
PROBLEM SUGGESTIONS FOR THE COURSE

“SELECTED TOPICS IN DYNAMICAL SYSTEMS”

ANDREAS STRÖMBERGSSON

The basic condition for passing the course is to hand in (acceptable)
solutions for problems for a total of at least “100 pt” (see the list below).
I will try to suggest several relevant problems; however students are most

welcome to suggest problems of their own; please just discuss with me!

I hope to discuss problems individually with each student. For example,
I have often refrained from providing hints even when this could easily be
done; instead I hope that you will frequently ask me for hints and suggestions
on the problems which you are working on. Another good reason to ask me
is that it is quite possible that I’ve made some mistake in the formulation
of the problem.

I have marked with an “(E)” problems which I believe are “easy” and
suitable for students who feel inexperienced in the field. I recommend more
experienced students to still take a quick look at these problems and think
through if you know how to solve them.

Problem 1. (E). Let f : I → I be an IET (Interval exchange map; see [19,
Sec. 1] for the definition); let B be the standard Borel σ-algebra of I and let
m be Lebesgue measure on I. Prove that (I,B, f,m) is an mpt. (5 pt.)

(Comments: I took this statement as “clear” in my Lecture #1; similarly Viana takes

it as clear; cf. [19, p. 22(bottom)]. A quick proof could look as follows: “We have to

prove that for every E ∈ B, we have f−1(E) ∈ B and m(f−1(E)) = m(E). This is clear

by splitting E appropriately and then using the fact that B and m are invariant under

translations.” However, please give a slightly more detailed solution, in particular please

be a bit more specific about how to “split E appropriately”.)

Problem 2. (E). Atoms of ergodic measures. Let (X,B, µ, T ) be an
ergodic ppt, and assume that every point in X is measurable, i.e. {x} ∈ B
for every x ∈ X. Assume that there is a point x ∈ X with µ({x}) > 0.
Prove that x is a periodic point, and that if its period is n then µ is the
normalized uniform measure on the finite set {x, T (x), . . . , T n−1(x)}, i.e.

µ = n−1
∑n−1

k=0 δT k(x). (7 pt.)
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Problem 3. (E). Invariance of ergodicity and mixing under com-

pletion and isomorphism.

(a) Let (X,B, µ, T ) be an mpt and let Bµ be the µ-completion of B; then
we know that also (X,Bµ, µ, T ) is an mpt (cf. my notes to [16, Def. 1.2]).
Prove that (X,B, µ, T ) is ergodic iff (X,Bµ, µ, T ) is ergodic.

(b) Similarly, for (X,B, µ, T ) any ppt, prove that (X,B, µ, T ) is mixing1 iff
(X,Bµ, µ, T ) is mixing.

(c) Let (Xi,Bi, µi, Ti) for i = 1, 2 be two mpt’s which are isomorphic and
such that Bi is µi-complete. Prove that if (X1,B1, µ1, T1) is ergodic, then so
is (X2,B2, µ2, T2).

(d) Let (Xi,Bi, µi, Ti) for i = 1, 2 be two ppt’s which are isomorphic, and
such that Bi is µi-complete. Prove that if (X1,B1, µ1, T1) is mixing, then so
is (X2,B2, µ2, T2). (10 pt.)

(Comments: Recall the definition of two mpt’s being “isomorphic”; cf. [16, Def. 1.3] and

my notes about it. Please be careful in your treatment of the various null sets appearing

in the discussion.)

Problem 4. (E). Prove [16, Thm. 1.1], i.e. Poincaré’s Recurrence Theorem.
(This is [16, Probl. 1.3].)

(5 pt.)

Problem 5. (E). Let X be a finite set, provided with the σ-algebra B =
P(X) (the power set of X), and let T be a given map from X to X. Give a
classification of the set of T -invariant probability measures on (X,B). Also
give a classification of the subset of ergodic T -invariant probability measures
on (X,B). (8 pt.)

Problem 6. Let X be an lcscH space (or if you prefer: let X = R
n) and

µ, µ1, µ2, . . . ∈ P (X). Prove that if µn(f) → µ(f) for all f ∈ Cc(X), then
µn → µ in P (X) (weak convergence). (8 pt.)

(Hint: You may use the fact that for any µ ∈ P (X) and any ε > 0 there is some

compact set K ⊂ X such that µ(K) > 1 − ε; cf., e.g., [14, Thm. 2.18]2. You may also

use the fact that for any compact subset K ⊂ X, there is some h ∈ Cc(X) satisfying

0 ≤ h ≤ 1 and h|K = 1; cf., e.g., [14, Lemma 2.12].)

