UPPSALA UNIVERSITET
 Matematiska institutionen
 Anders Johansson

Graph Theory
Frist, KandMa, IT

Problem sheet 1

1. Show that

$$
c(G)+|E(G)| \geq|V(G)| .
$$

2. (a) Is there a graph with degree sequence $3,3,3,3,5,6,6,6,6,6,6$?
(b) Is there a bipartite graph with degree sequence $3,3,3,3,3,5,6,6,6,6,6,6,6,6$?
(c) Is there a simple graph with degrees $1,1,3,3,3,3,5,6,8,9$?
3. Let G_{1} and G_{2} be two graphs, with $V\left(G_{1}\right)=V\left(G_{2}\right)$.
4. Show that

$$
c\left(G_{1}\right)+c\left(G_{2}\right) \leq c\left(G_{1} \cup G_{2}\right)+c\left(G_{1} \cap G_{2}\right) .
$$

2. Show that this holds without assuming $V\left(G_{1}\right)=V\left(G_{2}\right)$.
3. Let $G=(V, E)$ be a connected digraph. Let $w: E \rightarrow \mathbb{R}$ be a weighting, where $w(x y)$ is considered as the work needed to go from the tail x to the head y and that $-w(x y)$ is the work to go in the opposite direction; from head y to tail x. Show that w can be associated to a potential $p: V \rightarrow \mathbb{R}$, such that $w(x y)=p(y)-p(x)$ if and only if going round any oriented cycle the total work needed is 0 .
4. Show that a k-regular connected bipartite graph is 2 -connected.
5. Consider a strongly connected digraph G. Show that there is a two-colouring $\varphi: V(G) \rightarrow$ $\{-1,+1\}$ such that for every vertex i there is some out-edge $i j$ where j has opposite colour to i if and only if G contains at least one directed even cycle.
6. Show that a digraph G is strongly connected if and only if for every non-empty subset $X \subsetneq$ $V(G)$ there is some edge going out from X.
7. Let $G=(V, E)$ be a digraph with $s, t \in V$ two distinct vertices. Suppose that the edges are coloured red, green and black in an arbitrary manner. Show that exactly one of the following two assertions hold.
(i) There is a black and red oriented $s t$-path, such that no black edge is oppositely oriented.
(ii) There is a set S such that $s \in S$ and $t \in V \backslash S$ and such that no red edge connects S with $V \backslash S$ in any direction and no black edge goes from S to $V \backslash S$.
8. If G is a graph with even degrees, then it can be oriented in such way that the out-degree equals the in-degree at each vertex.

Terminology

Orienting a graph An undirected graph can be oriented, i.e. made into a digraph \vec{G}, by choosing, for each edge $e=\{u, v\}$ one of (u, v) or (v, u) as the corresponding edge in \vec{G}.

Bipartite graph A bipartite graph is a graph such that V is composed of two non-empty disjoint parts X and Y and all edges connects vertices in X with vertices in Y.
k-regular A graph is k-regular if every vertex has degree k.
Number of components of a graph G is denoted by $c(G)$.
Oriented cycle In a digraph an oriented walk is a sequence $v_{1} e_{1} v_{2} \cdots v_{k} e_{k} v_{k+1}$, of vertices v_{i} and edges e_{j}, such that either $e_{i}=v_{i} v_{i+1}$ or $e_{i}=v_{i+1} v_{i}$; i the second case we say the edge is oppositely oriented. Oriented trails, circuits, paths and cycles are defined in an analogue manner.

Directed cycle A normal, i.e. not oriented, cycle in a digraph.
Strongly connected A digraph is strongly connected if for any pair of vertices (i, j) there is a directed path from i to j. (And thus also a directed path from j to i.)
k-connected, $\kappa(G)$ A connected graph G is k-connected if $|V(G)| \geq k+1$ and $G-S$ is connected for any set $S \subset V(G)$ of at most $k-1$ vertices. The largest k is called the (vertex-) connectivity of G and is denoted $\kappa(G)$.

