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1. Let X be a normed space and let g1, g2, g3, · · · be elements in X ′

with ||gn|| ≤ n−2 for all n = 1, 2, 3, · · · . We define:

T (x) =
(

g1(x), g2(x), g3(x), · · ·
)

.

Prove that this gives a bounded linear operator T : X → `1.
(6p)

2. Let H1 and H2 be Hilbert spaces and let T : H1 → H2 be a bounded
linear operator. Prove that

T ∗(H2) ⊂ N (T )⊥.

(5p)

3. Define T : `∞ → `∞ by

T ((ξ1, ξ2, ξ3, · · · )) =
(

ξ1,
1
2

2
∑

j=1

ξj,
1
3

3
∑

j=1

ξj,
1
4

4
∑

j=1

ξj, · · ·
)

.

Prove that T is a bounded linear operator T : `∞ → `∞ and compute
the norm ||T ||.

(5p)

4. Let

Y =
{

(ξj) ∈ `∞ | at most finitely many ξj 6= 0
}

.

Show that Y is not complete. Also prove that the closure of Y in `∞

equals

Y =
{

(ξj) ∈ l∞ | ∀r > 0 : ∃N ∈ Z
+ : ∀j = N : |ξj| < r

}

.

(In words: Y consists of all sequences (ξj) ∈ l∞ such that for every
r > 0, there are at most finitely many elements ξj with |ξj| = r.)

(6p)
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5. Let e1, e2, e3, · · · be a total and orthonormal sequence in a Hilbert
space H and let α1, α2, α3, · · · be a sequence of real numbers. Define
the operator T : H → H by the formula

Tx =

∞
∑

n=1

αn〈x, en〉en.

Prove that if T is a compact operator then limn→∞ αn = 0.

(6p)

6. Let C[0, 1] be the Banach space of all complex valued continu-
ous functions on [0, 1], with the norm ||x|| := supt∈[0,1] |x(t)|. Let
T : C[0, 1] → C[0, 1] be the bounded linear operator given by [Tx](t) =
(1 + t2)x(t). Determine the four sets ρ(T ), σp(T ), σc(T ), σr(T ).

(6p)

7. Let X be a Banach space and let T1, T2, T3, · · · and S1, S2, S3, · · ·
be bounded linear operators from X to X such that SnTm = TmSn for
all n, m = 1. Assume that (Tn) is strongly operator convergent with
limit T and (Sn) is strongly operator convergent with limit S. Prove
that TS = ST .

(6p)

GOOD LUCK!
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Solutions

1. We know that
∑

∞

n=1 n−2 is a convergent sum; define C =
∑

∞

n=1 n−2

(in fact we know C = π2/6, but we won’t need this). For any x ∈ X
we have

||T (x)||`1 =
∞

∑

n=1

|gn(x)| ≤
∞

∑

n=1

||gn|| · ||x|| ≤
∞

∑

n=1

n−2 · ||x|| = C · ||x||.

This proves that T (x) ∈ `1 for all x ∈ X. Also for any a, b ∈ C and
x, y ∈ X we have

T (ax + by) =
(

g1(ax + by), g2(ax + by), g3(ax + by), · · ·
)

=
(

ag1(x) + bg1(y), ag2(x) + bg2(y), ag3(x) + bg3(y), · · ·
)

= a
(

g1(x), g2(x), g3(x), · · ·
)

+ b
(

g1(y), g2(y), g3(y), · · ·
)

= aT (x) + bT (y).

Hence T is a linear operator. Finally, our first computation shows that
||T (x)|| ≤ C · ||x|| for all x ∈ X; hence T is bounded.

2. Let v be an arbitrary vector in H2. Then for every w ∈ N (T ) we
have

〈T ∗(v), w〉 = 〈v, T (w)〉 = 〈v, 0〉 = 0.

Hence T ∗(v) ∈ N (T )⊥. This is true for every v ∈ H2. Hence T ∗(H2) ⊂
N (T )⊥.

3. Take an arbitrary vector (ξj) ∈ `∞, and let (ηk) = T ((ξj)). Then,
for each k = 1, 2, 3, · · · ,

|ηk| =
1

k

∣

∣

∣

∣

∣

k
∑

j=1

ξj

∣

∣

∣

∣

∣

≤ 1

k

k
∑

j=1

|ξj| ≤
1

k

k
∑

j=1

||(ξj)|| = ||(ξj)||.

