lec8

Anders Johansson

23 november 2011

Contents

1 Trees and forests

1.1 Characterisation of trees

(Figure of trees)
The following are equivalent for a simple undirected graph T on n vertices

1. T is a tree;
2. T is connected and contains no cycles;
3. T is connected and has $n-1$ edges;
4. T is connected and every edge is a bridge;
5. any two vertices is connected by exactly one path;
6. T is acyclic but the addition of any new edge creates exactly one new cycle.
7. What are the corresponding statements for forests?
8. Prove, say, (iii) \Longrightarrow (iv).

2 Spanning trees and spanning forests

Given a graph G, a spanning subgraph $T \subset G$ which is a tree is called a spanning tree. A spanning forest is a subgraph $F \subset G$ which is the vertex disjoin union of spanning trees in each component of G.

1. The graph G is connected $\Longleftrightarrow G$ has a spanning tree T
2. For a spanning tree $T \subset G$, every edge in T corresponds to a unique bond B_{e} of G. (Recall a bond is a minimal cut-set.) Every bond contain some edge of T.
3. Every edge e of G not in T corresponds to a unique cycle $C_{e} \subset G$ and every cycle contain an edge from $G-E(T)$.
4. If a set $W \subset E(G)$ is such that $W \cap E(T) \neq \emptyset$ for every spanning tree T, then W is a (not necessarily minimal) cut-set.
5. Let $\tau(G)$ denote the number of spanning trees in G. Show that

$$
\tau(G)=\tau(G-e)+\tau(G / e) .
$$

The cycles $\left\{C_{e}: e \notin T\right\}$ and the bonds $\left\{B_{e}: e \in T\right\}$ constitute basises for the cycle space $Z(G)$ and the cut-space $Z^{\perp}(G)$, respectively.

3 Leafs and Prüfer codes

A leaf is a vertex v in a tree T of degree one. The handshake lemma readily gives that

Every tree has at least two leaves.
Deleting a leaf v from T gives a tree $T-v$.
A Pr'ufer code is a way to code a tree T "bottom up". Assume $V(T)=$ $\{1, \ldots, n\}$ (or order the vertices using a labeling). Consider the following tree:

To construct the Pr'ufer code for a (labeled) tree T, we iterate the following procedure.

- Take the first leaf in order, say, i and write down its neighbour j.

Figure 1: A simple tree on 7 vertices with code $(6,5,6,5,1)$.

- Delete the leaf i for T.

The code is thus a sequence $\mathbf{C}=\left(c_{1}, \ldots, c_{n-2}\right) \in V(T)^{n-2}$ of length $n-2$ of vertices.

We can reconstruct the tree from its code \mathbf{C} by first listing $\mathbf{L}=(1,2,3, \ldots, n)$ all vertices in the assumed order. Then iterate the following

- Let i be the first vertex in the list \mathbf{L} not in the code. Add the edge $i c$ where c is the first label in the code.
- Delete (Cross out) the first symbol c from \mathbf{c} and delete i from \mathbf{L}.

As a final step, we add the edge between the two remaining vertices in \mathbf{L}.
Note that we have $n^{n-2} \operatorname{Pr}^{\prime}$ ufer codes for trees $T \subset K_{n}$. Since we have established a bijection between the codes and trees, we conclude
Cayleys theorem: There are n^{n-2} (labeled) trees.

1. What trees have all symbols distinct in its code? Just one symbol appear?
2. What is the relation between the number of times a symbol appear and its degree?

4 The Matrix-tree theorem

Kirchhoff's matrix-tree theorem is a theorem about the number of spanning trees in a graph. It is a generalization of Cayley's formula which provides the number of spanning trees in a complete graph.

Figure 2: How many spanning trees does this kite graph have?

Kirchhoff's theorem uses cofactors of the Laplacian matrix $L=L(G)$ of a graph. Recall that $L=B B^{\top}$, where $B=B(G)$ is the incidence matrix relative some orientation, and that that is equal to $L=D-A$, where D is the diagonal matrix $\operatorname{diag} \operatorname{deg}(\cdot, G)$ and A is the adjacency matrix, $A_{i j}=1$ if i adj j and zero otherwise. For example, for the "Kite graph", we have

$$
L=[
$$

For a given connected graph G with n labeled vertices, let $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n-1}$ be the non-zero eigenvalues of its Laplacian matrix. Then the matrisx-tree theorem states that the number of spanning trees of G is

$$
\tau(G)=\frac{1}{n} \lambda_{1} \lambda_{2} \cdots \lambda_{n-1} .
$$

Equivalently the number of spanning trees is equal to the absolute value of any cofactor of the Laplacian matrix of G.
To obtain $\tau(G)$, we thus construct a $(n-1) \times(n-1)$-sub matrix of L by deleting any row and any column. For example,

$$
L_{1,1}=\$ 2-10-13-10-12 .
$$

Finally, we take the determinant to obtain τG^{\sim}, which in this case gives 8 .

5 The depth-first and breadth first search

6 Shortest path problems

6.1 Combinatorial optimisation

Given a finite set $S \subset\{0,1\}^{E}$, sequences of 0 and 1 idexed by elements in some finite set E. A typical combinatorial optimisation problem is to find the minimum (or maximum) of some objective function $f(x)$, where $x \in S$.

