Analytic Number Theory 2023; Assignment 2

Problem 1. For each $n \in \mathbb{Z}^{+}$, let $\omega(n)$ be the number of prime factors of n, not counting multiplicity. Thus, e.g., $\omega(1)=0, \omega(8)=1$ and $\omega(10)=2$. Set $S(x)=\sum_{1 \leq n \leq x} 2^{\omega(n)}$. The goal of the following problem is to prove an asymptotic formula for $S(x)$ as $x \rightarrow \infty$, by mimicking the proof of the prime number theorem.
(a). Prove that $\sum_{n=1}^{\infty} \frac{2^{\omega(n)}}{n^{s}}=\frac{\zeta(s)^{2}}{\zeta(2 s)}$ for all $s \in \mathbb{C}$ with $\operatorname{Re} s>1$.
(b). Set $S_{1}(x)=\int_{0}^{x} S(u) d u(x>0)$. Prove that

$$
S_{1}(x)=\frac{1}{2 \pi i} \int_{c-i \infty}^{c+i \infty} \frac{x^{s+1}}{s(s+1)} \frac{\zeta(s)^{2}}{\zeta(2 s)} d s
$$

for any $x>0$ and any $c>1$.
(c). Using (b), prove that $S_{1}(x) \sim \frac{x^{2} \log x}{2 \zeta(2)}$ as $x \rightarrow \infty$.
(d). Using (c), prove that $S(x) \sim \frac{x \log x}{\zeta(2)}$ as $x \rightarrow \infty$.
[Comments/hints: In this case, one can use a simpler contour of integration than in the proof of Theorem 7.9 in LN; namely, one can move the contour to the vertical line Res $=\delta$ for any fixed $\frac{1}{2}<\delta<1$. We also note that in the present case, by working a bit more carefully, one can prove the more precise formula $S(x)=\frac{x \log x}{\zeta(2)}+c x+O\left(x^{\delta_{1}}\right)$ as $x \rightarrow \infty$, for certain fixed constants $c \in \mathbb{R}$ and $\delta_{1}<1$. You may like to try to do this, although it won't earn you any extra score on the problem.]

Problem 2. (a) Prove that for any $a, b \in \mathbb{R}_{>0}$:

$$
\prod_{n=1}^{\infty} \frac{n(n+a+b)}{(n+a)(n+b)}=\frac{\Gamma(a+1) \Gamma(b+1)}{\Gamma(a+b+1)}
$$

(b) Use the fact that $\Gamma(s) \Gamma(1-s)=\frac{\pi}{\sin (\pi s)}$ to prove that for all $t \in \mathbb{R}$:

$$
\begin{equation*}
\left|\Gamma\left(\frac{1}{2}+i t\right)\right|=\sqrt{\frac{2 \pi}{e^{\pi t}+e^{-\pi t}}} . \tag{10p}
\end{equation*}
$$

Problem 3. Prove from the Siegel-Walfisz theorem that for any $\varepsilon>0$, $q \in \mathbb{Z}^{+}$and $a \in \mathbb{Z}$ with $(a, q)=1$, the smallest prime $p \equiv a \bmod q$ satisfies $p \ll e^{q^{\varepsilon}}$, where the implied constant depends only on ε.

Problem 4. Let $d(n):=\#\left\{a \in \mathbb{Z}^{+}: a \mid n\right\} \quad$ (the divisor function). For any $\delta>0$, show that $d(n)<2^{(1+\delta)} \log n / \log \log n$ for all n sufficiently large.
[Hint: One approach is to prove that for every $\varepsilon>0$ we have $d(n) \leq C(\varepsilon) \cdot n^{\varepsilon}\left(\forall n \in \mathbb{Z}^{+}\right)$, with an explicit constant $C(\varepsilon)>0$. If your $C(\varepsilon)$ is not too wasteful, the desired inequality can then be obtained by choosing ε depending on n appropriately.]

GOOD LUCK!

