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Abstract. The perceived randomness in the time evolution of “chaotic” dynamical systems
can be characterized by universal probabilistic limit laws, which do not depend on the fine
features of the individual system. One important example is the Poisson law for the times
at which a particle with random initial data hits a small set. This was proved in various
settings for dynamical systems with strong mixing properties. The key result of the present
study is that, despite the absence of mixing, the hitting times of integrable flows also satisfy
universal limit laws which are, however, not Poisson. We describe the limit distributions for
“generic” integrable flows and a natural class of target sets, and illustrate our findings with
two examples: the dynamics in central force fields and ellipse billiards. The convergence of
the hitting time process follows from a new equidistribution theorem in the space of lattices,
which is of independent interest. Its proof exploits Ratner’s measure classification theorem
for unipotent flows, and extends earlier work of Elkies and McMullen.

1. Introduction

Let (M,F , ν) be a probability space and consider a measure-preserving dynamical system

(1.1) ϕt :M→M.

A fundamental question is how often a trajectory with random initial data x ∈ M intersects
a given target set D ∈ F within time t. If D is fixed, this problem has led to many important
developments in ergodic theory, which show that, if ϕt is sufficiently “chaotic” (e.g., partially
hyperbolic), the number of intersections satisfies a central limit theorem and more general
invariance principles. One of the first results in this direction was Sinai’s proof of the central
limit theorem for geodesic flows [42] and, with Bunimovich, the finite-horizon Lorentz gas [10].
We refer the reader to [2, 15, 21, 47] for further references to the literature on this subject. In
the case of non-hyperbolic dynamical systems, such as horocycle flows or toral translations,
the classical stable limit laws generally fail and must be replaced by system-dependent limit
theorems [6, 7, 8, 16, 17, 22]. If on the other hand one considers a sequence of target sets
Dρ ∈ F such that ν(Dρ) → 0 as ρ → 0, then the number of intersections within time t (now
measured in units of the mean return time to Dρ) satisfies a Poisson limit law, provided ϕt is
mixing with sufficiently rapid decay of correlations. The first results of this type were proved
by Pitskel [36] for Markov chains, and by Hirata [25] in the case of Axiom A diffeomorphisms
by employing transfer operator techniques and the Ruelle zeta function. (Hirata’s paper was
in fact motivated by Sinai’s work [43, 44] on the Poisson distribution for quantum energy
levels of generic integrable Hamiltonians, following a conjecture by Berry and Tabor [3, 32] in
the context of quantum chaos.) For more recent studies on the Poisson law for hitting times
in “chaotic” dynamical systems, see [1, 11, 20, 23, 24, 29, 39] and references therein.

In the present paper we prove analogous limit theorems for integrable Hamiltonian flows ϕt,
which are not Poisson yet universal in the sense that they do not depend on the fine features
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of the individual system considered. The principal result of this study is explained in Section
2 for the case of flows with two degrees of freedom, where the target set is a union of small
intervals of varying position, length and orientation on each Liouville torus. In the limit of
vanishing target size, the sequence of hitting times converges to a limiting process which is
described in Section 3. Sections 4 and 5 illustrate the universality of our limit distribution
in the case of two classic examples: the motion of a particle in a central force field and the
billiard dynamics in an ellipse. In both cases, the limit process for the hitting times, measured
in units of the mean return time on each Liouville torus, is independent of the choice of
potential or ellipse, and in fact only depends on the number of connected components of the
target set on the invariant torus. The results of Section 3 are generalized in Section 6 to
integrable flows with d degrees of freedom, where unions of small intervals are replaced by
unions of shrinking dilations of k given target sets. The key ingredient in the proof of the limit
theorems for hitting time statistics is the equidistribution of translates of certain submanifolds
in the homogeneous space G/Γ, where G = SL(d,R)n (Rd)k and Γ = SL(d,Z)n (Zd)k. These
results, which are stated and proved in Section 7, generalize the equidistribution theorems by
Elkies and McMullen [18] in the case of nonlinear horocycles (d = 2, k = 1), and are based
on Ratner’s celebrated measure classification theorem. The application of these results to the
hitting times is carried out in Section 8, and builds on our earlier work for the linear flow on
a torus [34].

2. Integrable flows with two degrees of freedom

To keep the presentation as transparent as possible, we first restrict our attention to Hamil-
tonian flows with two degrees of freedom, whose phase space is the four-dimensional symplectic
manifold X . (The higher dimensional case is treated in Section 6.) The basic example is of
course X = R2 × R2, where the first factor represents the particle’s position and the second
its momentum. To keep the setting more general, we will not assume Liouville-integrability
on the entire phase space, but only on an open subset M ⊂ X , a so-called integrable island.
Liouville integrability [5, Sect. 1.4] implies that there is a foliation (the Liouville foliation) of
M by two-dimensional leaves. Regular leaves are smooth Lagrangian submanifolds ofM that
fill M bar a set of measure zero. A compact and connected regular leaf is called a Liouville
torus. Every Liouville torus has a neighbourhood that can be parametrised by action-angle
variables (θ,J) ∈ T2 ×U , where T2 = R2/Z2 and U is a bounded open subset of R2. In these
coordinates the Hamiltonian flow is given by

(2.1) ϕt : T2 × U → T2 × U , (θ,J) 7→ (θ + tf(J),J),

with the smooth Hamiltonian vector field f = ∇JH. In what follows, the Hamiltonian
structure is in fact completely irrelevant, and we will assume U is a bounded open subset of
Rm (m ≥ 1 arbitrary), and f : U → R2 a smooth function. We will refer to the corresponding
ϕt in (2.1) simply as an integrable flow. Even in the Hamiltonian setting, it is often not
necessary to represent the dynamics in action-angle variables to apply our theory; cf. the
examples of the central force field and billiards in ellipses discussed in Sections 4 and 5.

We will consider random initial data (θ,J) that is distributed according to a given Borel
probability measure Λ on T2 × U . One example is

(2.2) Λ = LebT2 ×λ,

where LebT2 is the uniform probability measure on T2 and λ is a given absolutely continuous
Borel probability measure on U . This choice of Λ is ϕt-invariant. One of the key features
of this work is that our conclusions also hold for more singular and non-invariant measures
Λ, such as Λ = δθ0 × λ, where δθ0 is a point mass at θ0. The most general setting we will
consider is to define Λ as the push-forward of a given (absolutely continuous) probability
measure λ on U by the map J 7→ (θ(J),J), where θ : U → T2 is a fixed smooth map; this
means that we consider random initial data in T2 × U of the form (θ(J),J), where J is a
random point in U distributed according λ. This is the set-up that we use in the formulation
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of our main result, Theorem 1 below. We will demonstrate in Remark 2.1 that this setting is
indeed rather general, and allows a greater selection of measures than is apparent; for instance
invariant measures of the form (2.2) can be realized within this framework.

We also note that the smoothness assumptions on f and θ are less restrictive than they
may appear: We can allow discontinuities in the derivatives of theses maps, provided there
is an open subset U ′ ⊂ U with λ(U \ U ′) = 0, so that the restrictions of f and θ to U ′ are
smooth. Furthermore, the smoothness requirements are a result of an application of Sard’s
theorem in Theorem 11 and may in fact be replaced by finite differentiability conditions.

We consider target sets Dρ = D(k)
ρ that, in each leaf, appear as disjoint unions of k short

intervals transversal to the flow direction. To give a precise definition of Dρ, fix smooth
functions uj : U → S1, φj : U → T2, and `j : U → R>0 (j = 1, . . . , k) which describe the
orientation, midpoint and length of the jth interval in each leaf. Set

(2.3) D(k)
ρ =

k⋃
j=1

D(uj ,φj , ρ`j),

where

(2.4) D(u,φ, `) :=

{(
φ(J) + su(J)⊥,J

)
∈ T2 × U

∣∣∣∣ − `(J)

2
< s <

`(J)

2

}
,

with u(J)⊥ denoting a unit vector perpendicular to u(J). This yields, in each leaf T2 ×{J},
a union of k intervals, where the jth interval has length ρ`j(J), is centered at φj(J) and
perpendicular to uj(J). As mentioned, we assume that each interval is transversal to the flow
direction, i.e. uj(J) ·f(J) 6= 0 for all j ∈ {1, . . . , k} and all J ∈ U ; in fact we will even assume
uj(J) · f(J) > 0, without any loss of generality.

