Graph Theory Frist, KandMa, IT 2011–10–21

Problem sheet 1

1. Show that

$$c(G) + |E(G)| \ge |V(G)|.$$

- **2.** (a) Is there a graph with degree sequence 3, 3, 3, 3, 5, 6, 6, 6, 6, 6, 6?
 - (b) Is there a bipartite graph with degree sequence 3, 3, 3, 3, 3, 5, 6, 6, 6, 6, 6, 6, 6, 6?
 - (c) Is there a simple graph with degrees 1, 1, 3, 3, 3, 3, 5, 6, 8, 9?
- **3.** Let G_1 and G_2 be two graphs, with $V(G_1) = V(G_2)$.
 - 1. Show that

$$c(G_1) + c(G_2) \le c(G_1 \cup G_2) + c(G_1 \cap G_2).$$

- 2. Show that this holds without assuming $V(G_1) = V(G_2)$.
- 4. Let G = (V, E) be a connected digraph. Let $w : E \to \mathbb{R}$ be a weighting, where w(xy) is considered as the work needed to go from the tail x to the head y and that -w(xy) is the work to go in the opposite direction; from head y to tail x. Show that w can be associated to a *potential* $p : V \to \mathbb{R}$, such that w(xy) = p(y) p(x) if and only if going round any *oriented cycle* the total work needed is 0.
- 5. Show that a k-regular connected bipartite graph is 2-connected.
- 6. Consider a strongly connected digraph G. Show that there is a two-colouring $\varphi : V(G) \rightarrow \{-1, +1\}$ such that for every vertex *i* there is some out-edge *ij* where *j* has opposite colour to *i* if and only if G contains at least one directed even cycle.
- 7. Show that a digraph G is strongly connected if and only if for every non-empty subset $X \subsetneq V(G)$ there is some edge going out from X.
- 8. Let G = (V, E) be a digraph with $s, t \in V$ two distinct vertices. Suppose that the edges are coloured red, green and black in an arbitrary manner. Show that exactly one of the following two assertions hold.
 - (i) There is a black and red oriented *st*-path, such that no black edge is oppositely oriented.
 - (ii) There is a set S such that $s \in S$ and $t \in V \setminus S$ and such that no red edge connects S with $V \setminus S$ in any direction and no black edge goes from S to $V \setminus S$.
- **9.** If G is a graph with even degrees, then it can be oriented in such way that the out-degree equals the in-degree at each vertex.

Terminology

- **Orienting a graph** An undirected graph can be *oriented*, i.e. made into a digraph \vec{G} , by choosing, for each edge $e = \{u, v\}$ one of (u, v) or (v, u) as the corresponding edge in \vec{G} .
- **Bipartite graph** A bipartite graph is a graph such that V is composed of two non-empty disjoint parts X and Y and all edges connects vertices in X with vertices in Y.
- k-regular A graph is k-regular if every vertex has degree k.
- Number of components of a graph G is denoted by c(G).
- **Oriented cycle** In a digraph an *oriented walk* is a sequence $v_1e_1v_2\cdots v_ke_kv_{k+1}$, of vertices v_i and edges e_j , such that either $e_i = v_iv_{i+1}$ or $e_i = v_{i+1}v_i$; i the second case we say the edge is oppositely oriented. Oriented trails, circuits, paths and cycles are defined in an analogue manner.
- Directed cycle A normal, i.e. not oriented, cycle in a digraph.
- **Strongly connected** A digraph is strongly connected if for any pair of vertices (i, j) there is a directed path from i to j. (And thus also a directed path from j to i.)
- *k*-connected, $\kappa(G)$ A connected graph G is *k*-connected if $|V(G)| \ge k+1$ and G-S is connected for any set $S \subset V(G)$ of at most k-1 vertices. The largest k is called the (vertex-) connectivity of G and is denoted $\kappa(G)$.