Hints / solution sketches to problems

8.1. By Lemma 8.14 we have

$$
\frac{\Gamma^{\prime}(1)}{\Gamma(1)}=-\gamma-1-\sum_{n=1}^{\infty}\left(\frac{1}{1+n}-\frac{1}{n}\right)=-\gamma-1-\frac{1}{2}+1-\frac{1}{3}+\frac{1}{2}-\frac{1}{4}+\frac{1}{3}-\ldots=-\gamma .
$$

Also $\Gamma(1)=1$ by Lemma 8.12. Hence $\Gamma^{\prime}(1)=-\gamma$.
8.3. For any $a, b \in \mathbb{C}$ with $\operatorname{Re} a>0, \operatorname{Re} b>0$ we have:

$$
\Gamma(a) \Gamma(b)=\int_{0}^{\infty} \int_{0}^{\infty} e^{-t-s} t^{a-1} s^{b-1} d s d t
$$

Here let us substitute

$$
\left\{\begin{array} { l }
{ u = t + s } \\
{ r = s / (t + s) }
\end{array} \Leftrightarrow \left\{\begin{array}{l}
s=u r \\
t=u(1-r) .
\end{array}\right.\right.
$$

This map is a diffeomorphism between the quadrant

$$
\left\{(s, t) \in \mathbb{R}^{2}: s>0, t>0\right\}
$$

and the strip $\left\{(u, r) \in \mathbb{R}^{2}: u>0,0<r<1\right\}$, and its Jacobian is

$$
\left|\frac{\partial(s, t)}{\partial(u, r)}\right|=\operatorname{det}\left(\begin{array}{cc}
r & u \\
1-r & -u
\end{array}\right)=-r u-u(1-r)=-u .
$$

Hence:

$$
\begin{aligned}
\Gamma(a) \Gamma(b) & =\int_{0}^{\infty} \int_{0}^{1} e^{-u}(u(1-r))^{a-1}(u r)^{b-1} u d r d u \\
& =\int_{0}^{\infty} e^{-u} u^{a+b-1} d u \int_{0}^{1}(1-r)^{a-1} r^{b-1} d r \\
& =\Gamma(a+b) \int_{0}^{1}(1-r)^{a-1} r^{b-1} d r .
\end{aligned}
$$

8.4. The most "natural" solution is perhaps to study

$$
f(z)=\frac{\Gamma(2 z)}{\Gamma(z) \Gamma\left(z+\frac{1}{2}\right)},
$$

which is easily verified to be an entire function with no zeros and no poles. It is now natural to apply Weierstrass factorization, Theorem 8.7d , to $f(z)$; however then we first need to prove that $f(z)$ is of finite order, and this involves some technical work.

[^0]Instead let us here work with the logarithmic derivative! By Lemma8.14 we have for every $z \in \mathbb{C} \backslash\left\{0,-\frac{1}{2},-1,-\frac{3}{2}, \ldots\right\}$:

$$
\begin{array}{r}
\frac{\Gamma^{\prime}(z)}{\Gamma(z)}+\frac{\Gamma^{\prime}\left(z+\frac{1}{2}\right)}{\Gamma\left(z+\frac{1}{2}\right)}=-2 \gamma-\frac{1}{z}-\frac{1}{z+\frac{1}{2}}-\sum_{n=1}^{\infty}\left(\frac{1}{z+n}-\frac{1}{n}\right)-\sum_{n=1}^{\infty}\left(\frac{1}{z+\frac{1}{2}+n}-\frac{1}{n}\right) \\
=2\left(-\gamma-\frac{1}{2 z}-\frac{1}{2 z+1}-\sum_{n=1}^{\infty}\left(\frac{1}{2 z+2 n}-\frac{1}{2 n}\right)-\sum_{n=1}^{\infty}\left(\frac{1}{2 z+1+2 n}-\frac{1}{1+2 n}\right)\right. \\
\left.+\sum_{n=1}^{\infty}\left(\frac{1}{2 n}-\frac{1}{1+2 n}\right)\right)
\end{array}
$$

where the last step is justified since $\sum_{n=1}^{\infty}\left(\frac{1}{2 n}-\frac{1}{1+2 n}\right)$ is convergent. In fact by formula (236) on page 101 in the Lecture Notes, we have

$$
\sum_{n=1}^{\infty}\left(\frac{1}{2 n}-\frac{1}{1+2 n}\right)=1+\sum_{m=1}^{\infty} m^{-1}(-1)^{m}=1-\log 2 .
$$

