
lec8

Anders Johansson

23 november 2011

Contents

1 Trees and forests

1.1 Characterisation of trees

(Figure of trees)

The following are equivalent for a simple undirected graph T on n vertices

1. T is a tree;

2. T is connected and contains no cycles;

3. T is connected and has n− 1 edges;

4. T is connected and every edge is a bridge;

5. any two vertices is connected by exactly one path;

6. T is acyclic but the addition of any new edge creates exactly one new
cycle.

1. What are the corresponding statements for forests?

2. Prove, say, (iii) =⇒ (iv).

1

2 Spanning trees and spanning forests

Given a graph G, a spanning subgraph T ⊂ G which is a tree is called a
spanning tree. A spanning forest is a subgraph F ⊂ G which is the vertex
disjoin union of spanning trees in each component of G.

1. The graph G is connected ⇐⇒ G has a spanning tree T

2. For a spanning tree T ⊂ G, every edge in T corresponds to a unique
bond Be of G. (Recall a bond is a minimal cut-set.) Every bond
contain some edge of T .

3. Every edge e of G not in T corresponds to a unique cycle Ce ⊂ G and
every cycle contain an edge from G− E(T).

4. If a set W ⊂ E(G) is such that W ∩E(T) 6= ∅ for every spanning tree
T , then W is a (not necessarily minimal) cut-set.

5. Let τ(G) denote the number of spanning trees in G. Show that

τ(G) = τ(G− e) + τ(G/e).

The cycles {Ce : e 6∈ T} and the bonds {Be : e ∈ T} constitute basises for
the cycle space Z(G) and the cut-space Z⊥(G), respectively.

3 Leafs and Prüfer codes

A leaf is a vertex v in a tree T of degree one. The handshake lemma readily
gives that

Every tree has at least two leaves.

Deleting a leaf v from T gives a tree T − v.
A Pŕ’ufer code is a way to code a tree T “bottom up”. Assume V (T) =
{1, . . . , n} (or order the vertices using a labeling). Consider the following
tree:

To construct the Pŕ’ufer code for a (labeled) tree T , we iterate the following
procedure.

• Take the first leaf in order, say, i and write down its neighbour j.

2

2

4

6 5

1

3

7

Figure 1: A simple tree on 7 vertices with code (6, 5, 6, 5, 1).

• Delete the leaf i for T .

The code is thus a sequence C = (c1, . . . , cn−2) ∈ V (T)n−2 of length n − 2
of vertices.

We can reconstruct the tree from its codeC by first listing L = (1, 2, 3, . . . , n)
all vertices in the assumed order. Then iterate the following

• Let i be the first vertex in the list L not in the code. Add the edge ic
where c is the first label in the code.

• Delete (Cross out) the first symbol c from c and delete i from L.

As a final step, we add the edge between the two remaining vertices in L.

Note that we have nn−2 Pŕ’ufer codes for trees T ⊂ Kn. Since we have
established a bijection between the codes and trees, we conclude
Cayleys theorem: There are nn−2 (labeled) trees.

1. What trees have all symbols distinct in its code? Just one symbol
appear?

2. What is the relation between the number of times a symbol appear
and its degree?

4 The Matrix-tree theorem

Kirchhoff’s matrix-tree theorem is a theorem about the number of spanning
trees in a graph. It is a generalization of Cayley’s formula which provides
the number of spanning trees in a complete graph.

3

Figure 2: How many spanning trees does this kite graph have?

Kirchhoff’s theorem uses cofactors of the Laplacian matrix L = L(G) of a
graph. Recall that L = BBT, where B = B(G) is the incidence matrix
relative some orientation, and that that is equal to L = D − A, where D is
the diagonal matrix diag deg(·, G) and A is the adjacency matrix, Aij = 1 if
i adj j and zero otherwise. For example, for the “Kite graph”, we have

L = [

For a given connected graph G with n labeled vertices, let λ1, λ2, . . . , λn−1
be the non-zero eigenvalues of its Laplacian matrix. Then the matrisx-tree
theorem states that the number of spanning trees of G is

τ(G) =
1

n
λ1λ2 · · ·λn−1.

Equivalently the number of spanning trees is equal to the absolute value of
any cofactor of the Laplacian matrix of G.

To obtain τ(G), we thus construct a (n − 1) × (n − 1)-sub matrix of L by
deleting any row and any column. For example,

L1,1 = [c2− 10− 13− 10− 12] .

Finally, we take the determinant to obtain τG˜, which in this case gives 8.

4

5 The depth-first and breadth first search

6 Shortest path problems

6.1 Combinatorial optimisation

Given a finite set S ⊂ {0, 1}E , sequences of 0 and 1 idexed by elements in
some finite set E. A typical combinatorial optimisation problem is to find
the minimum (or maximum) of some objective function f(x), where x ∈ S.

