Hints / solution sketches to problems

B.13l

— see my solution sketches for the previous problem session (11 Sept).

4.7l (Similar to arguments appearing in the proof of Theorem [4.35])

(a). This follows from (b).

(b). Let g1 =[]}, c(x;). First assume m,n € Z, (m,q) = (n,q) =1
and m = n (mod ¢,). Then for each j € {1,...,r} we have m = n
mod ¢(x;) since ¢(x;) | ¢1; and also (m, p;’) = (n,p;’) = 1; therefore
x;(m) = x;(n). Hence x(m) = [y, (m) = [Ty xs() = x(n).
This proves that [x(n) for n restricted by (n,q) = 1] has period ¢;, and
hence by Lemma we have ¢(x) | ¢1-

Next for every k € {1,...,r} we can argue as follows. Since x; €
X,or we have c(xx) = p® for some B € {0,1,...,ax}, by Lemma Z20
Suppose that 5 > 0. Then [x;(n) restricted by (n,p;*) = 1] does not
have period pf_l and hence there are some m,n € Z with (m,py) =
(n,pr) = 1 and m = n (mod p. ") and x,(m) # xx(n). Now by the
Chinese Remainder Theorem there exist m’,n’ € Z such that m’ = m
(mod pg*) and m’ = 1 (mod p;”’) for all j # k, and n’ = n (mod py*)
and n' =1 (mod p}’) for all j # k. Now

X(m') = ij(m’) =1 1oxp(m) 11 = xu(m) = xu(m),

and similarly x(n') = xx(n); thus x(m’) # x(n’). But we also have
(m',q) = (n/,q) =1 and m’ = n’ mod ¢q1/px; hence this proves that
[x(n) restricted by (n,q) = 1] does not have period qi/px, and thus
00 15

We thus have c(x) | g1 but for each prime p | ¢ we also have c(x) { £-.
This implies that ¢(x) = ¢1. O



4.3l If ¢ is a period of x(n) restricted by (n,q) = 1 then for all
integers m, n with (m, q) = (n,q) and m = n (mod ¢;) we have x(m) =
x(n). In particular, taking m = 1, it follows that y(n) = 1 for all
integers n satisfying (n,q) =1 and n =1 (mod ¢).

Conversely, suppose that ¢; is a positive integer and that x(n) = 1
holds for all integers n satisfying n = 1 (mod ¢;) and (n,q) = 1. Let
¢2 = (¢, ¢1); then we know that there are some integers x,y such that
¢2 = xq + yq1. Now if n is any integer satisfying n = 1 (mod ¢2) and
(n,q) = 1 then we have n = 1 + hgy for some integer h, and hence
n=1+h(zq+yq) =1+ hyq (mod q) so that x(n) = x(1 + hyq)
and (1 4+ hyqi,q) = 1. Furthermore 1+ hyq; = 1 (mod ¢;) and thus
by our assumption x(1 + hyq;) = 1. Hence gy has exactly the same
property as ¢, i.e. x(n) = 1 holds for all integers n satisfying n = 1
(mod ¢o) and (n,q) = 1. The advantage is that ¢, also divides ¢, by
construction!

Now take any two integers my, ms with (ms,q) = (ma,q) = 1 and
my = mgy (mod ¢z). Then my,my correspond to two elements in
(Z/qZ)* and hence there is a unique n € (Z/qZ)* such that m; = nmsy
(mod ¢q). Since g2 | ¢ this implies m; = nmy (mod ¢), which forces
n = 1 (mod ¢p) (since (my,q2) = (mo,q2) = 1). Hence, by what
we proved in last paragraph, x(n) = 1! Hence x(mi) = x(nmsy) =
x(n)x(mz) = x(my).

This proves that y(n) restricted by (n,q) = 1 has period ¢z. Since
¢ | q1, it follows that x(n) restricted by (n,q) = 1 also has period ¢.
[
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It follows from (246) combined with Lemma that, for any
fixed integer ¢ > 0,

