UPPSALA UNIVERSITET
 Matematiska institutionen
 Anders Johansson

Graph Theory
Frist, KandMa, IT

Problem sheet 3

1. Show that any tree has at least $\Delta(T)$ leafs (vertices of degree one). Here $\Delta(G)$ denotes the maximum degree of a graph.
2. For a graph $G=(V, E)$, show that the number of subgraphs isomorphic to P_{2}, i.e. a path of length 2 , is given by

$$
\sum_{x \in V} d(x)(d(x)-1) .
$$

3. Assume that the graph $G=(V, E)$ satisfies

$$
\omega(H) \omega(\bar{H}) \geq|V(H)|
$$

for every induced subgraph $H \subset G$. Show that the chromatic number of G equals $\chi(G)=$ $\omega(G)$.
4. For a sequence $x=x_{1} x_{2} \ldots x_{n}$ in \mathbb{Z}_{2}^{n} and an integer k with $1 \leq k \leq n$, let $P_{k}(x)$ be the sequence $x_{1} x_{2} \cdots x_{k-1} x_{k+1} \cdots x_{n}$ in \mathbb{Z}_{2}^{n-1} with x_{k} removed. For a subset $S \subset \mathbb{Z}_{2}^{n}$ on n elements show that there is a k such that $\left|P_{k}(S)\right|=|S|$. (Hint: Let H be the induced subgraph $Q_{n}[S]$ where each edge $x y$ is given colour i if x and y differ in coordinate i. Show that any subgraph F of H having different colours on all edges can have at most $n-1$ edges.)
5. Let G be a simple graph on $n \geq 4$ vertices with (strictly) more than $3(n-1) / 2$ edges. Prove that G contains a subgraph consisting of three internally vertex-disjoint paths connecting the same pair of vertices.
6. Prove that one can remove any $k-1$ edges from the complete bipartite graph $K_{k, k}$ so that the resulting graph still has a 1-factor (a perfect matching).
7. Construct a connected balanced bipartite graph on $2 n$ vertices, such that each edge is contained in exactly one 1-factor. What if the maximum degree is required to be at least three? (Hint: The last question is difficult, but you can use Kotzigs theorem: that any bipartite graph has an even number of Hamilton cycles.)
8. If G and H are two graphs on the same vertex set. Show that

$$
\chi(G \cup H) \leq \chi(G) \cdot \chi(H)
$$

9. A graph with chromatic number $\chi(G)=k$, but, with $\chi(G-v)=k-1$ for all $v \in V(G)$ is said to be critical k-chromatic. Show that any critical k-chromatic graph G is $(k-1)$-edgeconnected, i.e. it contains no edge-cut-set of size less than or equal to $(k-2)$. (Hint: You can the result stated in Problem 6, although it is not necessary.)
10. If T is a tree, show that if $\varphi: V(T) \rightarrow V(T)$ is an auto-morphism, then φ fixes some vertex or edge. That is, either there is some vertex $x \in V(T)$ such that $\varphi(x)=x$ or some edge $\{x, y\} \in E(T)$ such that $\varphi(\{x, y\})=\{x, y\}$. Give also an example of a graph where this does not hold.

Terminology

Auto-morphism For a simple graph $G=(V, E)$, a bijective map $\phi: V \rightarrow V$ such that $\{x, y\} \in E$ if and only if $\{\phi(x), \phi(y)\} \in E$ is called an auto-morphism.
k-factor A k-factor of a graph $G=(V, E)$ is a spanning subgraph F which is k-regular, i.e. $d(x, F)=k$ for all $x \in V$. For balanced bipartite graphs, a one-factor is also called a perfect matching.

Degree and Neighbourhood The degree, $d(v)$, of a vertex v is the number of edges with which it is incident. Two vertices are adjacent if they are incident to a common edge. The set of neighbours (neighbourhood), $N(v)$, of a vertex v is the set of vertices which are adjacent to v. For a simple graph, the degree of a vertex is also the cardinality of its neighbour set.