[Alternative: We have

$$
\begin{array}{r}
\sum_{n=1}^{\infty}\left(\frac{1}{2 n}-\frac{1}{1+2 n}\right)=\lim _{N \rightarrow \infty}\left(\sum_{n=1}^{N} \frac{1}{2 n}-\sum_{n=1}^{N} \frac{1}{1+2 n}\right)=\lim _{N \rightarrow \infty}\left(2 \sum_{n=1}^{N} \frac{1}{2 n}-\sum_{n=1}^{N} \frac{1}{1+2 n}-\sum_{n=1}^{N} \frac{1}{2 n}\right) \\
=\lim _{N \rightarrow \infty}\left(\sum_{n=1}^{N} \frac{1}{n}-\sum_{m=2}^{2 N+1} \frac{1}{m}\right),
\end{array}
$$

and using Lemma 8.13 this is

$$
\left.=\lim _{N \rightarrow \infty}(\gamma+\log N-(\gamma-1+\log (2 N+1)))=1-\log 2 .\right]
$$

Hence from our previous computation we conclude

$$
\begin{aligned}
\frac{\Gamma^{\prime}(z)}{\Gamma(z)}+\frac{\Gamma^{\prime}\left(z+\frac{1}{2}\right)}{\Gamma\left(z+\frac{1}{2}\right)} & =2\left(-\gamma-\frac{1}{2 z}-\frac{1}{2 z+1}-\sum_{m=2}^{\infty}\left(\frac{1}{2 z+m}-\frac{1}{m}\right)+1-\log 2\right) \\
& =2\left(-\gamma-\log 2-\frac{1}{2 z}-\sum_{m=1}^{\infty}\left(\frac{1}{2 z+m}-\frac{1}{m}\right)\right) \\
& =2\left(-\log 2+\frac{\Gamma^{\prime}(2 z)}{\Gamma(2 z)}\right)
\end{aligned}
$$

Hence we have proved (cf. Definition 8.3 and let's keep $z \in \mathbb{C} \backslash(-\infty, 0])$

$$
\frac{d}{d z}\left(\log \Gamma(z)+\log \Gamma\left(z+\frac{1}{2}\right)-\log \Gamma(2 z)+2(\log 2) z\right)=0 .
$$

Thus the function inside the parenthesis is constant throughout $z \in$ $\mathbb{C} \backslash(-\infty, 0] ;$ exponentiating we conclude that $\Gamma(z) \Gamma\left(z+\frac{1}{2}\right) \Gamma(2 z)^{-1} 2^{2 z}$ is also constant throughout $z \in \mathbb{C} \backslash(-\infty, 0]$. We can compute the constant e.g. by taking $z=\frac{1}{2}$ (and using $\Gamma\left(\frac{1}{2}\right)=\sqrt{\pi}$); this gives that
the constant is $=2 \sqrt{\pi}$. Hence $\Gamma(z) \Gamma\left(z+\frac{1}{2}\right) \Gamma(2 z)^{-1} 2^{2 z}=2 \sqrt{\pi}$ for all $z \in \mathbb{C} \backslash(-\infty, 0]$, and by continuity this must in fact hold for all $z \in \mathbb{C} \backslash\left\{0,-\frac{1}{2},-1,-\frac{3}{2}, \ldots\right\}$. This proves the claimed formula.

Remark: One can get an even quicker solution by working with the derivative of the logarithmic derivative of $\Gamma(z)$; indeed, we have the very nice formula

$$
\frac{d}{d z}\left(\frac{\Gamma^{\prime}(z)}{\Gamma(z)}\right)=\sum_{n=0}^{\infty} \frac{1}{(z+n)^{2}} .
$$

(See Ahlfors [1, p. 200].)
8.5. By Stirling's formula (Theorem 8.17) we have, when $x \in[a, b]$ and $y \geq 1$,

$$
\begin{aligned}
\log & |\Gamma(x \pm i y)|=\operatorname{Re} \log \Gamma(x+i y) \\
& =\operatorname{Re}\left(\left(x-\frac{1}{2}+i y\right) \log (x+i y)\right)-x+\log \sqrt{2 \pi}+O\left(y^{-1}\right) \\
& =\left(x-\frac{1}{2}\right) \log |x+i y|-y \arg (x+i y)-x+\log \sqrt{2 \pi}+O\left(y^{-1}\right) \\
& =\left(x-\frac{1}{2}\right) \frac{1}{2}\left(\log \left(y^{2}\right)+\log \left(1+\frac{x^{2}}{y^{2}}\right)\right)-y\left(\frac{\pi}{2}-\arctan \frac{x}{y}\right)-x+\log \sqrt{2 \pi}+O\left(y^{-1}\right) \\
& =\left(x-\frac{1}{2}\right) \log y+\left(x-\frac{1}{2}\right) \frac{1}{2} \cdot O\left(y^{-2}\right)-\frac{\pi}{2} y+y\left(\frac{x}{y}+O\left(y^{-2}\right)\right)-x+\log \sqrt{2 \pi}+O\left(y^{-1}\right) \\
& =\left(x-\frac{1}{2}\right) \log y-\frac{\pi}{2} y+\log \sqrt{2 \pi}+O\left(y^{-1}\right)
\end{aligned}
$$

Exponentiation of this gives the stated formula (since $e^{O\left(y^{-1}\right)}=1+$ $O\left(y^{-1}\right)$ for $y \geq 1$).
8.6. By Stirling's formula, Theorem 8.17, we have
$\log \Gamma(z+\alpha)=\left(z+\alpha-\frac{1}{2}\right) \log (z+\alpha)-(z+\alpha)+\log \sqrt{2 \pi}+O\left(|z+\alpha|^{-1}\right)$, for all z with $|z+\alpha| \geq 1$ and $|\arg (z+\alpha)| \leq \pi-\varepsilon$. Here and below, for definiteness, we consider the argument function to take its values in $(-\pi, \pi]$, i.e. $\arg : \mathbb{C} \backslash\{0\} \rightarrow(-\pi, \pi]$.

