
Hints / solution sketches to problems

3.13.
– see my solution sketches for the previous problem session (11 Sept).

4.1. (Similar to arguments appearing in the proof of Theorem 4.35.)
(a). This follows from (b).
(b). Let q1 =

∏r

j=1 c(χj). First assume m,n ∈ Z, (m, q) = (n, q) = 1

and m ≡ n (mod q1). Then for each j ∈ {1, . . . , r} we have m ≡ n
mod c(χj) since c(χj) | q1; and also (m, p

αj

j ) = (n, p
αj

j ) = 1; therefore
χj(m) = χj(n). Hence χ(m) =

∏r

j=1 χj(m) =
∏r

j=1 χj(n) = χ(n).

This proves that [χ(n) for n restricted by (n, q) = 1] has period q1, and
hence by Lemma 4.20 we have c(χ) | q1.
Next for every k ∈ {1, . . . , r} we can argue as follows. Since χk ∈

Xp
αk
k

we have c(χk) = pβ for some β ∈ {0, 1, . . . , αk}, by Lemma 4.20.

Suppose that β > 0. Then [χk(n) restricted by (n, pαk

k ) = 1] does not

have period pβ−1
k and hence there are some m,n ∈ Z with (m, pk) =

(n, pk) = 1 and m ≡ n (mod pβ−1
k ) and χk(m) 6= χk(n). Now by the

Chinese Remainder Theorem there exist m′, n′ ∈ Z such that m′ ≡ m
(mod pαk

k ) and m′ ≡ 1 (mod p
αj

j ) for all j 6= k, and n′ ≡ n (mod pαk

k )

and n′ ≡ 1 (mod p
αj

j ) for all j 6= k. Now

χ(m′) =
r
∏

j=1

χj(m
′) = 1 · · ·1 · χk(m

′) · 1 · · ·1 = χk(m
′) = χk(m),

and similarly χ(n′) = χk(n); thus χ(m′) 6= χ(n′). But we also have
(m′, q) = (n′, q) = 1 and m′ ≡ n′ mod q1/pk; hence this proves that
[χ(n) restricted by (n, q) = 1] does not have period q1/pk, and thus
c(χ) ∤ q1

pk
.

We thus have c(χ) | q1 but for each prime p | q1 we also have c(χ) ∤
q1
p
.

This implies that c(χ) = q1. �
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4.3. If q1 is a period of χ(n) restricted by (n, q) = 1 then for all
integersm,n with (m, q) = (n, q) andm ≡ n (mod q1) we have χ(m) =
χ(n). In particular, taking m = 1, it follows that χ(n) = 1 for all
integers n satisfying (n, q) = 1 and n ≡ 1 (mod q1).
Conversely, suppose that q1 is a positive integer and that χ(n) = 1

holds for all integers n satisfying n ≡ 1 (mod q1) and (n, q) = 1. Let
q2 = (q, q1); then we know that there are some integers x, y such that
q2 = xq + yq1. Now if n is any integer satisfying n ≡ 1 (mod q2) and
(n, q) = 1 then we have n = 1 + hq2 for some integer h, and hence
n = 1 + h(xq + yq1) ≡ 1 + hyq1 (mod q) so that χ(n) = χ(1 + hyq1)
and (1 + hyq1, q) = 1. Furthermore 1 + hyq1 ≡ 1 (mod q1) and thus
by our assumption χ(1 + hyq1) = 1. Hence q2 has exactly the same
property as q1, i.e. χ(n) = 1 holds for all integers n satisfying n ≡ 1
(mod q2) and (n, q) = 1. The advantage is that q2 also divides q, by
construction!
Now take any two integers m1, m2 with (m1, q) = (m2, q) = 1 and

m1 ≡ m2 (mod q2). Then m1, m2 correspond to two elements in
(Z/qZ)× and hence there is a unique n ∈ (Z/qZ)× such that m1 ≡ nm2

