
Lecture 9: Combinatorial optimisation

Anders Johansson

2011-10-22 lör

Contents

1 Combinatorial optimisation

Given a �nite set S ⊂ {0, 1}E , sequences of 0 and 1 idexed by elements in
some �nite set E. A typical combinatorial optimisation problem is to �nd
the minimum (or maximum) of some objective function f(x), where x ∈ S.

Shortest path (SP) problem If S is the set of st-paths in a graph G =
(V,E) and ` : E → R+ is a prescribed positive length. Minimise

`(x) =
∑
e∈x

`(e) =
∑
e∈E

`(e)x(e),

where in the last expression we consider a path x as a vector

x = (xe1 , . . . , xem) ∈ {0, 1}E .

Minimum spanning tree (MST) problem Let w : E → R be a given
weighting of the edges in a graph G = (V,E). Let S be the set of
spanning trees and minimise w(T) =

∑
e∈T w(e).

The Hu�man coding problem For

S = { complete binary trees with leaf weights w(1), . . . , w(m) > 0}

1

minimise ∑
leafs u

w(u)`(u).

The traveling salesman problem For S = {Hamilton paths} minimise∑
e∈H w(e), where w : E → R is an edge weighting.

2 The shortest path problems

2.1 The directed shortest path problem.

Given a weighted digraph G = (V,E, `), where the positive weighting ` :
E → R+ is called length, and a speci�ed source s ∈ V and sink t ∈ V .

c

b g

i

f

a

h

9

2

10

7

3

14
10

17

6

1

1

1. What is the shortest directed path between c and a?

2. What is the shortest (undirected) oriented path between c and a?

The �rst problem is to �nd a directed shortest path from s to t. We can also
try to �nd a maximal distance-minimising rooted (at s) directed tree in G
� a distance tree �, i.e. a maximal sub-digraph T so that all branches out
from s are shortest paths that minimise distance, i.e. for all u in V (T) the
path in T from s to u is a shortest path.

1. What is the distance-tree from c above?

2. Will this be an instance of the MST problem? NO.

2

3. Why positive lengths? What about negative length cycles.

4. Must V (T) be spanning tree? NO. Describe the cut between V (T) and
V \ V (T).

As will be explained later in the course, we solve these problem �dually�.
Instead of concetrating on the distance-tree, we try to construct a �dual�
solution, namely the function L : V → R, given by

L(v) = dir-distG(s, v),

where dir-dist(a, b) is the length of a shortest directed ab-path.

The function L is an example of a value function. Note: vertices can be
thought of as �states� and L(v) is the value for the problem � if we are at
state v � to �nd the shortest anti-directed path to the goal s.

We have, for v ∈ V a kind of recursive formula for L

L(v) = min {`(vu) + L(u) : u ∈ N−(v)} . (*)

1. If P : sx1 . . . zy is a shortest sy-path, is sx1 . . . z a shortest sz-path?
Yes

2. Show that (??) determines L uniquely, i.e. if L(v) is any function
satisfying (??), together with the boundary condition L(s) = 0, then
L(v) must be the sought value function dir-distG(s, v). (This is a
special case of Bellmans optimality principle.)

2.2 The main loop in Dijkstra's algorithm

Algorithm 1 Main loop of value iteration.

1: procedure Dijkstra(G, `) . Digraph G and ` : E(G)→ R+

2: For v ∈ V , let L(v)←∞ if v 6= s and L(s)← 0 and P (v)← ∅.
3: while ∃x ∃y ∈ N−(x) L(x) > L(y) + `(yx) do
4: L(x)← L(y) + `(yx)
5: P (x)← y.
6: end while

7: return (L,P)

8: end procedure

3

1. Will this always converge? Yes � Value improvement L(u) ↘. Will
it stop in a �nite time? It is not immediate at least.

2. How do we recreate the distance-tree from P (v)? What is the inter-
pretation of P (v)? (P (v) is the parent in the tree.)

2.3 �Safe values� and Dijkstra's algorithm

When can we decide that a value L(v) is safe, i.e. decidedly equal to the
distance to s? Initially, we have the safe set S = {s}, but what about other
times?

1. If S is a set of �safe values� at a point in time, i.e. the labeling L(v) is
the shortest distance from s. If x 6∈ S. If for all x ∈ N+(S) \ S,

L(x) ≤ min{`(yx) + L(y) : y ∈ N−(x) ∩ S}

show that we can extend S, i.e. there is some v 6∈ S such that L(v) is
the right value.

The consideration of safe values give the following re�nement of Dijkstra's

Algorithm 2 The safe version of Dijkstra's algorithm

1: procedure Dijkstra(G, `)
2: Initialise L(v) and P (v).
3: S ← {s}.
4: while N+(S) \ S 6= ∅ do
5: for x ∈ V \ S do

6: for y ∈ N−(x) ∩ S do

7: if L(x) > L(y) + `(yx) then
8: L(x)← L(y)0`(yx).
9: P (x)← y.