Let us fix a constant $C>1$ so large that $|\arg (1+w)|<\frac{1}{2} \varepsilon$ for all $w \in \mathbb{C}$ with $|w| \leq C$. Then note that if $|z| \geq C|\alpha|$ and $|z| \geq 1$ then $\arg (z+\alpha)=\arg (z(1+\alpha / z)) \equiv \arg (z)+\arg (1+\alpha / z)(\bmod 2 \pi)$ together with $|\arg (z+\alpha)| \leq \pi-\varepsilon$ and $|\arg (1+\alpha / z)|<\frac{1}{2} \varepsilon$ and imply that $|\arg (z)| \leq \pi-\frac{1}{2} \varepsilon$ and $\arg (z+\alpha)=\arg (z)+\arg (1+\alpha / z)$. Hence

$$
\log (z+\alpha)=\log z+\log \left(1+\frac{\alpha}{z}\right)
$$

where in all three places we use the principal branch of the logarithm function. Since $|\alpha / z| \leq C^{-1}<1$ we can continue:

$$
\log (z+\alpha)=\log z+\frac{\alpha}{z}+O\left(\frac{\alpha^{2}}{z^{2}}\right)=\log z+\frac{\alpha}{z}+O\left(|z|^{-2}\right)
$$

(since we allow the implied constant to depend on α). Using this in (1) we get

$$
\begin{aligned}
\log \Gamma(z+\alpha) & =\left(z+\alpha-\frac{1}{2}\right)\left(\log z+\frac{\alpha}{z}+O\left(|z|^{-2}\right)\right)-(z+\alpha)+\log \sqrt{2 \pi}+O\left(|z+\alpha|^{-1}\right) \\
& =\left(z+\alpha-\frac{1}{2}\right) \log z-z+\log \sqrt{2 \pi}+O\left(|z|^{-1}\right)+O\left(|z+\alpha|^{-1}\right) \\
& =\left(z+\alpha-\frac{1}{2}\right) \log z-z+\log \sqrt{2 \pi}+O\left(|z|^{-1}\right)
\end{aligned}
$$

where in the last step we used the fact that $|z+\alpha| \geq|z|-|\alpha|=$ $|z|(1-|\alpha / z|) \geq\left(1-C^{-1}\right)|z| \gg|z|$. Hence we have proved the desired formula for all z satisfying $|z| \geq 1,|z+\alpha| \geq 1,|\arg (z+\alpha)| \leq \pi-\varepsilon$ and $|z| \geq C|\alpha|$.

It remains to treat z satisfying $|z| \geq 1,|z+\alpha| \geq 1,|\arg (z+\alpha)| \leq \pi-\varepsilon$ and $|z| \leq C|\alpha|$. This is trivial: These set of such z is compact and $\log \Gamma(z+\alpha)-\left(z+\alpha-\frac{1}{2}\right) \log z+z-\log \sqrt{2 \pi}$ is continuous on this set, hence bounded. Also $|z|$ is bounded on the set; hence $|z|^{-1}$ is bounded from below. Hence by adjusting the implied constant we have $\log \Gamma(z+\alpha)-\left(z+\alpha-\frac{1}{2}\right) \log z+z-\log \sqrt{2 \pi}=O\left(|z|^{-1}\right)$ for all z in our compact set, as desired.
9.1. If we set $\tau=i / x$ (with $x \in \mathbb{R}_{>0}$) in the formula that we want to prove, it becomes:

$$
\begin{equation*}
\Theta(z \mid i x)=\sqrt{\frac{1}{x}} e^{-\pi z^{2} / x} \Theta(i z / x \mid i / x) \tag{2}
\end{equation*}
$$

viz.,

$$
\sum_{n \in \mathbb{Z}} e^{2 \pi i n z} e^{-\pi n^{2} x}=\sqrt{\frac{1}{x}} e^{-\pi z^{2} / x} \sum_{n \in \mathbb{Z}} e^{-2 \pi n z / x} e^{-\pi n^{2} / x}
$$

