lec8

Anders Johansson

23 november 2011

Contents

1 Trees and forests

1.1 Characterisation of trees

(Figure of trees)

The following are equivalent for a simple undirected graph T on n vertices

- 1. T is a tree;
- 2. T is connected and contains no cycles;
- 3. T is connected and has n-1 edges;
- 4. T is connected and every edge is a bridge;
- 5. any two vertices is connected by exactly one path;
- 6. T is acyclic but the addition of any new edge creates exactly one new cycle.
- 1. What are the corresponding statements for forests?
- 2. Prove, say, (iii) \implies (iv).

2 Spanning trees and spanning forests

Given a graph G, a spanning subgraph $T \subset G$ which is a tree is called a spanning tree. A spanning forest is a subgraph $F \subset G$ which is the vertex disjoin union of spanning trees in each component of G.

- 1. The graph G is connected \iff G has a spanning tree T
- 2. For a spanning tree $T \subset G$, every edge in T corresponds to a unique bond B_e of G. (Recall a bond is a minimal cut-set.) Every bond contain some edge of T.
- 3. Every edge e of G not in T corresponds to a unique cycle $C_e \subset G$ and every cycle contain an edge from G - E(T).
- 4. If a set $W \subset E(G)$ is such that $W \cap E(T) \neq \emptyset$ for every spanning tree T, then W is a (not necessarily minimal) cut-set.
- 5. Let $\tau(G)$ denote the number of spanning trees in G. Show that

$$\tau(G) = \tau(G - e) + \tau(G/e).$$

The cycles $\{C_e : e \notin T\}$ and the bonds $\{B_e : e \in T\}$ constitute basises for the cycle space Z(G) and the cut-space $Z^{\perp}(G)$, respectively.

3 Leafs and Prüfer codes

A *leaf* is a vertex v in a tree T of degree one. The handshake lemma readily gives that

Every tree has at least two leaves.

Deleting a leaf v from T gives a tree T - v.

A Pr'ufer code is a way to code a tree T "bottom up". Assume $V(T) = \{1, \ldots, n\}$ (or order the vertices using a labeling). Consider the following tree:

To construct the Pr'ufer code for a (labeled) tree T, we iterate the following procedure.

• Take the first leaf in order, say, *i* and write down its neighbour *j*.

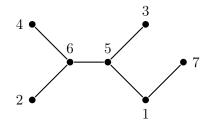


Figure 1: A simple tree on 7 vertices with code (6, 5, 6, 5, 1).

• Delete the leaf i for T.

The code is thus a sequence $\mathbf{C} = (c_1, \ldots, c_{n-2}) \in V(T)^{n-2}$ of length n-2 of vertices.

We can reconstruct the tree from its code **C** by first listing $\mathbf{L} = (1, 2, 3, ..., n)$ all vertices in the assumed order. Then iterate the following

- Let *i* be the first vertex in the list **L** not in the code. Add the edge *ic* where *c* is the first label in the code.
- Delete (Cross out) the first symbol c from **c** and delete i from **L**.

As a final step, we add the edge between the two remaining vertices in **L**. Note that we have n^{n-2} Pr'ufer codes for trees $T \subset K_n$. Since we have established a bijection between the codes and trees, we conclude **Cayleys theorem:** There are n^{n-2} (labeled) trees.

- 1. What trees have all symbols distinct in its code? Just one symbol appear?
- 2. What is the relation between the number of times a symbol appear and its degree?

4 The Matrix-tree theorem

Kirchhoff's matrix-tree theorem is a theorem about the number of spanning trees in a graph. It is a generalization of Cayley's formula which provides the number of spanning trees in a complete graph.

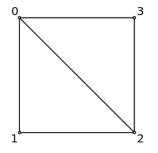


Figure 2: How many spanning trees does this kite graph have?

Kirchhoff's theorem uses cofactors of the Laplacian matrix L = L(G) of a graph. Recall that $L = BB^{\mathsf{T}}$, where B = B(G) is the incidence matrix relative some orientation, and that that is equal to L = D - A, where D is the diagonal matrix diag deg (\cdot, G) and A is the adjacency matrix, $A_{ij} = 1$ if i adj j and zero otherwise. For example, for the "Kite graph", we have

$$L = [$$

For a given connected graph G with n labeled vertices, let $\lambda_1, \lambda_2, \ldots, \lambda_{n-1}$ be the non-zero eigenvalues of its Laplacian matrix. Then the matrix-tree theorem states that the number of spanning trees of G is

$$\tau(G) = \frac{1}{n}\lambda_1\lambda_2\cdots\lambda_{n-1}.$$

Equivalently the number of spanning trees is equal to the absolute value of any cofactor of the Laplacian matrix of G.

To obtain $\tau(G)$, we thus construct a $(n-1) \times (n-1)$ -sub matrix of L by deleting any row and any column. For example,

$$L_{1,1} = (2 - 10 - 13 - 10 - 12).$$

Finally, we take the determinant to obtain τG^{\sim} , which in this case gives 8.

5 The depth-first and breadth first search

6 Shortest path problems

6.1 Combinatorial optimisation

Given a finite set $S \subset \{0, 1\}^E$, sequences of 0 and 1 idexed by elements in some finite set E. A typical combinatorial optimisation problem is to find the minimum (or maximum) of some *objective function* f(x), where $x \in S$.