Now, for any initial condition (θ,J), the set of hitting times

(2.5) T (θ,J ,Dρ) := {t > 0 | ϕt(θ,J) ∈ Dρ}
is a discrete (possibly empty) subset of R>0, the elements of which we label by

(2.6) 0 < t1(θ,J ,Dρ) < t2(θ,J ,Dρ) < . . . .

We call ti(θ,J ,Dρ) the ith entry time to Dρ if (θ,J) /∈ Dρ, and the ith return time to Dρ
if (θ,J) ∈ Dρ. A simple volume argument (Santalo’s formula [12]) shows that for any fixed
J ∈ U such that the components of f(J) are not rationally related, the first return time to
Dρ on the leaf T2 × {J} satisfies the formula∫

Dρ
t1(θ,J ,Dρ) dνJ (θ) = 1,(2.7)

where νJ is the invariant measure on Dρ obtained by disintegrating Lebesgue measure on
T2 × {J} with respect to the section Dρ of the flow ϕt. The measure νJ is explicitly given by∫

Dρ
g dνJ =

k∑
j=1

(
uj(J) · f(J)

) ∫ ρ`j(J)/2

−ρ`j(J)/2
g
(
φ(J) + su(J)⊥, J

)
ds, ∀g ∈ C(Dρ).(2.8)

Recall that by transversality uj(J) · f(J) > 0. It follows that the mean return time with
respect to νJ equals

σ(k)(J)

ρ
, where σ(k)(J) :=

1∑k
j=1 `j(J)uj(J) · f(J)

.(2.9)

If we also average over J with respect to the measure λ, the mean return time becomes

σ
(k)
λ

ρ
, where σ

(k)
λ :=

∫
U
σ(k)(J)λ(dJ).(2.10)

We have assumed here that the pushforward of λ by f has no atoms at points with rationally
related coordinates. This holds in particular if λ is f -regular as defined below.
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For J a random point in U distributed according λ, the hitting times tn(θ(J),J ,D(k)
ρ )

become random variables, which we denote by τ
(k)
n,ρ . Also σ(k)(J) becomes a random variable,

which we denote by σ(k). In this paper, we are interested in the distribution of the sequence

of entry times τ
(k)
n,ρ rescaled by the mean return time (2.10), or by the conditional mean return

time (2.9).
Finally we introduce two technical conditions. Note that f(J) 6= 0 for all J ∈ U , by the

transversality assumption made previously. We say that λ is f -regular if the pushforward of
λ under the map

(2.11) U → S1, J 7→ f(J)

‖f(J)‖
,

is absolutely continuous with respect to Lebesgue measure on S1. We say a k-tuple of smooth
functions φ1, . . . ,φk : U → T2 is (θ, λ)-generic, if for all m = (m1, . . . ,mk) ∈ Zk \ {0} we
have

(2.12) λ

({
J ∈ U :

k∑
j=1

mj

(
φj(J)− θ(J)

)
∈ Rf(J) + Q2

})
= 0.

The following is the main result of this paper.

Theorem 1. Let f : U → R2 and θ : U → T2 be smooth maps, λ an absolutely continuous
Borel probability measure on U , and for j = 1, . . . , k, let uj : U → S1, φj : U → T2 and
`j : U → R>0 be smooth maps. Assume uj(J) · f(J) > 0 for all J ∈ U , j ∈ {1, . . . , k}. Also
assume that λ is f -regular and (φ1, . . . ,φk) is (θ, λ)-generic. Then there are sequences of
random variables (τi)

∞
i=1 and (τ̃i)

∞
i=1 in R>0 such that in the limit ρ→ 0, for every integer N ,

(2.13)

(
ρτ

(k)
1,ρ

σ
(k)
λ

, . . . ,
ρτ

(k)
N,ρ

σ
(k)
λ

)
d−→ (τ1, . . . , τN ),

and

(2.14)

(
ρτ

(k)
1,ρ

σ(k)
, . . . ,

ρτ
(k)
N,ρ

σ(k)

)
d−→ (τ̃1, . . . , τ̃N ).

Note that if σ
(k)
λ = ∞ then (2.13) is trivial, with τi = 0 for all i, since τ

(k)
i,ρ < ∞ a.s. for

every fixed ρ.

Remark 2.1. Recall that Theorem 1 assumes that the initial data is (θ(J),J) with J ∈ U
distributed according to λ. This seems to exclude natural choices such as invariant measures
of the form (2.2). Let us demonstrate that this is not the case. The setting of Theorem 1
(as well as its generalisation to arbitrary dimension d ≥ 2, Theorem 2 below) in fact permits
random initial data (θ,J) distributed according to any probability measure Λ on Td × U of
the form Λ = ι∗λ0, where λ0 is an absolutely continuous Borel probability measure on an open
subset U0 ⊂ Rm0 for some m0 ∈ Z+, and some smooth map ι : U0 → Td × U . Indeed, such Λ
can be realized within the setting of Theorem 1 by using

(2.15) U0, f0 := f ◦ pr2 ◦ι, θ0 := pr1 ◦ι, λ0

in place of

(2.16) U , f , θ, λ,

where pr1, pr2 are the projection maps from Td × U to Td and U , respectively. Of course,
for Theorem 1 to apply we need to assume that λ0 is f0-regular, and that (φ1, . . . ,φk) is
(θ0, λ0)-generic.
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Figure 1. Numerically computed F1(s) and F2(s), compared with the expo-
nential function e−s and the explicit formula (3.12) for F1(s). The inset shows
the difference between the numerically computed F1(s) and (3.12).

Remark 2.2. We describe the limit sequences (τi)
∞
i=1 and (τ̃i)

∞
i=1 in Section 3. A particular

highlight is that in the case of a single target (k = 1), or in the case of multiple targets with
the same lengths `1 = . . . = `k and orientiation u1 = . . . = uk, the distribution of (τ̃i)

∞
i=1

is universal. This means that it is independent of the choice of U , f , λ, target orientations,
positions and sizes. In fact a weaker form of universality holds also in the general case, and
for both (τi)

∞
i=1 and (τ̃i)

∞
i=1. Indeed, let us define the target weight functions L = (L1, . . . , Lk)

and L̃ = (L̃1, . . . , L̃k) from U to (R>0)k, through

(2.17) Lj(J) = σ
(k)
λ `j(J)uj(J) · f(J)

and

(2.18) L̃j(J) = σ(k)(J) `j(J)uj(J) · f(J).

Then the distribution of (τi)
∞
i=1 depends on the system data only via the distribution of L(J)

for J random in U according to λ, and similarly (τ̃i)
∞
i=1 depends only on the distribution of

L̃(J). Furthermore, both (τi)
∞
i=1 and (τ̃i)

∞
i=1 yield stationary point processes, i.e. the random

set of time points {τi} has the same distribution as {τi − t} ∩ R>0 for every fixed t ≥ 0, and
similarly for {τ̃i} (cf. Section 6).

Remark 2.3. Theorem 1 is stated for the convergence of entry time distributions. It is a
general fact that the convergence of entry time distributions implies the convergence of return
time distributions and vice versa, with a simple formula relating the two [33].

3. The limit distribution

We will now describe the limit processes (τi)
∞
i=1 and (τ̃i)

∞
i=1 in terms of elementary random

variables in the unit cube. A more conceptual description in terms of Haar measure of the
special linear group SL(2,R) will be given in Section 6.



