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1. Introduction & ergodicity





















12

1.1. Notes. This lecture mainly covers some stuff from Sarig, [40, Ch. 1].
My Def. 1 is [40, Def. 1.2]. For Poincaré’s Recurrence Theorem, see [40, Sec.
1.1].

Regarding my Def. 2, compare e.g. [25, p. 10, Def. 7] and [12, Ch. 8] (for
the special case of G a group).

As I point out on p. 3 of the lecture, in the development of ergodic theory
one often has to assume that (X,B, µ) is (the completion of) a standard
Borel space. See Sec. 5.2 in my notes to [40] for the relevant definitions and
basic facts; note that I have chosen to use a somewhat different terminology
that Sarig here. In particular I claimed in my lecture that if (X,B) is
a standard Borel space and µ is a probability measure on (X,B) then it is
“essentially equivalent” to specify an mpt T on (X,B, µ) or on the completed
space (X,Bµ, µ). See my notes regarding [40, Def. 1.2] for some remarks and
lemmata making this precise.

In this connection, it may be worth emphasizing what is the definition of
certain types of objects being isomorphic:

(1) Two measurable spaces (X1,B1) and (X2,B2) are said to be isomorphic
if there exists a bijection J : X1 → X2 such that both J and J−1 are mea-
surable. (This is the natural definition; the conditions mean exactly that “J
preserves all given structure”.)

(2a) Two measure spaces (X1,B1, µ1) and (X2,B2, µ2) are said to be strictly
isomorphic if there exists a measurable bijection J : X1 → X2 such that also
J−1 is measurable, and J∗(µ1) = µ2. (This is again the “natural definition”.
Note in particular that it follows that J−1

∗ (µ2) = µ1.)

(2b) Two measure spaces (X1,B1, µ1) and (X2,B2, µ2) are said to be almost
isomorphic (or isomorphic mod 0 ) if there exist X ′i ∈ Bi with µi(Xi\X ′i) = 0
for i = 1, 2, such that (X ′1,B1|X′1 , µ1|X′1) and (X ′2,B1|X′2 , µ1|X′2) are strictly
isomorphic.

(3) Two mpt’s (Xi,Bi, µi, Ti) (with Bi µi-complete1) are said to be isomor-
phic if there exist X ′i ∈ Bi for i = 1, 2 and a bijection J : X ′1 → X ′2, such
that µi(Xi\X ′i) = 0 and Ti(X

′
i) ⊂ X ′i for i = 1, 2, J and J−1 are measurable,

and J∗(µ1|X′1) = µ2|X′2 and T2 ◦ J = J ◦ T1|X′1 .

(Again see Sec. 5.2 in my notes to [40]; regarding (3) see also my notes
regarding [40, Def. 1.3].)

Homogeneous dynamics: See the first two pages of [34] regarding the
basic definitions; we will describe these in more detail in a later lecture. I
mentioned the fact that the geodesic flow on the unit tangent bundle of any

1I think that if (Xi,Bi, µi, Ti), i = 1, 2 are mpt’s with Bi not necessarily µi-complete,
then the most natural definition is to say that they are isomorphic if (Xi,Bµi

i , µi, Ti)
(i = 1, 2) are isomorphic.
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hyperbolic surface (of finite area) can be obtained as a special case; for this
cf. [34, Exc. 10–11 of Sec. 1.1] (I hope to say more about this later).

Also translation surfaces and Ns(Rd) (=the space of locally finite point
sets in Rd) we will define more carefully in later lectures.

The “Proposition 1” on p. 9 of my lecture is = Sarig’s [40, Prop. 1.1 (p.
5)]. Also the (very brief) stuff which I mention on p. 9 about mixing is taken
from Sarig’s [40, Sec. 1.4].
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2. Ergodic theorems: PET & consequences
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2.1. Notes. .

The first example on p. 4: This is a theorem by Weyl; cf. Problem 15 and
(e.g.) [12, Thm. 1.4 (and Sec. 4.4)]. The second example on p. 4: See e.g.
[12, Cor. 4.15]; note that this is also part of Problem 12.

In relation to Cor. 2 on p. 5, and for later use, we here discuss some classes
of topological spaces: When formulating results for “a general topological
space subject to some conditions”, the classes of spaces which we will most
often consider are (I think):

(1) Compact metrizable spaces.

(2) lcscH spaces, i.e. the topological spaces which are locally compact, sec-
ond countable and Hausdorff.

(3) Polish spaces, i.e. the topological spaces which are separable and metriz-
able with a complete metric.

Let here us note that “(1) ⇒ (2) ⇒ (3)”, i.e. any compact metric space
is lcscH, and any lcscH space is Polish. [Details: The implication (1) ⇒
(2) is quite basic; we need just point out that any compact metric space
is totally bounded; hence separable; and for metric spaces separability and
second countability are equivalent! The implication (2) ⇒ (3) lies deeper;
cf., e.g., [22, Thm. 5.3].]

Also in the proof of Cor. 2 (p. 5) we use the following fact: If X is an
lcscH space then Cc(X) is separable.2 — This follows from the answer here
(stackexchange), which applies since any lcscH space is easily seen to be
σ-compact (viz., can be expressed as a countable union of compact sets).
A key fact used there is that for any compact metric space K, C(K) is
separable; for this see e.g. [12, Lemma B.8].