1! !
m(x) = - +—;E+...+L+O<L) as T — 00.
logz  log”x (log x)att (log x)1+2

In particular
x x x
- 10 — 0.
() log * log® @ * (log z)3 as e

Let us now define A(z) by the relation 7(z) = It then follows

4
logz—A(z) "

that m 10gm+(10gw 5 —I—O<(logm ) as r — 00. Dividing with

logx

we get mgf_% 1+ logm + O((logm ) hence % = (1 + logm +
1 2

L -1 1 _ _ _ 1 _

O((logw)2>> =1 log © O((logw ) + O((logw O((logw)2>> ) -

1-— logm + O( ) Subtracting 1 and multiplying with — log x this

gives A(x) =1+ O(log ) In particular lim, ., A(z) = 1. O

¢(s) _ S AW for o > 1 (cf. (TF)). Multiplica-

() n=1"ns

. . . oo An 00 —s

tion with ((s )glves (for o > 1): —C'(s) = (zn X 753)(2,% m ) -
A(n) oo lo

Dt D 1 (nm)® = 1Zn|k 15 Thatis: ) -, lkgsk > e 1Zn|k ks

(true, with absolute convergence, for all o > 1). Hence by comparison
of coefficients (cf. Proposition B.I0) we get:

(1) > A(n)=logk, VkeZ'

nlk

(The same formula can of course also be proved directly: If k =
pyt - por, then the left hand side equals, since A(m) = 0 unless m is a

prime power: (Z?f:l logpl) + (Z‘;‘;:l logp2> +...+ (Zj _ logpr> -
aglogpr + aslogps + ... + oy logp, = logk.)
If we add () over positive integers k < x, we obtain 3, >° ., A(n) =

> k<zlogk, ie.
T@) =Y {%J A(n) = log(|z]1).



We will start by proving that the sum — 3= log(1 — x(p)p~") [
converges, where we use the principal branch of the logarithm in each
term. Note that ‘ X(p)p_l} < 1 for each prime p; hence the Taylor
expansion of log(1 — z) applies, and we have:

x(p) — x(p)™"
2 — | 1—222) = AMT )
(2) Z oz(1-X1) Z(m g
But here note that the double sum

I

p m=2

is absolutely convergent, by the same computation as in LN page [7,
equation (@) (which works for s = 1). Hence the convergence of (2) is
equivalent to the convergence of (the m = 1 contribution) Y- x(p)p~',
and this series is convergent by Proposition [6.8.

Hence we have now proved that the sum — 3 log(1 — x(p)p™t) is
convergent. By exponentiating (and using the fact that the function
z +— €* is continuous), it follows that the product Hp(l — %)_1 is
convergent! In order to compute the value of this infinite product, we

will prove that
O S0 < iy Si(i- )
p

or equivalently that

0SS m ()

D m=1 m=1

The same statement can be expressed as follows:

o0 o0

a . a
(5) g — = lim s
n s—1+ ns
n=1 n=1

where a, = x(p)™m~' whenever n is a prime power n = p™, and
otherwise a,, = 0. But we have proved above that the Dirichlet series
S 4 ig convergent for s = sy := 1; hence by LN Theorem [B.614 this

n=1 ns
Dirichlet series converges uniformly for all real s > 1! This implies that

'Here and in any sum below, it is understood that we add over the primes in
increasing order.

2We apply LN Theorem with an arbitrary H > 0 and then use the fact that
the real interval [1,00) is contained in the sector {s = o+ it : 0 > 1, [t — 0] <
H(oc—1)}.
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we may change order of limit and summation in the right hand side of
(), and therefore the equality in (B]) holds! Thus we have proved (3]).

Finally, exponentiating both sides of (3], and using the fact that the
function z — e is continuous, it follows that

(- =m0 = i ko

b P°

But we know that since y is nonprincipal, the function L(s, x) is holo-
morphic in the half place R(s) > 0 (see LN Example B.5]); in particular
L(s,x) is continuous at s = 1, and hence it follows from the above

. -1
relation that [T (1 — %) = L(1, ). O

Remark: In the above solution we used LN Proposition 6.8, which has a
rather complicated but “elementary” proof. However, it should be noted that LN
Proposition [6.8 may alternatively be derived as a standard consequence of a more
advanced result, namely the PNT for arithmetic sequences with an error term,
which states that there exists an absolute constant ¢; > 0 such that for any q € Z*
and any a € Z with (a,q) =1,

1
(6) 7T(£7 g, a) = @

(see LN Theorem D}Iﬂ) Indeed, using (@) one can prove, by mimicking the solution
of HW1.2, that there exists a real constant A(g,a) and an absolute constant cz > 0
such that

Liz + O, (ve~*VIos ™) as T — 00

1 1 Mo
7 - = ——loglogz + A(q,a) + O, (e~c2Vice
p=a mod q

as * — o0o. Letting now x be any non-principal character mod ¢, we multi-
ply the relation in (7)) with x(a), and then add over all a € (Z/qZ)* and use

Zae(z/qz)x x(a) = 0. This gives:
(8) Z X(p) _ Z X(G)A(q, a) + Oq (e—cz\/logm)'
p<z p a€(Z/qZ)*

Letting z — oo in () shows that >° % = D ac(z/qn) x(a)A(gq,a)A and sub-
tracting this formula from (8] gives

(9) Y NP _ g, (meavre).
p>z p
That is, we have proved LN Proposition 6.8 with a stronger error term! ([l

3The relation (@) is much easier to prove than Theorem [5.0
“Here and in (@), it is understood that we add over the primes p in increasing
order.