Problem 7. (E). Let A be any n× n matrix with integer entries and non-
zero determinant. Let Tn be the torus Tn = R

n/Zn.
(a) Prove that the map x 7→ Ax from R

n to R
n induces a well-defined and

smooth map T : Tn → T
n.

(b) Determine the number of preimages of any point, i.e. determine #T−1(p)
for any p ∈ T

n.
(c) Prove that T preserves the Lebesgue volume measure on T

n. (10 pt.)

1Recall that “mixing” is synonymous with “strongly mixing”.
2noticing that every open subset of an lcscH space is σ-compact.
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Problem 8. (a) Solve [12, pp. 8–9, Exercise 10]! In other words, prove that
SL(2,R) acts on the hyperbolic upper half plane H by isometries and that
this leads to an identification of

G = PSL(2,R) := SL(2,R)/{±I}
with the unit tangent bundle T 1H, and that under this identification, the
geodesic flow and the horocycle flow correspond to flows on G generated by
certain explicit 1-parameter subgroups.

(b) Solve [12, p. 9, Exercise 11]! In other words, given any compact
hyperbolic surface X, find a natural identification of T 1X with Γ\G for
some discrete subgroup Γ < G = PSL(2,R), and find the counterparts of
the geodesic and horocycle flows on T 1X under this correspondence.

(15 pt.)

(One good reference for this is [10], and I can also guide you to other appropriate

references. Your solution does not have to be too long; you can focus on presenting the

main points of the arguments.)

Problem 9. (This problem is related to [16, Sec. 1.3]; “The probabilistic
point of view”.)

Let (X,B, µ, T ) be a ppt, where we assume that (X,B) is a standard Borel
space. Let XN =

∏

n≥0 X be the space of all sequences (xn)n≥0 with

x0, x1, . . . ∈ X, provided with its product σ-algebra ⊗n≥0B (cf., e.g., [6,
Ch. 1 (just before Lemma 1.2)] or [3, Ch. 1 (just before Prop. 1.3)]). Let σ
be the shift map on XN, and let J : X → XN be the map

J(x) =
(

x, T (x), T 2(x), T 3(x), . . .
)

.

Prove that (XN,⊗n≥0B, J∗(µ), σ) is a ppt, and that the two ppt’s (X,B, µ, T )
and (XN,⊗n≥0B, J∗(µ), σ) are isomorphic.

(10 pt.)

Problem 10. Let I = [0, 1), provided with its standard Borel σ-algebra
B and Lebesgue measure m. Let T : I → I be an IET which is uniquely
ergodic (viz., P T (I) = {m}). Prove or disprove: For every x ∈ I, the orbit
{T k(x)}∞k=0 is equidistributed in X with respect to m. (10 pt.)

(Note: We proved such a result in lecture #2 for any continuous map on a compact

metric space; however the issue here is that an IET has discontinuities. Also there is an

issue that I is not compact.)
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Problem 11. Try to make precise sense of the “category of mpt’s”, along
the lines of wikipedia. We want the definition of “morphism” in the category
to correspond (in an appropriate sense) to the definition of “factor map” in
[16, Def. 1.14]3 and we want the “category theoretical isomorphisms” to
correspond (in an appropriate sense) to the “isomorphisms” as defined in
[16, Def. 1.3] (cf. also my notes to Sarig’s Def. 1.3).

(15 pt.)

(Comment: It seems that we have to define a “morphism” from an mpt (X,B, µ, T ) to

an mpt (Y, C, ν, S) to be an appropriate equivalence class of maps...)

Problem 12. (a) Give a classification of the orbit closures for a translation
map x 7→ x+ α (any fixed α ∈ R

n) on the n-dimensional torus Tn! (In the
same spirit as the classification of orbit closures for a linear flow on T

n given
in [12, Example (1.1.1)].)
(b) Also classify the ergodic measures for such a map.

(15 pt.)

(Comment: To a large extent it should be possible to mimic the classification of orbit

closures for a linear flow on T
n, which I work out in detail in my notes to [12, p. 8, Exercise

5].)

Problem 13. Digest the proof of the Isomorphism Theorem for standard
Borel spaces (cf., e.g., [8, Thm. 15.6]), write your own summary (or detailed
presentation) of it, and be prepared to discuss it with your teacher!

(10-20 pt?)

Problem 14. Let S be an lcscH space (or if you prefer: let S = R
n) and

let M(S) be the space of locally finite Borel measures on S, provided with
the vague topology.
(a) Prove that M(S) is Polish.
(b) Prove that a set A ⊂ M(S) is relatively compact iff supµ∈A µ(K) < ∞
for every compact set K ⊂ S.

(10 pt.)