10: end if

11: end for

12: end for

13: Let x minimise for L(x), x 6∈ S and let S ← S ∪ {x}
14: end while

15: return (L,P)
16: end procedure

4

After each iteration of the loop in ??, we have that

L(x) = min{`(yx) + L(y) : y ∈ N−(x)}.

Thus it is safe to extend S with one more element.

1. What does the condition S 6= N+(S) mean? How to change this if we
only want a shortest st-path?

2. What about complexity? As it stands O(|V | × |E|).

3. Improvements? Do not scan all vertices in V \ S. Keep the set N+(S)
in a heap ordered by L. . . .

3 The minimum weight spanning tree problem

Given a edge-weighted connected graph G = (V,E,w), the minimum span-
ning tree (MST) or minimum weight spanning tree is a spanning tree with
weight less than or equal to the weight of every other spanning tree. More
generally, any undirected graph (not necessarily connected) has a minimum
spanning forest, which is a union of minimum spanning trees for its connected
components.

An example would be a phone company laying cable to a new neighborhood
and it is constrained to bury the cable only along certain paths, then there
would be a graph representing which points are connected by those paths.
Some of those paths might be more expensive, because they are longer, or
require the cable to be buried deeper; these paths would be represented by
edges with larger weights.

While MST are quite easy to �nd, the minimum spanning tree has a cousin
which is algorithmically hard to solve. In the general Steiner tree problem

5

(Steiner tree in graphs), we are given an edge-weighted graph G = (V,E,w)
and a subset S ⊂ V of required vertices. A Steiner tree is a tree in G that
spans all vertices of S. In the optimization problem associated with Steiner
trees, the task is to �nd a minimum-weight Steiner tree, but this optimization
problem is NP-hard.

3.1 The greedy tree and Kruskal's algorithm

Recall the general greedy (tree) forest algorithm: It takes a graph G with
a prescribed edge-ordering; a bijection π : [1,m] → E, and returns the
spanning forest.

1: procedure Greedy(G = (V,E, π)) . Graph G with E ordered
2: Initialise tree T = (V, ∅)
3: for e ∈ E in the order π do

4: if T + e has no cycle then
5: T ← T + e
6: end if

7: end for

8: return T
9: end procedure

Kruskal's algorithm takes a (multi-) graph G and constructs a greedy tree
in the order of increasing weight. That is.

1: procedure KruskalMST(G = (V,E,w)) . Graph G with E ordered
2: Let π order the edges increasing weight.
3: return GreedyForest(G, π)
4: end procedure

1. Prove that if e is an edge of minimum weight w(e) in G then there is
some MST T containing E. (We can exchange T ′ ← T +e−e′, so that
w(T ′) ≤ w(T), with equality if and only if there is a cycle where all
edges have minimum weight.)

2. Use this to prove that Kruskal's algorithm is correct. (Hint: Induction
on G/e.)

3. Show that the MST is unique if all edge-weights are distinct.

4. For the wheel graph W4, assign the weights 1, 1, 2, 2, 3, 3, 4, 4 to the
edges so that (a) the MST is unique and (b) the MST is non-unique.

6

5. What if we want to maximise the weight of a tree?

Figure 1: Kruskal's algorithm for a weighted graph

1. What is the complexity of Kruskal's algorithm.

3.2 Boruvka's and Prim's algorithm

Another variant is Prim's algorithm, which has the property that the tree is
built up as a growing tree rahter than a growing forest.

1: procedure Prim(G = (V,E,w), s) . Connected edge-weighted graph
with root

2: Initialise tree T = ({s}, ∅)
3: Let S ← {s}
4: while V \ S is non empty do
5: Let uv, u ∈ S, 6∈ S be of minimum weight in E(S, V \ S)
6: S ← S + v.
7: end while

8: return T
9: end procedure

A variant of Greedy is the following which depends on subroutines relative
a queue/heap Q and a partition P = {S1, . . . , Sr} of V (G).

7

Figure 2: An example of Prim's algorithm for �nding an MST in a weighted
graph

1. Delete S form Q � remove the elements elements in S from queue
(heap) Q.

2. First(Q) Returns the ��rst� element on Q according to some ordering.

3. A subroutine to obtain the part P(u) of P containing u and a subrou-
tine to obtain all edges between to parts E(P(u),P(v)).

If �rst gives the element of minimum weight, this is called Boruvka's algo-
rithm for the minimum weight.

1: procedure Boruvka(G = (V,E, π)) . Graph G with E ordered
2: Initialise tree T = (V, ∅)
3: Q← E
4: P = {{v1}, . . . , {vn}} . Partition into connected components of T

8

5: while uv ← First(Q) do
6: T ← T + uv
7: Delete edges E(P(u),P(v)) from Q
8: P ← P \ {P(u),P(v)}+ {P(u) ∪ P(v)}.
9: end while

10: return T
11: end procedure

With a smart choice of data structures (a �soft heap�) Chazelle obtained
an algorithm with complexity O(|E|α(|V |)), where α is the inverse of the
Ackerman function. (�Almost constant�.)

9

