
Hints / solution sketches to problems

8.1. By Lemma 8.14 we have

Γ′(1)

Γ(1)
= −γ − 1−

∞
∑

n=1

( 1

1 + n
− 1

n

)

= −γ − 1− 1

2
+ 1− 1

3
+

1

2
− 1

4
+

1

3
− . . . = −γ.

Also Γ(1) = 1 by Lemma 8.12. Hence Γ′(1) = −γ. �

8.3. For any a, b ∈ C with Re a > 0, Re b > 0 we have:

Γ(a)Γ(b) =

∫ ∞

0

∫ ∞

0

e−t−sta−1sb−1 ds dt.

Here let us substitute
{

u = t+ s

r = s/(t+ s)
⇔

{

s = ur

t = u(1− r).

This map is a diffeomorphism between the quadrant

{(s, t) ∈ R
2 : s > 0, t > 0}

and the strip {(u, r) ∈ R2 : u > 0, 0 < r < 1}, and its Jacobian is
∣

∣

∣

∣

∂(s, t)

∂(u, r)

∣

∣

∣

∣

= det

(

r u
1− r −u

)

= −ru− u(1− r) = −u.

Hence:

Γ(a)Γ(b) =

∫ ∞

0

∫ 1

0

e−u
(

u(1− r)
)a−1(

ur
)b−1

u dr du

=

∫ ∞

0

e−uua+b−1 du

∫ 1

0

(1− r)a−1rb−1 dr

= Γ(a+ b)

∫ 1

0

(1− r)a−1rb−1 dr.

�

8.4. The most “natural” solution is perhaps to study

f(z) =
Γ(2z)

Γ(z)Γ(z + 1
2
)
,

which is easily verified to be an entire function with no zeros and
no poles. It is now natural to apply Weierstrass factorization, The-
orem 8.71, to f(z); however then we first need to prove that f(z) is of
finite order, and this involves some technical work.

1Or, in our specific situation, we could simply apply Lemma 8.1.
1
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Instead let us here work with the logarithmic derivative! By Lemma 8.14
we have for every z ∈ C \ {0,−1

2
,−1,−3

2
, . . .}:

Γ′(z)

Γ(z)
+

Γ′(z + 1
2
)

Γ(z + 1
2
)
= −2γ − 1

z
− 1

z + 1
2

−
∞
∑

n=1

( 1

z + n
− 1

n

)

−
∞
∑

n=1

( 1

z + 1
2
+ n

− 1

n

)

= 2
(

−γ − 1

2z
− 1

2z + 1
−

∞
∑

n=1

( 1

2z + 2n
− 1

2n

)

−
∞
∑

n=1

( 1

2z + 1 + 2n
− 1

1 + 2n

)

+
∞
∑

n=1

( 1

2n
− 1

1 + 2n

))

,

where the last step is justified since
∑∞

n=1

(

1
2n

− 1
1+2n

)

is convergent. In

fact by formula (236) on page 101 in the Lecture Notes, we have
∞
∑

n=1

( 1

2n
− 1

1 + 2n

)

= 1 +
∞
∑

m=1

m−1(−1)m = 1− log 2.

[Alternative: We have

∞
∑

n=1

( 1

2n
− 1

1 + 2n

)

= lim
N→∞

(

N
∑

n=1

1

2n
−

N
∑

n=1

1

1 + 2n

)

= lim
N→∞

(

2

N
∑

n=1

1

2n
−

N
∑

n=1

1

1 + 2n
−

N
∑

n=1

1

2n

)

= lim
N→∞

(

N
∑

n=1

1

n
−

2N+1
∑

m=2

1

m

)

,

and using Lemma 8.13 this is

= lim
N→∞

(

γ + logN − (γ − 1 + log(2N + 1))
)

= 1− log 2.]

Hence from our previous computation we conclude

Γ′(z)

Γ(z)
+

Γ′(z + 1
2
)

Γ(z + 1
2
)
= 2

(

−γ − 1

2z
− 1

2z + 1
−

∞
∑

m=2

( 1

2z +m
− 1

m

)

+ 1− log 2
)

= 2
(

−γ − log 2− 1

2z
−

∞
∑

m=1

( 1

2z +m
− 1

m

))

= 2
(

− log 2 +
Γ′(2z)

Γ(2z)

)

Hence we have proved (cf. Definition 8.3 and let’s keep z ∈ C\(−∞, 0])

d

dz

(

log Γ(z) + log Γ(z + 1
2
)− log Γ(2z) + 2(log 2)z

)

= 0.