Multiplying by \sqrt{x}, we see that the above formula is equivalent with

$$
\sqrt{x} \sum_{n \in \mathbb{Z}} e^{-\pi n^{2} x+2 \pi i n z}=\sum_{n \in \mathbb{Z}} e^{-(n+z)^{2} \pi / x},
$$

which is exactly the formula in Theorem 9.2 (after replacing z by α)! Hence (since we worked with equivalences), we have proved that (2) holds for all $x>0$ and all $z \in \mathbb{C}$. In other words, the formula that we want to prove,

$$
\begin{equation*}
\Theta\left(z \left\lvert\,-\frac{1}{\tau}\right.\right)=\sqrt{\frac{\tau}{i}} e^{\pi i z^{2} \tau} \Theta(z \tau \mid \tau) \tag{3}
\end{equation*}
$$

holds for all τ along the positive imaginary axis, and all $z \in \mathbb{C}$. Hence, by analyticity, (3) in fact holds for all $\tau \in \mathbf{H}$ and $z \in \mathbb{C}$.
(Details for the last step: Fix an arbitrary $z \in \mathbb{C}$, and set

$$
f(\tau):=\Theta\left(z \left\lvert\,-\frac{1}{\tau}\right.\right)-\sqrt{\frac{\tau}{i}} e^{\pi i z^{2} \tau} \Theta(z \tau \mid \tau) .
$$

This is a holomorphic function of τ in \mathbf{H}, and $f(\tau)=0$ for all τ along the positive imaginary axis. Hence by [4, Theorem 10.18], $f(\tau)=0$ for all $\tau \in \mathbf{H}$.)
9.2 (a). Writing out the relation $\Lambda(s)=\Lambda(1-s)$ from Theorem 9.1 we have:

$$
\pi^{-\frac{1}{2} s} \Gamma\left(\frac{1}{2} s\right) \zeta(s)=\pi^{-\frac{1}{2}+\frac{1}{2} s} \Gamma\left(\frac{1}{2}-\frac{1}{2} s\right) \zeta(1-s) .
$$

This identity, as well as those below, is an equality between two functions meromorphic in the whole complex plane. It follows that

$$
\zeta(1-s)=\pi^{\frac{1}{2}-s} \frac{\Gamma\left(\frac{1}{2} s\right)}{\Gamma\left(\frac{1}{2}-\frac{1}{2} s\right)} \zeta(s) .
$$

But we have $\Gamma\left(\frac{1}{2}-\frac{1}{2} s\right) \Gamma\left(\frac{1}{2}+\frac{1}{2} s\right)=\frac{\pi}{\sin \left(\pi\left(\frac{1}{2}-\frac{1}{2} s\right)\right)}=\frac{\pi}{\cos \left(\frac{\pi}{2} s\right)}$, by (319) with $z=\frac{1}{2}-\frac{1}{2} s$. Hence

$$
\zeta(1-s)=\pi^{-\frac{1}{2}-s} \Gamma\left(\frac{1}{2} s\right) \Gamma\left(\frac{1}{2}+\frac{1}{2} s\right) \cos \left(\frac{\pi}{2} s\right) \zeta(s) .
$$

Finally using Legendre's duplication formula (cf. Problem 8.4, use this with $\left.z=\frac{1}{2} s\right)$ we get

$$
\zeta(1-s)=\pi^{-s} 2^{1-s} \Gamma(s) \cos \left(\frac{\pi}{2} s\right) \zeta(s)
$$

9.5. (a). (See, e.g., Ingham, [2, Theorem 14].) OUTLINE: For any $s \in \mathbb{C}$ with $\Re(s)>1$ we have

$$
\begin{equation*}
\Gamma(s) \zeta(s)=\sum_{n=1}^{\infty} n^{-s} \int_{0}^{\infty} u^{s-1} e^{-u} d u=\sum_{n=1}^{\infty} \int_{0}^{\infty} x^{s-1} e^{-n x} d x \tag{4}
\end{equation*}
$$

where in the last step we substituted $t=n x$ in the integral. Using the fact that we have absolute convergence (writing $\Re(s)=\sigma$):
$\sum_{n=1}^{\infty} \int_{0}^{\infty}\left|x^{s-1} e^{-n x}\right| d x=\sum_{n=1}^{\infty} \int_{0}^{\infty} x^{\sigma-1} e^{-n x} d x=\sum_{n=1}^{\infty} n^{-\sigma} \int_{0}^{\infty} u^{\sigma-1} e^{-u} d u=\zeta(\sigma) \Gamma(\sigma)<\infty$.
Hence we may change order of integration and summation in (4), obtaining:

$$
\begin{equation*}
\Gamma(s) \zeta(s)=\int_{0}^{\infty} \sum_{n=1}^{\infty} x^{s-1} e^{-n x} d x=\int_{0}^{\infty} \frac{x^{s-1}}{e^{x}-1} d x \tag{5}
\end{equation*}
$$