(Comment: See Kallenberg, [6, Thm. A2.3(i), (ii)] – but I would like you to include

some more details in your proof! Note that for Kallenberg’s proof of Thm. A2.3(i) to

work, it seems we need to require that his countable subset B = {f1, f2, . . .} satisfies the

following condition: For every f ∈ Cc(S), f ≥ 0, there exists a compact set K ⊂ S and a

sequence (fkj
)∞j=1 of elements in B such that supp fkj

⊂ K for all j and fkj
→ f in the

uniform metric as j → ∞.)

Problem 15. Digest (from [2, Sec. 4.4.3] or directly from [4]) Furstenberg’s
proof of Weyl’s result on equidistribution mod 1 of the integer values of a
polynomial with at least one irrational coefficient. Write your own summary
(or detailed presentation) of this proof, and be prepared to discuss it with
your teacher!

(10 pt.)

3except I believe that the requirement “onto” in Sarig’s definition should be removed;
cf. my notes to [16, Def. 1.14].

https://en.wikipedia.org/wiki/Measure-preserving_dynamical_system#Homomorphisms
http://file://F:/home/andreas/overview/mydetails/mydet_oS2009.dvi:Def1p3vA
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Problem 16. (E). Let (X,B, µ) be a probability space and let B1, B2, . . . be
a finite or countable list of sets in B which partition X, i.e. X = ⊔n≥1Bn.

4

Let F = σ({B1, B2, . . .}), the σ-algebra generated by B1, B2, . . .. Let f ∈
L1(X,B, µ). Prove that for every j with µ(Bj) > 0,

E(f | F)(x) =

∫

Bj
f dµ

µ(Bj)
, ∀x ∈ Bj .

Also prove that for every set A ∈ B, and every j with µ(Bj) > 0,

µ(A | F)(x) =
µ(A ∩Bj)

µ(Bj)
, ∀x ∈ Bj .

(5 pt.)

Problem 17. Let Bn be the standard Borel σ-algebra of Rn. Let µ be an
absolutely continuous probability measure on R

2; thus we can write dµ =
δ · dm where m is Lebesgue measure on R

2 and δ ∈ L1(R2,B2,m), δ ≥ 0.
Let F be the sub-σ-algebra of B2 given by

F = {B × R : B ∈ B1}.
Prove that for any A ∈ B1,

µ(R×A | F)(x1, x2) =

∫

A
δ(x1, t) dt

∫

R
δ(x1, t) dt

for µ-a.e. (x1, x2) ∈ R
2.

(8 pt.)

Problem 18. Digest how to complete the proof of Birkhoff’s PET (Point-
wise Ergodic Theorem), [16, Thm. 2.2], to the case of L1-functions, by study-
ing [16, Sec. 2.4] (specializing to d = 1, if you like). Write your own summary
(or detailed presentation) of this proof, and be prepared to discuss it with
your teacher!

Alternatively, carry out the corresponding task for some other proof of the
PET, e.g. one of the proofs in Einsiedler & Ward, [2, Thm. 2.30], the proof
in Katok & Hasselblatt, [7, p. 136, Thm 4.1.2], or the proof in Kallenberg,
[6, Thm 10.6]. (15 pt.)

Problem 19. (E?) Let A1, A2, . . . be subsets of a set X, and let F be the
countably generated σ-algebra F = σ({A1, A2, . . .}). Recall that for each
x ∈ X, the atom of x is given by

[x]F :=
⋂

A∈F
(x∈A)

A =

∞
⋂

j=1

{

Aj if x ∈ Aj

X \ Aj if x /∈ Aj

}

.(1)

Prove the second equality in (1), and explain why this implies that [x]F ∈ F
for every x ∈ X. Prove also that the atoms {[x]F : x ∈ X} form a partition
of X. (8 pt.)

4 “⊔” stands for disjoint union; thus “X = ⊔n≥1Bn” means that X = ∪n≥1Bn and
Bn ∩ Bm = ∅ for all n 6= m.
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Problem 20. (E) Alternative def. of “uniquely ergodic”; cf. Lecture #1.

Let (X,B) be a standard Borel space and let T : X → X be a measurable
map. Prove that if there is exactly one µ ∈ P (X) which is T -invariant and
ergodic, then there is exactly one µ ∈ P (X) which is T -invariant.

(5 pt.)

(Hint: Use ergodic decomposition.)

Problem 21. Let G be a second countable locally compact group and let
Γ be a discrete subgroup of G. Prove that there exists a Borel set F ⊂ G
which is a fundamental domain for Γ\G.

(10 pt.)

Problem 22. (E?). Let G be a second countable locally compact group,
let Γ be a discrete subgroup of G, set X = Γ\G, and let π : G → X be the
projection map; π(g) = Γg. Let µ be a left Haar measure on G. Let F ⊂ G
be a Borel set which is a fundamental domain for Γ\G.