Thus the function inside the parenthesis is constant throughout z ∈
C \ (−∞, 0]; exponentiating we conclude that Γ(z)Γ(z + 1

2
)Γ(2z)−122z

is also constant throughout z ∈ C \ (−∞, 0]. We can compute the
constant e.g. by taking z = 1

2
(and using Γ(1

2
) =

√
π); this gives that
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the constant is = 2
√
π. Hence Γ(z)Γ(z + 1

2
)Γ(2z)−122z = 2

√
π for

all z ∈ C \ (−∞, 0], and by continuity this must in fact hold for all
z ∈ C \ {0,−1

2
,−1,−3

2
, . . .}. This proves the claimed formula. �

Remark: One can get an even quicker solution by working with the
derivative of the logarithmic derivative of Γ(z); indeed, we have the
very nice formula

d

dz

(Γ′(z)

Γ(z)

)

=
∞
∑

n=0

1

(z + n)2
.

(See Ahlfors [1, p. 200].)

8.5. By Stirling’s formula (Theorem 8.17) we have, when x ∈ [a, b]
and y ≥ 1,

log|Γ(x± iy)
∣

∣ = Re log Γ(x+ iy)

= Re
(

(x− 1
2
+ iy) log(x+ iy)

)

− x+ log
√
2π +O

(

y−1
)

= (x− 1
2
) log |x+ iy| − y arg(x+ iy)− x+ log

√
2π +O

(

y−1
)

= (x− 1
2
)1
2

(

log(y2) + log
(

1 + x2

y2

))

− y
(

π
2
− arctan x

y

)

− x+ log
√
2π +O

(

y−1
)

= (x− 1
2
) log y + (x− 1

2
)1
2
· O

(

y−2
)

− π
2
y + y

(

x
y
+O(y−2)

)

− x+ log
√
2π +O

(

y−1
)

= (x− 1
2
) log y − π

2
y + log

√
2π +O

(

y−1
)

Exponentiation of this gives the stated formula (since eO(y−1) = 1 +
O(y−1) for y ≥ 1). �
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8.6. By Stirling’s formula, Theorem 8.17, we have

log Γ(z + α) =
(

z + α− 1
2

)

log(z + α)− (z + α) + log
√
2π +O

(

|z + α|−1
)

,

(1)

for all z with |z + α| ≥ 1 and
∣

∣arg(z + α)
∣

∣ ≤ π − ε. Here and below,
for definiteness, we consider the argument function to take its values
in (−π, π], i.e. arg : C \ {0} → (−π, π].
Let us fix a constant C > 1 so large that

∣

∣arg(1 + w)
∣

∣ < 1
2
ε for

all w ∈ C with |w| ≤ C. Then note that if |z| ≥ C|α| and |z| ≥ 1
then arg(z + α) = arg(z(1 + α/z)) ≡ arg(z) + arg(1 + α/z) (mod 2π)
together with

∣

∣arg(z + α)
∣

∣ ≤ π − ε and
∣

∣arg(1 + α/z)
∣

∣ < 1
2
ε and imply

that
∣

∣arg(z)
∣

∣ ≤ π − 1
2
ε and arg(z + α) = arg(z) + arg(1 + α/z). Hence

log(z + α) = log z + log
(

1 +
α

z

)

,

where in all three places we use the principal branch of the logarithm
function. Since |α/z| ≤ C−1 < 1 we can continue:

log(z + α) = log z +
α

z
+O

(α2

z2

)

= log z +
α

z
+O

(

|z|−2
)

(since we allow the implied constant to depend on α). Using this in
(1) we get

log Γ(z + α) =
(

z + α− 1
2

)

(

log z +
α

z
+O

(

|z|−2
)

)

− (z + α) + log
√
2π +O

(

|z + α|−1
)

=
(

z + α− 1
2

)

log z − z + log
√
2π +O

(

|z|−1
)

+O
(

|z + α|−1
)

=
(

z + α− 1
2

)

log z − z + log
√
2π +O

(

|z|−1
)

,

where in the last step we used the fact that |z + α| ≥ |z| − |α| =
|z|

(

1− |α/z|
)