We will compute the integral in (5) by first instead considering another (related) integral: For $0<\varepsilon<1$, let

$$
\begin{equation*}
I(s):=\int_{C_{\varepsilon}} \frac{z^{s-1}}{e^{-z}-1} d z \tag{6}
\end{equation*}
$$

where $C_{\varepsilon}=C_{1, \varepsilon}+C_{2, \varepsilon}+C_{3, \varepsilon}$, with $C_{1, \varepsilon}$ being the contour from $-\infty$ to $-\varepsilon$ along the negative real axis, $C_{2, \varepsilon}$ being contour from $-\varepsilon$ back to $-\varepsilon$ along the circle of radius ε around the origin in positive direction, and finally $C_{3, \varepsilon}$ being the contour from $-\varepsilon$ to $-\infty$ along the negative real axis. In order to have a consistent branch of the function $z^{s-1}=e^{(s-1) \log z}$, we take $\arg (z)=-\pi$ along $C_{1, \varepsilon}$, then $\arg (z)$ increasing from $-\pi$ to π along the circle $C_{2, \varepsilon}$, and finally $\arg (z)=\pi$ along $C_{3, \varepsilon}$. Note that $I(s)$ is independent of the choice of ε, by Cauchy's integral theorem. Parametrizing the negative real axis as $z=-x, x \in \mathbb{R}_{>0}$, we compute that the contribution from $C_{1, \varepsilon}$ to $I(s)$ is

$$
\int_{C_{1, \varepsilon}} \frac{z^{s-1}}{e^{-z}-1} d z=\int_{\infty}^{\varepsilon} \frac{e^{-\pi i(s-1)} x^{s-1}}{e^{x}-1}(-d x)=e^{-\pi i(s-1)} \int_{\varepsilon}^{\infty} \frac{x^{s-1}}{e^{x}-1} d x
$$

and the contribution from $C_{2, \varepsilon}$ is

$$
\int_{C_{2, \varepsilon}} \frac{z^{s-1}}{e^{-z}-1} d z=\int_{\varepsilon}^{\infty} \frac{e^{\pi i(s-1)} x^{s-1}}{e^{x}-1}(-d x)=-e^{\pi i(s-1)} \int_{\varepsilon}^{\infty} \frac{x^{s-1}}{e^{x}-1} d x
$$

When $\varepsilon \rightarrow 0$, the sum of these two contributions tend to, by (5):

$$
\left(e^{-\pi i(s-1)}-e^{\pi i(s-1)}\right) \cdot \Gamma(s) \zeta(s)=2 i \cdot \sin (\pi s) \cdot \Gamma(s) \zeta(s)
$$

Furthermore, for all $z \in C_{2, \varepsilon}$ we have, at least if ε is sufficiently small: $\left|e^{-z}-1\right|>\frac{1}{2}|z|=\frac{1}{2} \varepsilon$ and $\left|z^{s-1}\right|=|z|^{\Re(s)-1} e^{-\Im(s-1) \cdot \arg (z)} \leq \varepsilon^{\sigma-1} e^{|\Im(s)| \pi}$. Hence, by the triangle inequality,

$$
\begin{array}{r}
\left|\int_{C_{2, \varepsilon}} \frac{z^{s-1}}{e^{-z}-1} d z\right| \leq \int_{C_{2, \varepsilon}} \frac{\left|z^{s-1}\right|}{\left|e^{-z}-1\right|}|d z| \leq \int_{C_{2, \varepsilon}} \frac{\varepsilon^{\sigma-1} e^{|\Im(s)| \pi}}{\frac{1}{2} \varepsilon}|d z|=2 e^{|\Im(s)| \pi} \varepsilon^{\sigma-2} \cdot 2 \pi \varepsilon \\
=4 \pi e^{|\Im(s)| \pi} \varepsilon^{\sigma-1},
\end{array}
$$

which tends to 0 when $\varepsilon \rightarrow 0$. Hence, since $I(s)$ is independent of ε, we conclude that $I(s)=2 i \cdot \sin (\pi s) \cdot \Gamma(s) \zeta(s)$. Equivalently, using $\Gamma(s) \Gamma(1-s)=\pi / \sin (\pi s)$, we have:

$$
\begin{equation*}
\zeta(s)=\frac{\Gamma(1-s)}{2 \pi i} \cdot I(s) . \tag{7}
\end{equation*}
$$

The formula (7) has been proved for s with $\sigma>1$, but the integral $I(s)=\int_{C_{\varepsilon}} \frac{z^{s-1}}{e^{-z}-1} d z$ (for any fixed $0<\varepsilon<1$) is easily verified to be an entire function of s. Hence the formula (17) provides the meromorphic extension of $\zeta(s)$ to all $s \in \mathbb{C}$!