(a) Prove that we obtain a Borel measure µX on X by setting µX(E) :=
µ(π−1(E) ∩ F ) for every Borel subset E ⊂ X.

(b) Prove that µX is independent of the choice of F .

(c) Prove that µ can be expressed in terms of µX by the formula
∫

G

f dµ =

∫

X

∑

g∈π−1(x)

f(g) dµX(x), ∀f ∈ L1(G,µ).

In particular µ(E) =
∫

X
#(π−1(x) ∩ E) dµX(x) for every Borel set E ⊂ G.

(12 pt.)

Problem 23. PET for semi-flows. Let {Φt} be a measure preserving semi-

flow on a probability space (X,B, µ), i.e. 〈t, x〉 7→ Φt(x) is a measurable map
from R≥0 ×X to X, Φt+s = Φt ◦ Φs for all t, s ≥ 0, and Φt ∗ (µ) = µ for all
t ≥ 0. Given f ∈ L1(X,µ) 5, set

Af
T (x) :=

1

T

∫ T

0
f(Φt(x)) dt (T > 0).

Then as T → ∞ (through all positive real numbers), Af
T converges µ-a.e.

and in L1 to some f ∈ L1(X,µ), which is {Φt}-invariant µ-a.e. (viz., µ({x ∈
X : f(Φt(x)) 6= f(x)}) = 0 for every t ≥ 0).

(10 pt.)

(Hint: One approach is to first apply the PET for the function g := Af
1

and the map Φ1.)

5Recall the def of f ∈ L1(X,µ) = L1(X,B, µ) from the beginning of Lecture #4.
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Problem 24. Asymptotic equidistribution of pieces of closed horocycles.

As in Theorem 4 in Lecture #5, let G = SL2(R), Γ = SL2(Z), X = Γ\G.

For any y > 0 and real numbers α < β, define h
[α,β]
y ∈ P (X) by

h[α,β]y (f) =
1

β − α

∫ β

α

f

((

1 x
0 1

)(√
y 0
0 1/

√
y

))

dx (f ∈ Cc(X)).

(In particular h
[α,α+1]
y = hy for any y > 0, α ∈ R.)

Prove that if {yj} ⊂ R>0 and (αj), (βj) ⊂ R are any sequences subject to

αj < βj , lim
j→∞

yj = 0, and lim
j→∞

(βj − αj)/
√
yj = +∞,

then h
[αj ,βj]
yj → µX in P (X) as j → ∞.

(10 pt.)

(Comments: This can be proved by fairly straight-forward modifications
of the proof of Theorem 4 in Lecture #5; it suffices if you explain what has
to be modified. See also [17].)

Problem 25. Let X = Γ\G, with G a Lie group and Γ a lattice. Let ν
be a homogeneous probability measure on X, as in Ratner’s Theorem 3 in
Lecture #5. Work out the details proving the explicit statements on the
lower half of p. 4 in Lecture #5. (See also my notes to that lecture. In
particular, digest the proofs of [13, Thm. 1.13] and [1, p. 81, Exc. 1].)

(15 pt.)

Problem 26. (E). Let (X,B, µ, T ) be an invertible ppt and let A : X →
GLd(R) be a measurable map. Show how to extend the definition of An :
X → GLd(R) (cf. Lecture #7) from n ∈ Z

+ to n ∈ Z, and prove that the
cocycle identity holds for all n,m ∈ Z.

(5 pt.)
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Problem 27. The Lyapunov exponents of a linear map.

Consider the Multiplicative Ergodic Theorem (Thms. 1 & 2 in Lecture #7)
applied to the one-point ppt X = {x} and A(x) = A ∈ GLd(R). Prove
that the Lyapunov exponents χ1 < · · · < χs and the associated Oseledets
decomposition R

d = H1⊕· · ·⊕Hs are determined as follows. Let Sp(A) ⊂ C

be the set of eigenvalues of A and for each λ ∈ Sp(A) let Eλ ⊂ C
d be the

associated generalized eigenspace, i.e.

Eλ := {v ∈ C
d : (A− λ)nv = 0 for some n ∈ Z

+}.
(Then it is known that Cd = ⊕λ∈Sp(A)Eλ.) Then χ1 < · · · < χs are exactly
the numbers appearing in the set {log |λ| : λ ∈ Sp(A)}, and for each
i ∈ {1, . . . , s},

H i =

(

⊕

λ∈Sp(A) : log |λ|=χi

Eλ

)

∩ R
d.

(10 pt.)

(Hint: Use the Jordan decomposition of A, and the fact that any two
norms on R

d are equivalent.)

Problem 28. Oseledets Theorem in the setting of a general vector bundle.