≥ (1−C−1)|z| ≫ |z|. Hence we have proved the desired
formula for all z satisfying |z| ≥ 1, |z + α| ≥ 1, | arg(z + α)| ≤ π − ε
and |z| ≥ C|α|.
It remains to treat z satisfying |z| ≥ 1, |z+α| ≥ 1, | arg(z+α)| ≤ π−ε

and |z| ≤ C|α|. This is trivial: These set of such z is compact and
log Γ(z + α) −

(

z + α − 1
2

)

log z + z − log
√
2π is continuous on this

set, hence bounded. Also |z| is bounded on the set; hence |z|−1 is
bounded from below. Hence by adjusting the implied constant we have
log Γ(z + α)−

(

z + α − 1
2

)

log z + z − log
√
2π = O

(

|z|−1
)

for all z in
our compact set, as desired. �
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9.1. If we set τ = i/x (with x ∈ R>0) in the formula that we want
to prove, it becomes:

Θ
(

z | ix
)

=

√

1

x
e−πz2/xΘ

(

iz/x | i/x
)

,(2)

viz.,

∑

n∈Z

e2πinze−πn2x =

√

1

x
e−πz2/x

∑

n∈Z

e−2πnz/xe−πn2/x.

Multiplying by
√
x, we see that the above formula is equivalent with
√
x
∑

n∈Z

e−πn2x+2πinz =
∑

n∈Z

e−(n+z)2π/x,

which is exactly the formula in Theorem 9.2 (after replacing z by α)!
Hence (since we worked with equivalences), we have proved that (2)
holds for all x > 0 and all z ∈ C. In other words, the formula that we
want to prove,

Θ
(

z | −1

τ

)

=

√

τ

i
eπiz

2τΘ
(

zτ | τ
)

,(3)

holds for all τ along the positive imaginary axis, and all z ∈ C. Hence,
by analyticity, (3) in fact holds for all τ ∈ H and z ∈ C.
(Details for the last step: Fix an arbitrary z ∈ C, and set

f(τ) := Θ
(

z | −1

τ

)

−
√

τ

i
eπiz

2τΘ
(

zτ | τ
)

.

This is a holomorphic function of τ in H, and f(τ) = 0 for all τ along
the positive imaginary axis. Hence by [4, Theorem 10.18], f(τ) = 0 for
all τ ∈ H.) �
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9.2 (a). Writing out the relation Λ(s) = Λ(1− s) from Theorem 9.1
we have:

π− 1

2
sΓ(1

2
s)ζ(s) = π− 1

2
+ 1

2
sΓ(1

2
− 1

2
s)ζ(1− s).

This identity, as well as those below, is an equality between two func-
tions meromorphic in the whole complex plane. It follows that

ζ(1− s) = π
1

2
−s Γ(1

2
s)

Γ(1
2
− 1

2
s)
ζ(s).

But we have Γ(1
2
− 1

2
s)Γ(1

2
+ 1

2
s) = π

sin(π(
1
2
−
1
2
s))

= π
cos(π

2
s)
, by (319) with

z = 1
2
− 1

2
s. Hence

ζ(1− s) = π− 1

2
−sΓ(1

2
s)Γ(1

2
+ 1

2
s) cos(π

2
s)ζ(s).

Finally using Legendre’s duplication formula (cf. Problem 8.4; use this
with z = 1

2
s) we get

ζ(1− s) = π−s21−sΓ(s) cos(π
2
s)ζ(s).

�



7

9.5. (a). (See, e.g., Ingham, [2, Theorem 14].) OUTLINE: For
any s ∈ C with ℜ(s) > 1 we have

Γ(s)ζ(s) =
∞
∑

n=1

n−s

∫ ∞

0

us−1e−u du =
∞
∑

n=1

∫ ∞

0

xs−1e−nx dx,(4)

where in the last step we substituted t = nx in the integral. Using the
fact that we have absolute convergence (writing ℜ(s) = σ):

∞
∑

n=1

∫ ∞

0

∣

∣xs−1e−nx
∣

∣ dx =

∞
∑

n=1

∫ ∞

0

xσ−1e−nx dx =

∞
∑

n=1

n−σ

∫ ∞

0

uσ−1e−u du = ζ(σ)Γ(σ) < ∞.