6 CARL P. DETTMANN, JENS MARKLOF, AND ANDREAS STRÖMBERGSSON

Pick uniformly distributed random points (a, b, c) in the unit cube (0, 1)3. The push-forward
of the uniform probability measure under the diffeomorphism

(3.1) (0, 1)3 → F, (a, b, c) 7→
(

sin(π3 (a− 1
2)),

cos(π3 (a− 1
2))

1− b
, πc

)
yields the probability measure µF = 3

π2 y
−2dx dy dθ on the domain

F =
{

(x, y, θ) ∈ R3 : |x| < 1
2 , x

2 + y2 > 1, y > 0, 0 < θ < π
}
.(3.2)

For x, y, θ ∈ R with y > 0 and 0 ≤ θ < π, consider the Euclidean lattice

L(x, y, θ) = kθ

(√
y 0

0 1/
√
y

)(
1 0
x 1

)
Z2, where kθ :=

(
cos θ sin θ
− sin θ cos θ

)
.(3.3)

A basis for this lattice is given by the two vectors

b1 = y−1/2 kθ

(
y
x

)
and b2 = y−1/2 kθ

(
0
1

)
.(3.4)

Note that det(b1, b2) = 1 and hence L(x, y, θ) has unit covolume. If we choose (x, y, θ) random
according to the probability measure µF , then L(x, y, θ) represents a random Euclidean lattice
(of covolume one). Similarly, for α ∈ T2, the shifted lattice

L(x, y, θ,α) = kθ

(√
y 0

0 1/
√
y

)(
1 0
x 1

)
(Z2 +α)(3.5)

represents a random affine Euclidean lattice if in addition α is uniformly distributed in T2.
For a given affine Euclidean lattice L and ` > 0, consider the cut-and-project set

(3.6) P(L, l) :=

{
y1 > 0 :

(
y1

y2

)
∈ L, − l

2
< y2 <

l

2

}
⊂ R>0.

Let (x, y, z) be randomly distributed according to µF , α1, . . . ,αk be independent and uni-
formly distributed in T2, and J ∈ U distributed according to λ. Let Lj(J) be as in (2.17).
We will prove in Section 8 that the elements of the random set

(3.7)
k⋃
j=1

P
(
L(x, y, θ,αj), Lj(J)

)
,

ordered by size, form precisely the sequence of random variables (τi)
∞
i=1 in Theorem 1. This

sequence evidently only depends on the choice of target weight function L and the choice of

U , λ. Similarly, replacing Lj(J) by L̃j(J) (cf. (2.18)) in (3.7), we obtain the sequence (τ̃i)
∞
i=1.

Note that if `1 = . . . = `k and u1 = . . . = uk, then L̃j(J) = 1/k, and thus (τ̃i)
∞
i=1 is indeed

universal as we stated below Theorem 1.
Let us describe in some more detail the distribution of the first entry times τ1 and τ̃1. In

the case of k holes, we have

(3.8) P(τ1 > s) =

∫
U
Fk(s;L(J))λ(dJ),

(3.9) P(τ̃1 > s) =

∫
U
Fk(s; L̃(J))λ(dJ),

with the universal function

(3.10) Fk(s, l) = P
(
P(L(x, y, θ,αj), lj) ∩ (0, s] = ∅ for all j = 1, . . . , k

)
,

where (x, y, θ) is taken to be randomly distributed according to µF and α1, . . . ,αk independent
and uniformly distributed in T2, and l = (l1, . . . , lk). It follows from the invariance properties
of the underlying Haar measure (this will become clear in Section 6) that for any h > 0

(3.11) Fk

(
s

h
, hl

)
= Fk(s, l).
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In the case of one hole (k = 1), the function F1(s) := F1(s, 1) appears as a limit in various
other problems; notably it corresponds to the distribution of free path lengths in the periodic
Lorentz gas in the small scatterer limit [4, 34]. It is explicitly given by

F1(s) =


3

π2
s2 − s+ 1 (0 ≤ s ≤ 1);

12

π2
(Ξ(s)− Ξ(s/2)) +

6

π2
s log s+

(6 + 6 log 2

π2
− 2
)
s+

18 log 2

π2
(1 ≤ s),

(3.12)

where Ξ(s) for s > 0 is defined by Ξ′′(s) = (1 − s−1)2 log |1 − s−1| and Ξ(1) = Ξ′(1) = 0. In
particular F1(s) has a heavy tail: One has

F1(s) =
2

π2s
+O

( 1

s2

)
as s→∞.(3.13)

The formula (3.12) was derived in [46, Sec. 8]; cf. also [4, Theorem 1] and [14]. We are not aware
of explicit formulas for the multiple-hole case k > 1. In this case we evaluate the right hand
side of (3.10) numerically using a Monte Carlo algorithm. That is, we repeatedly generate a
random tuple (x, y, θ,α1, . . . ,αk) as described above, and then determine the smallest s > 0
such that for some j ∈ {1, . . . , k} there exists a lattice point (s, y2) ∈ L(x, y, θ,αj) in the strip
−lj/2 < y2 < lj/2. In more detail, for given j, in order to determine the left-most point in
the intersection of L(x, y, θ,αj) and the strip R>0× (−lj/2, lj/2), one may proceed as follows.
Write L(x, y, θ,αj) = β + Zb1 + Zb2 with b1, b2 as in (3.4) and β ∈ R2. After possibly
interchanging b1 and b2, and then possibly negating b1, we may assume that the line Rb2 does
not coincide with the x-axis and that the half plane R>0b1 + Rb2 intersects the x-axis in the
interval (0,+∞). Now determine the smallest integer m0 for which the line β + m0b1 + Rb2

intersects the strip R>0× (−lj/2, lj/2), and then successively for m = m0,m0 + 1,m0 + 2, . . .,
check whether there is one or more integers n for which β+mb1 + nb2 lies in the strip. Note
that once this happens for the first time, say for (s′, y′) = β + m1b1 + nb2, we only need to
investigate at most finitely many further m-values m = m1 + 1,m1 + 2, . . ., namely those for
which the line β +mb1 + Rb2 intersects the box (0, s′)× (−lj/2, lj/2).

Our calculation for F2(s) := F2(s, (1
2 ,

1
2)) used 108 random lattices. The result is presented

in Figure 1. We tested the algorithm by using it to calculate F1(s) and comparing the resulting
graph with the explicit formula (3.12).

4. Central force fields

The dynamics of a point particle subject to central force field in R3 takes place in a plane
perpendicular to its angular momentum, which is a constant of motion. We choose a coordinate
system in which the angular momentum reads (0, 0, L), L ≥ 0. The equations of motion for a
particle of unit mass read in polar coordinates

(4.1) φ̇ =
L

r2
, ṙ = ±

√
2[E − V (r)]− L2

r2
,

where V (r) is the potential as a function of the distance to the origin, and E the total energy.
It will be convenient to set J = (E,L), although this choice does not represent the canonical
action variables in this problem. The equations of motion separate, and the dynamics in r is

described by a one-dimensional Hamiltonian with effective potential V (r) + L2

2r2
. For a given

initial r0 = r0(J), the dynamics takes place between the periastron r− = r−(J) ≤ r0(J)
and the apastron r+ = r+(J) ≥ r0(J), the minimal/maximal distance to the origin of the
particle trajectory with energy E and angular momentum L. We will consider cases when
the motion is bounded, i.e., 0 < r− ≤ r+ < ∞. Then these values are the turning points

of the particle motion, and thus solutions to V (r) + L2

2r2
= E. The solution of the equations

of motion (r(t), φ(t)) with (r(0), φ(0)) = (r0, φ0) and initial radial velocity ṙ(0) ≥ 0 is either
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Figure 2. Numerical simulations for the entry time distribution P(τ̃1 > s) for
the potential V (r) = r − 1, with different holes sizes ρ. We consider particles
of mass m = 1 with initial position in polar coordinates (r0, φ0) = (1,−2),
initial velocity v = 0.3, initial angles uniform in [0.5, 1] with a sample size 108.
The target is located at radius r0 and angle interval [−ρ/2, ρ/2]. The deviation
from the predicted distribution F2(s) is shown in the inset.

circular with ṙ(t) = 0 for all t, or otherwise implicitly given by

(4.2) t =



∫ r(t)

r0

dr′√
2[E − V (r′)]− L2

r′2

+ nT (ṙ(t) ≥ 0)

(∫ r+

r0

+

∫ r+

r(t)

)
dr′√

2[E − V (r′)]− L2

r′2

+ nT (ṙ(t) ≤ 0),

where n is an arbitrary integer. The period is

(4.3) T = T (J) = 2

∫ r+(J)

r−(J)

dr√
2[E − V (r)]− L2

r2

.