Shortest path (SP) problem If S is the set of st-paths in a graph G =
(V,E) and ` : E → R+ is a prescribed positive length. Minimise

`(x) =
∑
e∈x

`(e) =
∑
e∈E

`(e)x(e),

where in the last expression we consider a path x as a vector

x = (xe1 , . . . , xem) ∈ {0, 1}E .

Minimum spanning tree (MST) problem Let w : E → R be a given
weighting of the edges in a graph G = (V,E). Let S be the set of
spanning trees and minimise w(T) =

∑
e∈T w(e).

The Huffman coding problem For

S = { complete binary trees with leaf weights w(1), . . . , w(m) > 0}

minimise ∑
leafs u

w(u)`(u).

The traveling salesman problem For S = {Hamilton paths} minimise∑
e∈H w(e), where w : E → R is an edge weighting.

6.2 The directed shortest path problem.

Given a weighted digraph G = (V,E, `), where the positive weighting ` :
E → R+ is called length, and a specified source s ∈ V and sink t ∈ V .

1. What is the shortest directed path between c and a?

5

c

b g

i

f

a

h

9

2

10

7

3
14 10

17
6

1

1

2. What is the shortest (undirected) oriented path between c and a?

The first problem is to find a directed shortest path from s to t. We can also
try to find a maximal distance-minimising rooted (at s) directed tree in G
— a distance tree —, i.e. a maximal sub-digraph T so that all branches out
from s are shortest paths that minimise distance, i.e. for all u in V (T) the
path in T from s to u is a shortest path.

1. What is the distance-tree from c above?

2. Will this be an instance of the MST problem? NO.

3. Why positive lengths? What about negative length cycles.

4. Must V (T) be spanning tree? NO. Describe the cut between V (T) and
V \ V (T).

As will be explained later in the course, we solve these problem “dually”.
Instead of concetrating on the distance-tree, we try to construct a “dual”
solution, namely the function L : V → R, given by

L(v) = dir-distG(s, v),

where dir-dist(a, b) is the length of a shortest directed ab-path.

The function L is an example of a value function. Note: vertices can be
thought of as “states” and L(v) is the value for the problem if we are at state
v — the shortest anti-directed path to the goal s.

6

We have, for v ∈ V a kind of recursive formula for L

L(v) = min {`(vu) + L(u) : u ∈ N−(v)} . (*)

1. If P : sx1 . . . zy is a shortest sy-path, is sx1 . . . z a shortest sz-path?
Yes

2. Show that (??) determines L uniquely, i.e. if L(v) is any function
satisfying (??) then L(v) = dir-distG(s, v). (This is a special case of
Bellmans optimality principle.)

6.3 The main loop in Dijkstra’s algorithm

Algorithm 1 Main loop of value iteration.
1: procedure Dijkstra(G, `) . Digraph G and ` : E(G)→ R+

2: For v ∈ V , let L(v)←∞ if v 6= s and L(s)← 0 and P (v)← ∅.
3: while ∃x ∃y ∈ N−(x) L(x) > L(y) + `(yx) do
4: L(x)← L(y) + `(yx)
5: P (x)← y.
6: end while
7: return (L,P)
8: end procedure

1. How do we recreate the distance-tree from P (v)? What is the inter-
pretation of P (v)? (P (v) is the parent in the tree.)

2. Will this always converge? Yes — Value improvement. Will it stop in
a finite time? Not necessarily.

3. When can we decide that a value L(v) is safe, i.e. decidedly equal to
the distance to s? Initially, we have the safe set S = {s}, but what
about other times. If S is a set of “safe values” at a point in time and
L(v) minimises L(x) for x 6∈ S. If for all x,

L(x) = min{`(yx) + L(y) : y ∈ N−(x)}

show that
L(v) = L(u) + `(uv), u ∈ S.

7

Algorithm 2 The safe version of Dijkstra’s algorithm
1: procedure Dijkstra(G, `)
2: Initialise L(v) and P (v).
3: S ← {s}.
4: while N+(S) 6⊂ S do
5: for x ∈ V \ S do
6: for y ∈ N−(x) do
7: if L(x) > L(y) + `(yx) then
8: P (x)← y.
9: end if

10: end for
11: end for
12: Let x minimise for L(x), x 6∈ S and let S ← S ∪ {x}
13: end while
14: return (L,P)
15: end procedure

The consideration of safe values give the following refinement of Dijkstra’s

After each iteration of the loop in ??, we have that

L(x) = min{`(yx) + L(y) : y ∈ N−(x)}.

Thus it is safe to extend S with one more element.

1. What does the condition S 6= N+(S) mean? How to change this if we
only want a shortest st-path?

2. What about complexity? As it stands O(|V | × |E|).

3. Improvements? Do not scan all vertices in V \ S. Keep the set N+(S)
in a heap ordered by L. . . .

8