(mod q). Since q2 | q this implies m1 ≡ nm2 (mod q2), which forces
n ≡ 1 (mod q2) (since (m1, q2) = (m2, q2) = 1). Hence, by what
we proved in last paragraph, χ(n) = 1! Hence χ(m1) = χ(nm2) =
χ(n)χ(m2) = χ(m2).
This proves that χ(n) restricted by (n, q) = 1 has period q2. Since

q2 | q1, it follows that χ(n) restricted by (n, q) = 1 also has period q1.
�
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6.1. It follows from (246) combined with Lemma 6.1 that, for any
fixed integer q ≥ 0,

π(x) =
x

log x
+

1!x

log2 x
+ . . .+

q!x

(log x)q+1
+O

( x

(log x)q+2

)

as x → ∞.

In particular

π(x) =
x

log x
+

x

log2 x
+O

( x

(log x)3

)

as x → ∞.

Let us now define A(x) by the relation π(x) = x
log x−A(x)

. It then follows

that x
log x−A(x)

= x
log x

+ x
(log x)2

+O
(

x
(log x)3

)

as x → ∞. Dividing with x
log x

we get log x
logx−A(x)

= 1+ 1
log x

+O
(

1
(log x)2

)

, hence log x−A(x)
log x

=
(

1+ 1
log x

+

O
(

1
(log x)2

))−1

= 1 − 1
log x

− O
(

1
(log x)2

)

+ O
((

1
log x

− O
(

1
(log x)2

))2)

=

1− 1
log x

+O
(

1
(log x)2

)

. Subtracting 1 and multiplying with − log x this

gives A(x) = 1 +O
(

1
log x

)

. In particular limx→∞A(x) = 1. �

6.2. Recall that− ζ′(s)
ζ(s)

=
∑∞

n=1
Λ(n)
ns for σ > 1 (cf. (113)). Multiplica-

tion with ζ(s) gives (for σ > 1): −ζ ′(s) =
(

∑∞
n=1

Λ(n)
ns

)(

∑∞
m=1m

−s
)

=
∑∞

n=1

∑∞
m=1

Λ(n)
(nm)s

=
∑∞

k=1

∑

n|k
Λ(n)
ks

. That is:
∑∞

k=1
log k
ks

=
∑∞

k=1

∑

n|k
Λ(n)
ks

(true, with absolute convergence, for all σ > 1). Hence by comparison
of coefficients (cf. Proposition 3.10) we get:

∑

n|k

Λ(n) = log k, ∀k ∈ Z+.(1)

(The same formula can of course also be proved directly: If k =
pα1

1 · · · pαr
r , then the left hand side equals, since Λ(m) = 0 unless m is a

prime power:
(

∑α1

j1=1 log p1

)

+
(

∑α2

j2=1 log p2

)

+ . . .+
(

∑αr

jr=1 log pr

)

=

α1 log p1 + α2 log p2 + . . .+ αr log pr = log k.)
If we add (1) over positive integers k ≤ x, we obtain

∑

k≤x

∑

n|k Λ(n) =
∑

k≤x log k, i.e.

T (x) :=
∑

n≤x

⌊x

n

⌋

Λ(n) = log
(

⌊x⌋!
)

.

�
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6.4. We will start by proving that the sum −
∑

p log(1− χ(p)p−1) 1

converges, where we use the principal branch of the logarithm in each
term. Note that

∣

∣χ(p)p−1
∣

∣ < 1 for each prime p; hence the Taylor
expansion of log(1− z) applies, and we have:

−
∑

p

log
(

1−
χ(p)

p

)

=
∑

p

( ∞
∑

m=1

χ(p)m

mpm

)

.(2)

But here note that the double sum

∑

p

∞
∑

m=2

χ(p)m

mpm

is absolutely convergent, by the same computation as in LN page 7,
equation (9) (which works for s = 1). Hence the convergence of (2) is
equivalent to the convergence of (the m = 1 contribution)