Also

(4.4) φ(t) =



φ0 +

∫ r(t)

r0

L
r′2
dr′√

2[E − V (r′)]− L2

r′2

+ nα (ṙ(t) ≥ 0)

φ0 +

(∫ r+

r0

+

∫ r+

r(t)

) L
r′2
dr′√

2[E − V (r′)]− L2

r′2

+ nα (ṙ(t) ≤ 0),
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Figure 3. Numerical simulations for the entry time distribution P(τ̃1 > s) for
the potential V (r) = rγ−1

γ (γ 6= 0) and V (r) = log r (γ = 0). The hole size

is ρ = 10−4, and all other parameter values as in Fig. 2. The cases γ = −1, 2
correspond to the Coulomb potential and isotropic harmonic oscillator, for
which the assumptions of Theorem 1 are not satisfied, and indeed the hitting
probability is zero for our choice of initial data. In the remaining cases the
deviation from the predicted distribution F2(s) is shown in the inset.

with rotation angle

(4.5) α = α(J) = 2

∫ r+(J)

r−(J)

L
r2
dr√

2[E − V (r)]− L2

r2

.

The dynamics is described best by first considering the return map to the cross section
defined by restricting the radial variable to r = r0 with non-negative radial velocity ṙ ≥ 0;
here r0 = r0(J) is permitted to depend on J . This cross section is thus simply parametrized
by φ ∈ R/2πZ. The corresponding return map is

(4.6) φ 7→ φ+ α(J) mod 2π,

with rotation angle α(J) as in (4.5), and return time T (J) as in (4.3). We turn the map (4.6)
into a flow of the form (2.1) by considering its suspension flow

(4.7) ϕt : T2 × U → T2 × U , (θ,J) 7→
(
θ +

t

T (J)

(
1

α(J)
2π

)
,J

)
.

A comparison with (2.1) yields

(4.8) f(J) = T (J)−1

(
1

α(J)
2π

)
.
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As to the hypotheses of Theorem 1, we see that a Borel probability measure λ on U is f -regular
if the push-forward of λ by the map

(4.9) U → R, J 7→ α(J),

is absolutely continuous with respect to Lebesgue measure on R. Note that although this
condition can hold for most potentials V , it fails for the Coulomb potential and the isotropic
harmonic oscillator, where every orbit is closed.

A natural choice of target set in polar coordinates is

(4.10) {(r, φ) | r = r0(J), −πρ < φ < πρ},
with no restriction on the sign of the radial velocity ṙ. We distinguish two cases:

(I) If r0(J) = r+(J) or r0(J) = r−(J), the target set is of the form (2.3), where

(4.11) D(1)
ρ = D

(
u1,φ1, ρ

)
, u1 =

(
1
0

)
, φ1 =

(
0
0

)
.

In this simple setting φ1 = 0 is (θ, λ)-generic if (recall (2.12))

(4.12) λ

({
J ∈ U : θ(J) ∈ R

(
1

α(J)
2π

)
+ Q2

})
= 0.

(II) If r−(J) < r0(J) < r+(J), then the particle attains the value r = r0(J) with radial
velocity ṙ < 0 before returning to the section (r0, ṙ > 0). The traversed angle is

(4.13) α∗(J) = 2

∫ r+(J)

r0(J)

L
r2
dr√

2[E − V (r)]− L2

r2

,

and the corresponding travel time is

(4.14) T∗(J) = 2

∫ r+(J)

r0(J)

dr√
2[E − V (r)]− L2

r2

.

The target set (4.10) has therefore the following angle-action representation, recall (2.3):

(4.15) D(2)
ρ =

2⋃
j=1

D(uj ,φj , ρ),

with identical orientation

(4.16) u1(J) = u2(J) =

(
1
0

)
,

located at

(4.17) φ1(J) =

(
0
0

)
, φ2(J) =

T∗(J)

T (J)

(
1

α(J)
2π

)
−
(

0
α∗(J)

2π

)
.

Here the target location is (θ, λ)-generic if for all (m′1,m
′
2) ∈ Z2 \ {0}

(4.18) λ

({
J ∈ U : m′1θ(J) +m′2

(
0

α∗(J)
2π

)
∈ R

(
1

α(J)
2π

)
+ Q2

})
= 0

(indeed, set (m1,m2) = (m′2 −m′1,−m′2) in (2.12)).
For our numerical simulations of the first entry time, the relevant parameters used were as

follows. The potential is

(4.19) V (r) =

{
rγ−1
γ (γ 6= 0)

ln(r) (γ = 0),

where γ ∈ R, γ > −2. The particle mass is m = 1, initial position in polar coordinates
(r0, φ0) = (1,−2), initial velocity 0.3 with directions uniform in [0.5, 1] ⊂ [0, 2π] (the sample
size is 108); the target is the angular interval [−ρ/2, ρ/2] located at radius r0 = 1. Fig. 2
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displays the results of computations with several values of ρ and fixed γ = 1, and Fig. 3 the
corresponding results for fixed ρ = 10−4 and various values of γ.

5. Integrable billiards

The dynamics of a point particle in a billiard is integrable if there is a coordinate system in
which the Hamilton-Jacobi equation separates. All known examples in two dimensions involve
either very particular polygonal billiards, whose dynamics unfolds to a linear flow on a torus,
or billiards whose boundaries are aligned with elliptical coordinate lines (or the degenerate
cases of circular or parabolic coordinates). While many configurations can be constructed from
arcs of confocal ellipses and hyperbolas, the most natural and studied is the ellipse billiard
itself, of which the circle is a special case. Scaling of escape from a circular billiard with a
single small hole to a universal function of the product of hole size and time was observed in
Fig. 3 of [9]. We will here consider billiards in general ellipses, where the target set is a sub-
interval of the boundary. Action-angle coordinates for the billiard flow have been described
in the literature, for example in [45]. For our purposes it will be simpler to formulate the
dynamics in terms of the billiard map, which is the return map of the billiard flow to the
boundary; see [48] for a detailed discussion. The billiard domain is confined by the ellipse

{(b cosφ, a sinφ) | φ ∈ [0, 2π)} with semi-axes a ≥ b, eccentricity e =
√

1− b2/a2 and foci

(0,±ae). The billiard dynamics conserves the kinetic energy E = 1
2‖ξ‖

2 (where ξ denotes the
particle’s momentum) and the product L+L− of angular momenta L± = x1ξ2 − (x2 ∓ ae)ξ1

about the foci. Note that a change in energy E > 0 only affects the speed of the billiard particle
but not its trajectory, and we will fix E = 1

2 in the following without loss of generality.
Each segment of the trajectory is tangent to a caustic given by a confocal conic of eccentricity

(5.1) ε =

√
a2e2

a2e2 + L+L−
∈ (e,∞)

For ε < 1 we have elliptic caustics, where the orbit rotates around the foci. For ε = 1 we have
the separatrix, where the orbit passes through the foci; this has zero probability with respect
to an absolutely continuous distribution of initial conditions. For ε > 1 we have hyperbolic
caustics, and the orbit passes between the foci. Solving Eq. (5.1) for ξ gives two solutions,
which for ε < 1 correspond to the direction of rotation of the orbit, and for ε > 1 are both
contained in the closure of a single aperiodic orbit.

Following [48] in our notation, we parametrize the billiard boundary by the new parameter
θ ∈ T defined by

(5.2) θ =

{
F (φ,ε)
F (2π,ε) mod 1 (ε < 1)
F (arcsin(ε sinφ),ε−1)

F (2π,ε−1)
mod 1 (ε > 1),

where F is the elliptic integral of the first kind [35]

(5.3) F (φ, k) =

∫ φ

0

dt√
1− k2 sin2 t

.