Since this is true for all k = 1, 2, 3, · · · we have T ((ξj)) = (ηk) ∈ `∞.
This is true for all (ξj) ∈ `∞, hence T is a map from `∞ to `∞. Also
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for any a, b ∈ C and (ξj), (νj) ∈ `∞ we have

T
(

a(ξj) + b(νj)
)

= T
(

aξ1 + bν1, aξ2 + bν2, aξ3 + bν3, · · ·
)

=
(

aξ1 + bν1,
1
2

2
∑

k=1

(aξk + bνk),
1
3

3
∑

k=1

(aξk + bνk), · · ·
)

= a
(

ξ1,
1
2

2
∑

k=1

ξk,
1
3

3
∑

k=1

ξk, · · ·
)

+ b
(

ν1,
1
2

2
∑

k=1

νk,
1
3

3
∑

k=1

νk, · · ·
)

= aT
(

(ξj)
)

+ bT
(

(νj)
)

.

Hence T is a linear operator. It follows from our inequality above that,
for all (ξj) ∈ `∞,

||T ((ξj))|| = ||(ηk)|| = sup
k

|ηk| ≤ ||(ξj)||.

Since this is true for all (ξj) ∈ `∞, T is a bounded, and ||T || ≤ 1.
On the other hand, taking (ξj) = (1, 1, 1, · · · ) we obtain (ηk) =

T ((ξj)) = (1, 1, 1, · · · ), and ||T ((ξj))|| = ||(ξj)|| = 1; hence ||T || ≥ 1.
Answer: ||T || = 1.

4. Let

xn = (2−1, 2−2, 2−3, · · · , 2−n, 0, 0, 0, · · · ).
Then x1, x2, ... ∈ Y . We also define

x = (2−1, 2−2, 2−3, · · · ) ∈ `∞.

We now claim that xn → x as n → ∞; this follows from

||x − xn|| = ||(0, 0, · · · , 0, 2−n−1, 2−n−2, · · · )||
= sup

k=n+1

2−k = 2−n−1 → 0 as n → ∞.

Note that x /∈ Y , by the definition of Y . Hence by Theorem 1.4-6(b),
Y is not closed (as a subspace of `∞). Hence by Theorem 1.4-7, Y is
not complete.

Next, we prove

(∗) Y =
{

(ξj) ∈ l∞ | ∀r > 0 : ∃N ∈ Z
+ : ∀j = N : |ξj| < r

}

.

First take an arbitrary vector x = (ξj) in the right-hand set. Thus we
assume (ξj) ∈ l∞ and that for every r > 0 there is an N ∈ Z+ such
that |ξj| < r holds for all j = N . Now form the sequence x1, x2, ...
where

xn = (ξ1, ξ2, · · · , ξn, 0, 0, 0, · · · ).
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Then x1, x2, · · · ∈ Y . Note that

||x − xn|| = sup
j=n+1

|ξj|;

hence for any given r > 0, if we take N ∈ Z
+ as above then ||x−xn|| 5 r

holds for all n = N . This can be achieved for every r > 0, and hence
xn → x in `∞. It follows that x ∈ Y . Hence we have proved:

(∗∗) Y ⊃
{

(ξj) ∈ l∞ | ∀r > 0 : ∃N ∈ Z
+ : ∀j = N : |ξj| < r

}

.

Conversely, take an arbitrary vector x = (ξj) ∈ Y . Then there is a
sequence x1, x2, x3, · · · of vectors in Y such that xn → x in `∞. Let
r > 0 be given. Then there is n ∈ Z+ such that ||xn − x|| < r. Let us
write xn = (ηj). Since xn ∈ Y there is some N ∈ Z+ such that ηj = 0
for all j = N . Also, ||xn − x|| < r implies that |ηj − ξj| < r for all j.
Hence for all j = N we have |0 − ξj| < r, i.e. |ξj| < r. Hence we have
proved that for every r > 0 there is some N ∈ Z+ such that |ξj| < r
holds for all j = N . But here x was an arbitrary element in Y . Hence:

(∗ ∗ ∗) Y ⊂
{

(ξj) ∈ l∞ | ∀r > 0 : ∃N ∈ Z
+ : ∀j = N : |ξj| < r

}

.

Together, (**) and (***) imply (*), Q.E.D.