Some more details for the end of the proof of Cor. 2 (p. 5): Here we are
actually using two basic general facts about weak convergence: Let X be
any metric space and let µ, µ1, µ2, . . . ∈ P (X):
(1) If S ⊂ Cb(X) and µn(f) → µ(f) for all f ∈ S, then µn(f) → µ(f) for
all f ∈ S (the closure of S in Cb(X)).
(2) If X is lcscH, and µn(f) → µ(f) for all f ∈ Cc(X), then µn → µ in
P (X) (weak convergence).

Proof of (1): Exercise! Proof of (2): This can be proved by using the fact
that for any µ ∈ P (X) and any ε > 0 there is some compact set K ⊂ X
such that µ(K) > 1 − ε; cf., e.g., [38, Thm. 2.18]3; and also using the fact
that for any compact subset K ⊂ X, there is some h ∈ Cc(X) satisfying
0 ≤ h ≤ 1 and h|K = 1; cf., e.g., [38, Lemma 2.12]. Note that for any such

2Cc(X) is a subspace of Cb(X), the space of all bounded continuous functions on X.
We always view Cb(X) as a normed vector space with the norm ‖f‖ := supx∈X |f(x)| (i.e.
the “supremum norm” or “L∞ norm”). Of course this also makes Cb(X) and its subspace
Cc(X) into metric spaces, with metric d(f1, f2) = ‖f1 − f2‖.

3noticing that every open subset of an lcscH space is σ-compact.

https://en.wikipedia.org/wiki/Totally_bounded_space
http://math.stackexchange.com/questions/757053/separability-of-functions-with-compact-support
http://math.stackexchange.com/questions/757053/separability-of-functions-with-compact-support
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h, and any f ∈ Cb(X) the product hf is in Cc(X)! We leave it as Problem
6 to carry out the details of the argument.

[Application of these facts in the proof of Cor. 2: Fix x ∈ X ′ and set

µN := N−1
∑N−1

k=0 δTk(x). Then AfN (x) = µN (f) for any f ∈ Cb(X). Thus

we know µN (fk) → µ(fk) for each k ∈ Z+; hence by (1) above we have
µN (f) → µ(f) for all f ∈ Cc(X), and in particular for all f ∈ Cc(X). By
(2) this implies µN → µ in P (X), i.e. {T k(x)}∞k=0 is equidistributed in X
wrt µ.]

Regarding the definition of the weak topology on P (X) (for X a metric
space), see, e.g., Billingsley, [5, Ch. 1] or Kallenberg, [20, Ch. 4]. In partic-
ular, for the “Portmanteau Theorem”, see [5, Thm. 2.1], and for the facts I
mentioned about the Prohorov distance, see [5, pp. 72–73]. Note that our
space “P (X)” is called “M(X)” in [12, Ch. 4], and “M” in [34, p. 114];
however in this course I prefer to let M(X) (for X a lcscH space) denote the
set of all locally finite Borel measures on X; cf. p. 7 of the lecture. For ba-
sics about M(X) we refer to Problem 14 and Kallenberg, [20, Thm. A2.3(i),
(ii)].

Everything in our brief discussion on pp. 8–9 about the setting with X a
compact metric space and T : X → X continuous can be found in [12, Ch.
4]. Indeed, our Thm. 2 is a special case of [12, Thm. 4.1]; our Cor. 1 is [12,
Cor. 4.2]; our Cor. 2 is a special case of [12, Thm. 4.10].
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3. Ergodic theorems: MET & PET – proofs
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3.1. Notes. .

This lecture corresponds to Sarig, [40, Sec. 2.1–2.3.1]. See also my notes
to [40]; in particular (in the “details” section) I elaborate on several of the
details in Sarig’s proofs of the MET and the PET (for f ∈ L∞).

Regarding the remaining step of the proof of the PET, i.e. treating f ∈ L1

and not only f ∈ L∞, see Sarig’s [40, Sec. 2.4] where a more general result
is proved. Alternatively, this is obtained as a special case of the Subadditive
Ergodic Theorem, [40, Thm. 2.7], as we will discuss in Lecture # 5. (The
proof of [40, Thm. 2.7] uses the PET, but only for functions in L∞.)

On p. 8 in the lecture I refer to “Billingsley” for a more thorough dis-
cussion about conditioning; the precise reference which I have in mind is
Billingsley, [4, Sec. 33–34].
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4. Conditional probabilities; ergodic decomposition
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4.1. Notes. .

This lecture corresponds to Sarig, [40, Sec. 2.3.2–3]. See my notes to [40]
for many more details on the proofs.

Regarding Theorem 2 (“addendum to Theorem 1”) in my lecture; cf.
Einsiedler and Ward, [12, Thm. 5.14(2)].

Regarding the proof of Theorem 3 (ergodic decomposition, [40, Thm.
2.5]), I was not able to follow Sarig’s proof of the ergodicity of µx for a.e.
x ∈ X. Instead I give a similar proof as in Einsiedler and Ward, [12, Thm.
6.2]. Again see my notes to [40] for more details.
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5. Introduction to homogeneous dynamics
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5.1. Notes.

pp. 1–2: As stated in the lecture, in this course we will generally not
work with other groups than Lie groups, and in fact seldom other Lie groups
than G = SLd(R) or G = ASLd(R). However it is convenient to be a bit
familiar with the more general framework of an arbitrary locally compact
group G. Theorems 1 and 2 (appropriately formulated) hold in this general
framework. A common simplifying assumption is to require G to also be
σ-compact; cf., e.g., [30, (0.36)] and [14, Ch. 2.3]. In our lecture we make
the even stronger assumption that G is second countable. This makes life
simple in certain ways. First of all, note that G is now an lcscH space. Also,
by Struble, [43], there exists a metric d on G which realizes the topology of
G, and which is left invariant, and which also has the property that all the
open balls Br(g) := {h ∈ G : d(g, h) < r} (g ∈ G, r > 0) have compact
closure.