Next we compute $I(s)$ in a different way, for s belonging to a certain region in the complex plane: For $0<\varepsilon<1$ and $R>1$, let $C_{R, \varepsilon}$ be the finite contour obtained by replacing $-\infty$ by $-R$ in the definition of C_{ε}; then clearly $I(s)=\lim _{R \rightarrow+\infty} \int_{C_{R, \varepsilon}} \frac{z^{s-1}}{e^{-z}-1} d z$, for every $s \in \mathbb{C}$. Also let D_{R} be the contour from $-R$ back to $-R$ along the circle of ratius R around the origin in negative direction. Then $C_{R, \varepsilon}+D_{R}$ is a closed curve in the complex plane. Note that the poles of the function $z \mapsto \frac{z^{s-1}}{e^{-z-1}}$ (in our cut plane) are the points $z=k \cdot 2 \pi i$ for $k \in \mathbb{Z} \backslash\{0\}$. Hence if we take $R=\left(n+\frac{1}{2}\right) 2 \pi$ for some positive integer n, then by the Cauchy Residue Theorem,
$\frac{1}{2 \pi i} \int_{C_{R, \varepsilon}+D_{R}} \frac{z^{s-1}}{e^{-z}-1} d z=-\sum_{1 \leq|k| \leq n} \operatorname{Res}_{z=k \cdot 2 \pi i}\left(\frac{z^{s-1}}{e^{-z}-1}\right)=\sum_{1 \leq|k| \leq n}(k \cdot 2 \pi i)^{s-1}$

$$
\begin{equation*}
=\sum_{k=1}^{n}(2 \pi k)^{s-1} \cdot\left(e^{\frac{\pi}{2} i(s-1)}+e^{-\frac{\pi}{2} i(s-1)}\right)=(2 \pi)^{s-1} \cdot 2 \cdot \cos \left(\frac{\pi}{2}(s-1)\right) \cdot \sum_{k=1}^{n} k^{s-1} . \tag{8}
\end{equation*}
$$

Now assume that s lies in the half place $\sigma<0$! Then one verifies that $\int_{D_{R}}\left|\frac{z^{s-1}}{e^{-z}-1}\right||d z| \rightarrow 0$ as $n \rightarrow+\infty, R=\left(n+\frac{1}{2}\right) 2 \pi$, and hence, by (8):
$\frac{1}{2 \pi i} I(s)=2(2 \pi)^{s-1} \cos \left(\frac{\pi}{2}(s-1)\right) \sum_{k=1}^{\infty} k^{s-1}=2(2 \pi)^{s-1} \cos \left(\frac{\pi}{2}(s-1)\right) \zeta(1-s)$.
Combining this with (7) (which as we discussed is valid for all $s \in \mathbb{C}$), we conclude that for s with $\sigma<0$ we have:

$$
\begin{equation*}
\zeta(s)=\Gamma(1-s) \cdot 2(2 \pi)^{s-1} \cos \left(\frac{\pi}{2}(s-1)\right) \zeta(1-s) . \tag{9}
\end{equation*}
$$

Hence by meromorphicity, the formula (9) in fact holds for all $s \in \mathbb{C}$ (away from poles). Finally note that after replacing s by $1-s$, (9) agrees with the formula (362) in Problem 9.2(a); and this formula was proved to be equivalent with the functional equation in Theorem 9.1.
(b). Recall that we have proved that the formula (7) is valid for all $s \in \mathbb{C}$ (away from poles). Let us apply that formula for $s=-n$ where n is a nonnegative integer. In this case, the integrand in $I(s)=$ $\int_{C_{\varepsilon}} \frac{z^{s-1}}{e^{-z}-1} d z=\int_{C_{\varepsilon}} \frac{z^{-n-1}}{e^{-z}-1} d z$ is a meromorphic function in the whole complex plane, i.e. we do not need to cut the plane along the negative real axis! This implies that $\int_{C_{1, \varepsilon}+C_{3, \varepsilon}} \frac{z^{-n-1}}{e^{-z}-1} d z=0$, and hence
$I(-n)=\int_{C_{2, \varepsilon}} \frac{z^{-n-1}}{e^{-z}-1} d z=2 \pi i \cdot \operatorname{Res}_{z=0}\left(\frac{z^{-n-1}}{e^{-z}-1}\right)=2 \pi i \cdot(-1)^{n} \cdot \operatorname{Res}_{z=0}\left(\frac{z^{-n-1}}{e^{z}-1}\right)$.
In the above computation, the second equality holds by the Cauchy Residue Theorem, and the last equality is proved by writing $f(z)=$ $\frac{z^{-n-1}}{e^{-z-1}}$, and then noticing that $\operatorname{Res}_{z=0} f(z)=-\operatorname{Res}_{z=0} f(-z)$ (true for an arbitrary meromorphic function), and also $f(-z)=(-1)^{n-1} \frac{z^{-n-1}}{e^{z}-1}$ $(\forall z)$.

