Analytic Number Theory 2023; Assignment 1

Problem 1. a) Prove that

$$
\sum_{n \leq x} \phi(n)=\frac{3}{\pi^{2}} x^{2}+O(x \log x), \quad \forall x \geq 2
$$

(Hint: You may start by verifying that $\phi(n)=\sum_{d \mid n} \mu(d) \frac{n}{d}, \forall n \in \mathbb{Z}^{+}$.)
b) Using part a), prove that

$$
\begin{equation*}
\sum_{n \leq x} \frac{\phi(n)}{n} \sim \frac{6}{\pi^{2}} x \quad \text { as } x \rightarrow \infty \tag{10p}
\end{equation*}
$$

Problem 2. Later in the course we will prove the prime number theorem with a precise error term, namely: There exists an absolute constant $c>0$ such that

> (A)

$$
\pi(x)=\operatorname{Li} x+O\left(x e^{-c \sqrt{\log x}}\right) \quad \text { as } x \rightarrow \infty
$$

We will also see that if the Riemann Hypothesis holds, then the following much more precise estimate is valid:

$$
\text { (B) } \quad \pi(x)=\operatorname{Li} x+O\left(x^{\frac{1}{2}} \log x\right) \quad \text { as } x \rightarrow \infty
$$

Use (A) to prove that there exists a real constant A such that, for any $0<c_{1}<c$, we have:

$$
\sum_{p \leq x} \frac{1}{p}=\log \log x+A+O\left(e^{-c_{1} \sqrt{\log x}}\right) \quad \text { as } x \rightarrow \infty
$$

Prove also that if (B) holds, then we even have:

$$
\begin{equation*}
\sum_{p \leq x} \frac{1}{p}=\log \log x+A+O\left(x^{-\frac{1}{2}} \log x\right) \quad \text { as } x \rightarrow \infty . \tag{10p}
\end{equation*}
$$

Problem 3. Let $q \in \mathbb{Z}^{+}$. Prove that all Dirichlet characters modulo q are real if and only if $q \in\{1,2,3,4,6,8,12,24\}$.

Problem 4. (a) Prove the following fact mentioned in a lecture: Given any complex numbers u_{1}, u_{2}, \ldots with $\sum_{n=1}^{\infty}\left|u_{n}\right|<\infty$, we have

$$
\prod_{n=1}^{\infty}\left(1+u_{n}\right)=\sum_{\substack{A \subset \mathbb{Z}^{+} \\(A \text { finite })}} \prod_{n \in A} u_{n}
$$

where the sum in the right hand side is absolutely convergent. (The sum in the right hand side runs over all finite subsets A of \mathbb{Z}^{+}, including $A=\emptyset$.)
(b) Prove that for any $x \in \mathbb{C}$ with $|x|<1$,

$$
\prod_{k=1}^{\infty} \frac{1}{1-x^{k}}=\sum_{n=1}^{\infty} p(n) x^{n}
$$

with

$$
p(n):=\#\left\{\left(a_{k}\right) \in S: \sum_{k=1}^{\infty} k a_{k}=n\right\},
$$

where S denotes the family of all sequences $\left(a_{k}\right)=\left(a_{1}, a_{2}, \ldots\right)$ of nonnegative integers. As part of the proof, show that both the product and the sum are absolutely convergent.
[Hint: Both in (a) and (b), ideas from the proof of LN Lemma 2.8 can be useful.]

Problem 5. Prove that for every $\varepsilon>0$, the set of all positive integers $n \leq N$ which have no prime divisors larger than N^{ε}, has cardinality $>_{\varepsilon} N$ as $N \rightarrow \infty$.
[Hint: One way to proceed is as follows. First prove that it is no restriction to assume that $\varepsilon=k^{-1}$ for some $k \in \mathbb{Z}^{+}$. Next prove that for every integer of the form $n=m p_{1} \cdots p_{k}$ where $m \in \mathbb{Z}^{+}$and p_{1}, \ldots, p_{k} are primes in the interval $N^{\varepsilon-\varepsilon^{2}}<p_{1}, \ldots, p_{k}<N^{\varepsilon}$, if $n \leq N$ then n has no prime divisor larger than N^{ε}. It follows that, after sorting out certain issues of 'overrepresentation', the cardinality in question can be bounded from below by a sum of the form $\sum_{p_{1}, \ldots, p_{k}}\left[\frac{N}{p_{1} \cdots p_{k}}\right]$, and such a sum can be bounded from below using Theorem 13.6 in Baker's book.]

