Lecture 7: Hamiltonian graphs and colourings

Anders Johansson

2011-10-22 lör

Contents

Warning: These notes are not complete and many figures are missing.

Hamilton cycles

- Definition of a Hamilton cycle Let $G=(V, E)$, where $|V|=n$. A cyclic subgraph $C \subset G$ such that $C \cong C_{n}$ is called a Hamilton cycle in G. It is thus a cycle passing through every vertex. If G has a Hamilton cycle it is said to be Hamiltonian.

1. How many Hamilton cycles does K_{4} have?
2. Show that the dodecahedron is Hamiltonian.
3. Show that the following graph is non-Hamiltonian.
4. What about the Petersen graph?
5. Show that a bipartite graph is Hamiltonian only if it is balanced.
6. Show that Q_{n} has a Hamilton cycle. Use induction on n.

- Independent sets of Hamiltonian graphs Let G be a graph with independent set $S \subset V$. An independent set must not take up to many edges for the graph to be Hamiltonian.

1. Show that $|E|-\sum_{v \in S} \operatorname{deg}(v)<|V|-2|S|$ implies that G is nonhamitonian.
2. Show that the Herschel graph is non-hamiltonian.

- Tournaments and ranking path After an all-meets-all table-tennis tournament, show that we can rank the players so that every player (except the last one) beat the player that immediately follows in the ranking.
A tournament on n vertices is an orientation T of the complete graph K_{n}.

1. Show that there is a directed Hamilton path in T. (Redei's theorem)

- Diracs theorem

Theorem 1. Given $G=(V, E),|V|=n$, if the minimum degree $\delta(G) \geq$ $n / 2$ then G is Hamiltonian.

Proof. Sketch: Take a edge-maximal counterexample G. Then $G+u v$, $u v \in E$, has a H-path $P: u=x_{1} x_{2} x_{3} \ldots x_{n}=v$.
We aim to prove the existence of a cycle of the following form. (Figure)
Let \vec{P} be the orientation of P from u to v. Then

$$
\left|N_{+}(N(v, G), \vec{P}) \cap N(v)\right|>0
$$

Here $N_{+}(S, \vec{P})$ means the set S shifted one step along the path \vec{P}.

Graph colourings

- Definition of (proper) colourings and k-colourability. How can schedule meetings for n committees into k time-slots (parallell sessions are OK) so that no delegate is double booked?

Think of each committee as the corresponding set of delegates and construct the intersection graph on n vertices. We shall label so that no adjacent vertices get the same label.
A proper colouring of a (simple) graph is a labeling of vertices where adjacent vertices never share a label. The labels are called colours. We say that a graph is k-colourable if it can be coloured using (at most) k colour and say then that the chromatic number $\chi(G) \leq k$.
If a graph is colourable for any k then it obviously can not have loops. Equally obviously, parallel edges can be reduced to one, so we may assume our graphs here to be simple.

The complete K_{4} is an example of a planar simple graph which is not 3 -colourable.

1. Determine $\chi(G)$ for $G=K_{n}, \overline{K_{n}}, C_{n}$?.

- Equivalent formulations Let $[k]:=\{1,2, \ldots, k\}$ (or any set with k elements). An (improper) k-/colouring/ is an element of $[k]^{V}:=\{f:$ $V \rightarrow[k]\}$. It is thus a proper k-colouring if u adjacent to v implies that $f(u) \neq f(v)$. Equivalently, the inverse image $f^{-1}(\alpha)$ of each colour $\alpha \in[k]$ is an independent set.
The smallest number k for which the graph G is k-colourable, is called the chromatic number of G, denoted by $\chi(G)$.
- The chromatic number The chromatic number, $\chi(G)$, of G is the smallest k such that G has a proper [$k]$-colouring.
We say that G is k-colourable or k-partite; it means that we can partition the vertex set into k independent sets. A graph is bipartite is the same stating that $\chi(G) \leq 2$.