Shortest path (SP) problem If S is the set of st-paths in a graph G = (V, E) and $\ell : E \to R_+$ is a prescribed positive length. Minimise

$$\ell(x) = \sum_{e \in x} \ell(e) = \sum_{e \in E} \ell(e) x(e),$$

where in the last expression we consider a path x as a vector

$$x = (x_{e_1}, \dots, x_{e_m}) \in \{0, 1\}^E.$$

Minimum spanning tree (MST) problem Let $w : E \to R$ be a given weighting of the edges in a graph G = (V, E). Let S be the set of spanning trees and minimise $w(T) = \sum_{e \in T} w(e)$.

The Huffman coding problem For

 $S = \{ \text{ complete binary trees with leaf weights } w(1), \dots, w(m) > 0 \}$

minimise

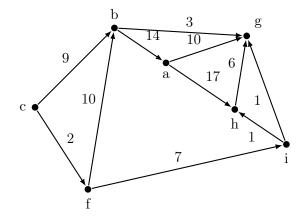
$$\sum_{\text{leafs } u} w(u)\ell(u).$$

The traveling salesman problem For $S = \{\text{Hamilton paths}\}$ minimise $\sum_{e \in H} w(e)$, where $w : E \to R$ is an edge weighting.

6.2 The directed shortest path problem.

Given a weighted digraph $G = (V, E, \ell)$, where the *positive* weighting $\ell : E \to R_+$ is called *length*, and a specified source $s \in V$ and sink $t \in V$.

1. What is the shortest directed path between c and a?



2. What is the shortest (undirected) oriented path between c and a?

The first problem is to find a *directed shortest path* from s to t. We can also try to find a maximal distance-minimising rooted (at s) directed tree in G— a distance tree —, i.e. a maximal sub-digraph T so that all branches out from s are shortest paths that minimise distance, i.e. for all u in V(T) the path in T from s to u is a shortest path.

- 1. What is the distance-tree from c above?
- 2. Will this be an instance of the MST problem? NO.
- 3. Why positive lengths? What about negative length cycles.
- 4. Must V(T) be spanning tree? NO. Describe the cut between V(T) and $V \setminus V(T)$.

As will be explained later in the course, we solve these problem "dually". Instead of concertaing on the distance-tree, we try to construct a "dual" solution, namely the function $L: V \to R$, given by

$$L(v) = \operatorname{dir-dist}_G(s, v),$$

where $\operatorname{dir}\operatorname{dist}(a, b)$ is the length of a shortest directed *ab*-path.

The function L is an example of a value function. Note: vertices can be thought of as "states" and L(v) is the value for the problem if we are at state v — the shortest anti-directed path to the goal s.

We have, for $v \in V$ a kind of recursive formula for L

$$L(v) = \min \{\ell(vu) + L(u) : u \in N_{-}(v)\}.$$
(*)

- 1. If $P: sx_1...zy$ is a shortest sy-path, is $sx_1...z$ a shortest sz-path? Yes
- 2. Show that (??) determines L uniquely, i.e. if L(v) is any function satisfying (??) then $L(v) = \operatorname{dir-dist}_G(s, v)$. (This is a special case of Bellmans optimality principle.)

6.3 The main loop in Dijkstra's algorithm

Algorithm 1 Main loop of value iteration.		
1:	: procedure Dijkstra (G, ℓ)	$\triangleright \text{ Digraph } G \text{ and } \ell : E(G) \to R_+$
2:	For $v \in V$, let $L(v) \leftarrow \infty$ if $v \in V$.	$\neq s \text{ and } L(s) \leftarrow 0 \text{ and } P(v) \leftarrow \emptyset.$
3:		> $L(y) + \ell(yx)$ do
4:	$L(x) \leftarrow L(y) + \ell(yx)$	
5:	$P(x) \leftarrow y.$	
6:	e end while	
7:	: return (L,P)	
8: end procedure		

- 1. How do we recreate the distance-tree from P(v)? What is the interpretation of P(v)? (P(v)) is the parent in the tree.)
- 2. Will this always *converge*? Yes Value improvement. Will it *stop* in a finite time? Not necessarily.
- 3. When can we decide that a value L(v) is safe, i.e. decidedly equal to the distance to s? Initially, we have the safe set $S = \{s\}$, but what about other times. If S is a set of "safe values" at a point in time and L(v) minimises L(x) for $x \notin S$. If for all x,

$$L(x) = \min\{\ell(yx) + L(y) : y \in N_{-}(x)\}\$$

show that

$$L(v) = L(u) + \ell(uv), \quad u \in S.$$

Algorithm 2 The safe version of Dijkstra's algorithm

1: procedure DIJKSTRA (G, ℓ) 2: Initialise L(v) and P(v). $S \leftarrow \{s\}.$ 3: while $N_+(S) \not\subset S$ do 4: for $x \in V \setminus S$ do 5: for $y \in N_{-}(x)$ do 6: if $L(x) > L(y) + \ell(yx)$ then 7: $P(x) \leftarrow y.$ 8: end if 9: end for 10:end for 11: Let x minimise for L(x), $x \notin S$ and let $S \leftarrow S \cup \{x\}$ 12:end while 13:return (L, P)14: 15: end procedure

The consideration of safe values give the following refinement of Dijkstra's After each iteration of the loop in ??, we have that

$$L(x) = \min\{\ell(yx) + L(y) : y \in N_{-}(x)\}.$$

Thus it is safe to extend S with one more element.

- 1. What does the condition $S \neq N_+(S)$ mean? How to change this if we only want a shortest *st*-path?
- 2. What about complexity? As it stands $O(|V| \times |E|)$.
- 3. Improvements? Do not scan all vertices in $V \setminus S$. Keep the set $N_+(S)$ in a heap ordered by L....