∑

p χ(p)p
−1,

and this series is convergent by Proposition 6.8.
Hence we have now proved that the sum −

∑

p log(1 − χ(p)p−1) is

convergent. By exponentiating (and using the fact that the function

z 7→ ez is continuous), it follows that the product
∏

p

(

1 − χ(p)
p

)−1
is

convergent! In order to compute the value of this infinite product, we
will prove that

−
∑

p

log
(

1−
χ(p)

p

)

= lim
s→1+

−
∑

p

log
(

1−
χ(p)

ps

)

,(3)

or equivalently that

∑

p

( ∞
∑

m=1

χ(p)m

mpm

)

= lim
s→1+

∑

p

( ∞
∑

m=1

χ(p)m

mpms

)

.(4)

The same statement can be expressed as follows:
∞
∑

n=1

an
n

= lim
s→1+

∞
∑

n=1

an
ns

,(5)

where an = χ(p)mm−1 whenever n is a prime power n = pm, and
otherwise an = 0. But we have proved above that the Dirichlet series
∑∞

n=1
an
ns is convergent for s = s0 := 1; hence by LN Theorem 3.6 2 this

Dirichlet series converges uniformly for all real s ≥ 1! This implies that

1Here and in any sum below, it is understood that we add over the primes in
increasing order.

2We apply LN Theorem 3.6 with an arbitrary H > 0 and then use the fact that
the real interval [1,∞) is contained in the sector {s = σ + it : σ ≥ 1, |t − 0| ≤
H(σ − 1)}.
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we may change order of limit and summation in the right hand side of
(5), and therefore the equality in (5) holds! Thus we have proved (3).
Finally, exponentiating both sides of (3), and using the fact that the

function z 7→ ez is continuous, it follows that
∏

p

(

1−
χ(p)

p

)−1

= lim
s→1+

∏

p

(

1−
χ(p)

ps

)−1

= lim
s→1+

L(s, χ).

But we know that since χ is nonprincipal, the function L(s, χ) is holo-
morphic in the half place ℜ(s) > 0 (see LN Example 3.5); in particular
L(s, χ) is continuous at s = 1, and hence it follows from the above

relation that
∏

p

(

1− χ(p)
p

)−1
= L(1, χ). �

Remark: In the above solution we used LN Proposition 6.8, which has a
rather complicated but “elementary” proof. However, it should be noted that LN
Proposition 6.8 may alternatively be derived as a standard consequence of a more
advanced result, namely the PNT for arithmetic sequences with an error term,

which states that there exists an absolute constant c1 > 0 such that for any q ∈ Z+

and any a ∈ Z with (a, q) = 1,

π(x; q, a) =
1

φ(q)
Lix+Oq

(

xe−c1
√
log x

)

as x → ∞(6)

(see LN Theorem 15.63). Indeed, using (6) one can prove, by mimicking the solution
of HW1.2, that there exists a real constant A(q, a) and an absolute constant c2 > 0
such that

∑

p<x
p≡a mod q

1

p
=

1

φ(q)
log log x+A(q, a) +Oq

(

e−c2
√
log x

)

(7)

as x → ∞. Letting now χ be any non-principal character mod q, we multi-
ply the relation in (7) with χ(a), and then add over all a ∈ (Z/qZ)× and use
∑

a∈(Z/qZ)× χ(a) = 0. This gives:

∑

p<x

χ(p)

p
=

∑

a∈(Z/qZ)×

χ(a)A(q, a) +Oq

(

e−c2
√
log x

)

.(8)

Letting x → ∞ in (8) shows that
∑

p
χ(p)
p =

∑

a∈(Z/qZ)× χ(a)A(q, a),4 and sub-

tracting this formula from (8) gives

∑

p≥x

χ(p)

p
= Oq

(

e−c2
√
log x

)

.(9)

That is, we have proved LN Proposition 6.8 with a stronger error term! �

3The relation (6) is much easier to prove than Theorem 15.6.
4Here and in (9), it is understood that we add over the primes p in increasing

order.
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6.6. This can be proved using the standard method (from basic
calculus) of estimating a sum using an integral. Namely, the function
f(x) = log x is increasing for x > 0; hence for every real y > 0 we have

∫ y

y−1

log x dx ≤ log y ≤

∫ y+1

y

log x dx.