Combining the above with (77), we get:

$$
\zeta(-n)=\Gamma(1+n) \cdot(-1)^{n} \cdot \operatorname{ReS}_{z=0}\left(\frac{z^{-n-1}}{e^{z}-1}\right)=(-1)^{n} n!\operatorname{Res}_{z=0}\left(\frac{z^{-n-1}}{e^{z}-1}\right)
$$

(c). We take the definition of the Bernoulli polynomials to be the generating series $\frac{z e^{r z}}{e^{z}-1}=\sum_{n=0}^{\infty} \frac{B_{n}(r)}{n!} z^{n}(z, r \in \mathbb{C},|z|$ small $)$. Recall that the Bernoulli numbers are given by $B_{n}:=B_{n}(0)$; hence, setting $r=0$ in the previous relation, we have the generating series

$$
\frac{z}{e^{z}-1}=\sum_{m=0}^{\infty} \frac{B_{m}}{m!} z^{m}
$$

for $z \in \mathbb{C}$ with $|z|$ small. (In fact the above relation is valid for all z with $|z|<2 \pi$, since the function $\frac{z}{e^{z}-1}$ is holomorphic in this disc, after noticing that the singularity at $z=0$ is removable.)

It follows that for any nonnegative integer n, we have the Laurant series

$$
\frac{z^{-n-1}}{e^{z}-1}=z^{-n-2} \sum_{m=0}^{\infty} \frac{B_{m}}{m!} z^{m}=\sum_{m=0}^{\infty} \frac{B_{m}}{m!} z^{m-n-2}
$$

Here the coefficient in front of z^{-1} is $B_{n+1} /(n+1)$!, viz.,

$$
\operatorname{Res}_{z=0}\left(\frac{z^{-n-1}}{e^{z}-1}\right)=\frac{B_{n+1}}{(n+1)!}
$$

Combining this formula with part (b), we obtain

$$
\zeta(-n)=(-1)^{n} \frac{B_{n+1}}{n+1}
$$

Remark: Recall that $B_{0}=1, B_{1}=-\frac{1}{2}, B_{2}=\frac{1}{6}, B_{3}=0$ and $B_{4}=-\frac{1}{30}$; and in fact $B_{n}=0$ for all odd integers $n \geq 3$. Hence the formula proved above gives that $\zeta(0)=-\frac{1}{2}, \zeta(-1)=-\frac{1}{12}, \zeta(-3)=\frac{1}{120}$, and $\zeta(-n)=0$ for all even integers $n \geq 2$.
(d). Recall the formula (362) in Problem 9.2(a):

$$
\zeta(1-s)=2(2 \pi)^{-s} \cos \left(\frac{\pi}{2} s\right) \Gamma(s) \zeta(s)
$$

Setting $s=2 m$ (with $m \in \mathbb{Z}^{+}$) in this formula gives:

$$
\zeta(1-2 m)=2(2 \pi)^{-2 m}(-1)^{m}(2 m-1)!\cdot \zeta(2 m) .
$$

Here by part (c) we have $\zeta(1-2 m)=-\frac{B_{2 m}}{2 m}$; hence:
$\zeta(2 m)=\frac{1}{2}(2 \pi)^{2 m}(-1)^{m} \frac{1}{(2 m-1)!} \cdot\left(-\frac{B_{2 m}}{2 m}\right)=2^{2 m-1} \pi^{2 m} \frac{(-1)^{m+1} B_{2 m}}{(2 m)!}$.
The last formula, together with the fact that $\zeta(2 m)>0$, implies that $(-1)^{m+1} B_{2 m}>02^{2}$; hence $(-1)^{m+1} B_{2 m}=\left|B_{2 m}\right|$, and we obtain the formula stated in the problem formulation.

[^1]15.1. Clearly (b) implies (a) and hence we will only give a proof of (b). (For another proof of the weaker bound (a), cf., e.g. [3, Problems 1.3.4-5].)

Recall $\phi(q)=q \prod_{p \mid q}\left(1-p^{-1}\right)$; hence our task is to prove

$$
\begin{equation*}
\prod_{p \mid q}\left(1-p^{-1}\right) \gg \frac{1}{\log \log q} \tag{10}
\end{equation*}
$$

for all $q \geq 3$. By taking the logarithm we see that this is equivalent to proving

$$
\begin{equation*}
\sum_{p \mid q} \log \left(1-p^{-1}\right) \geq-\log \log \log q-O(1) \tag{11}
\end{equation*}
$$

for all $q \geq 3$. We know from the Taylor expansion of $\log (1+x)$ that there is a constant $C>0$ such that $|\log (1+x)-x| \leq C x^{2}$ for all $|x| \leq \frac{1}{2}$. Hence the left hand side of (11) differs from $-\sum_{p \mid q} p^{-1}$ by

$$
\leq \sum_{p \mid q} C p^{-2} \leq C \sum_{n=1}^{\infty} n^{-2}=O(1)
$$

Hence our task is equivalent with the task of proving

$$
\begin{equation*}
\sum_{p \mid q} p^{-1} \leq \log \log \log q+O(1) \tag{12}
\end{equation*}
$$

