lec®

Anders Johansson

23 november 2011

Contents

1 Trees and forests

1.1 Characterisation of trees

(Figure of trees)
The following are equivalent for a simple undirected graph 7" on n vertices
1. T is a tree;
2. T is connected and contains no cycles;
3. T is connected and has n — 1 edges;
4. T is connected and every edge is a bridge;
5. any two vertices is connected by exactly one path;
6. T is acyclic but the addition of any new edge creates exactly one new
cycle.
1. What are the corresponding statements for forests?

2. Prove, say, (ili) = (iv).

2 Spanning trees and spanning forests

Given a graph G, a spanning subgraph 7' C G which is a tree is called a
spanning tree. A spanning forest is a subgraph F' C G which is the vertex
disjoin union of spanning trees in each component of G.

1. The graph G is connected <= G has a spanning tree T’

2. For a spanning tree T' C G, every edge in T' corresponds to a unique
bond B, of G. (Recall a bond is a minimal cut-set.) Every bond
contain some edge of T

3. Every edge e of G not in T corresponds to a unique cycle C, C G and
every cycle contain an edge from G — E(T).

4. If a set W C FE(Q) is such that W N E(T) # 0 for every spanning tree
T, then W is a (not necessarily minimal) cut-set.

5. Let 7(G) denote the number of spanning trees in G. Show that

7(G) =7(G —e) +7(G/e).

The cycles {C, : e ¢ T'} and the bonds {Be : ¢ € T'} constitute basises for
the cycle space Z(G) and the cut-space Z+(G), respectively.

3 Leafs and Prifer codes

A leaf is a vertex v in a tree T' of degree one. The handshake lemma readily
gives that
Every tree has at least two leaves.

Deleting a leaf v from T gives a tree T — v.

A Priufer code is a way to code a tree T “bottom up”. Assume V(T) =
{1,...,n} (or order the vertices using a labeling). Consider the following
tree:

To construct the Priufer code for a (labeled) tree T', we iterate the following
procedure.

e Take the first leaf in order, say, ¢ and write down its neighbour j.

N E/i .
NS

Figure 1: A simple tree on 7 vertices with code (6,5,6,5,1).

e Delete the leaf 7 for T'.

The code is thus a sequence C = (cq,...,cp—2) € V(T)"2 of length n — 2
of vertices.

We can reconstruct the tree from its code C by first listing L = (1,2,3,...,n)
all vertices in the assumed order. Then iterate the following

e Let ¢ be the first vertex in the list L not in the code. Add the edge ic
where c is the first label in the code.

e Delete (Cross out) the first symbol ¢ from ¢ and delete i from L.

As a final step, we add the edge between the two remaining vertices in L.

Note that we have n"~2 Priufer codes for trees T C K,,. Since we have
established a bijection between the codes and trees, we conclude
Cayleys theorem: There are n"~2 (labeled) trees.

1. What trees have all symbols distinct in its code? Just one symbol
appear?

2. What is the relation between the number of times a symbol appear
and its degree?

4 The Matrix-tree theorem

Kirchhoff’s matrix-tree theorem is a theorem about the number of spanning
trees in a graph. It is a generalization of Cayley’s formula which provides
the number of spanning trees in a complete graph.

Figure 2: How many spanning trees does this kite graph have?

Kirchhoff’s theorem uses cofactors of the Laplacian matriz L = L(G) of a
graph. Recall that L = BBT, where B = B(G) is the incidence matrix
relative some orientation, and that that is equal to L = D — A, where D is
the diagonal matrix diagdeg(-,G) and A is the adjacency matriz, A;; = 1 if
iadjj and zero otherwise. For example, for the “Kite graph”, we have

L=

For a given connected graph G with n labeled vertices, let A1, Ag, ..., Ap_1
be the non-zero eigenvalues of its Laplacian matrix. Then the matrisx-tree
theorem states that the number of spanning trees of G is

1
T(G) = EAlAZ s)\n71~

Equivalently the number of spanning trees is equal to the absolute value of
any cofactor of the Laplacian matrix of G.

To obtain 7(G), we thus construct a (n — 1) x (n — 1)-sub matrix of L by
deleting any row and any column. For example,

Lig=d2—10—13—10 — 1.

Finally, we take the determinant to obtain 7G~, which in this case gives 8.

5 The depth-first and breadth first search

6 Shortest path problems

6.1 Combinatorial optimisation

Given a finite set S C {0,1}¥, sequences of 0 and 1 idexed by elements in
some finite set F/. A typical combinatorial optimisation problem is to find
the minimum (or maximum) of some objective function f(x), where z € S.