Let (X,B, µ, T ) be a ppt. Give a definition of a “(finite-dimensional) vector
bundle E over X”, and of a “linear cocycle on E over T”; also provide the
vector space Ex with a norm for each x ∈ X. Prove that, under appropriate
assumptions, the Oseledets Theorems (= Theorems 1 and 2 of Lecture #7)
extend to this situation.

Also prove that your setting includes the case of the linear cocycle df :
T (M) → T (M), where M is a compact Riemannian manifold and f : M →
M is an immersion (and Tx(M) is endowed with the norm coming from the
Riemannian metric, for every x ∈ M). (15 pt.)

(Comments: I have not myself worked out a detailed solution (yet). It
seems that it should be possible to provide a nice general definition which
ensures that M can be partitioned by Borel sets which each trivialize E , and
in this way reduce to the case of X×R

d, i.e. the case of Thms. 1,2 in Lecture
#7. Cf. [7, pp. 663(bot)–664(mid)] and [20, p. 16] for some inspiration.)

Problem 29. General first-return map of an IET.

Let f : I → I be an IET and let J = [a, b) be any subinterval of I. Prove
that the first return map to J is again an IET.

(10 pt.)
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Problem 30. (E). Let A be any n × n matrix with integer entries and
non-zero determinant, and let f : T

n → T
n be the map induced by the

linear map x 7→ Ax on R
n (cf. Problem 7). Prove that under the “obvious”

trivialization of T (Tn), the differential df : T (Tn) → T (Tn) equals the linear
cocycle defined by the constant map T

n → GLn(R), x 7→ A. Also prove that
if A is hyperbolic, i.e. A does not have any eigenvalues of absolute value one,
then for every x ∈ T

n there is a direct sum decomposition Tx(T
n) = Es

x⊕Eu
x

such that
(a) For every x ∈ T

n, df(Es
x) = Es

f(x) and df(Eu
x) = Eu

f(x);

(b) there exist C > 0 and λ ∈ (0, 1) such that for any x ∈ T
n, v ∈ Es

x,
w ∈ Eu

x and m ≥ 1, ‖dfm(v)‖ ≤ Cλm‖v‖ and ‖df−m(w)‖ ≤ Cλm‖w‖.
(10 pt.)

(Comments: If A is hyperbolic and furthermore detA = ±1, so that f
is a diffeomorphism, then the existence of such a decomposition of T (Tn)
means that f is an Anosov diffeomorphism; cf., e.g., [7, Def. 6.4.2] or [21,
Ex. 2.10].)

Problem 31. (E). In the notes to Lecture #7 we explain how to give Gr(d, l)
the structure of a C∞ manifold via “Gr(d, l) = G/H” where G = GLd(R)
and H is the stabilizer of any fixed point V0 ∈ Gr(d, l). Following this
construction but instead starting with G′ = O(d) we get an identification
Gr(d, l) = G′/H ′ where H ′ is a closed subgroup of O(d). Prove that these
two constructions endow Gr(d, l) with the same C∞-manifold structure.
Also compute H and H ′ for the special choice V0 = SpanR{e1, . . . ,el},
where ej = (0, · · · , 0, 1, 0, · · · , 0)t is the jth standard unit vector (the “1”
appears at position j), and use this to explain the identity

“Gr(d, l) = O(d)/(O(l) ×O(d− l))”.
(10 pt.)

Problem 32. Prove the formula

#{0 ≤ j < rnπ,λ(I
n
α) : f j(Inα) ⊂ Iβ} = (Θn

π,λ)α,β

stated in Lecture #18. (10 pt.)

(Cf. Viana, [20, Prop. 4.3 (and Lemma 4.2)]; it suffices if you write out his proof in

your own words. But you may find it more rewarding to work it out on your own!)

Problem 33. (E). Let {an} be a sequence of complex numbers. Assume
that

∀δ > 0 : ∃N ≥ 1 : ∀n ≥ N : |an| ≤ 10 δ−10 eδn.

Prove that

∀δ > 0 : ∃N ≥ 1 : ∀n ≥ N : |an| ≤
1

10
eδn. (5 pt.)

(Comment: The purpose of the problem is to illustrate how large factors

outside the exponential can be “swallowed in the eo(n) factor”; this is used
repeatedly in the proof of the Multiplicative Ergodic Theorem.)
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Problem 34. (Basics about the Hausdorff metric) Let (M,d) be a metric
space. We define the Hausdorff distance between any two non-empty subsets
X,Y ⊂ M by

dH(X,Y ) = max
(

sup
x∈X

inf
y∈Y

d(x, y), sup
y∈Y

inf
x∈X

d(x, y)
)

∈ R≥0 ∪ {+∞}.

Let F (M) be the set of all non-empty compact subsets of M .
(a) Prove that dH is a metric on F (M).
(b) Prove that if M is complete then F (M) is complete.
(c) Prove that if M is compact then F (M) is compact.