Hence we may change order of integration and summation in (4), ob-
taining:

Γ(s)ζ(s) =

∫ ∞

0

∞
∑

n=1

xs−1e−nx dx =

∫ ∞

0

xs−1

ex − 1
dx.(5)

We will compute the integral in (5) by first instead considering an-
other (related) integral: For 0 < ε < 1, let

I(s) :=

∫

Cε

zs−1

e−z − 1
dz,(6)

where Cε = C1,ε + C2,ε + C3,ε, with C1,ε being the contour from −∞
to −ε along the negative real axis, C2,ε being contour from −ε back to
−ε along the circle of radius ε around the origin in positive direction,
and finally C3,ε being the contour from −ε to −∞ along the nega-
tive real axis. In order to have a consistent branch of the function
zs−1 = e(s−1) log z, we take arg(z) = −π along C1,ε, then arg(z) increas-
ing from −π to π along the circle C2,ε, and finally arg(z) = π along C3,ε.
Note that I(s) is independent of the choice of ε, by Cauchy’s integral
theorem. Parametrizing the negative real axis as z = −x, x ∈ R>0, we
compute that the contribution from C1,ε to I(s) is
∫

C1,ε

zs−1

e−z − 1
dz =

∫ ε

∞

e−πi(s−1)xs−1

ex − 1

(

−dx
)

= e−πi(s−1)

∫ ∞

ε

xs−1

ex − 1
dx,

and the contribution from C2,ε is
∫

C2,ε

zs−1

e−z − 1
dz =

∫ ∞

ε

eπi(s−1)xs−1

ex − 1

(

−dx
)

= −eπi(s−1)

∫ ∞

ε

xs−1

ex − 1
dx.

When ε → 0, the sum of these two contributions tend to, by (5):
(

e−πi(s−1) − eπi(s−1)
)

· Γ(s)ζ(s) = 2i · sin(πs) · Γ(s)ζ(s).
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Furthermore, for all z ∈ C2,ε we have, at least if ε is sufficiently small:
|e−z − 1| > 1

2
|z| = 1

2
ε and |zs−1| = |z|ℜ(s)−1e−ℑ(s−1)·arg(z) ≤ εσ−1e|ℑ(s)|π.

Hence, by the triangle inequality,
∣

∣

∣

∣

∫

C2,ε

zs−1

e−z − 1
dz

∣

∣

∣

∣

≤
∫

C2,ε

|zs−1|
|e−z − 1| |dz| ≤

∫

C2,ε

εσ−1e|ℑ(s)|π

1
2
ε

|dz| = 2e|ℑ(s)|πεσ−2 · 2πε

= 4πe|ℑ(s)|πεσ−1,

which tends to 0 when ε → 0. Hence, since I(s) is independent of
ε, we conclude that I(s) = 2i · sin(πs) · Γ(s)ζ(s). Equivalently, using
Γ(s)Γ(1− s) = π/ sin(πs), we have:

ζ(s) =
Γ(1− s)

2πi
· I(s).(7)

The formula (7) has been proved for s with σ > 1, but the integral

I(s) =
∫

Cε

zs−1

e−z−1
dz (for any fixed 0 < ε < 1) is easily verified to be an

entire function of s. Hence the formula (7) provides the meromorphic
extension of ζ(s) to all s ∈ C!
Next we compute I(s) in a different way, for s belonging to a certain

region in the complex plane: For 0 < ε < 1 and R > 1, let CR,ε be
the finite contour obtained by replacing −∞ by −R in the definition
of Cε; then clearly I(s) = limR→+∞

∫

CR,ε

zs−1

e−z−1
dz, for every s ∈ C.

Also let DR be the contour from −R back to −R along the circle of
ratius R around the origin in negative direction. Then CR,ε +DR is a
closed curve in the complex plane. Note that the poles of the function
z 7→ zs−1

e−z−1
(in our cut plane) are the points z = k · 2πi for k ∈ Z \ {0}.

Hence if we take R = (n + 1
2
)2π for some positive integer n, then by

the Cauchy Residue Theorem,

1

2πi

∫

CR,ε+DR

zs−1

e−z − 1
dz = −

∑

1≤|k|≤n

Res
z=k·2πi

(

zs−1

e−z − 1

)

=
∑

1≤|k|≤n

(k · 2πi)s−1

=
n

∑

k=1

(2πk)s−1 ·
(

e
π
2
i(s−1) + e−

π
2
i(s−1)

)

= (2π)s−1 · 2 · cos
(

π
2
(s− 1)

)

·
n

∑

k=1

ks−1.