Shortest path (SP) problem If S is the set of st-paths in a graph G =
(V,E) and ¢ : E — R is a prescribed positive length. Minimise

o) =Y te) = 3 Ue)ale),

ecw ecE

where in the last expression we consider a path x as a vector

T = (Tey,. . T,) €{0,1}F.

Minimum spanning tree (MST) problem Let w : E — R be a given
weighting of the edges in a graph G = (V, E). Let S be the set of
spanning trees and minimise w(T) = > .pw(e).

The Huffman coding problem For
S = { complete binary trees with leaf weights w(1),...,w(m) > 0}
minimise

> w(u)l(u).

leafs u

The traveling salesman problem For S = {Hamilton paths} minimise
Y ecr w(e), where w: E — R is an edge weighting.

6.2 The directed shortest path problem.

Given a weighted digraph G = (V, E, /), where the positive weighting ¢ :
E — R, is called length, and a specified source s € V and sink t € V.

1. What is the shortest directed path between ¢ and a?

2. What is the shortest (undirected) oriented path between ¢ and a?

The first problem is to find a directed shortest path from s to t. We can also
try to find a maximal distance-minimising rooted (at s) directed tree in G
— a distance tree —, i.e. a maximal sub-digraph 7" so that all branches out
from s are shortest paths that minimise distance, i.e. for all w in V(T) the
path in T from s to u is a shortest path.

1. What is the distance-tree from c above?

2. Will this be an instance of the MST problem? NO.

3. Why positive lengths? What about negative length cycles.

4. Must V(T') be spanning tree? NO. Describe the cut between V(T") and
VA V(T).

As will be explained later in the course, we solve these problem “dually”.
Instead of concetrating on the distance-tree, we try to construct a “dual”
solution, namely the function L : V — R, given by

L(v) = dir-distg(s, v),

where dir-dist(a, b) is the length of a shortest directed ab-path.

The function L is an example of a wvalue function. Note: vertices can be
thought of as “states” and L(v) is the value for the problem if we are at state
v — the shortest anti-directed path to the goal s.

We have, for v € V' a kind of recursive formula for L
L(v) = min {¢(vu) + L(u) : u € N_(v)}. (*)

1. If P: sxy...zy is a shortest sy-path, is sx1 ...z a shortest sz-path?
Yes

2. Show that (??) determines L uniquely, i.e. if L(v) is any function

satisfying (??) then L(v) = dir-distg(s,v). (This is a special case of
Bellmans optimality principle.)

6.3 The main loop in Dijkstra’s algorithm

Algorithm 1 Main loop of value iteration.

1: procedure DIJKSTRA(G, ¢) > Digraph G and ¢ : E(G) — Ry
2 For v € V, let L(v) + oo if v # s and L(s) < 0 and P(v) < 0.

3 while 3z 3y € N_(z) L(x) > L(y) + ¢(yx) do

4 L(z) < L(y) + {(yz)

5: P(z) +y.

6 end while

7 return (L,P)

8: end procedure

1. How do we recreate the distance-tree from P(v)? What is the inter-
pretation of P(v)? (P(v) is the parent in the tree.)

2. Will this always converge? Yes — Value improvement. Will it stop in
a finite time? Not necessarily.

3. When can we decide that a value L(v) is safe, i.e. decidedly equal to
the distance to s? Initially, we have the safe set S = {s}, but what
about other times. If S is a set of “safe values” at a point in time and
L(v) minimises L(z) for z ¢ S. If for all ,

L(z) = min{é(yz) + L(y) : y € N_(x)}

show that
L(v) = L(u) + £(uv), wueS.

Algorithm 2 The safe version of Dijkstra’s algorithm

1:
2
3
4:
5:
6
7
8
9

10:
11:
12:
13:
14:

procedure DIJKSTRA(G, ¢)

Initialise L(v) and P(v).
S« {s}.
while N, (S) ¢ S do
forx € V\ Sdo
for y € N_(z) do
if L(z) > L(y) + {(yx) then
P(z) < y.
end if
end for
end for
Let x minimise for L(z), =z ¢ S and let S < SU{z}
end while
return (L, P)

15: end procedure

The consideration of safe values give the following refinement of Dijkstra’s

After each iteration of the loop in 77, we have that

L(x) = min{¢(yx) + L(y) : y € N_()}.

Thus it is safe to extend S with one more element.

. What does the condition S # N, (S) mean? How to change this if we

only want a shortest st-path?

. What about complexity? As it stands O(|V| x |E|).

. Improvements? Do not scan all vertices in V'\ S. Keep the set N (S5)

in a heap ordered by L. ...