The choice of branch for the arcsin (for ε > 1) depends on the choice of solution for ξ in (5.1).
The billiard map reads in these new coordinates

(5.4) T→ T, θ 7→ θ + f(ε) mod 1

where

(5.5) f(ε) =


±2

F

(
arccos

√
e2(1−ε2)
ε2(1−e2)

,ε

)
F (2π,ε) (ε < 1)

2
F

(
arccos

√
e2(ε2−1)

ε2−e2
,ε−1

)
F (2π,ε−1)

(ε > 1).
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Figure 4. Numerical simulations confirming that the entry time distribution
P(τ̃1 > s) for an arbitrary ellipse scales to the expected universal functions
for initial conditions with ε < 1 (upper panel) and ε > 1 (lower panel). The
inset panels highlight the difference between the ellipse simulations and theo-
retical predictions F1(s) resp. F2(s). The choice of initial data and target set
is specified at the end of Section 5.
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Here, the ± (for ε < 1) again depends on the choice of solution for ξ in (5.1). The time
between collisions with the boundary, averaged over the equilibrium measure associated with
ε, is given by

(5.6) l̄ =


2b
√

1−e2/ε2Π(e2,ε)

K(ε) (ε < 1)

2b
√

1−e2/ε2Π(e2/ε2,ε−1)

K(ε−1)
(ε > 1)

where K(ε) = F (π2 , ε) = 1
4F (2π, ε) and

(5.7) Π(α2, k) =

∫ π
2

0

dt

(1− α2 sin2 t)
√

1− k2 sin2 t

are complete elliptic integrals of the first and third kind respectively [35]. Even when f(ε)
is rational, hence the orbit is periodic (a set of zero measure of initial conditions), the mean
collision time is independent of the starting point, and hence given by the above formula [13].

We consider a single target set in the billiard’s boundary given by the interval φ0 − ρ
2 <

φ < φ0 + ρ
2 . If ε > 1, we assume the target intersects the region covered by the orbit, i.e.,

ε sinφ0 < 1. In this case a single target in φ corresponds to two equal-sized targets in θ

located at θ0 = θ
(1)
0 and θ

(2)
0 (which are functions of φ0 and ε). If ε < 1, a single target in φ

corresponds to a single target in θ.
For φ = φ0 + s with |s| small and θ (respectively θ0) the value defined by (5.2) for φ

(respectively φ0),

(5.8) θ = θ0 + s


1

F (2π,ε)
√

1−ε2 sin2 φ0
(ε < 1)

ε

F (2π,ε−1)
√

1−ε2 sin2 φ0
(ε > 1)

+O(s2).

Up to a small error, which is negligible when ρ→ 0, the target becomes the interval θ0− ρ`
2 <

θ < θ0 + ρ`
2 where

(5.9) ` = `(ε) =


1

F (2π,ε)
√

1−ε2 sin2 φ0
(ε < 1)

ε

F (2π,ε−1)
√

1−ε2 sin2 φ0
(ε > 1)

.

The circle is a special case, with e = 0 and hence ε = 0. The constant of motion is the
angular momentum about the centre, L = x1ξ2 − x2ξ1. In this case

(5.10) θ =
φ

2π
, f(0) = ± 1

π
arccos

L

a
, ` =

1

2π
, l̄ = 2

√
a2 − L2,

which is consistent with the above expressions for ellipses in the limit e → 0. For ellipses of
small eccentricity, this approach gives a systematic expansion in powers of e2.

Finally, we have for the mean return time (2.9)

(5.11) σ(k)(ε) =


l̄

`(ε) (ε < 1, i.e. k = 1)

l̄
2`(ε) (ε > 1, i.e. k = 2).

For our numerical simulations of the first entry time, the relevant parameters used were as
follows: a = 10, b ∈ {6, 8, 10} corresponding to e ∈ {0.8, 0.6, 0} respectively. The target was
2.8− 5× 10−5 < φ < 2.8 + 5× 10−5, i.e. φ0 = 2.8 and ρ = 10−4. The entry time distribution
P(τ̃1 > s) for the actual billiard flow was sampled by taking a fixed initial point x = (3, 7) inside
the ellipse, and 108 initial directions ξ ∈ S1 chosen randomly with uniform angular distribution
in the intervals [2, 2.6] or [3.8, 4.4] for the hyperbolic or elliptic caustics, respectively. All the
numerical curves are shown in Fig. 4 and are identical within numerical errors too small to see
on the plot; differences between the ellipse calculations and the theoretical predictions from
Theorem 1 are shown in the inset panels.
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6. Integrable flows in arbitrary dimension

We now state the generalization of Theorem 1 to arbitrary dimension d ≥ 2. The basic
setting is just as in Section 2, but with Td in place of T2: Let U be a bounded open subset of
Rm for some m ∈ Z+, and let f : U → Rd be a smooth function. We consider the flow

(6.1) ϕt : Td × U → Td × U , (θ,J) 7→ (θ + tf(J),J).

Let λ be an absolutely continuous Borel probability measure on U , and let θ be a smooth
map from U to Td. We will consider the random initial data (θ(J),J) in Td × U , where J is
a random point in U distributed according λ.

We next define the target sets. Let us fix a map v 7→ Rv, Sd−1
1 → SO(d), such that Rvv = e1

for all v ∈ Sd−1
1 , and such that v 7→ Rv is smooth throughout Sd−1

1 \ {v0}, where v0 is a fixed

point in Sd−1
1 . Fix k ∈ Z+ and for each j = 1, . . . , k, fix smooth functions uj : U → Sd−1

1 ,

φj : U → Td and a bounded open subset Ωj ⊂ Rd−1 × U . Set

Dρ = D(k)
ρ :=

k⋃
j=1

Dρ(uj ,φj ,Ωj),(6.2)

where

Dρ(u,φ,Ω) :=

{(
φ(J) + ρR−1

u(J)

(
0
x

)
, J

)
∈ Td × U

∣∣∣∣ (x,J) ∈ Ωj

}
.(6.3)

Here we use the convention

(6.4)

(
0
x

)
:=


0
x1
...

xd−1

 ∈ Rd when x =

 x1
...

xd−1

 .

Note that all points R−1
u(J)

(
0
x

)
lie in the linear subspace orthogonal to u(J) in Rd. We write

Ωj(J) := {x ∈ Rd−1 : (x,J) ∈ Ωj}, and assume Ωj(J) 6= ∅ for all J ∈ U . As in Section 2
we also impose the condition uj(J) · f(J) > 0 for all j ∈ {1, . . . , k} and J ∈ U , which implies
that each sub-target Dρ(uj ,φj ,Ωj) is transversal to the flow direction. Note that the target

set D(k)
ρ defined here generalizes the one introduced in Section 2. Indeed, for d = 2, and given

smooth functions uj : U → S1, φj : U → T2, and `j : U → R>0 (j = 1, . . . , k), we recover the

target set in (2.3) as
⋃k
j=1Dρ(uj ,φj ,Ωj) where Ωj = {(s,J) : J ∈ U , −1

2`j(J) < s < 1
2`j(J)}.

For any initial condition (θ,J), let T (θ,J ,D(k)
ρ ) be the set of hitting times, as in (2.5).

This is a discrete subset of R>0, and we label its elements

0 < t1(θ,J ,D(k)
ρ ) < t2(θ,J ,D(k)

ρ ) < . . . .(6.5)

Again by Santalo’s formula, for any fixed J ∈ U such that the components of f(J) are not
rationally related, the first return time to Dρ on the leaf Td × {J} satisfies the formula∫

Dρ
t1(θ,J ,Dρ) dνJ (θ) = 1,(6.6)

where νJ is the invariant measure on Dρ obtained by disintegrating Lebesgue measure on

Td × {J} with respect to the section Dρ of the flow ϕt; explicitly

∫
Dρ
g dνJ =

k∑
j=1

(
uj(J) · f(J)

) ∫
ρΩj(J)

g

(
φj(J) +R−1

uj(J)

(
0
x

)
, J

)
dx, ∀g ∈ C(Dρ).