(8)

Now assume that s lies in the half place σ < 0! Then one verifies that
∫

DR

∣

∣

zs−1

e−z−1

∣

∣ |dz| → 0 as n → +∞, R = (n+ 1
2
)2π, and hence, by (8):

1

2πi
I(s) = 2(2π)s−1 cos

(

π
2
(s− 1)

)

∞
∑

k=1

ks−1 = 2(2π)s−1 cos
(

π
2
(s− 1)

)

ζ(1− s).

Combining this with (7) (which as we discussed is valid for all s ∈ C),
we conclude that for s with σ < 0 we have:

ζ(s) = Γ(1− s) · 2(2π)s−1 cos
(

π
2
(s− 1)

)

ζ(1− s).(9)
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Hence by meromorphicity, the formula (9) in fact holds for all s ∈ C

(away from poles). Finally note that after replacing s by 1 − s, (9)
agrees with the formula (362) in Problem 9.2(a); and this formula was
proved to be equivalent with the functional equation in Theorem 9.1.
�

(b). Recall that we have proved that the formula (7) is valid for
all s ∈ C (away from poles). Let us apply that formula for s = −n
where n is a nonnegative integer. In this case, the integrand in I(s) =
∫

Cε

zs−1

e−z−1
dz =

∫

Cε

z−n−1

e−z−1
dz is a meromorphic function in the whole

complex plane, i.e. we do not need to cut the plane along the negative
real axis! This implies that

∫

C1,ε+C3,ε

z−n−1

e−z−1
dz = 0, and hence

I(−n) =

∫

C2,ε

z−n−1

e−z − 1
dz = 2πi· Res

z=0

(

z−n−1

e−z − 1

)

= 2πi · (−1)n· Res
z=0

(

z−n−1

ez − 1

)

.

In the above computation, the second equality holds by the Cauchy
Residue Theorem, and the last equality is proved by writing f(z) =
z−n−1

e−z−1
, and then noticing that Resz=0 f(z) = −Resz=0 f(−z) (true for

an arbitrary meromorphic function), and also f(−z) = (−1)n−1 z−n−1

ez−1

(∀z).
Combining the above with (7), we get:

ζ(−n) = Γ(1 + n) · (−1)n· Res
z=0

(

z−n−1

ez − 1

)

= (−1)nn! Res
z=0

(

z−n−1

ez − 1

)

.

�

(c). We take the definition of the Bernoulli polynomials to be the

generating series zerz

ez−1
=

∑∞
n=0

Bn(r)
n!

zn (z, r ∈ C, |z| small). Recall that

the Bernoulli numbers are given by Bn := Bn(0); hence, setting r = 0
in the previous relation, we have the generating series

z

ez − 1
=

∞
∑

m=0

Bm

m!
zm,

for z ∈ C with |z| small. (In fact the above relation is valid for all z
with |z| < 2π, since the function z

ez−1
is holomorphic in this disc, after

noticing that the singularity at z = 0 is removable.)
It follows that for any nonnegative integer n, we have the Laurant

series

z−n−1

ez − 1
= z−n−2

∞
∑

m=0

Bm

m!
zm =

∞
∑

m=0

Bm

m!
zm−n−2.



10

Here the coefficient in front of z−1 is Bn+1/(n + 1)!, viz.,

Res
z=0

(

z−n−1

ez − 1

)

=
Bn+1

(n+ 1)!
.

Combining this formula with part (b), we obtain

ζ(−n) = (−1)n
Bn+1

n+ 1
.

�

Remark: Recall that B0 = 1, B1 = −1
2
, B2 = 1

6
, B3 = 0 and

B4 = − 1
30
; and in fact Bn = 0 for all odd integers n ≥ 3. Hence the

formula proved above gives that ζ(0) = −1
2
, ζ(−1) = − 1

12
, ζ(−3) = 1

120
,

and ζ(−n) = 0 for all even integers n ≥ 2.

(d). Recall the formula (362) in Problem 9.2(a):

ζ(1− s) = 2(2π)−s cos
(

π
2
s
)

Γ(s)ζ(s).

Setting s = 2m (with m ∈ Z+) in this formula gives:

ζ(1− 2m) = 2(2π)−2m(−1)m(2m− 1)! · ζ(2m).

Here by part (c) we have ζ(1− 2m) = −B2m

2m
; hence:

ζ(2m) =
1

2
(2π)2m(−1)m

1

(2m− 1)!
·
(

−B2m

2m

)

= 22m−1π2m (−1)m+1B2m

(2m)!
.