To illustrate, let us prove some useful basic facts in this setting, making
use of a fixed metric d as above. Let Γ be a discrete subgroup of G.

Fact 1: dΓ := inf{d(γ1, γ2) : γ1 6= γ2 ∈ Γ} > 0.

(Proof: Since d is left invariant, dΓ := inf{d(γ, e) : γ ∈ Γ \ {e}}. Since Γ is
discrete there is an open set U ⊂ G with U ∩ Γ = {e}. Since U is open and
e ∈ U , there is some r > 0 such that Br(e) ⊂ U , and it follows that dΓ ≥ r.)

Fact 2: For any compact set K ⊂ G, the intersection Γ ∩K is finite.

(Proof: Otherwise there exist distinct γ1, γ2, . . . ∈ Γ ∩ K, and since K is
compact we can find a convergent subsequence, say {γnj}j≥1 where 1 ≤
n1 < n2 < · · · . Then d(γnj , γni)→ 0 as j, i→∞, contradicting dΓ > 0.)

Fact 3: Γ is countable.

(Proof: We have X = ∪∞n=1Bn(e) and each closed ball Bn(e) is compact;
hence the statement follows by using Fact 2.)

Let us also note that since X is a lcscH space, every open subset of X
is σ-compact (easy to see using [22, Thm. 5.3(i)⇒(v)]), and hence by [38,
Thm. 2.18], if λ is a Borel measure on X satisfying λ(K) < ∞ for every
compact set K, then λ is regular, and thus λ is a Radon measure in the
sense used in [14, p. vii]. We have used this to make our formulation of
Theorem 1 a bit simpler. For a proof of Theorem 1 (in the setting of general
locally compact groups), cf., e.g., [14, Thm. 2.10].

We point out that the study of invariant measures on X = Γ\G can be
carried out in the more general setting of G any locally compact group,
and Γ any closed subgroup of G, and one does not need to introduce a
fundamental domain for Γ\G in this development. Cf., e.g., [14, 2.6] and
[36, Ch. 1].
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For proofs of the claims surrounding the definition of µX in the lecture,
see Problems 21 and 22.

For completeness, we give here a proof of the last part of Theorem 2 in the
lecture (but this proof requires some understanding of [36, Ch. 1]): Assume
that there is a finite G-invariant Borel measure ν on X. Then Γ is a “lattice”
in the sense of [36, Def. 1.8], and by [36, Remark 1.9], G is unimodular, i.e.
the Haar measure µ on G is both left and right invariant. Using this fact,
as in the lecture it follows that µX is a G-invariant Borel measure on X
(possibly with µX(X) = ∞). However by [36, Lemma 1.4] (applied with
H = Γ and χ ≡ 1, and switching sides left ↔ right) a G-invariant Borel
measure on X is unique up to a scalar multiple; hence ν = c · µX for some
c > 0; and now we also see that µX(X) < ∞ since ν(X) < ∞, and so Γ is
a lattice (in the sense defined in our lecture).

p. 4: Ratner proved her measure classification theorem in [37] (1991);
we follow [34, Cor. 1.3.7] rather closely in our statement; cf. also [34, Thm.
1.3.4] for the claim that ϕR(x) is equidistributed in xS.

In the discussion making the conclusion more explicit, after having proved

that Γ̃ is a lattice in S̃ we claim that “by some more work” this implies that
J is proper; for details cf. [36, Thm. 1.13]. For the fact that this implies

that (Γe)S̃ (and thus also xS) is a closed regular submanifold of X, cf., e.g.,
[7, p. 81, Exc. 1].

Ratner’s Theorem plays a crucial role in the proofs of quite a large number
of startling results in several different areas of mathematics. See [34, Sec.
1.4] for a discussion of a few of these.

p. 5: For more details regarding the identification of Γ\G with T 1(Γ\H),
facts about the geodesic and horocycle flows, etc., see Problem 8 (= [34, pp.
8–9, Exc. 10–11]); and also [29].

p. 6: The classification of ergodic ϕt-invariant measures for G = SL2(R)
(and more generally for G semisimple and horospherical flows) was obtained
by Dani (1978) [9]; in the special case of X compact this had been done by
Furstenberg (1973) [16]; cf. also Veech, [44].

p. 7: The references to Dani and Dani-Smillie: [10] and [11].

References for Theorem 4: Selberg (unpublished work), Zagier [53], Sar-
nak [41].

Regarding weak-*-compactness and metrizability of the unit ball in Cc(X)∗,
cf., e.g., Folland [15, Thm. 5.18 and p. 171 (Exc. 50)]. We discussed the fact
that Cc(X) is separable (for X any lcscH space) in our notes to Lecture #2;
cf. Sec. 2.1.
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(One may note that the subset of positive functionals in Cc(X)∗ embeds as
a subset of the space M(X) of locally finite Borel measures on X, which we
introduced in Lecture #2 (p. 7), and the vague topology on M(X) induces
the weak-* topology on this subset.)