1. Give example of a K_{3}-free graph such that $\chi(G) \geq 3$.

- The Four-Colour theorem and Heawoods Five-Colour theorem There is the celebrated Theorem (The Four-Color Theorem) Every simple planar graph is 4-colourable.
The only known proofs require extensive computer runs. The first such proof was obtained by Appel and Haken in 1976.
If we require only 5 -colourability, then there is.
Theorem 2 ((Heawood's Theorem or The Five-Color Theorem)). Every simple planar graph is 5 -colourable.

We may think of $G=(V, E)$ as a plane graph. Use induction on the number $n=|V|$. (Induction Basis: $n=1$ is 1 -colourable since there are no edges.) Assume the statement is true for $1 \leq|V| \leq n-1$ and aim to show it for $|V|=n$.
Recall $\delta(G) \leq 5$ for a planar graph. By induction, the graph $G-v$ is 5 -colourable. If, in this colouring, the set of vertices adjacent to $v, N(v)$, are coloured using less than five colours, then clearly we can 5 -colour G.
So we are left with the case where the neighbours $N(v)=\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}\right\}$ are coloured using different colours. We may assume that the indexing of the vertices proceeds clockwise, and we label the colours with the numbers $1,2,3,4,5$ (in this order). We show that the colouring of $G-v$ can be changed so that (at most) four colours suffice for colouring $N(v)$. We denote by

$$
H_{i, j}:=(G-v)\left[f^{-1}(\{i, j\})\right]
$$

the bichromatic subgraph of $G-v$ induced by the vertices coloured with i and j. We have two cases:

1. v_{1} and v_{3} are in different components H_{1} and H_{3} of $H_{1,3}$. We then interchange the colours 1 and 3 in the vertices of, say, H_{3} leaving the other colours untouched. In the resulting 5 -colouring of $G-v$ the vertices v_{1} and v_{3} both have the colour 1 . We can then give the colour 3 to v.
2. v_{1} and v_{3} are connected in $H_{1,3}$. Then there is a $v_{1}-v_{3}$ path in $H_{1,3}$. Including the vertex v we get from this path a circuit C. Now, since we indexed the vertices $\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}\right\}$ clockwise, exactly one of the vertices v_{2} and v_{4} is inside C. We deduce that v_{2} and v_{4} are in different components of $H_{2,4}$, and we have a case similar to the previous one.

Note that he proof gives a simple algorithm for 5-colouring a planar graph.

- Greedy colouring Perhaps the simplest way to obtain a proper colouring is to use a greedy colouring: For a given (perhaps random) vertex-order $V=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$, define recursively $f: V \rightarrow \mathbb{Z}_{+}$by $f\left(v_{1}\right)=1$ and

$$
f\left(v_{i}\right):=\min f\left(N\left(v_{i}\right) \cap\left\{v_{1}, v_{2}, \ldots, v_{n}\right\} .\right.
$$

This is a proper colouring! Note that $f\left(v_{i}\right) \leq d\left(v_{i}\right)+1$ and thus the greedy colouring uses at least $\Delta(G)+1$ colours.

1. Show that for some ordering $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ of the vertices the greedy colouring uses $\chi(G)$ colours.

- Bounding the chromatic number Recall $\omega(G)$ is the largest clique (complete subgraph) in G. We have the basic duality

$$
\omega(G) \leq \chi(G)
$$

This is a type of broken LP-duality. If you define rational relaxations with fractional colourings, then the corresponding quantities are equal. (Note: Perfect graphs.)
What about upper bounds? We saw that a greedy colouring gave $\chi(G) \leq$ $\Delta(G)+1$. This is sharp for cycles and complete graphs.

Theorem 3 (Brook's theorem). A connected graph G has chromatic number bounded by the maximum degree, i.e.

$$
\chi(G) \leq \Delta(G)=\max _{v} \operatorname{deg}(v, G)
$$

unless it is a complete graph or an odd cycle.
The proof is quite similar in many ways to the 5 -color theorem: One works with bichromatic components in hte neighbourhood

- Enumeration of colourings: The chromatic polynomial $P(G, \lambda)$.