Hence for any n ≥ 2:

log(n!) =
n

∑

m=1

logm ≤
n

∑

m=1

∫ m+1

m

log x dx =

∫ n+1

1

log x dx

=
[

x log x− x
]x=n+1

x=1
= (n+ 1) log(n + 1)− (n+ 1)− (−1)

= (n + 1)
(

log n+O(n−1)
)

− n = (n+ 1) logn− n+O(1)

= n log n− n+O(logn).

(In the above computation we used log(n+1) = logn+O(n−1), which
can be proved e.g. by the Mean Value Theorem applied to the function
log x.) Also for any n ≥ 2:

log(n!) =
n

∑

m=1

logm =
n

∑

m=2

logm ≥
n

∑

m=2

∫ m

m−1

log x dx =

∫ n

1

log x dx

=
[

x log x− x
]x=n

x=1
= n log n− n− (−1) = n logn− n +O(logn).

Together, the above two inequalities prove that log(n!) = n log n−n+
O(logn). �

Alternative solution, using integration by parts: We have:

log(n!) =

n
∑

m=1

logm =

∫ n

1−

log x d⌊x⌋ =
[

(log x)⌊x⌋
]x=n

x=1−
−

∫ n

1

⌊x⌋

x
dx

= n logn−

∫ n

1

⌊x⌋

x
dx.

Here we trivially have
∫ n

1
⌊x⌋
x
dx ≤

∫ n

1
x
x
dx = n − 1 and

∫ n

1
⌊x⌋
x
dx ≥

∫ n

1
x−1
x

dx = n − 1 − logn. These two inequalities together prove that
∫ n

1
⌊x⌋
x
dx = n+O(logn) for all n ≥ 2. This gives the desired statement.

�

7.1. If y = π(x) then limx→∞
y log x

x
= 1, by the prime number theo-

rem. Hence, by taking the logarithm, we have limx→∞

(

log y+log log x−

log x
)

= 0, and thus, after dividing by log x, we also have limx→∞
log y
log x

=

1. This combined with limx→∞
y log x

x
= 1 gives limx→∞

y log y
x

= 1,
whence the result follows on taking x = pn, since π(pn) = n. �
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7.2. We use the formula (278), i.e.

ζ(s) = 1 +
1

s− 1
− s

∫ ∞

1

(x)

xs+1
dx (σ > 0).(10)

Recall that the last integral is uniformly absolutely convergent in any
compact subset of {σ > 0}. Hence by Weierstrass Theorem we have
for every n ≥ 0:

dn

dsn

(

s

∫ ∞

1

(x)

xs+1
dx

)

=

∫ ∞

1

dn

dsn
(

s · (x) · x−s−1
)

dx

= (−1)ns

∫ ∞

1

(log x)n · (x)

xs+1
dx+ (−1)n−1n

∫ ∞

1

(log x)n−1 · (x)

xs+1
dx

and hence

dn

dsn

(

s

∫ ∞

1

(x)

xs+1
dx

)

|s=1
= (−1)n

∫ ∞

1

(

(log x)n − n(log x)n−1
)

· (x)

x2
dx

This gives a formula for the sought coefficients. (Note that the integral
is absolutely convergent.)
To get a different and perhaps in some sense more explicit formula

we rewrite the above as (note that the following computation is valid
also for n = 0 if we make the special interpretation (log 1)0 = 1):

= (−1)n
∫ ∞

1

(

(log x)n − n(log x)n−1
)