5. Assume that T is compact and limn→∞ αn 6= 0. We will show
that this leads to a contradiction. Since limn→∞ αn 6= 0 there is some
ε > 0 and a subsequence (αnk

)∞k=1 with n1 < n2 < n3 < · · · such that
|αnk

| > ε for all k = 1, 2, 3, · · · . Now en1
, en2

, en3
, · · · is a bounded

sequence in H, hence by Theorem 8.1-3 in Kreyszig’s book the se-
quence T (en1

), T (en2
), T (en3

), · · · must have a convergent subsequence,
say (T (enkj

))∞j=1 with k1 < k2 < k3 < · · · . Every convergent sequence

is a Cauchy sequence, hence

(∗)
∥

∥

∥
T (enkj

) − T (enk
j′
)
∥

∥

∥
→ 0 as j, j ′ → ∞.

On the other hand, we have T (en) = αnen for each n, and hence for all

j 6= j ′:
∥

∥

∥
T (enkj

) − T (enk
j′
)
∥

∥

∥
=

∥

∥

∥
αnkj

enkj
− αnk

j′
enk

j′

∥

∥

∥
=

√

|αnkj
|2 + |αnk

j′
|2

(∗∗) >
√

ε2 + ε2 > ε.

(We used Pythagoras’ theorem; this is ok since j 6= j ′ implies nkj
6= nkj′

so that enkj
and enk

j′
are orthogonal to each other.)

But (∗) and (∗∗) cannot both be true. This is a contradiction.
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6. First let λ be an arbitrary complex number which does not belong
to the real interval [1, 2]. Note that the operator Tλ = T − λ is given
by

[Tλx](t) = (1 + t2 − λ)x(t).

We know that the range of the function 1 + t2 on [0, 1] is the interval
[1, 2]. Hence 1 + t2 − λ 6= 0 for all t ∈ [0, 1]; hence (since [0, 1] is a
compact set and 1+ t2−λ is continuous) there is a constant r > 0 such
that |1 + t2 − λ| = r for all t ∈ [0, 1]. It follows that we can define a
new bounded linear operator A : C[0, 1] → C[0, 1] by

[Ax](t) = (1 + t2 − λ)−1x(t).

(We see that ||A|| 5 r−1.) It follows immediately from the definition
that TλA = ATλ = I, the identity operator on C[0, 1]. Hence T−1

λ = A
exists and is a bounded operator. Hence λ belongs to the resolvent set
ρ(T ). We have thus proved:

(C − [1, 2]) ⊂ ρ(T ).

Next let λ be an arbitrary number in the interval [1, 2]. We still have

[Tλx](t) = (1 + t2 − λ)x(t).

Let t0 ∈ [1, 2] be the unique number which gives 1 + t20 − λ = 0 (thus,
explicitly: t0 =

√
λ − 1). Assume that x ∈ C[0, 1] is a vector with

Tλx = 0. Then (1 + t2 − λ)x(t) = 0 for all t ∈ [0, 1], and this implies
x(t) = 0 for all t 6= t0 in [0, 1]. Hence since x(t) is a continuous
function we also have x(t0) = limt→t0 x(t) = limt→t0 0 = 0 (if t0 =
0 then this limit should be interpreted as right limit; if t0 = 1 it
should be interpreted as left limit). Hence x(t) = 0 for all t ∈ [0, 1],
i.e. x = 0 in C[0, 1]. Hence Tλ is injective and T−1

λ exists (Theorem
2.6-10). Note that if y = Tλx for some x ∈ C[0, 1] then y(t0) =
(1 + t20 − λ)x(t0) = 0 · x(t0) = 0; hence every y ∈ R(Tλ) satisfies
y(t0) = 0. It follows that R(Tλ) is not dense in C[0, 1]. [Proof: Let
z ∈ C[0, 1] be the constant function z(t) = 1. Then for every y ∈ R(Tλ)
we have ||y− z|| = supt∈[0,1] |y(t)− z(t)| = |y(t0)− z(t0)| = |0− 1| = 1;

hence z is not in the closure of R(Tλ).] But R(Tλ) = D(T−1
λ ), hence

we have proved that D(T−1
λ ) is not dense in C[0, 1]. It follows that λ

belongs to the residual spectrum, λ ∈ σr(T ). We have thus proved:

[1, 2] ⊂ σr(T ).