(10 pt.)

(Comments: Cf. wikipedia.)

Problem 35. Let 0 < l < d; recall that Gr(d, l) is the set of all l-dimensional

linear subspaces of Rd. Let Sd−1
1 be the unit sphere in R

d,

Sd−1
1 = {x ∈ R

d : ‖x‖ = 1},
provided with the Euclidean metric coming from R

d (viz., the distance be-

tween two points x,x′ ∈ Sd−1
1 is ‖x − x

′‖). For any U, V ∈ Gr(d, l), let

δ(U, V ) be the Hausdorff distance (cf. Problem 34) between U ∩ Sd−1
1 and

V ∩ Sd−1
1 :

δ(U, V ) := dH(U ∩ Sd−1
1 , V ∩ Sd−1

1 ).

(a) Prove that δ is a metric on the set Gr(d, l) and that Gr(d, l) is compact
in this metric.
(b) Recall from the notes to Lecture #7 (cf. also Problem 31) that Gr(d, l)
has a standard structure of a connected C∞-manifold. Prove that δ is a
metrization of the corresponding topology on Gr(d, l).

(10 pt.)

(Comments: For part (b), you may take for granted the following fact:
Points V, V1, V2, . . . ∈ Gr(d, l) satisfy limj→∞ Vj = V wrt the standard
manifold structure on Gr(d, l) iff there exist ON-bases {b1, . . . , bl} of V

and {b(j)1 , . . . , b
(j)
l } of each Vj, such that limj→∞ b

(j)
k = bk in R

d for each
k ∈ {1, . . . , l}.)

http://file://T:https://en.wikipedia.org/wiki/Hausdorff_distance
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Problem 36. Let 0 < l < d, and let δ be the metric on Gr(d, l) introduced in
Problem 35. Prove that there exists an increasing function F : R>0 → R>0

satisfying limδ→0+ F (δ) = 0, such that for all U, V ∈ Gr(d, l),

δ(U, V ) ≤ F (cos∠(U, V ⊥))

(10 pt.)

(Comments: Taken together with Problem 35, this result shows that the
intuitive argument on p. 6 in Lecture #8 for the existence of the limit space
V r, can be made rigorous.)

Problem 37. Prove the Martingale Convergence Theorem. (10 pt.)

(See Sarig, [16, Problem 2.8] and/or Einsiedler-Ward, [2, Thm. 5.5].)

Problem 38. [16, Problem 4.8] Let (X,B, µ, T ) be a ppt and let α, β be
partitions of X (as always α, β are assumed to be measurable, and finite or
countable). Prove that

∣

∣hµ(T, α)− hµ(T, β)
∣

∣ ≤ Hµ(α|β) +Hµ(β|α).
(7 pt.)

Problem 39. [16, Problem 4.9] Let (X,B, µ, T ) be a ppt. Recall that

hµ(T ) := sup
{

hµ(T, α) : α is partition of X which is measurable,

countable or finite, and Hµ(α) < ∞
}

Prove that

hµ(T ) := sup
{

hµ(T, α) : α is partition of X which is measurable

and finite
}

.

(7 pt.)

(Hint: You may e.g. use Problem 38.)

Problem 40. (E). We say that a ppt (X,B, µ, T ) is a factor of the ppt
(Y, C, ν, S) if there is a measurable set Y ′ ⊂ Y of full measure satisfying
S(Y ′) ⊂ Y ′, and a measurable map π : Y ′ → X such that µ = π∗ν and
π ◦ S = T ◦ π on Y ′. (Cf. Problem 11, and my notes to Sarig’s Def. 1.14.)
Prove that when this holds, the entropies of the two ppt’s satisfy

hµ(T ) ≤ hν(S).

(7 pt.)

http://file://F:/home/andreas/overview/mydetails/mydet_oS2009.dvi:DEF1p14disc
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Problem 41. Let σ : Σ+
A → Σ+

A be a subshift of finite type with alphabet
S and transition matrix A; let P be a stochastic matrix compatible with A,
let p = (pi)i∈S be a stationary probability vector wrt P (viz., pP = p), and

let µ be the σ-invariant Markov chain measure on Σ+
A determined by P, p.

Prove that µ is ergodic (for σ) iff P is irreducible, and µ is mixing iff P
is irreducible and periodic.

(10 pt.)

(Cf. Sarig [16, Thm. 1.2, Cor. 1.1].)

Problem 42. (Coding of a toral automorphism.) If X,Y are compact
metric spaces, and T : X → X and S : Y → Y are continuous maps, then T
is said to be a topological factor of S if there is a surjective continuous map
π : Y → X such that π ◦ S = T ◦ π.