· (x− ⌊x⌋)

x2
dx

= (−1)n lim
N→∞

N−1
∑

k=1

∫ k+1

k

(

(log x)n − n(log x)n−1
)

· (x− k)

x2
dx

= (−1)n lim
N→∞

(

∫ N

1

(log x)n − n(log x)n−1

x
dx−

N−1
∑

k=1

k

∫ k+1

k

(log x)n − n(log x)n−1

x2
dx

)

= (−1)n lim
N→∞

([

1
n+1

(log x)n+1 − (log x)n
]x=N

x=1
+

N−1
∑

k=1

k

[

(log x)n

x

]x=k+1

x=k

)

= (−1)n lim
N→∞

(

(logN)n+1

n+ 1
− (logN)n −

0

n+ 1
+ (log 1)n +

N−1
∑

k=1

k
((log(k + 1))n

k + 1
−

(log k)n

k

)

)

= (−1)n lim
N→∞

(

−

N−1
∑

k=1

(log k)n

k
−

(logN)n

N
+

(logN)n+1

n+ 1

)

+

{

1 if n = 0

0 if n ≥ 1

}

= (−1)n−1 lim
N→∞

(

N
∑

k=1

(log k)n

k
−

(logN)n+1

n+ 1

)

+

{

1 if n = 0

0 if n ≥ 1

}

.
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Note that this is a natural generalization of Euler’s constant,

γ = lim
N→∞

(

N
∑

k=1

1

k
− logN

)

= 0.577...

Thus, let us define

γn := lim
N→∞

(

N
∑

k=1

(log k)n

k
−

(logN)n+1

n+ 1

)

.(11)

(The above computation shows that the limit exists.) Thus γ0 = γ,
Euler’s constant, and the relation which we have proved above can be
summarized as:

dn

dsn

(

s

∫ ∞

1

(x)

xs+1
dx

)

= (−1)n−1γn +

{

1 if n = 0

0 if n ≥ 1

}

.

It follows that the Taylor series of the (holomorphic) function s 7→

s
∫∞

1
(x)
xs+1 dx at s = 1 is:

s

∫ ∞

1

(x)

xs+1
dx = (−γ0 + 1) +

∞
∑

n=1

(−1)n−1γn
n!

(s− 1)n.

Using this in (10), we have proved that the Laurent expansion of ζ(s)
at s = 1 is

ζ(s) =
1

s− 1
+

∞
∑

n=0

(−1)nγn
n!

(s− 1)n.(12)

The constants γn are called the Stieltjes constants ; see Wikipedia. �

https://en.wikipedia.org/wiki/Stieltjes_constants
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7.4 (a). Using Problem 2.1(a) and integration by parts (cf. (105) in
Theorem 3.11) we get for all s ∈ C with σ > 1:

ζ(s)−1 =
∞
∑

n=1

µ(n)

ns
= s

∫ ∞

1

M(x)

xs+1
dx.

Integrating by parts once more (using the obvious bound |M(x)| ≤ x)
we get:

ζ(s)−1 = s(s+ 1)

∫ ∞

1

M1(x)

xs+2
dx.

This holds, with absolute convergence in the integral in the right hand
side, for all s with σ > 1. It also follows from Theorem 7.4 that
∫ c+i∞

c−i∞

∣

∣

1
s(s+1)

1
ζ(s)

∣

∣ |ds| < ∞ for every c > 1. Hence by Mellin inversion

(cf. Theorem 7.7 and the proof of (290)) we have

M1(x) =
1

2πi

∫ c+i∞

c−i∞

xs+1

s(s+ 1)

1

ζ(s)
ds(13)

for all x > 0 and all c > 1. �

7.4 (b). This is very similar to the proof of Theorem 7.9 in LN, the

only essential differences being that in place of (295) we use M1(x)
x2 =

∫

(c)
g(s)xs−1 ds, where g(s) := 1

2πi
1

s(s+1)
ζ(s)−1, and the fact that g(s)

in analytic without exceptions in the closed half-plane {σ ≥ 1}, i.e.