Since the four sets ρ(T ), σp(T ), σc(T ), σr(T ) are known to be disjoint
it follows that the answer is as follows.
Answer: ρ(T ) = C − [1, 2], σp(T ) = ∅, σc(T ) = ∅, σr(T ) = [1, 2].
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7. One can give a fairly short proof by a computation using “limits
inside limits”, and being very careful about the order of these limits in
each step. Note that we make crucial use below of Lemma 4.9.5, and
hence of the uniform boundedness theorem!

The fact that (Tn) is strongly operator convergent with limit T means
that

(∗) ∀y ∈ X : lim
n→∞

Tn(y) = T (y).

The fact that (Sn) is strongly operator convergent with limit S means
that

(∗∗) ∀y ∈ X : lim
n→∞

Sn(y) = S(y).

Now, for every x ∈ X:

TS(x)
{

Use (*) with y = S(x).
}

= lim
n→∞

Tn(S(x))
{

Use (**) with y = x.
}

= lim
n→∞

Tn

(

lim
m→∞

Sm(x)
)

{

Each Tn is continuous.
}

= lim
n→∞

(

lim
m→∞

Tn(Sm(x))
)

{

Use assumption in problem.
}

= lim
n→∞

(

lim
m→∞

Sm(Tn(x))
)

{

Use (**) with y = Tn(x).
}

= lim
n→∞

(

S(Tn(x))
)

{

S is continuous (by Lemma 4.9.5).
}

= S
(

lim
n→∞

Tn(x)
)

{

Use (*) with y = x.
}

= S(T (x)).

Since this holds for every x ∈ X, we have proved TS = ST .

Alternative solution, with some comments:

Note that we never claimed “TS(x) = limn,m→∞ TnSm(x)” in the above
solution! We did see that “TS(x) = limn→∞

(

limm→∞ Tn(Sm(x))
)

”, but
this is not the same thing.

The statement “TS(x) = limn,m→∞ TnSm(x)” means in precise terms:

∀ε > 0 : ∃N, M ∈ Z
+ : ∀n ≥ N, m ≥ M : ||TS(x) − TnSm(x)|| < ε.

This statement is in fact true (for any fixed x ∈ X), but it is not
obvious. In the solution below we give a proof of that statement, along
the way to a complete solution.

By Lemma 4.9-5 we have T, S ∈ B(X, X). Furthermore, since the
sequence (Tnx) is bounded for every x ∈ X (and X is complete), it



8

follows from the uniform boundedness theorem that there is a constant
C > 0 such that ||Tn|| 5 C for all n (this was also seen in the proof of
Lemma 4.9-5). Similarly, there is a constant D > 0 such that ||Sn|| 5 D
for all n.

Now let x be an arbitrary vector in X. Let ε > 0 be given. Since
(Tn) is strongly operator convergent with limit T there is N ∈ Z+ such
that both

||Tnx − Tx|| < ε and ||TnSx − TSx|| < ε

hold for all n = N . Similarly, there is M ∈ Z+ such that both

||Smx − Sx|| < ε and ||SmTx − STx|| < ε

hold for all m = M . Hence we have for all n = N , m = M :

||TSx − TnSmx|| = ‖TSx − TnSx + TnSx − TnSmx‖
5 ‖TSx − TnSx‖ + ‖Tn(Sx − Smx)‖
< ε + ||Tn|| · ‖Sx − Smx‖
< (1 + C)ε,

and1

||STx − SmTnx|| = ‖STx − SmTx + SmTx − SmTnx‖
5 ‖STx − SmTx‖ + ‖Sm(Tx − Tnx)‖
< ε + ||Sm|| · ‖Tx − Tnx‖
< (1 + D)ε.

However, by the assumptions of the problem we have SmTn = TnSm

for all n, m; hence by choosing any n = N , m = M we obtain:

||TSx − STx|| = ‖TSx − TnSmx + SmTnx − STx‖
5 ||TSx − TnSmx|| + ||STx − SmTnx||
< (1 + C + 1 + D)ε.

But we are free to choose ε > 0 arbitrarily; hence we can make
(1 + C + 1 + D)ε arbitrarily small. Hence ||TSx − STx|| = 0, i.e.
TSx = STx. This holds for all x ∈ H. Hence TS = ST , Q.E.D.

1Note that by these two computations, if we note that such M, N can be found for
any given ε > 0, we have now proved TS(x) = limn,m→∞ TnSm(x) and ST (x) =
limn,m→∞ SmTn(x)! However, we have chosen to complete the solution without
using these limits explicitly, instead working with our precise bounds.