The last formula, together with the fact that ζ(2m) > 0, implies that
(−1)m+1B2m > 0 2; hence (−1)m+1B2m = |B2m|, and we obtain the
formula stated in the problem formulation. �

2This can of course be proved in many other ways as well.
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15.1. Clearly (b) implies (a) and hence we will only give a proof of
(b). (For another proof of the weaker bound (a), cf., e.g. [3, Problems
1.3.4-5].)
Recall φ(q) = q

∏

p|q(1− p−1); hence our task is to prove

∏

p|q

(1− p−1) ≫ 1

log log q
(10)

for all q ≥ 3. By taking the logarithm we see that this is equivalent to
proving

∑

p|q

log(1− p−1) ≥ − log log log q − O(1)(11)

for all q ≥ 3. We know from the Taylor expansion of log(1 + x) that
there is a constant C > 0 such that

∣

∣log(1 + x) − x
∣

∣ ≤ Cx2 for all

|x| ≤ 1
2
. Hence the left hand side of (11) differs from −∑

p|q p
−1 by

≤
∑

p|q

Cp−2 ≤ C
∞
∑

n=1

n−2 = O(1).

Hence our task is equivalent with the task of proving
∑

p|q

p−1 ≤ log log log q +O(1).(12)

We will first treat the special case when q =
∏

p≤x p for some x ≥ 2.
In this case we have

∑

p|q

p−1 =
∑

p≤x

p−1 = log log x+O(1),(13)

by Mertens’ Proposition 6.5, and also

log q = log
(

∏

p≤x

p
)

=
∑

p≤x

log p = ϑ(x) ∼ x as x → ∞,

by the prime number theorem (cf. Theorem 7.1 and Proposition 6.2),
so that

log log q = log x+ o(1) as x → ∞(14)

and

log log log q = log log x+ o(1) as x → ∞,

and in particular log log log q = log log x+O(1) for all x ≥ 3. The last
relation together with (13) implies that (12) holds.
From this it is easy to prove that (12) also holds for a general q ≥ 3:

Let q be an arbitrary integer ≥ 3. Suppose that q contains exactly n
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distinct primes p′1 < p′2 < . . . < p′n in its prime factorization, and let
p1 < p2 < . . . < pn be the smallest n primes. Then pj ≤ p′j for each j,
so that

∑

p|q

p−1 =

n
∑

j=1

p′j
−1 ≤

n
∑

j=1

pj
−1,

and using the fact that (12) holds with q replaced by
∏n

j=1 pj we can
continue:

≤ log log log
(

n
∏

j=1

pj

)

+ O(1) ≤ log log log
(

n
∏

j=1

p′j

)

+O(1) ≤ log log log q +O(1),

i.e. (12) holds for our q. �

Remark 1. Using the full strength of Mertens’ Proposition 6.5 together
with Proposition 6.6 we actually obtain

∏

p≤x(1−p−1) ∼ e−γ

log x
as x → ∞

(cf. [2, Thm. 7 (24)]). Combining this with (14) we get

φ(q) ∼ e−γ q

log log q
as q =

∏

p≤x

p, x → ∞.(15)

In particular this shows that the lower bound given in (b) is the best
possible. In fact from the proof of (b) we also see that φ(q) ≥ e−γ q

log log q
(1−

o(1)) as q → ∞ through all integers, and thus

lim inf
q→∞

φ(q)
log log q

q
= e−γ .(16)

16.3. By Theorem 15.4, to prove (554) we only have to prove that

if 1 ≤ q ≤ x
1

2 (log)−A−2 then x
1

2 log2 x ≪ x
φ(q)

(log x)−A, where the

implied constant is absolute. In other words we wish to prove φ(q) ≪
x

1

2 (log x)−A−2. This is clear since φ(q) ≤ q ≤ x
1

2 (log)−A−2.

To prove the second statement we assume x
1

2 (log)−A−2 ≪ q ≤ x,
and then wish to prove that (554) implies (524) apart from an extra
factor log log x in the big-O-term; in other words we wish to prove that
x

φ(q)
(log x)−A ≪ x

1

2 (log x)2(log log x). Equivalently, we wish to prove

φ(q) ≫ x
1

2 (log x)−A−2(log log x)−1. This is clear since, using Problem

15.1(b) (if q ≥ 3) φ(q) ≫ q
log log q

≥ q
log log x

≫ x
1

2 (log x)−A−2(log log x)−1.
�
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