Paths and cycles and more A walk is an alternating sequence of vertices and edges, with each edge being incident to the vertices immediately preceeding and succeeding it in the sequence. A trail is a walk with no repeated edges. A path is a walk with no repeated vertices. A walk is closed if the initial vertex is also the terminal vertex. A cycle is a closed trail with at least one edge and with no repeated vertices except that the initial vertex is the terminal vertex. We refer to paths and cycles, also identified the subgraphs spanned by the edges occurring.

Maximal, average and minimal degree The average degree of a graph G is

$$
\bar{d}(G):=\frac{1}{|V|} \sum_{v \in V} d(v, G)
$$

The minimal degree is $\delta(G):=\min _{v} d(v, G)$ and the maximal degree is $\Delta(G):=\max _{v} d(v, G)$. Clearly, $\delta(G) \leq \bar{d}(G) \leq \Delta(G)$.
Spanning tree A tree is a connected graph without cycles. Every connected graph on n vertices has at least one tree as a spanning subgraph - a spanning tree.

Internally disjoint Paths are internally vertex disjoint if the corresponding vertex-sets only intersect at end-points.

Induced subgraphs For a set of vertices X, we use $G[X]$ to denote the induced subgraph of G whose vertex set is X and whose edge set is the subset of $E(G)$ consisting of those edges with both ends in X. For a set S of edges, we use $G[S]$ to denote the edge induced subgraph of G whose edge set is S and whose vertex set is the subset of $V(G)$ consisting of those vertices incident with any edge in S. If Y is a subset of $V(G)$, we write $G-Y$ for the subgraph $G[V(G)-Y]$.

Clique, $\omega(G)$ A (sub-)graph graph is complete, or a clique, if every pair of distinct vertices is adjacent. We write K_{m} for the (isomorphism class of) complete graph on m vertices. We write $\omega(G)$ for the largest clique of a graph. (The clique-number of G.)

Hamiltonian and Eulerian A Hamiltonian graph is a graph that has a Hamilton-cycle. An Eulerian graph is one that admits an Euler-cycle, i.e. connected and all vertices have even degree.

Colouring and proper colouring A colouring simply means an assignment $\sigma: V \rightarrow S$, where S is a finite set of colours. A proper colouring is such that adjacent vertices receives different colours. A proper edge-colouring is a mapping $\sigma: E \rightarrow S$ such that no two incident edges obtain the same colour.
Orienting a graph An undirected graph can be oriented, i.e. made into a digraph \vec{G}, by choosing, for each edge $e=\{u, v\}$ one of (u, v) or (v, u) as the corresponding edge in \vec{G}.

Bipartite graph A bipartite graph is a graph such that V is composed of two non-empty disjoint parts X and Y and all edges connects vertices in X with vertices in Y. A bipartite graph is balanced if $|X|=|Y|$.
k-regular A graph is k-regular if every vertex has degree k.
Number of components of a graph G is denoted by $c(G)$.
Oriented cycle In a digraph an oriented walk is a sequence $v_{1} e_{1} v_{2} \cdots v_{k} e_{k} v_{k+1}$, of vertices v_{i} and edges e_{j}, such that either $e_{i}=v_{i} v_{i+1}$ or $e_{i}=v_{i+1} v_{i}$; i the second case we say the edge is oppositely oriented. Oriented trails, circuits, paths and cycles are defined in an analogue manner.

Directed cycle A normal, i.e. not oriented, cycle in a digraph.
Strongly connected A digraph is strongly connected if for any pair of vertices (i, j) there is a directed path from i to j. (And thus also a directed path from j to i.)

Cut-set, k-edge-connected A cut-set in a connected graph G is a set of edges W such that $G-W$ is not connected. A graph is k-connected if every cut-set has at least k edges.
k-connected, $\kappa(G)$ A connected graph G is k-connected (or k-vertex connected) if $|V(G)| \geq k+1$ and $G-S$ is connected for any set $S \subset V(G)$ of at most $k-1$ vertices. In other words, no two vertices are separated by a set of $k-1$ vertices. The largest k, such that G is k-connected, is called the (vertex-) connectivity of G and is denoted $\kappa(G)$.