Let us remark that instead of Alaoglu’s Theorem, we could have referred
to Prohorov’s Theorem: Indeed, from the beginning of our proof of Theo-
rem 4 we have sequence {hyj}j≥1 in P (X), and our “Claim” on p. 8 shows
that this sequence is tight (viz., for any ε > 0 there is a compact set K ⊂ X
such that lim infj→∞ hyj (K) > 1 − ε). Hence by Prohorov’s theorem (cf.,
e.g., [20, Thm. 16.3]), there is a subsequence of {hyj}j≥1, say {hyjn}n≥1

where 1 ≤ j1 < j2 < · · · , which converges to some ν ∈ P (X) (weak conver-
gence) as n→∞!

p. 10: Here we apply ergodic decomposition for the flow {ϕt}; the proof
should be an easy modification of the proof of Theorem 3 in Lecture #4
(one first proves the pointwise ergodic theorem for flows; cf. Problem 23).
For a precise statement and proof, cf., e.g., [12, Thm. 8.20]; however note
that the proof for our special case (namely G = 〈R,+〉) should be easier
since we do have a pointwise ergodic theorem in this case.

Details on going from “ν =
∫
X νx dν(x)” to “ν = cµX+

∫
R+ hy dη(y)”: As

stated in the lecture, we first modify the νx’s on a null set – e.g. by setting
νx := µX for any “bad” x – so that νx is {ϕt}-invariant and ergodic for all
x ∈ X. As noted in the lecture, for each x ∈ X we now have νx = µX or
νx = hy for some y > 0. In other words, if we set X1 := {x ∈ X : νx = µX}
and X2 := X\X1 then there is a function τ : X2 → R>0 such that νx = hτ(x)

for all x ∈ X2. Let us prove that X1, X2 ∈ B (the Borel σ-algebra of X)
and that τ is Borel measurable. For any Borel subset B ⊂ R>0 we set
HB := ∪y∈BHy ⊂ X; this is a Borel subset of X. Note that µX(HR>0) = 0
but hy(HR>0) = 1 for all y > 0. Hence X1 = {x ∈ X : νx(HR>0) = 0}. Now
recall that the νx’s are conditional probabilities for the appropriate invariant
sub-σ-algebra F ⊂ B; hence the function x 7→

∫
X f dµx is B-measurable4

for every f ∈ L1(X,B, µ). Applying this with f = 1HR>0
it follows that

X1 ∈ B; hence also X2 ∈ B. Furthermore for any Borel set B ⊂ R>0 we
have µX(HB) = 0 and hy(HB) = 1 for all y ∈ B while hy(HB) = 0 for all
y ∈ R>0 \ B; hence τ−1(B) = {x ∈ X : νx(HB) = 1}, and again using the
fact that the νx’s are conditional probabilities it follows that τ−1(B) ∈ B.
Hence τ : X2 → R>0 is indeed Borel measurable.

4even F-measurable.
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Now the relation “ν =
∫
X νx dν(x)” means that for every f ∈ L1(X,B, ν)

we have

ν(f) =

∫
X
νx(f) dν(x)

=

∫
X1

µX(f) dν(x) +

∫
X2

hτ(x)(f) dν(x)

= ν(X1) · µX(f) +

∫
R>0

hy(f) dτ∗(ν)(x)

This proves the desired relation “ν = cµX +
∫
R+ hy dη(y)”, with c := ν(X1)

and η = τ∗(ν). �
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6. The Subadditive Ergodic Theorem
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6.1. Notes. .

p. 1, Theorem 1: This is a combination of Sarig, [40, Thm. 2.7 and Prop.

2.3], and we have replaced Sarig’s assumption “g(n) ∈ L1 ∀n” by the weaker

assumption g(1)+ ∈ L1 (where g(1)+(x) := max(0, g(1)(x))). The fact that
Sarig’s proof extends to this more general case is discussed in detail in my
notes to [40].

p. 1, the remark just below Theorem 1: See (my notes to) Sarig, [40, p.
34, Remark 2] regarding the fact that once we know that the limit g(x) :=

limn→∞A
f
n(x) exists for µ-a.e. x, it is fairly easy to show that g ∈ L1 and

that the convergence Afn → g also holds in the L1 norm.
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7. The Multiplicative Ergodic Theorem I
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7.1. Notes. .

p. 2 (Theorem 1(b)): Here when saying that x 7→ V i
x is measurable, we

need to have a σ-algebra on the Grassmannian Gr(d), the set of all linear
subspaces of Rd. In fact Gr(d) equals the disjoint union tdl=0 Gr(d, l) where

Gr(d, l) is the set of all l-dimensional linear subspaces of Rd, and as we will
now describe, each Gr(d, l) has the structure of a connected C∞-manifold.
The σ-algebra in question is simply the corresponding Borel σ-algebra.

The quickest way of giving Gr(d, l) a structure of a manifold is to express
it as a homogeneous space. Thus let G = GLd(R), and note that G acts on
the set Gr(d, l) through V 7→ gV = {gv : v ∈ V } (any V ∈ Gr(d, l), g ∈ G),
and this action is transitive. Hence if we fix any V0 ∈ Gr(d, l) and let H be
the corresponding stabilizer,

H := {h ∈ G : hV0 = V0},

then we get an identification (at the level of sets)

“G/H = Gr(d, l)”,

through

gH ↔ gV0 (any g ∈ G).