6.6l This can be proved using the standard method (from basic
calculus) of estimating a sum using an integral. Namely, the function
f(z) =logz is increasing for x > 0; hence for every real y > 0 we have

Y y+1
/ logxdr <logy < / log x dx.
Yy Yy

-1
Hence for any n > 2:

n n m—+1 n+1
log(n!) = Z logm < Z/ logz dx = / log z dx
m=1 m=1Ym 1
r=n+1
= [:clogx—x} B =(n+1)logn+1)—(n+1)—(-1)

=(n+1)(logn+0(Mn™") —n=(n+1)logn —n+ O(1)
=nlogn —n+ O(logn).
(In the above computation we used log(n+ 1) = logn+ O(n™!), which

can be proved e.g. by the Mean Value Theorem applied to the function
logz.) Also for any n > 2:

log(n!)zZlogm:ZlongZ/ log:)sda::/ log x dx
m=1 m=2 m=2 -1 1

= [:clogx - :cr:n =nlogn —n — (—1) =nlogn —n + O(logn).
=1
Together, the above two inequalities prove that log(n!) = nlogn —n+
O(logn). O

Alternative solution, using integration by parts: We have:

log(n!) = i logm = /: logzd|z] = [(log:v) ijrzn_ - /ln Lz] dx

=1 Xz

:nlogn—/ mdm.
.

Here we trivially have fln L—iJ dr < fln Ldr =n—1 and fln Lixj dr >

n gp—1 o . -
fl —dr =n —1—logn. These two inequalities together prove that

I L—iJ dx = n+0O(logn) for all n > 2. This gives the desired statement.
U

7Jl If y = w(x) then lim, ylo% = 1, by the prime number theo-
rem. Hence, by taking the logarithm, we have lim,_, (log y+loglog x—

log x) = 0, and thus, after dividing by log z, we also have lim,_,, {giz =
1. This combined with lim, yl‘;gm = 1 gives lim,_, ylo% = 1,

whence the result follows on taking x = p,, since 7(p,) = n. 0



7.2l We use the formula (278), i.e.

(10) ((s) =14+ — —3/1“’ @) 4e (o>0)

s—1 rstl

Recall that the last integral is uniformly absolutely convergent in any
compact subset of {o > 0}. Hence by Weierstrass Theorem we have
for every n > 0:

dn oo ([L’) . 1
@(8/1 s+l dx) _/1 dsn (S ‘ )dx

= (-1)"s 100 (lmgg%mdxju (_1)n—1n/1°o (logxx):: ()
and hence
d" > (x) B . [ ((logz)™ —n(logz)"') - (x)
(¢ / g d) = (D / p da

This gives a formula for the sought coefficients. (Note that the integral
is absolutely convergent.)

To get a different and perhaps in some sense more explicit formula
we rewrite the above as (note that the following computation is valid
also for n = 0 if we make the special interpretation (log1)? = 1):

¢ [ (log )" ~ nllog)"™) (v ~ L)) ,,

T2

N-1
=

r

1
— N-1 nz=k+1
[% log x nt+l _ (log x)”} x:iv + Z k {M ! )

n+1
€ z=k

dx

/l‘“rl ((logz)™ — n(logz)"™) - (x — k)

T T2

—1)" A}gy;( (logz)" —n(logx)"! di — NZ_I I /]‘CJrl (log )™ — n(log x)"* d:):)
([ 008 2)

—1)" lim
N—o0

N-
" lim [ ————— — (log N) —?jt(logl) +Zk( — :

N—>oo< n+ n p

_NZI (logk)* _ (log N)" (10gN)"+1) . {1 ifnzo}
(

(log N)™*2 (log(k +1))" _ (log k)")>
1

=(=1)
= (=1)
=(=1)
=(=1)

1
—1)"™ lim
N—o0

N n+1 ifn>1

k=1

— k
N
1 log k)" log N)"+1 1 ifn=0
= (-t 1 ( _
= lm(: k n+1 )+ ifn>1

N—o0
k=1
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Note that this is a natural generalization of Euler’s constant,

N
, 1
v = lim (3 - ~log N) = 0.577...

Thus, let us define
N

(11) = Jim (3 (ogk)” _ (logN>n+l>.