(6.7)
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It follows that the mean return time with respect to νJ equals

σ(k)(J)

ρd−1
, where σ(k)(J) :=

1∑k
j=1 Leb(Ωj(J))uj(J) · f(J)

,(6.8)

with Leb denoting Lebesgue measure on Rd−1. If we also average over J with respect to the
measure λ (assuming that the pushforward of λ by f has no atoms at points with rationally
related coordinates), the mean return time becomes

σ
(k)
λ

ρd−1
, where σ

(k)
λ :=

∫
U
σ(k)(J)λ(dJ).(6.9)

As in Section 2, for J a random point in U distributed according λ, the hitting times

tn(θ(J),J ,D(k)
ρ ) become random variables, which we denote by τ

(k)
n,ρ ; also σ(k)(J) becomes

a random variable, which we denote by σ(k). We say that λ is f -regular if the pushforward of
λ under the map

(6.10) U → Sd−1
1 , J 7→ f(J)

‖f(J)‖
,

is absolutely continuous with respect to Lebesgue measure on Sd−1
1 , and we say the k-tuple of

smooth functions φ1, . . . ,φk : U → Td is (θ, λ)-generic, if for all m = (m1, . . . ,mk) ∈ Zk \{0}
we have

(6.11) λ

({
J ∈ U :

k∑
j=1

mj

(
φj(J)− θ(J)

)
∈ Rf(J) + Qd

})
= 0.

The following theorem generalizes Theorem 1 to arbitrary dimension d ≥ 2.

Theorem 2. Let f : U → Rd and θ : U → Td be smooth maps, λ an absolutely continuous
Borel probability measure on U , and for j = 1, . . . , k, let uj : U → Sd−1

1 and φj : U → Td be

smooth maps and Ωj a bounded open subset of Rd−1 × U . For each j = 1, . . . , k, assume that

(i) λ(u−1
j ({v0)})) = 0 (where by assumption v0 is the point in Sd−1

1 such that v 7→ Rv is

smooth throughout Sd−1
1 \ {v0}),

(ii) uj(J) · f(J) > 0 for all J ∈ U ,
(iii) Ωj has boundary of measure zero with respect to Leb×λ,
(iv) Leb(Ωj(J)) is a smooth and positive function of J ∈ U .

Also assume that λ is f -regular and (φ1, . . . ,φk) is (θ, λ)-generic. Then there are sequences
of random variables (τi)

∞
i=1 and (τ̃i)

∞
i=1 in R>0 such that in the limit ρ→ 0, for every integer

N ,

(6.12)

(
ρd−1τ

(k)
1,ρ

σ
(k)
λ

, . . . ,
ρd−1τ

(k)
N,ρ

σ
(k)
λ

)
d−→ (τ1, . . . , τN ),

and

(6.13)

(
ρd−1τ

(k)
1,ρ

σ(k)
, . . . ,

ρd−1τ
(k)
N,ρ

σ(k)

)
d−→ (τ̃1, . . . , τ̃N ).

We next give an explicit description of the limit processes (τi)
∞
i=1 and (τ̃i)

∞
i=1 appearing in

Theorem 2. For a given affine Euclidean lattice L in Rd and a subset Ω ⊂ Rd−1, consider the
cut-and-project set

P(L,Ω) :=

{
t > 0 :

(
t
x

)
∈ L, x ∈ −Ω

}
.(6.14)

Fix an arbitrary (measurable) fundamental domain F ⊂ SL(d,R) for SL(d,R)/ SL(d,Z), and
let µF be the (left and right) Haar measure on SL(d,R) restricted to F , normalized to be
a probability measure. If we choose g ∈ F random according to µF then gZd represents a
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random Euclidean lattice in Rd (of covolume one). Similarly, if α is a random point in Td,
uniformly distributed and independent from g, then the shifted lattice g(Zd +α) represents a
random affine Euclidean lattice in Rd.

Let us define

v(J) =
f(J)

‖f(J)‖
∈ Sd−1

1 (J ∈ U).(6.15)

For j ∈ {1, . . . , k} and J ∈ U we set Rj(J) = Rv(J)R
−1
uj(J) ∈ SO(d), and let R̃j(J) be the

bottom right (d − 1) × (d − 1) submatrix of Rj(J). In other words, R̃j(J) is the matrix

of the linear map x 7→
(
Rj(J)

(
0
x

))
⊥

on Rd−1, where u⊥ := (u2, . . . , ud)
t ∈ Rd−1 for

u = (u1, . . . , ud)
t ∈ Rd. Noticing that Rj(J) is an orientation preserving isometry of Rd

which takes e1 to Rj(J)(e1) and

(
0

Rd−1

)
onto (Rj(J)(e1))⊥, we find that

det R̃j(J) = e1 ·Rj(J)(e1) = e1 ·Rv(J)(uj(J)) = uj(J) · v(J) > 0.(6.16)

For J ∈ U we define

Ωj(J) :=
(
σ

(k)
λ ‖f(J)‖

)1/(d−1)
R̃j(J)Ωj(J) ⊂ Rd−1(6.17)

and

Ω̃j(J) :=
(
σ(k)(J)‖f(J)‖

)1/(d−1)
R̃j(J)Ωj(J) ⊂ Rd−1.(6.18)

Geometrically, thus, both Ωj(J) and Ω̃j(J) are obtained by orthogonally projecting the sub-

target {x ∈ Td : (x,J) ∈ Dρ(uj ,φj ,Ωj)} onto the hyperplane orthogonal to the flow direction

f(J) (which is identified with Rd−1 via the rotation Rv(J)), and then scaling the sets with

appropriate scalar factors, which in particular make Ωj(J) and Ω̃j(J) independent of ρ.

Now let J , g and α1, . . . ,αk be independent random points in U , F and Td, respectively,
distributed according to λ, µF and LebTd . We will prove in Section 8 that the elements of the
random set

k⋃
j=1

P(g(Zd +αj),Ωj(J)),(6.19)

ordered by size, form precisely the sequence of random variables (τi)
∞
i=1 in Theorem 2. Simi-

larly the elements of

k⋃
j=1

P(g(Zd +αj), Ω̃j(J)),(6.20)

ordered by size, form the sequence of random variables (τ̃i)
∞
i=1. We will also see in the proof

that, for any N ∈ Z+, both (τ1, . . . , τN ) and (τ̃1, . . . , τ̃N ) have continuous distributions, that
is, the cumulative distribution functions P

(
τn ≤ Tn for 1 ≤ n ≤ N) and P

(
τ̃n ≤ Tn for 1 ≤

n ≤ N) depend continuously on (Tn) ∈ RN>0.
One verifies easily that the above description generalizes the one in Section 3. Indeed, note

that the image of the set F in (3.2) under the map

(x, y, θ) 7→ kθ

(√
y 0

0 1/
√
y

)(
1 0
x 1

)
(6.21)

is a fundamental domain for SL(2,R)/SL(2,Z), and the pushforward of the measure µF in
Section 3 gives the measure µF considered in the present section. Note also that for d = 2,
Rj(J) is the 1× 1 matrix with the single entry uj(J) · v(J) (cf. (6.16)), and now one checks
that if Ωj = {(s,J) : J ∈ U , −1

2`j(J) < s < 1
2`j(J)} then for any affine Euclidean lattice
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L, the cut-and-project set P(L,Ωj(J)) equals P(L, Lj(J)), and similarly P(L, Ω̃j(J)) equals

P(L, L̃j(J)) (cf. (3.6) and (6.14)).
Finally let us point out three invariance properties of the limit distributions. First, both

(τi)
∞
i=1 and (τ̃i)

∞
i=1 yield stationary point processes, i.e. the random set of time points {τi} has

the same distribution as {τi−t}∩R>0 for every fixed t ≥ 0, and similarly for {τ̃i}. This is clear
from the explicit description above, using in particular the fact that Lebesgue measure on the
torus Td is invariant under any translation. Secondly, by the same argument, the distributions
of (τi)

∞
i=1 and (τ̃i)

∞
i=1 are not affected by any leaf-wise translation of any of the sets Ωj , i.e.

replacing Ωj by the set {(x + g(J),J) : (x,J) ∈ Ωj}, where g is any bounded continuous

function from U to Rd−1. Thirdly, we point out the identity

P
((

h−1 0t

0 H

)
L, HΩ

)
= h−1P(L,Ω),(6.22)

which holds for any L and Ω as in (6.14), and any H ∈ GLd−1(R) with h = detH > 0. Note
also that the map

g SL(d,Z) 7→
(
h−1 0t

0 H

)
g SL(d,Z)(6.23)

is a measure preserving transformation of SL(d,R)/ SL(d,Z) onto itself. For d = 2 these two
facts immediately lead to the formula (3.11) in Section 3. For general d ≥ 2, the same facts
imply for example that if u1 = · · · = uk then the limit random sequences (τi)

∞
i=1 and (τ̃i)

∞
i=1

are not affected if Ωj is replaced by {(H1x,J) : (x,J) ∈ Ωj} simultaneously for all j, where H1

is any fixed (d− 1)× (d− 1) matrix with positive determinant. Indeed, the given replacement

has the effect that both σ(k)(J) and σ
(k)
λ are multiplied by the constant (detH1)−1; thus both

Ωj(J) and Ω̃j(J) get transformed by the linear map H := (detH1)−1/(d−1)R̃j(J)H1R̃j(J)−1,
which has determinant 1 and is independent of j since u1(J) = · · · = uk(J); hence the
statement follows from the two facts noted above.

7. An application of Ratner’s Theorem

In this section we will introduce a homogeneous space G/Γ which parametrizes such k-
tuples of translates of a common lattice as appear in (6.19) and (6.20), and then use Ratner’s
classification of unipotent-flow invariant measures to prove an asymptotic equidistribution
result in G/Γ, Theorem 3, which will be a key ingredient for our proof of Theorem 2 in
Section 8.

Let SL(d,R) act on (Rd)k through

Mv = M(v1, . . . ,vk) = (Mv1, . . . ,Mvk),(7.1)

for v = (v1, . . . ,vk) ∈ (Rd)k and M ∈ SL(d,R). Let G be the semidirect product

G = SL(d,R) n (Rd)k,

with multiplication law

(M, ξ)(M ′, ξ′) = (MM ′, ξ +Mξ′).

We extend the action of SL(d,R) to an action of G on (Rd)k, by defining

(M, ξ)v := Mv + ξ for (M, ξ) ∈ G, v ∈ (Rd)k.(7.2)

Set Γ = SL(d,Z) n (Zd)k and X = G/Γ. Let µX be the (left and right) Haar measure on
G, normalized so as to induce a probability measure on X, which we also denote by µX . We
also set

D(ρ) = diag[ρd−1, ρ−1, . . . , ρ−1] ∈ SL(d,R), ρ > 0,
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and

n−(x) =

(
1 0t

x 1d−1

)
∈ SL(d,R), x ∈ Rd−1.

We view SL(d,R) as embedded in G through M 7→ (M,0).

Theorem 3. Let M ∈ SL(d,R); let U be an open subset of Rd−1; let φ : U → (Rd)k be a
Lipschitz map, and let λ be a Borel probability measure on U which is absolutely continuous
with respect to Lebesgue measure. Writing φ(v) = (φ1(v), . . . ,φk(v)), we assume that for
every w = (w1, . . . , wk) ∈ Zk \ {0},

λ

({
v ∈ U :

k∑
j=1

wj · φj(v) ∈ RM−1

(
1
−v

)
+ Qd

})
= 0.(7.3)

Then for any bounded continuous function f : X → R,

lim
ρ→0

∫
U
f
(
D(ρ)n−(v)M(1d,φ(v))

)
dλ(v) =

∫
X
f(g) dµX(g).(7.4)

Remark 7.1. For related results on equidistribution of expanding translates of curves, cf. Shah,
[40, Thm. 1.2].

Remark 7.2. The proof of Theorem 3 extends trivially to the more general situation when
Γ is a subgroup of SL(d,Z) n (Zd)k of finite index. In this form, Theorem 3 contains
Elkies and McMullen, [18, Thm. 2.2] as a special case. Indeed, applying Theorem 3 with

d = 2, k = 1, M =
(

0 −1
1 0

)
, ϕ(v) =

(
x(v) + vy(v)

y(v)

)
and f(g) := f0(M−1g), where f0 :

X → R is an arbitrary bounded continuous function, and noticing D(ρ)n−(v)M(12, ϕ(v)) =

MD(ρ−1)

((
1 −v
0 1

)
,

(
x(v)
y(v)

))
, we obtain

lim
s→∞

∫
U
f0

(
D(s)

((
1 −v
0 1

)
,

(
x(v)
y(v)

)))
dλ(v) =

∫
X
f0(g) dµX(g),

provided that

λ
({
v ∈ U : x(v) ∈ Q + Qv

})
= 0.

Our proof of Theorem 3 follows the same basic strategy as the proof of Thm. 2.2 in [18], but
with several new complications arising.

Remark 7.3. Theorem 3 also generalizes [34, Thm. 5.2], which is obtained by taking k = 1
and φ(v) = φ a constant vector independent of v. Indeed note that (7.4) in this case is
equivalent with φ /∈ Qd. (To translate into the setting of [34], where vectors are represented
as row matrices and one considers Γ\G in place of G/Γ; apply the map (M, ξ) 7→ (M t, ξt).)

We now give the proof of Theorem 3; it extends until page 24. Let M,U ,φ, λ satisfy
all the assumptions of Theorem 3. As an initial reduction, let us note that by a standard
approximation argument where one removes from U a subset of small λ-measure, we may in
fact assume that U is bounded, and furthermore that there is a constant B > 0 such that
λ(A) ≤ B Leb(A) for every Borel set A ⊂ U . (We will only use these properties in the proof
of Lemma 9 below.)

For each ρ > 0, let µρ be the probability measure on X defined by

µρ(f) =

∫
U
f
(
D(ρ)n−(v)M(1d,φ(v))

)
dλ(v), f ∈ Cc(X).(7.5)

Our task is to prove that µρ converges weakly to µX as ρ→ 0. In fact it suffices to prove that
µρ(f) → µX(f) holds for every function f in the space of continuous compactly supported
functions on X, Cc(X). Recall that the unit ball in the dual space of Cc(X) is compact in the
weak* topology (Alaoglu’s Theorem). Hence by a standard subsequence argument, it suffices
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to prove that every weak* limit of (µρ) as ρ→ 0 must equal µX . Thus from now on, we let µ be
a weak* limit of (µρ), i.e. µ is a Borel measure (apriori not necessarily a probability measure)
on X, and we have µρj (f) → µ(f) for every f ∈ Cc(X), where (ρj) is a fixed sequence of
positive numbers tending to 0. Our task is to prove µ = µX .

Let π : G → SL(d,R) be the projection (M, ξ) 7→ M ; this map induces a projection
X → X ′ := SL(d,R)/ SL(d,Z) which we also call π. Let µX′ be the unique SL(d,R) invariant
probability measure on X ′.

Lemma 4. π∗µ = µX′.

Proof. For any f ∈ Cc(X
′) we have

π∗µ(f) = lim
j→∞

µρj (f ◦ π) = lim
j→∞

∫
U
f
(
D(ρj)n−(v)M

)
dλ(v) = µX′(f).(7.6)

For the last equality, cf., e.g., [28, Prop. 2.2.1]. (The point here is that f is averaged along
expanding translates of a horospherical subgroup, and such translates can be proved to become
asymptotically equidistributed using the so called thickening method, originally introduced in
the 1970 thesis of Margulis [31].) �

Lemma 5. µ is invariant under n−(x) for every x ∈ Rd−1.