Note that H is a closed subgroup of G; hence G/H has a natural structure
as a C∞-manifold, of dimension dimG − dimH; cf., e.g., [19, Thm. 4.2].
(Any quotient G/H where G is a Lie group and H is a closed subgroup is
called a homogeneous space, although in this course we almost exclusively
consider the case when H = Γ, a discrete subgroup of G.) Alternatively one
may take G = O(d) in the above discussion. Cf. Problem 31.

p. 2: Regarding Theorem 1(c), the fact that the limit limn→∞
1
n log ‖An(x)v‖

is independent of the choice of the norm ‖ · ‖ on Rd: This is immediate from
the fact that any two norms on Rd are equivalent; cf. e.g. [26, Thm. 2.4-
5]. (More explicit statement: For any two norms ‖ · ‖1 and ‖ · ‖2 on Rd,
there exist constants 0 < c1 ≤ c2 such that c1‖x‖1 ≤ ‖x‖2 ≤ c2‖x‖1 for all
x ∈ Rd.)

p. 4: Regarding the claim that Theorems 1,2 extend to the more general
setting of a linear cocycle on an arbitrary vector bundle over the manifold
M , cf., e.g., Viana [50, Thms. 2.1, 2.2]. In that text, Viana is considering
a finite-dimensional vector bundle π : E → M over an arbitrary probability
space M , and assumes that E is endowed with a “Riemannian norm”. I
am not completely sure what the precise definitions of those things are. In
Problem 28, I ask you to find a way to clarify this.

p. 5: For the claim that the assumption that the norm on Tx(M) comes
from a fixed norm on Rd can be significantly loosened up: Again cf. Viana
[50, p. 16, around (36)].
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p. 8: Definition of a hyperbolic flow: Cf., e.g., [21, Def. 17.4.1].

p. 9: Definition of an Anosov diffeomorphism: Cf., e.g., [21, Def. 6.4.2].
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8. The Multiplicative Ergodic Theorem II
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8.1. Notes. .

In this lecture we mainly follow Sarig, [40, Sec. 2.6.2] (cf. also my notes to
Sarig’s notes). See also Viana, [51, Ch. 4], especially regarding measurability
issues.

p. 3, the identity
∏d
j=d−i+1 t

j
n(x) = ‖An(x)∧i‖: Note that Sarig discusses

this in detail, starting from the basic definitions, in his [40, Sec. 2.6.1] (see
also my notes to Sarig’s notes).

p. 6: The intuitive argument given here for the existence of the limit space
V r can be made rigorous; cf. Problems 35 and 36. (But I should stress that
my solutions to those problems use the same type of arguments as in Sarig,
[40, p. 55]; hence this does not really give a simplification of Sarig’s proof;
but perhaps a more conceptual perspective.)

p. 10, some more details regarding the PET in the invertible case: Note
that the (“original”) PET applied to T−1 says that

f̃(x) := lim
N→∞

1

N

N−1∑
k=0

f(T−k(x))

exists µ-a.e., and is (µ-a.e.) T−1-invariant. Using
∑N

k=1 f(T−k(x)) =

−f(x) +
∑N

k=0 f(T−k(x)) it follows that also

f̃(x) := lim
N→∞

1

N

N∑
k=1

f(T−k(x)) for µ-a.e. x.

Arguing now as in Sarig, [40, p. 47, Remark] (using ergodic decomposition
and the fact that the two σ-algebras Inv(T ) and Inv(T−1) are the same;
cf. also my notes regarding some details in Sarig’s proof), it follows that

f̃(x) = f(x) for µ-a.e. x. Indeed, this is in fact a special case of [40, p. 47,

Remark]; since if we set g(n) =
∑n−1

k=0 f ◦T k (this is a subadditive – and even

additive – cocycle) then g(n) ◦ T−n =
∑n

k=1 f ◦ T−k.
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9. Entropy I
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9.1. Notes. .

In this lecture we follow Sarig, [40, Sec. 4.1-4]. We will give proofs of the
theorems in the next lecture.

p. 2, Theorem 1: See [40, Prop. 4.3], and also [40, Thm. 4.1].

p. 3, Theorem 2: See [40, Prop. 4.4].

p. 5, Theorem 3: Note that both the statements of this theorem are very
useful to have. Indeed, if (X,B, µ, T ) is an invertible ppt with positive
entropy, hµ(T ) > 0, then there does not exist any strong generator with
finite entropy (cf. Sarig, [40, the proof of Prop. 4.6]), but there still often
exist generators!

pp. 6–7: Here we follow Sarig [40, Sec. 1.5.3-4].

p. 8, the proposition: See [40, Prop. 4.7].
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10. Entropy II
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10.1. Notes. .