there is no pole at s = 1, and thus (295) is now replaced with M1(x)
x2 =

∫

L
g(s)xs−1 ds (with L chosen as before). The conclusion is that limx→∞

M1(x)
x2 =

0, as desired. �

7.4 (c). For any real numbers 0 < u1 ≤ u2 we have
∣

∣M(u2)−M(u1)
∣

∣ =
∣

∣

∣

∑

u1<n≤u2

µ(n)
∣

∣

∣
≤ #{n ∈ Z : u1 < n ≤ u2} ≤ 1 + (u2 − u1),

and hence by symmetry we have for any choice of u1, u2 > 0:
∣

∣M(u2)−M(u1)
∣

∣ ≤ 1 + |u2 − u1|.

Now let β > 1. Using the above we have, for any x > 0 and any u ≥ x:
M(x) ≥ M(u)− (u−x)− 1 and M(x) ≤ M(u) + (u−x) + 1, and thus

M(x) ≥
1

βx− x

∫ βx

x

(

M(u)− (u− x)− 1
)

du

and

M(x) ≤
1

βx− x

∫ βx

x

(

M(u) + (u− x) + 1
)

du.
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These two can be collected into
∣

∣

∣
M(x)−

1

βx− x

∫ βx

x

M(u) du
∣

∣

∣
≤

1

βx− x

∫ βx

x

(

(u− x) + 1
)

du

=
1

βx− x

(

1
2
(β − 1)2x2 + (β − 1)x

)

.

Hence, dividing with x:
∣

∣

∣

M(x)

x
−

M1(βx)−M1(x)

(β − 1)x2

∣

∣

∣
≤ 1

2
(β − 1) +

1

x
.

Letting here x → ∞, using limx→∞
M1(x)
x2 = 0 which we know from part

(b), we obtain

lim sup
x→∞

∣

∣

∣

M(x)

x
− 0

∣

∣

∣
≤ 1

2
(β − 1).

By taking β near enough to 1 we can make 1
2
(β − 1) be as near as we

please to 0; hence

lim
x→∞

M(x)

x
= 0.

�

7.7. As in the proof of Theorem 7.4, one computes:

log
∣

∣L(σ, χ0)
3L(σ + it, χ)4L(σ + 2it, χ2)

∣

∣ =

∞
∑

n=2

ann
−σ

(

3 + 4ℜ
(

χ(n)n−it
)

+ ℜ
(

χ(n)2n−2it
)

)

,

where now an = m−1 if n = pm and p ∤ q, and an = 0 otherwise. Here,
given any n with an > 0, set z := χ(n)n−it; and note then that |z| = 1;
thus z = eiθ for some θ ∈ R, and now

3 + 4ℜ
(

χ(n)n−it
)

+ ℜ
(

χ(n)2n−2it
)

= 3 + 4 cos θ + cos 2θ ≥ 0.

Hence (analogue of LN (286)):

(

(σ − 1)L(σ, χ0)
)3
∣

∣

∣

L(σ + ti, χ)

σ − 1

∣

∣

∣

4
∣

∣L(σ + 2ti, χ2)
∣

∣ ≥
1

σ − 1
,(14)

for all σ > 1 and all t ∈ R. Hence for any t 6= 0, the proof of Theorem
7.4 can be mimicked, giving that L(1 + it, χ) 6= 0. Also if t = 0 and χ
is complex, we can let σ → 1+ in the above relation to conclude that
L(1, χ) 6= 0. Indeed, χ complex implies that χ2 6= χ0, so that L(s, χ2)
is holomorphic at s = 1.
However, if χ is real, then χ2 = χ0 and so L(s, χ2) has a (simple)

pole at s = 1; and then we cannot use the above relation to prove
L(1, χ) 6= 0. �


