Functional Analysis (2006)
Homework assignment 2

All students should solve the following problems:

1. Define T': C[0,1] — C[0,1] by (Tx)(t) =t [, a( . Prove that this
is a bounded linear operator, and compute HT|| Also prove that the
inverse T~ : R(T) — C0, 1] exists but is not bounded.

2. Let

M= {zel’0,1] : /lx(t)dt:O, /ltx(t)dtzo, /ltzx(t)dtzo}.

Given x € L?[0,1], find a formula for the vector in M which lies
closest to x (in the L?[0, 1}-norm).

3. (Problem §3.9: 4). Let H; and Hy be two Hilbert spaces and let
T : Hi — H, be a bounded linear operator. Suppose that we are
given subsets M; C Hy and My C Hs such that T' (M) C Ms. Prove
that M- D T*(My).

4. Let a,b be two positive real numbers. Let x be a vector in a normed
space X and assume that |f(z)] < a holds for all f € X' with
[|f]| £ b. Prove that ||x|| < a/b.

Students taking Functional Analysis as a 6 point course should also
solve the following problems:

5. Let Y7,Y5, Y3, -+ be closed linear subspaces of the Hilbert space H,
such that Yj L Y}, for all 1 < j <k, and ()2, ;- = {0}. Prove that
for every vector v € H there is a unique choice of vectors y; € Y7,
Y2 € Yz, y3 € Y3, -+ such that 3777 y; = vin H.

6. Let Y be a subspace of a Banach space X. The annihilator Y is
defined as the subspace Y := {f € X' : f(y) =0,Vy € Y} of X’
(cf. §2.10, problem 13). Hence Y** = (Y*) is a subspace of X”. Let
C : X — X" be the canonical map. Prove that C'(Y) C Y. Also
prove that if X is reflexive and Y is closed then C'(Y') = Y.

Solutions to problems 1-4 should be handed in by Friday, Feb-
ruary 24. Solutions to problems 5-6 should be handed in by
Monday, March 13. (Either give the solutions to me directly or put
them in my mailbox, third floor, House 3, Polacksbacken.)



Functional Analysis

Solutions to homework assignment 2

1. For all z1,29 € C[0,1] and all a, 3 € R and all ¢ € [0, 1] we have

(T(azy + Br))(t) = ¢ /0 (er + Bas) (s) ds

=« x1(s) ds xa(s)ds
[ s+t [l
= aT'x(t) + fTxa(t)

= (aTxy + Txy)(2t);
hence
T(axy + Prg) = aTxy + [T xs,

and this shows that 7" is linear.
Furthermore, for each = € C|0, 1] we have:

t t
||Tz|| = max t/ x(s) ds| < max \t|/ |z(s)| ds
te0,1] 0 t€[0,1] 0
< maxt/ s = max £ o] = [Jo].

te[0,1] €[0,1]

Hence T is bounded with ||7'|| < 1. In fact 1f we take x as the constant
function 2(t) = 1 then |jz|| = 1 and (T2)(t) =t [, 2(s) ds = t2, hence
|Tz|| = maxyepo 1) [t?] = 1. But ||Tz| f HT|| ||z, i.e. 1 < ||T||. Hence
we have proved both ||T'|| = 1 and ||T|| 2 1. It follows that ||T|| =1

Now assume that = € C]0, 1] satisfies Tz = 0, i.e. tf(f ds =0
for all ¢ € [0,1]. It then follows that [ z(s)ds = 0 for all t € (0,1],
and thus by differentiation with respect to t we get z(t) = 0 for all

€ (0,1]. Since z(t) is continuous we then also have x(0) = 0. Hence
x = 0. We have thus proved

Vo € C[0,1] - <Tx:0:>:v:0).

Hence by Theorem 2.6-10(a), 7! exists.
Given any n € Z* we let x,(t) = t". Then z, € C[0,1] and ||x,|| =
maxXieo,1] |tn| =1. We let

t
Yn(t) = Ta,(t) = t/ s"ds = (n+ 1) 1",
0
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Then ||y, || = maxieo 1) |(n+ 1) 71" 2| = (n 4+ 1)~*. Also, by construc-
tion, y, € R(T) and T 'y, = x,; thus ||T 'y,|| = ||z.|]| = 1. This
shows that 7! cannot be bounded. (For if T~ were bounded then we
would have ||[T Yy, || S T - |ynl], 1e. 1S T - (n+ 1)1, for all
n € Z*. This is impossible.)