This lecture is a continuation of Lecture #9; we continue to follow Sarig,
[40, Sec. 4.1-3].

p. 2–3; Lemmata 1 and 2: Cf. [40, p. 98 (bottom)].

p. 4, Theorem 4: This is [40, Theorem 4.1].

p. 6: For the definition of “α ≤ β” and “α = β”, cf. [40, p. 99 (top)]. Our
Theorem 5 is a somewhat generalized version of [40, Prop. 4.2].

pp. 7–8, regarding the conditional Jensen’s inequality, cf. [40, Prop. 2.2(3)],
and in particular my notes related to that result. (Note that ϕ is assumed
to be convex in [40, Prop. 2.2(3)], whereas our ϕ(t) = −t log t is concave;
hence we get ≤ instead of ≥ in Jensen’s inequality.)
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11. Pesin’s entropy formula
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11.1. Notes. .

I follow the papers by Ruelle [39] and Mañé [28] [27]. See also my notes
to those two papers.
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12. Pesin’s entropy formula II
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12.1. Notes. .

We follow the proof in Mañé [28]. See also my notes to that paper.

On p. 2, the example with Arnold’s cat map, note that since A =

(
2 1
1 1

)
is symmetric, the eigenspaces E0 and Eu are orthogonal and hence f−n(B(fn(x)))
is an ellipse with semi-axes exactly equal to ρλ−n1 and ρλ−2

2 . However the
picture is qualitatively correct for matrices A with eigenvalues |λ1| < 1 < λ2

also if E0 and Eu not orthogonal; for large n the ellipse f−n(B(fn(x))) is
very long and thin; one semi-axis has length � |λ1|−n and is very nearly
parallel with E0, and the other semi-axis (which is orthogonal to the first)
has length � λ−n2 .

It is also important to note that, for large n, the long thin ellipse f−n(B(fn(x)))
wraps itself around the torus many times, and will certainly (since the cat
map f is mixing) visit the ρ-ball B(x) many times. Hence to conclude that
Sn(f, ρ, x) equals the colored set which I’ve drawn on p. 2, it is important
to use that Sn(f, ρ, x) equals the full intersection ∩ni=0f

−i(B(f i(x))), and
not just “B(x) ∩ f−n(B(fn(x)))”; the latter set is much larger and consists
of many disconnected parts inside B(x). Also it is important that we fix ρ

sufficiently small. Indeed, if e.g. ρ >
√

1/2 then B(x) = T2 for all x and so
Sn(f, ρ, x) = T2 for all x!

In the general setting of Mañé’s paper, the above “non-wrapping prop-
erty” is contained in the statement of [28, Lemma 5] (which in turn makes
crucial use of [28, Lemma 4]). Indeed, by definition gn(Λn(y)) ⊂ Dρ(gn(x))/k1(gn(x)),
i.e. every point in gn(Λn(y)) can be uniquely expressed as gn(x) + y1 + y2

with y1 ∈ E0(gn(x)) and y2 ∈ Eu(gn(x)), ‖y1‖, ‖y2‖ < ρ(gn(x))/k1; and
now [28, Lemma 5] says that gn(Λn(y)) is an (E0(gn(x)), Eu(gn(x)))-graph,
which in particular means that for every y2 ∈ Eu(gn(x)) there is at most
one y1 ∈ E0(gn(x)) with gn(x) + y1 + y2 ∈ gn(Λn(y)).

Coming back to the case of the torus, it seems that in the case M =
Td (provided with any Riemannian metric, and also for an arbitrary map
f : Td → Td subject only to the assumptions which Mañé makes on his
first page), one can fairly easily follow all of Mañé’s proof directly using the
“ Rd mod Zd” coordinates on Td, i.e. without first making a fixed choice of a
finite number of coordinate neighborhoods covering Td. 5 When doing this,
there are only a few points in Mañé’s proof that require extra considerations.
Perhaps the main such point concerns the notion of an (E1, E2)-graph; this
notion was defined on [28, p. 98] when E = E1⊕E2 is a normed linear space
but now it seems appropriate to also make a definition of the following
kind: for any x ∈ Td and any two linear subspaces E1, E2 ⊂ Rd satisfying

5Actually what we do could be seen as: Around any given x ∈ Td, use the coordinate
chart ϕx : Ux → (− 1

2
, 1
2
)d ⊂ Rd where Ux = x + (− 1

2
, 1
2
)d ⊂ Td (natural notation), and

ϕx is the inverse of the map y 7→ x+ y, (− 1
2
, 1
2
)d → Ux.
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Tx(Td) = Rd = E1 ⊕ E2, a subset G ⊂ Td is called an (E1, E2)-graph if,
setting

cd :=
1

2

√
1

d
,

there is an open subset U ⊂ E2∩Bcd(0) and a C1-map Ψ : U → E1∩Bcd(0)
such that G = {x + Ψ(y2) + y2 : y2 ∈ U}. 6 Now when proving [28,
Lemma 4] there is a little extra discussion needed, to choose ξ sufficiently
small so that the “Bcd(0)”-containment required in the above definition is
guaranteed to hold.

6Note that our choice of cd guarantees that the whole set (E1∩Bcd(0))+(E2∩Bcd(0)) ⊂
Rd is injectively embedded in the torus, i.e. the map 〈y1, y2〉 7→ x + y1 + y2 from (E1 ∩
Bcd(0))× (E2 ∩Bcd(0)) to Td is injective.
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13. IETs; Reuzy-Veech renormalization; Teichmüller flow I
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13.1. Notes. .