Shortest path (SP) problem If S is the set of $s t$-paths in a graph $G=$ (V, E) and $\ell: E \rightarrow R_{+}$is a prescribed positive length. Minimise

$$
\ell(x)=\sum_{e \in x} \ell(e)=\sum_{e \in E} \ell(e) x(e),
$$

where in the last expression we consider a path x as a vector

$$
x=\left(x_{e_{1}}, \ldots, x_{e_{m}}\right) \in\{0,1\}^{E} .
$$

Minimum spanning tree (MST) problem Let $w: E \rightarrow R$ be a given weighting of the edges in a graph $G=(V, E)$. Let S be the set of spanning trees and minimise $w(T)=\sum_{e \in T} w(e)$.
The Huffman coding problem For
$S=\{$ complete binary trees with leaf weights $w(1), \ldots, w(m)>0\}$
minimise

$$
\sum_{\text {leafs } u} w(u) \ell(u) .
$$

The traveling salesman problem For $S=$ \{Hamilton paths $\}$ minimise $\sum_{e \in H} w(e)$, where $w: E \rightarrow R$ is an edge weighting.

6.2 The directed shortest path problem.

Given a weighted digraph $G=(V, E, \ell)$, where the positive weighting ℓ : $E \rightarrow R_{+}$is called length, and a specified source $s \in V$ and $\operatorname{sink} t \in V$.

1. What is the shortest directed path between c and a ?

2. What is the shortest (undirected) oriented path between c and a ?

The first problem is to find a directed shortest path from s to t. We can also try to find a maximal distance-minimising rooted (at s) directed tree in G - a distance tree -, i.e. a maximal sub-digraph T so that all branches out from s are shortest paths that minimise distance, i.e. for all u in $V(T)$ the path in T from s to u is a shortest path.

1. What is the distance-tree from c above?
2. Will this be an instance of the MST problem? NO.
3. Why positive lengths? What about negative length cycles.
4. Must $V(T)$ be spanning tree? NO. Describe the cut between $V(T)$ and $V \backslash V(T)$.

As will be explained later in the course, we solve these problem "dually". Instead of concetrating on the distance-tree, we try to construct a "dual" solution, namely the function $L: V \rightarrow R$, given by

$$
L(v)=\operatorname{dir}^{-\operatorname{dist}_{G}}(s, v),
$$

where dir-dist (a, b) is the length of a shortest directed $a b$-path.
The function L is an example of a value function. Note: vertices can be thought of as "states" and $L(v)$ is the value for the problem if we are at state v - the shortest anti-directed path to the goal s.

We have, for $v \in V$ a kind of recursive formula for L

$$
\begin{equation*}
L(v)=\min \left\{\ell(v u)+L(u): u \in N_{-}(v)\right\} . \tag{*}
\end{equation*}
$$

1. If $P: s x_{1} \ldots z y$ is a shortest $s y$-path, is $s x_{1} \ldots z$ a shortest $s z$-path? Yes
2. Show that (??) determines L uniquely, i.e. if $L(v)$ is any function satisfying (??) then $L(v)=\operatorname{dir}^{-d_{i s t}}{ }_{G}(s, v)$. (This is a special case of Bellmans optimality principle.)

6.3 The main loop in Dijkstra's algorithm

```
Algorithm 1 Main loop of value iteration.
    procedure Dijkstra \((G, \ell) \quad \triangleright\) Digraph \(G\) and \(\ell: E(G) \rightarrow R_{+}\)
        For \(v \in V\), let \(L(v) \leftarrow \infty\) if \(v \neq s\) and \(L(s) \leftarrow 0\) and \(P(v) \leftarrow \emptyset\).
        while \(\exists x \exists y \in N_{-}(x) \quad L(x)>L(y)+\ell(y x)\) do
            \(L(x) \leftarrow L(y)+\ell(y x)\)
            \(P(x) \leftarrow y\).
        end while
        return (L,P)
    end procedure
```

1. How do we recreate the distance-tree from $P(v)$? What is the interpretation of $P(v) ?(P(v)$ is the parent in the tree.)
2. Will this always converge? Yes - Value improvement. Will it stop in a finite time? Not necessarily.
3. When can we decide that a value $L(v)$ is safe, i.e. decidedly equal to the distance to s ? Initially, we have the safe set $S=\{s\}$, but what about other times. If S is a set of "safe values" at a point in time and $L(v)$ minimises $L(x)$ for $x \notin S$. If for all x,

$$
L(x)=\min \left\{\ell(y x)+L(y): y \in N_{-}(x)\right\}
$$

show that

$$
L(v)=L(u)+\ell(u v), \quad u \in S .
$$

```
Algorithm 2 The safe version of Dijkstra's algorithm
    procedure Diskstra \((G, \ell)\)
        Initialise \(L(v)\) and \(P(v)\).
        \(S \leftarrow\{s\}\).
        while \(N_{+}(S) \not \subset S\) do
            for \(x \in V \backslash S\) do
                for \(y \in N_{-}(x)\) do
                    if \(L(x)>L(y)+\ell(y x)\) then
                        \(P(x) \leftarrow y\).
                    end if
                end for
            end for
            Let \(x\) minimise for \(L(x), x \notin S\) and let \(S \leftarrow S \cup\{x\}\)
        end while
        return \((L, P)\)
    end procedure
```

The consideration of safe values give the following refinement of Dijkstra's After each iteration of the loop in ??, we have that

$$
L(x)=\min \left\{\ell(y x)+L(y): y \in N_{-}(x)\right\} .
$$

Thus it is safe to extend S with one more element.

1. What does the condition $S \neq N_{+}(S)$ mean? How to change this if we only want a shortest st-path?
2. What about complexity? As it stands $O(|V| \times|E|)$.
3. Improvements? Do not scan all vertices in $V \backslash S$. Keep the set $N_{+}(S)$ in a heap ordered by L. ...