2. Let fi1, fo, f3 € L?[0,1] be given by fi(t) =1, fo(t) = ¢, f3(t) = %
The definition of M says that x € L?[0, 1] belongs to M if and only if
x is orthogonal to f1, fa, f3. That is:

M= {L761>]'?2,L}C:>>}l = (Span{flaf%fi%})l'

(The last identity holds since (z, f1) = (x, fo) = (x, f3) = 0 implies
(x,c1fi + cafo +c3fs) =0, for all ¢1, o, c3 € C.) Let

Y = Span{ fi, fo, f3} (so that M =Y™).

This is a closed subspace of L?[0,1] since it is finite dimensional (The-
orem 2.4-3), and hence by Theorem 3.3-4, L?[0,1] decomposes as a
direct sum

L0,1]=YaYt=Y oM.

This means that given any x € L?[0, 1] there exist unique vectors y € Y’
and z € M such that z = y+=z. It is easy to see that in this situation z is
the vector in M which lies closest to x," i.e. Vv € M : |lv—z|| = ||z—a]].
[Proof: If v is an arbitrary vector in M then also v—2 € M =Y+, and
since y € Y we then have (v — z,y) = 0; hence we may use Pythagoras
theorem: [[o—a| 2 = [[v—2-+2—[2 = [[u—=z—g| > = [lo—2|[2+|lyl|? 2
l|ly||* = ||z — z||?, and the proof is complete.]

IThis is also, in principle, seen in the book in the proof of Theorem 3.3-4. Note
that y is the orthogonal projection of x on Y, and z is the orthogonal projection of
x on M; this concept is discussed in the book on p. 147.



To determine a formula for z as a function of x we first use Gram-
Schmidt to find an orthonormal basis in Y = Span{ fi, f2, f3}:

e1=fi=1,
e = (fl =1;
|[€1]]

b= fom (freer=t—4- 1=t}

2 — V32t —1);

2|

D

€y =

™

I
éSZfB_<f3a61>61—<f3,€2>62=t2—%~1—?~\/§(2t—1)=t2—t—|—

QN

S = VA6t — 6t +1).

€3 =
sl

™

Now since y € Y we must have y = cje; + caes+ cze3 for some constants
c1,c2,c5 € C. We also have z —y = 2 € M = Y+ and hence for each
J=1,2,3, since e¢; € Y, we have:

0= (x—vy,e;) = (x,ej) — (c1€1 + cae2 + 363, €;) = (T, €5) — Cj.
Hence ¢; = (z,e;). It follows that
z=1x—y=1u— (cre; + caeq + c3€3)
=z — (z,e1)e; — (x,e9)es — (T, €3)€3.
Answer: The vector z € M which lies closest to x is
z=u1x—(x,e1)e; — (x,ex)es — (T, e3)e€s,

2(t) = x(t) — /0 x(s)ds —3(2t —1) - /0 x(s)(2s — 1) ds

1
—5(6t> — 6t + 1) - / 2(s)(6s* — 65 + 1) ds.
0

3. Let v be an arbitrary vector in 7*(M;-). Then there is some w € M-
such that v = T*(w). Since w € M3 we know that (w,x) = 0 for every
vector © € M,.

Now let y be an arbitrary vector in M;. Then

(v,9) = (T"(w), y) = (w, T(y)).

But we have T'(y) € Ms, since y € My and T(M;) C M,. Also recall
w € My From these two facts T'(y) € M, and w € My it follows that



(w,T(y)) = 0. Hence from the above computation we see:

(v,y) = 0.

This is true for every y € M;. Hence v € Mi-.
We have proved that for every v € T*(Mj") we have v € Mi-. Hence
T*(Mg) C M{, QE.D.

4. By Theorem 4.3-3 there exists an f; € X’ such that ||fo|| = 1 and
fo(z) =||z||. Let f = bfo; then ||f|| = b||fo|| = b. In particular ||f|| <
b and hence by the assumption in the problem we have |f(z)| < a.
On the other hand |f(z)| = |bfo(z)| = b - |fo(z)| = b - ||z||. Hence
b-||z|| £ a, ie. ||z]| £ a/b, QE.D.
Alternative solution:?
By Corollary 4.3-4 we have
() el = s ML
rex—o 1|1l

Now let f be an arbitrary element in X’ — {0}, as in the above supre-
mum. Set ¢ = ||f||; then ¢ > 0 since f # 0. Set fo = (b/c)f € X;
then ||fol| = (b/o)||f]] = (b/c) - ¢ = b. Hence by the assumption
in the problem text we have |fo(z)| £ a. But f = (¢/b)fy, hence
|[f(2)] = (¢/b)|fo(2)| < (¢/b)a = ca/b, and

@l @] cafp_a

- ¢ = ¢ ¥

We have proved that this is true for every f € X’ — {0}. Hence the
supremum in (k) is < a/b, i.e. we have proved

a

Q.E.D.

2In some sense this is actually exactly the same solution as the first one, but in
a different language.
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5. We first prove uniqueness. Let v € H be given. Assume that the
vectors y; € Y7, y2 € Y5, y3 € Ys,--- are such that Z;ilyj = v,

e limy_ o Zj.v:lyj = v. Take any k € {1,2,3,.---} and any vector
w € Yy; we then have (using Lemma 3.2-2)

N

(v, A}l_I)nOOZy], hm Zy], hm Z(yj,w>.

7=1

But for each j # k we have (y;,w) = 0 since y; € Y;, w € Y, and
Y; L Y};. Hence we can continue the computation:

Hence we have proved (v, w) = (yg, w), i.e. (v—yg, w) = 0. This is true
for every w € Yj. Hence v — vy, € Y,-. But Theorem 3.3-4 says that we
have a direct sum H =Y, & Y,>, and now from y;, € Y, v — y € Y-
we see that v = yx + (v — y) is the unique decomposition of v in this
direct sum. Hence y; is the orthogonal projection of v on Y} (cf. p.
147). This proves that y; is uniquely determined from v. This is true
for every k € {1,2,3,---}.

We next prove that every vector can actually be expressed as a sum
in the stated way. Let v € H be given. For each k € {1,2,3,---}
we let yi, be the orthogonal projection of v on Y} (this construction is
of course suggested by the uniqueness proof above). We now wish to
prove Y, 45 = v

For each j with y; # 0 we let e; = ||y;||™" - y;; then these vec-
tors e; (where we throw away those indices j for which y; = 0) form
an orthonormal sequence, and hence by part (c) of the “main theo-

rem about Hilbert bases” as I formulated it in my lecture, we have
> 21 v e]? < [[v][* (this is Bessel’s inequality, Theorem 3.4-6 in
the book), and (hence) 377, (v, ;) - e; is a convergent sum (cf. Theo-
rem 3.5-2(a) in the book). But by definition of orthogonal projection
we have v — y; € le for each j, and in particular v — y; L y;, thus

(v—yj,y;) = 0. This gives (v,y;) = (y;,y;) = [|y;||* and thus if y; # 0:

I

175 Hyill* - e

(voes) e =yl ™" (voyy) e =yl Nyl - e5 = 5

Hence what we have proved is that the sum Z;’il y; is convergent!
Let us write

= Zyj € H.
j=1
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We now have for every £ = 1 and every w € Y}, by arguing as in
the first part of this solution: (vy,w) = (yg, w). Hence (v — vy, w) =
(v—yg, w) = 0, since v—y; L Y} because yy is the orthogonal projection
of v on Yj. This is true for every w € Y}, hence

v—vy €Y,
This is true for every k = 1, hence
v—vy €N, Y = {0}.

Hence

[oe)
V=7 = E Yj,
Jj=1

Q.E.D.

6. Take an arbitrary vector y € Y. Then for every f € Y* we have
(C(y)(f) = f(y) = 0. Hence C(y) € Y. This proves that C(Y) C
Yo,

Next assume that X is reflexive and Y is closed. Take an arbitrary
vector yo € Y. (Thus yo € X”.) Since X is reflexive C' is surjective,
hence there is some vector x € X such that yo = C(x). Since yo € Y**
we have, for all f € Y%

0=yo(f) = (C(2))(f) = f(x).

Now assume x ¢ Y. Then (since Y is closed!) by Lemma 4.6-7 there
exists a g € X’ such that ||g|| =1, g(y) =0forally € Y (i.e. g € Y?),
and g(z) = 0 = inf ey ||y — z|| > 0. Hence we have both g € Y* and
g(x) > 0; this contradicts the fact from above that f(x) =0, Vf € Y
Hence the assumption x ¢ Y must be discarded. Thus = € Y. Hence
from yo = C(x) we see yo C C(Y).

This is true for every yo € Y**. This proves Y* C C(Y).

Together with C'(Y') C Y this proves C(Y) = Y.