Now let X = T
2 and let T : T2 → T

2 be the map induced by the linear

map

(

x
y

)

7→
(

2 1
1 1

)(

x
y

)

(cf. Problem 7). Prove that T is a topological

factor of a certain subshift of finite type.
(10 pt.)

(Hint: See Katok & Hasselblatt, [7, pp. 84–86].)

Problem 43. Let (X,B, µ) be a probability space and let α and β be
partitions of X (as always, all partitions are assumed to be measurable and
countable or finite). Recall that we have defined α = β to hold iff [α ≤ β
and β ≤ α], i.e. iff [α ⊂

µ
σ(β) and β ⊂

µ
σ(α)]. Prove that α = β holds iff

∀A ∈ α : ∃B ∈ β ∪ {∅} : µ(A∆B) = 0.

(7 pt.)

Problem 44. (E). Suppose µ is a shift invariant Markov measure with
transition matrix P = (pij) and probability vector p = (pi) on the subshift

Σ+
A with (finite) alphabet S and transition matrix A. Let α be the partition

α = {[a] : a ∈ S} of Σ+
A. Prove that for any n ∈ Z

+,

Hµ(α
n
0 ) = n

∑

i,j∈S

pipij
(

− log pij
)

+
∑

i∈S

pi
(

− log pi
)

.

(7 pt.)

(Hint: Sarig proves this in the computation on [16, p. 108]. Please make
sure that you understand each step in the computation, or else ask me to
discuss.)
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Problem 45. Digest the proof of the formula hµ(T, α) = Hµ(α|α∞
1 )

cf. Sarig [16, Theorem 4.2]. Write up the proof in your own words, and
be prepared to discuss it with your teacher!

(10 pt.)

Problem 46. Digest the proof of the Shannon-McMillan-Breiman Theorem,
cf. Sarig [16, Theorem 4.3]. Write up the proof in your own words, and be
prepared to discuss it with your teacher!

(10 pt.)

Problem 46’. (Shannon-McMillan-Breiman in the non-ergodic case.)

Let (X,B, µ, T ) be a ppt and α a countable measurable partition of X with
Hµ(α) < ∞. Prove that limn→∞

1
n
Iµ(α

n−1
0 ) exists µ-a.e., and that this limit

is µ-a.e. T -invariant. Prove also that

hµ(T, α) =

∫

X

(

lim
n→∞

1

n
Iµ(α

n−1
0 )

)

dµ

(10 pt.)
(Cf. Mañé, [9, Ch. IV.1–2].)

Problem 47. Digest the material in Sarig, [7, Sec. 4.6], i.e. the two equiva-
lent definitions of topological entropy and the proof of the Variational Prin-
ciple. Write your own summary (or detailed presentation), and be prepared
to discuss it with your teacher!

(10-20 pt?)

(Comments: As with all problems, you are also welcome to discuss with
your teacher if you get stuck during the work.)

Problem 48. (A basic fact used in Ruelle, [15, p. 86].)

(a) Prove that for any linear map A : Rd → R
d, the image of the unit ball

underA is an ellipsoid, whose semi-axes have lengths equal to the eigenvalues
of

√
AtA, with multiplicity.

(b) Prove that there is a constant K > 0 which only depends on d such that
the following holds: For any open subset U ⊂ R

d, any C1 map g : U → R
d,

and any compact subset C ⊂ U , there is η0 > 0 such that for any η ∈ (0, η0],
any x ∈ C, and any cube F ⊂ R

d of side-length η containing x, we have
F ⊂ U and g(F ) is contained in a rectangular parallelepiped with sides

Kmax(λj , 1) η (j = 1, . . . , d),

where λ1, . . . , λd ∈ R≥0 are the eigenvalues of
√

(dgx)t(dgx), with multiplic-
ity.

(10 pt)
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Problem 49. [16, p. 117, Problem 4.4] Prove that for any ppt (X,B, µ, T )
and any n ∈ Z

+, hµ(T
n) = nhµ(T ).

(7 pt)

Problem 50. (Entropy is affine.) [16, p. 117, Problem 4.6]

(10 pt)

Problem 51. Let (π, λ) ∈ ΣA × R
A
+ and assume that for some n ≥ 0,

R̂n(π, λ) represents an IET which is a circle rotation. Prove that for any
τ ∈ T+

π , M(π, λ, τ) is a torus.
(10 pt)

(Hint: Using some fundamental facts which have been mentioned in the
course, we can reduce to n = 0. One may then prove that M(π, λ, τ) has
genus 1 by using the computational scheme from [19, Sec. 14], which I tried
to explain in Lecture #14.)