1. In how many ways can we colour $K_{n}\left(\bar{K}_{n}\right)$ with k colours?
2. In how many ways can we colour $P_{n}\left(C_{n}\right)$ with k colours?
3. If we have a cut-vertex v, such that $G=G_{1} \cup G_{2}$ and $V\left(G_{1}\right) \cap V\left(G_{2}\right)=$ $\{v\}$, express the number of ways we can k-colour G in terms of the number of ways we can colour G_{1} and G_{2}.

Definition 4. The chromatic polynomial of a graph $G, P(G, \lambda)$, is defined as

$$
P(G, \lambda)=\{\text { The number of ways to colour } G \text { with } \lambda \text { colours. }\}
$$

- The basic recursion for $P(G, \lambda)$

Theorem 5. If we discard loops when contracting then

$$
P(G, \lambda)=P(G-e, \lambda)-P(G / e, \lambda)
$$

This shows that

1. $P(G, \lambda)$ is a polynomial.
2. The sum of coefficients are 0 unless $P(G, \lambda)=\lambda^{n}$.
3. Leading term is λ^{n}.

Trees and forests

- Characterisation of trees (Figure of trees)

Theorem 6. The following are equivalent for a simple undirected graph T on n vertices

1. T is a tree;
2. T is connected and contains no cycles;
3. T is connected and has $n-1$ edges;
4. T is connected and every edge is a bridge;
5. any two vertices is connected by exactly one path;
6. T is acyclic but the addition of any new edge creates exactly one new cycle.
7. What are the corresponding statements for forests?
8. Prove, say, (iii) \Longrightarrow (iv).

Spanning trees and spanning forests

Given a graph G, a spanning subgraph $T \subset G$ which is a tree is called a spanning tree. A spanning forest is a subgraph $F \subset G$ which is the vertex disjoin union of spanning trees in each component of G.

1. The graph G is connected $\Longleftrightarrow G$ has a spanning tree T
2. For a spanning tree $T \subset G$, every edge in T corresponds to a unique bond B_{e} of G. (Recall a bond is a minimal cut-set.) Every bond contain some edge of T.
3. Every edge e of G not in T corresponds to a unique cycle $C_{e} \subset G$ and every cycle contain an edge from $G-E(T)$.
4. If a set $W \subset E(G)$ is such that $W \cap E(T) \neq \emptyset$ for every spanning tree T, then W is a (not necessarily minimal) cut-set.
5. Let $\tau(G)$ denote the number of spanning trees in G. Show that

$$
\tau(G)=\tau(G-e)+\tau(G / e)
$$

The cycles $\left\{C_{e}: e \notin T\right\}$ and the bonds $\left\{B_{e}: e \in T\right\}$ constitute basises for the cycle space $Z(G)$ and the cut-space $Z^{\perp}(G)$, respectively.

Leafs and Prüfer codes

A leaf is a vertex v in a tree T of degree one. The handshake lemma readily gives that

Every tree has at least two leaves.
Deleting a leaf v from T gives a tree $T-v$.
A Prüfer code is a way to code a tree T "bottom up". Assume $V(T)=\{1, \ldots, n\}$ (or order the vertices using a labeling). Consider the following tree:
(Figure) The tree on 7 vertices with code $(6,5,6,5,1)$.
To construct the Prüfer code we iterate the following procedure.

- Take the first leaf in order, say, i and write down its neighbour j.
- Delete the leaf i for T.

The code is thus a sequence $\mathbf{C}=\left(c_{1}, \ldots, c_{n-2}\right) \in V(T)^{n-2}$ of length $n-2$ of vertices.

We can reconstruct the tree from its code \mathbf{C} by first listing $\mathbf{L}=(1,2,3, \ldots, n)$ all vertices in the assumed order. Then iterate the following

- Let i be the first vertex in the list \mathbf{L} not in the code. Add the edge $i c$ where c is the first label in the code.
- Delete (Cross out) the first symbol c from \mathbf{c} and delete i from \mathbf{L}.

As a final step, we add the edge between the two remaining vertices in \mathbf{L}.
Note that we have n^{n-2} Prüfer codes for trees $T \subset K_{n}$. Since we have established a bijection between the codes and trees, we conclude Cayleys theorem: There are n^{n-2} (labeled) trees.

