn) with k colours?

3. If we have a cut-vertex v, such thatG = G1∪G2 and V (G1)∩V (G2) =
{v}, express the number of ways we can k-colour G in terms of the
number of ways we can colour G1 and G2.

De�nition 4. The chromatic polynomial of a graph G, P (G,λ), is de�ned
as

P (G,λ) = {The number of ways to colour G with λ colours.}

� The basic recursion for P (G,λ)
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Theorem 5. If we discard loops when contracting then

P (G,λ) = P (G− e, λ)− P (G/e, λ).

This shows that

1. P (G,λ) is a polynomial.

2. The sum of coe�cients are 0 unless P (G,λ) = λn.

3. Leading term is λn.

Trees and forests

� Characterisation of trees (Figure of trees)

Theorem 6. The following are equivalent for a simple undirected graph

T on n vertices

1. T is a tree;

2. T is connected and contains no cycles;

3. T is connected and has n− 1 edges;

4. T is connected and every edge is a bridge;

5. any two vertices is connected by exactly one path;

6. T is acyclic but the addition of any new edge creates exactly one new

cycle.

1. What are the corresponding statements for forests?

2. Prove, say, (iii) =⇒ (iv).

Spanning trees and spanning forests

Given a graph G, a spanning subgraph T ⊂ G which is a tree is called a spanning
tree. A spanning forest is a subgraph F ⊂ G which is the vertex disjoin union
of spanning trees in each component of G.

1. The graph G is connected ⇐⇒ G has a spanning tree T

2. For a spanning tree T ⊂ G, every edge in T corresponds to a unique bond
Be of G. (Recall a bond is a minimal cut-set.) Every bond contain some
edge of T .

3. Every edge e of G not in T corresponds to a unique cycle Ce ⊂ G and
every cycle contain an edge from G− E(T ).

4. If a set W ⊂ E(G) is such that W ∩E(T ) 6= ∅ for every spanning tree T ,
then W is a (not necessarily minimal) cut-set.
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5. Let τ(G) denote the number of spanning trees in G. Show that

τ(G) = τ(G− e) + τ(G/e).

The cycles {Ce : e 6∈ T} and the bonds {Be : e ∈ T} constitute basises for the
cycle space Z(G) and the cut-space Z⊥(G), respectively.

Leafs and Prüfer codes

A leaf is a vertex v in a tree T of degree one. The handshake lemma readily
gives that

Every tree has at least two leaves.

Deleting a leaf v from T gives a tree T − v.
A Prüfer code is a way to code a tree T �bottom up�. Assume V (T ) = {1, . . . , n}
(or order the vertices using a labeling). Consider the following tree:

(Figure) The tree on 7 vertices with code (6, 5, 6, 5, 1).

To construct the Prüfer code we iterate the following procedure.

� Take the �rst leaf in order, say, i and write down its neighbour j.

� Delete the leaf i for T .

The code is thus a sequence C = (c1, . . . , cn−2) ∈ V (T )n−2 of length n − 2 of
vertices.

We can reconstruct the tree from its code C by �rst listing L = (1, 2, 3, . . . , n)
all vertices in the assumed order. Then iterate the following

� Let i be the �rst vertex in the list L not in the code. Add the edge ic
where c is the �rst label in the code.

� Delete (Cross out) the �rst symbol c from c and delete i from L.

As a �nal step, we add the edge between the two remaining vertices in L.

Note that we have nn−2 Prüfer codes for trees T ⊂ Kn. Since we have estab-
lished a bijection between the codes and trees, we conclude Cayleys theorem:
There are nn−2 (labeled) trees.
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