We will first treat the special case when $q=\prod_{p \leq x} p$ for some $x \geq 2$. In this case we have

$$
\begin{equation*}
\sum_{p \mid q} p^{-1}=\sum_{p \leq x} p^{-1}=\log \log x+O(1) \tag{13}
\end{equation*}
$$

by Mertens' Proposition 6.5, and also

$$
\log q=\log \left(\prod_{p \leq x} p\right)=\sum_{p \leq x} \log p=\vartheta(x) \sim x \quad \text { as } x \rightarrow \infty
$$

by the prime number theorem (cf. Theorem 7.1 and Proposition 6.2), so that

$$
\begin{equation*}
\log \log q=\log x+o(1) \quad \text { as } x \rightarrow \infty \tag{14}
\end{equation*}
$$

and

$$
\log \log \log q=\log \log x+o(1) \quad \text { as } x \rightarrow \infty
$$

and in particular $\log \log \log q=\log \log x+O(1)$ for all $x \geq 3$. The last relation together with (13) implies that (12) holds.

From this it is easy to prove that (12) also holds for a general $q \geq 3$: Let q be an arbitrary integer ≥ 3. Suppose that q contains exactly n
distinct primes $p_{1}^{\prime}<p_{2}^{\prime}<\ldots<p_{n}^{\prime}$ in its prime factorization, and let $p_{1}<p_{2}<\ldots<p_{n}$ be the smallest n primes. Then $p_{j} \leq p_{j}^{\prime}$ for each j, so that

$$
\sum_{p \mid q} p^{-1}=\sum_{j=1}^{n} p_{j}^{\prime-1} \leq \sum_{j=1}^{n} p_{j}^{-1}
$$

and using the fact that (12) holds with q replaced by $\prod_{j=1}^{n} p_{j}$ we can continue:
$\leq \log \log \log \left(\prod_{j=1}^{n} p_{j}\right)+O(1) \leq \log \log \log \left(\prod_{j=1}^{n} p_{j}^{\prime}\right)+O(1) \leq \log \log \log q+O(1)$,
i.e. (12) holds for our q.

Remark 1. Using the full strength of Mertens' Proposition 6.5 together with Proposition 6.6 we actually obtain $\prod_{p \leq x}\left(1-p^{-1}\right) \sim \frac{e^{-\gamma}}{\log x}$ as $x \rightarrow \infty$ (cf. [2, Thm. 7 (24)]). Combining this with (14) we get

$$
\begin{equation*}
\phi(q) \sim e^{-\gamma} \frac{q}{\log \log q} \quad \text { as } q=\prod_{p \leq x} p, \quad x \rightarrow \infty . \tag{15}
\end{equation*}
$$

In particular this shows that the lower bound given in (b) is the best possible. In fact from the proof of (b) we also see that $\phi(q) \geq e^{-\gamma} \frac{q}{\log \log q}(1-$ $o(1))$ as $q \rightarrow \infty$ through all integers, and thus

$$
\begin{equation*}
\liminf _{q \rightarrow \infty} \phi(q) \frac{\log \log q}{q}=e^{-\gamma} \tag{16}
\end{equation*}
$$

16.3. By Theorem [15.4, to prove (554) we only have to prove that if $1 \leq q \leq x^{\frac{1}{2}}(\log)^{-A-2}$ then $x^{\frac{1}{2}} \log ^{2} x \ll \frac{x}{\phi(q)}(\log x)^{-A}$, where the implied constant is absolute. In other words we wish to prove $\phi(q) \ll$ $x^{\frac{1}{2}}(\log x)^{-A-2}$. This is clear since $\phi(q) \leq q \leq x^{\frac{1}{2}}(\log)^{-A-2}$.

To prove the second statement we assume $x^{\frac{1}{2}}(\log)^{-A-2} \ll q \leq x$, and then wish to prove that (554) implies (524) apart from an extra factor $\log \log x$ in the big-O-term; in other words we wish to prove that $\frac{x}{\phi(q)}(\log x)^{-A} \ll x^{\frac{1}{2}}(\log x)^{2}(\log \log x)$. Equivalently, we wish to prove $\phi(q) \gg x^{\frac{1}{2}}(\log x)^{-A-2}(\log \log x)^{-1}$. This is clear since, using Problem 15.1(b) (if $q \geq 3) \phi(q) \gg \frac{q}{\log \log q} \geq \frac{q}{\log \log x} \gg x^{\frac{1}{2}}(\log x)^{-A-2}(\log \log x)^{-1}$.

References

1. L. V. Ahlfors, Complex analysis, McGraw-Hill, 1966.
2. A. E. Ingham, The distribution of prime numbers, Cambridge Mathematical Library, 1932.
3. M. Ram Murty, Problems in analytic number theory, second ed., Graduate Texts in Mathematics, vol. 206, Springer, New York, 2008, Readings in Mathematics.
4. W. Rudin, Real and complex analysis, McGraw-Hill, 1987.

[^0]: ${ }^{1}$ Or, in our specific situation, we could simply apply Lemma 8.1.

[^1]: ${ }^{2}$ This can of course be proved in many other ways as well.