The lecture goes through certain material from Viana, [49, Sec. 1—12].

pp. 1-2, notation; cf. [49, Sec. 1].

p. 3, induced transformation for a general ppt: This is in Sarig, [40, Sec.
1.6.4]. Note that TA is in general not defined on the whole set A but only
on the full measure subset A0. If we want a “genuine” ppt in the sense that
it has been defined in [40] then (as is standard) we can simply pass to the
set A1 consisting of all x ∈ A0 for which TnA(x) is defined for all n ≥ 1, i.e.

A1 =
∞⋂
n=1

T−nA (A).

This set has full measure in A. Thus: Consider the ppt (A1,BA1 , µA1 , TA|A1
).

(See also my notes to [40, Sec. 1.6.4].)

pp. 3–5, the Rauzy-Veech induction map; cf. [49, Sec. 2].

p. 6; cf. [49, Sec. 3–6].

p. 7, the definition of the translation surface M(π, λ, τ); cf. [49, Sec. 12].

p. 8; the formula for the area of M(π, λ, τ) is in [49, p. 54 (48)].
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14. IETs; Reuzy-Veech renormalization; Teichmüller flow II
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14.1. Notes. .

pp. 1–2: This is a brief survey of some stuff from [49, Sec. 13–14].

pp. 3–4: This is a brief survey of [49, Sec. 15].

pp. 5–6: Here we follow [49, Sec. 18]. Regarding the subset Ĥ′ ⊂ Ĥ on

which R̂ is a bijection, which I mention at the end of p. 6, see my notes to
[49, Cor. 18.2].

p. 7: Here we follow [49, Sec. 7].

p. 8: The definitions here are from [49, Sec. 20].
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15. IETs; Reuzy-Veech renormalization; Teichmüller flow III
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15.1. Notes. .

p. 1: Theorem 1 is [49, Thm. 7.2].

p. 2: The measures m̂ and m are defined in [49, Sec. 21]. (See also my
notes to [49, Sec. 21], especially regarding d1λ.)

p. 3: Also m̂c and mc are defined in [49, Sec. 21]. The quotient space Ŝ
is defined in [49, Sec. 20].

p. 4: Theorem 2 is [49, Thm. 24.1]. Viana proves this in [49, Sec. 23–24].
The concept of recurrence is defined on [49, p. 80]; cf. also Aaronson [1, Sec.
1.1]; one can fairly easily prove that a non-singular map is recurrent iff it is
conservative as defined in [1, p. 15(bottom)].

p. 5: This is [49, Lemma 25.1].

p. 6: The first return map is defined on [49, p. 80(middle)]; cf. also [1,
Sec. 1.5]. Lemma 2 on p. 6 is [49, Remark 25.3]. Lemma 3 is a variant of
[49, Lemma 25.4]; cf. my notes to Viana’s notes.

pp. 7–8: Here we follow [49, p. 82] and then [49, pp. 87–88] (see also
my notes about details in Viana’s proof of Prop. 25.5). At the bottom of
p. 8: Note that in order to conclude that (C ×ΛA, ν, R) is ergodic, it is not
sufficient to use Lemma 3 (p. 6) since (RN )|Λ∗ is not a bijection onto all of
C × ΛA. Viana does not seem to pay sufficient attention to the fact that
“C × ΛA consists of several copies of ΛA”. I have attempted to complete
the proof in my notes to Viana’s Cor. 27.2. [Brief outline, in the set-up of
the lecture: In the construction of Λ∗ (p. 8 of the lecture) we can take π
arbitrary and then arrange that πN = π. Then (RN )|Λ∗ is a bijection onto
{π}×ΛA, and so by Lemma 3 (p. 6 in the lecture), the fact that (Λ∗, νΛ∗ , R∗)
is ergodic implies that (D, νD, (R

N )D) is ergodic, for D = {π} × ΛA. The
fact that there is such an N for every π ∈ C can be shown to imply that
(C × ΛA, ν, R) is ergodic.]
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16. Translation surfaces I
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16.1. Notes. .

p. 1–2: For presentations of the various equivalent definitions of a trans-
lation surface, cf. [49, Sec. 11], but also, e.g. [32, Sec. 1] and [52, Sec. 1].

p. 2: The more general setting with quadratic differentials is for example
considered in Veech 1986 [46]; Veech 1990 [47]; Masur 1990 [31]; Veech 1998
[48]; Eskin-Masur 2001 [13].

p. 3: Some key references regarding asymptotics of closed geodesics and
saddle connections are Masur 1990 [31], Eskin-Masur 2001 [13],

p. 4: For Theorem 1, cf. Kerchhoff-Masur-Smillie 1986 [23]. For the
statement at the bottom of the page on existence of M and θ for which

(F
(θ)
t ) is minimal but not uniquely ergodic, cf. [32, Sec. 4] and the references

therein.

p. 5: For a description of the unfolding procedure, see [33, Sec. 1.5]. Our
ex. 1 is from loc. cit., and our ex. 2 is a somewhat generalized version of the
example in [32, Fig. 2 and Thm. 2].

p. 6, on billiards in non-rational polygons: See [17, Question 47] regarding
the first open problem. The ergodicity result by Kerchhoff-Masur-Smillie is
proved in [23, Sec. 5]. Regarding the second open problem, cf., e.g., [17,
Question 46] and [42].

p. 6, on more general billiards: Cf., e.g., the book by Chernov and Markar-
ian, [8].
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17. Translation surfaces II
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17.1. Notes. .