Problem 52. Let f : M → M be a measurable map, let µ and ν be σ-finite
(not necessarily finite!) measures on M which are f -invariant, and assume
that µ ≪ ν and that (f, ν) is ergodic and recurrent. Then µ = c · ν for some
c ≥ 0.

(10 pt)

(Comment: This type of fact is used for the uniqueness part of the proof
of [19, Thm. 7.2]; cf. [19, end of proof of Cor. 27.2]. Viana seems to consider
this fact to be obvious; and also Veech in [18, p. 237, line 9]; however I spent
some hours being confused about it!)

Hint: First verify that (f, µ) must also be ergodic and recurrent. Then
start comparing the restriction of µ and ν to any subset E with µ(E) and
ν(E) finite; here one can use [19, Lemma 25.2 and Remark 25.3], as well as
Cor. 1 in my Lecture #2.

Problem 53. Digest the proof of m̂1(Ŝ) < ∞ in Viana, [19, Sec. 23–24].
Write up the proof in your own words, and be prepared to discuss it with
your teacher! (15 pt.)

Problem 54. Digest the proof of the fact that almost every IET is uniquely
ergodic (using the existence of the invariant ergodic measure ν on C ×ΛA);
cf. [19, Sec. 28–29]. Write up the proof in your own words, and be prepared
to discuss it with your teacher! (15 pt.)
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Problem 55. (E). Let Q be a rational polygon having k vertices with angles
πmi/ni, i = 1, . . . , k. Here mi, ni ∈ Z

+ and gcd(mi, ni) = 1. Let M be the
translation surface obtained by unfolding the billiard flow in Q (cf. Lecture
#16 and [11, Sec. 1.5]). Express the number of singular points and their
conical angles in terms of (mi)

k
1 and (ni)

k
1 . Use your result together with

the formula [20, (18)] (wherein “mi” isn’t the same as here) to verify that
the genus of M is

g = 1 +
N

2

(

k − 2−
∑ 1

ni

)

(N = gcd(n1, . . . , nk)),

in agreement with [11, Lemma 1.2]. (8 pt.)

Problem 56. (E). Prove that for any translation surface M and any R > 0,
there are only finitely many saddle connections of length ≤ R on M . (Hence
the set of all saddle connections on M is countable.)

(8 pt.)

Problem 57. Let M be a translation surface. Prove that if there does not
exist any closed vertical geodesic on M , then every vertical geodesic ray on
M which does not end in a singular point is dense in M .

(10 pt.)

(Comments: I believe that it might be fun to try to solve this problem
without help! Alternatively you may see [11, Thm. 1.8]; but then please be
careful; the authors use the fact that their set A (and also ∂A) is “invariant
under the flow Fθ” – how should this be interpreted in order to be correct?
The issue is that the flow Fθ is discontinuous...)

Problem 58. Let M be a translation surface having κ singularities, with
conical angles 2π(mi + 1), i = 1, . . . , κ. Prove that M has a triangulation
such that each face is isometric to a triangle in R

2 and each singular point
of M is a vertex of the triangulation. Also prove that if F,E, V are the
number of faces, edges and vertices of such a triangulation, then

F − E + V = −
κ
∑

i=1

mi.

(Hence, using F − E + V = χ(M) = 2 − 2g, we have proved the formula
2g − 2 =

∑κ
i=1 mi.)

(10 pt.)

(Hint: ... is available upon request – as always...)
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Problem 59. Prove that for M path connected, the definition of H1(M)
given in Lecture #17 agrees with the standard definition ([5, Ch. 2.1]).

(10 pt.)

(Hint: This uses to a large extent the same ingredients as the proof of
the fact that H1(M) can be identified with the abelianization of π1(M); [5,
Thm. 2A.1].)

Problem 60. (The following is stated in [20, Sec. 1.2.5] without proof.) Let
M = M(π, λ, τ). As in Lecture # 17, for each β ∈ A, let [vβ ] ∈ H1(M,Z) be
the homology class represented by a vertical segment crossing from bottom
to top the rectangle R0

β = R1
β, with its endpoints joined by a horizontal

segment inside I. Prove that {[vβ ] : β ∈ A} spans H1(M,R). Prove also
that the kernel of the map

Φ : RA → H1(M,R), Φ(τ) :=
∑

β∈A

τβ[vβ ],

equals the kernel of Ωπ.
(10 pt.)

(Hint: One approach is to use the explicit formula for the intersection
form [20, (35)], together with the known fact that dimH1(M,R) = 2g and
the basic linear algebra facts from [20, Sec. 1.1.3] ≈ [19, Sec. 10]. You may
take the formula [20, (35)] as known – but you may also enjoy trying to
prove it, at least in some special cases.)

Problem 61. In the setting of Problem 60, prove that {[vβ ] : β ∈ A}
generate H1(M,Z). (10 pt.)
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