N—oo k n+1

(The above computation shows that the limit exists.) Thus vy = 7,
Euler’s constant, and the relation which we have proved above can be
summarized as:

dr < (z) _ 1 ifn=20
a d ) — (=1)" 1, .
ds"(sfl gt &0 (=1) 7jL{O ifnzl}
It follows that the Taylor series of the (holomorphic) function s
sfloom(siﬁldx at s =1 is:

s/loox(i)ldxz(—’Yo+1)+i%(s—l)".

Using this in (I0]), we have proved that the Laurent expansion of ((s)
at s=11s

o0

(12) () =+ 3 Ty

The constants 7, are called the Stieltjes constants; see Wikipedia. []


https://en.wikipedia.org/wiki/Stieltjes_constants
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[7.4] (a). Using Problem 2I(a) and integration by parts (cf. (I05]) in
Theorem B.I1)) we get for all s € C with o > 1:

C(s)™t = Z Mqi? =5 100 M(z) dz.

Is—l—l

n=1

Integrating by parts once more (using the obvious bound |M(z)| < x)
we get:

() =s(s+1) 100 Aﬁi@ dz.

This holds, with absolute convergence in the integral in the right hand

side, for all s with ¢ > 1. It also follows from Theorem [7.4] that

fccjizo s(si—l) ﬁ‘ |ds| < oo for every ¢ > 1. Hence by Mellin inversion

(cf. Theorem [T and the proof of (290)) we have
c+1i00 s+1 1

1 T

(13) M (z) = Imi /c_ioo 75(5 n 1)@ ds

forall z >0 and all ¢ > 1. O

[7.4] (b). This is very similar to the proof of Theorem [Z.9in LN, the

only essential differences being that in place of (295) we use M;—é”ﬂ) =

Jio 9(s)z°"  ds, where g(s) := ﬁ@((s)_l, and the fact that g(s)

in analytic without ezceptions in the closed half-plane {o > 1}, i.e.
there is no pole at s = 1, and thus (293]) is now replaced with M;—éx) =

J; g(s)z*~! ds (with L chosen as before). The conclusion is that lim,_, M;—SU) =
0, as desired. 0

7.4l (c). For any real numbers 0 < u; < us we have
Z ,u(n)‘ <H#HMEZ : up <n<uy} <1+ (uy—uy),

u1<n<ug

}M(UQ) — M(ul)} =

and hence by symmetry we have for any choice of uy,us > 0:

Now let # > 1. Using the above we have, for any z > 0 and any u > x:
M(x) > M(u) — (u—2x)—1and M(z) < M(u)+ (u—2x)+1, and thus

Bx
M(z) > ! / (M(u) = (u—z)—1)du

T fr—=

and
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These two can be collected into

1 pa 1 pa
M(u)du‘gﬁx_xfm ((u—2)+1) du

‘M(:c)

ﬁx—x T

Hence, dividing with x:
‘M(ZL’) ~ Mi(Bz) - Ml(x)’
x (6—1)22

M;—ém) = 0 which we know from part

<B4

Letting here  — o0, using lim,_,
(b), we obtain

lim sup
T—r00

R EFCE

By taking  near enough to 1 we can make %(ﬁ — 1) be as near as we
please to 0; hence

lim M(z)

T—00 €T

=0.

[Z.7. As in the proof of Theorem [T.4], one computes:

log}L(a, x0)2L(o +it, x)*L(o + 2it, XQ)} = Z apn~° (3 + 4R (x(n)n™") + ?R(X(n)Qn_Qit)> :
n=2

where now a, = m~! if n = p™ and p 1 q, and a,, = 0 otherwise. Here,

given any n with a,, > 0, set 2z := x(n)n~"; and note then that |z| = 1;

thus z = €% for some 6 € R, and now

3+ 4AR(x(n)n ™) + R(x(n)*n~>") = 3+ 4cosf + cos 26 > 0.
Hence (analogue of LN (286])):

1) (o~ DLtx0) | P Lo i) >

o—1’
for all 0 > 1 and all ¢ € R. Hence for any t # 0, the proof of Theorem
[C4] can be mimicked, giving that L(1 +it,x) # 0. Also if t =0 and x
is complex, we can let ¢ — 17 in the above relation to conclude that
L(1,%) # 0. Indeed, x complex implies that x? # xo, so that L(s, x?)
is holomorphic at s = 1.

However, if y is real, then x* = o and so L(s, x?) has a (simple)
pole at s = 1; and then we cannot use the above relation to prove
L(1,x) # 0. O