p. 1: A detailed description of the complex orbifold structure onAg(m1, . . . ,mκ)
(and also the more general analogous spaces for quadratic differentials) can
be found in Veech 1990, [47]. In fact Ag(m1, . . . ,mκ) is obtained from a
complex affine manifold (“V (π)” in [47]) of (complex) dimension 2g+κ−1,
when taking the quotient by the action of a discrete group of biholomor-
phisms. The classification of the connected components of Ag(m1, . . . ,mκ)
was obtained in Kontsevich & Zorich, 2003, [24].

p. 1: Regarding the real/complex analytic theory of the Teichmüller space
Tg, cf., e.g., Abikoff [2] and Nag [35].

pp. 2–3: For the statements we make about the map Ŝ(C) → A′m, cf.
Boissy, [6, Lemma 2.1 and Prop. 2.2]; note that the key to prove the injec-
tivity of the map is Veech 1982 [45, Prop. 9.1].

p. 4: Regarding the fact that the componentsAC andAC′ ofAg(m1, . . . ,mκ)
are equal iff C and C ′ belong to the same extended Rauzy class: See Kont-
sevich & Zorich, [24, Appendix A] (they attribute this fact to Veech 1982
[45]; but I do not see exactly how to derive the statement from that paper).

p. 4, Theorem 1: See Veech 1986 [46], where much more is proved! In our
formulation of Theorem 1 we write m̃1 for the natural induced measure on
{M ∈ AC : area(M) = 1}; recall that by contrast, m̂1 has support on all
{M ∈ AC : area(M) ≤ 1}. Here is one way to define m̃1, normalized to be
a probability measure:

m̃1(E) =
m̂1({λM : λ ∈ (0, 1], M ∈ E})

m̂1(AC)
,

for any Borel subset E ⊂ AC ∩ {area = 1}, where λM denotes the t.s. M
scaled by λ (thus area(λM) = λ2 for M ∈ E).

p. 4: The perspective of considering the SL2(R)-invariant point processes
in R2 mentioned here is important in Veech 1998 [48] and Eskin & Masur
2001 [13].

p. 5: For the general definition of the singular homology group Hn(M),
cf., e.g., Hatcher, [18, Ch. 2]. The fact that our non-standard definition
of H1(M) is equivalent with the standard one (for M path connected) is
essentially seen from the proof of the fact that H1(M) can be identified
with the abelianization of π1(M) [18, Thm. 2A.1]; see Problem 59!

p. 6: Regarding the canonical basis of a compact orientable surface of
genus g; cf. [18, Ex. 2A.2].

p. 6: Note that “H1(M,R) := H1(M)⊗Z R” is not the general definition
of “homology with coefficients” [18, pp. 153–]; however it holds for Z and
R and a general space M ; cf. [18, Thm. 3A.3 and Prop. 3A.5(3)]. Also,
“H1(M) := H1(M)∗” (dual Z-module) and “H1(M,R) := H1(M,R)∗” (dual
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R-module) are not the general definitions of the cohomology groups [18, Ch.
3.1]; however these relations are valid for M a compact oriented surface; cf.
[18, Thm. 3.2 and Cor. 3.3].

p. 6, regarding the definition of γ(p, `) when passing through a singular
point: It seems to me that we should then continue along the next separatrix
in the counter-clockwise direction (contrary to what Viana writes on [50, p.
3]); namely in order for the first-return map to I for the vertical flow on
M(π, λ, τ, h) to be exactly the IET fπ,λ. (Recall that by definition, each
subinterval Iα ⊂ I is closed to the left and open to the right.)

p. 7, Theorem 2: This is [50, Theorem A], which is proved in [50, Sec.
3]. (It is not clear to me that the assumption that the vertical flow on
M is uniquely ergodic necessarily implies that M has a presentation as a
suspension surface M(π, λ, τ); hence this may have to be added as an extra
assumption in the theorem.)

p. 7: Regarding the statement that {[vα] : α ∈ A} spans H1(M); cf.
Problem 60.

p. 8: This is a brief outline of the argument in [50, Sec. 3].
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18. Lyapunov exponents of Teichmüller flows
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18.1. Notes. .

p. 2: Remark 1 generalizes [50, Remark 2.3].

p. 4: Prop. 1 is [50, Prop. 4.3] and Cor. 1 is [50, Cor. 4.5].

p. 5: Regarding the Zorich map, see [49, Sec. 8 and Sec. 30]. Regarding
the Zorich cocycle, see [50, Sec. 4.3].

p. 6: Regarding the claim that Z preserves m1|Z∗ since Z is the first return
map of R : H → H to Z∗: Note that in fact m1(Z∗) <∞ (this is equivalent
to µ(C ×ΛA) <∞ in Theorem 1); hence Lemma 2 from Lecture #15 really
applies. For Theorem 1, see [49, Prop. 30.2 and Thm. 8.2]. For Theorem 2,
see [50, Prop. 4.7]. For Theorem 3, see [50, Prop. 5.1]. Finally, the simplicity
statement, θ1 > · · · > θg > 0, is (equivalent with) [50, Theorem C]; this is
the Zorich-Kontsevich conjecture, which was proved by Avila and Viana in
[3].

p. 8: Theorem 4 is [50, Prop. 6.1]; Regarding the remark about Lyapunov
exponent 0, cf. [50, Cor. 6.3].
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