Proof. (Cf. [18, Thm. 2.5].) Let λ′ ∈ L1(Rd−1) be the Radon-Nikodym derivative of λ with
respect to Lebesgue measure (thus λ′(v) = 0 for v /∈ U). Let f ∈ Cc(X) and x ∈ Rd−1 be
given, and define f1 ∈ Cc(X) through f1(p) = f(n−(x)p). Then our task is to prove that
µ(f1) = µ(f), viz., to prove that the difference∫
U
f
(
n−(x)D(ρj)n−(v)M(1d,φ(v))

)
λ′(v) dv −

∫
U
f
(
D(ρj)n−(w)M(1d,φ(w))

)
λ′(w) dw

tends to 0 as j → ∞. Using n−(x)D(ρj) = D(ρj)n−(ρdjx) and substituting v = w − ρdjx in
the first integral, the difference can be rewritten as∫

(U+ρdjx)∩U

(
f
(
D(ρj)n−(w)M(1d,φ(w − ρdjx))

)
− f

(
D(ρj)n−(w)M(1d,φ(w))

))
λ′(w) dw

+

∫
U+ρdjx

f
(
D(ρj)n−(w)M(1d,φ(w − ρdjx))

)(
λ′(w − ρdjx)− λ′(w)

)
dw(7.7)

−
∫
U\(U+ρdjx)

f
(
D(ρj)n−(w)M(1d,φ(w))

)
λ′(w) dw.

The absolute value of this expression is bounded above by

sup
w∈(U+ρdjx)∩U

∣∣∣f(D(ρj)n−(w)M(1d,φ(w − ρdjx))
)
− f

(
D(ρj)n−(w)M(1d,φ(w))

)∣∣∣(7.8)

+
(

sup
X
|f |
)∫

Rd−1

∣∣λ′(w − ρdjx)− λ′(w)
∣∣ dw.

By assumption, there exists C > 0 such that ‖φ(w′)−φ(w)‖ ≤ C‖w′−w‖ for all w,w′ ∈ U ,
where in the left hand side ‖ ·‖ is the standard Euclidean norm on (Rd)k. In particular for any
w ∈ (U + ρdjx) ∩ U we have φ(w − ρdjx) = φ(w) + η for some η = η(w, j) ∈ (Rd)k satisfying

‖η‖ ≤ Cρdj‖x‖, and thus

D(ρj)n−(w)M(1d,φ(w − ρdjx)) = D(ρj)n−(w)M(1d,φ(w) + η)

=
(
1d, D(ρj)n−(w)Mη

)
D(ρj)n−(w)M

(
1d,φ(w)

)
.

Now if Mη = (η′1, . . . ,η
′
k) and η′` = (η′`,1, . . . , η

′
`,d)

t for each `, then the `th component of

D(ρj)n−(w)Mη equals ρ−1
j η′`,1

(
ρdj
w

)
+ ρ−1

j (0, η′`,2, · · · , η′`,d)t. Now ‖Mη‖ �C,M ρdj‖x‖, and

thus the element (1d, D(ρj)n−(w)Mη) tends to the identity in G as j → ∞, uniformly over
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all w ∈ (U + ρdjx) ∩ U . But f is uniformly continuous since f ∈ Cc(X); hence it follows that

the first term in the right hand side of (7.8) tends to zero as j → ∞. Also the second term
tends to zero; cf., e.g., [19, Prop. 8.5]. This completes the proof of the lemma. �

Since µ is n−(Rd−1)-invariant, we can apply ergodic decomposition to µ: Let E be the
set of ergodic n−(Rd−1)-invariant probability measures on X, provided with its usual Borel
σ-algebra; then there exists a unique Borel probability measure P on E such that

µ =

∫
E
ν dP (ν).(7.9)

Cf., e.g., [49, Thm. 4.4]. Note that (7.9) together with Lemma 4 implies µX′ = π∗µ =∫
E π∗ν dP (ν), and for each ν ∈ E , π∗ν is an ergodic n−(Rd−1)-invariant measure on X ′. Hence

in fact π∗ν = µX′ for P -almost all ν ∈ E , by uniqueness of the ergodic decomposition of µX′ .
Now fix an arbitrary ν ∈ E satisfying π∗ν = µX′ . We now apply Ratner’s classification of

unipotent-flow invariant measures, [38, Thm 3], to ν. Let H be the closed (Lie) subgroup of
G given by

H = {g ∈ G : g∗ν = ν},

where g∗ν denotes the push-forward of ν by the map x 7→ gx on X (viz., (g∗ν)(B) := ν(g−1B)
for any Borel set B ⊂ X). Note that

n−(Rd−1) ⊂ H,(7.10)

by definition. The conclusion from [38, Thm 3] is that there is some g0 ∈ G such that
ν(Hg0Γ/Γ) = 1. Note that in this situation the measure ν0 := g−1

0∗ ν is g−1
0 Hg0 invariant

and ν0(g−1
0 Hg0Γ/Γ) = 1. Hence under the standard identification of g−1

0 Hg0Γ/Γ with the

homogeneous space g−1
0 Hg0/(Γ ∩ g−1

0 Hg0) (viz., hΓ 7→ h(Γ ∩ g−1
0 Hg0) for h ∈ g−1

0 Hg0), ν0

is the unique invariant probability measure on g−1
0 Hg0/(Γ ∩ g−1

0 Hg0), induced from a Haar

measure on g−1
0 Hg0. In particular Γ∩g−1

0 Hg0 is a lattice in g−1
0 Hg0, and both g−1

0 Hg0Γ/Γ and
Hg0Γ/Γ are closed subsets of X (cf. also [37, Thm. 1.13]); furthermore supp(ν) = Hg0Γ/Γ.

Lemma 6. In this situation, π(H) = SL(d,R).

Proof. (Cf. [18, Thm. 2.8].) We have π(supp ν) = suppπ∗ν, since π : X → X ′ has compact
fibers, and suppπ∗ν = X ′, since we are assuming π∗ν = µX′ . Also supp ν = Hg0Γ/Γ. Hence
π(H)π(g0) SL(d,Z) = SL(d,R), and thus π(H) = SL(d,R). �

In the next lemma we deduce from (7.10) and Lemma 6 an explicit presentation of H. For
ξ = (ξ1, . . . , ξk) ∈ (Rd)k and u = (u1, . . . , uk) ∈ Rk, let us introduce the notation

ξ · u :=
k∑
j=1

ujξj ∈ Rd.

Given any linear subspace U ⊂ Rk, we let L(U) be the linear subspace consisting of all
ξ ∈ (Rd)k satisfying ξ · u = 0 for all u ∈ U⊥, where U⊥ is the orthogonal complement of U
in Rk with respect to the standard inner product. (It is natural to identify ξ = (ξ1, . . . , ξk)
with the d× k-matrix with columns ξ1, . . . , ξk; then ξ ·u is simply matrix multiplication, and
L(U) is the space of all d × k-matrices such that every row vector is in U .) Note that L(U)
is closed under multiplication from the left by any SL(d,R)-matrix. Hence the following is a
closed Lie subgroup of G:

HU := SL(d,R) n L(U).

Let e1 = (1, 0, . . . , 0)t ∈ Rd. Then e⊥1 = {(0, ξ2, . . . , ξd)
t : ξj ∈ R}, and (e⊥1 )k is a linear

subspace of (Rd)k.

Lemma 7. There exist U ⊂ Rk and ξ ∈ (e⊥1 )k such that H = (1d, ξ)HU (1d, ξ)−1.
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Proof. Set V = {ξ ∈ (Rd)k : (1d, ξ) ∈ H}; this is a closed subgroup of 〈(Rd)k,+〉, and it
follows using Lemma 6 that V is SL(d,R)-invariant, i.e. Mξ ∈ V whenever M ∈ SL(d,R) and
ξ ∈ V . Let sl(d,R) be the Lie algebra of SL(d,R), i.e. the Lie algebra of d× d matrices with
trace 0. Then for every ξ ∈ V , A ∈ sl(d,R) and n ∈ Z+ we have n(exp(n−1A)ξ − ξ) ∈ V ,
and since V is closed, letting n → ∞ we obtain Aξ ∈ V . Using the formula EijEji = Eii,
where Eij denotes the d× d matrix which has (i, j)th entry 1 and all other entries 0, the last
invariance is upgraded to: Aξ ∈ V for any real d× d-matrix A and ξ ∈ V . This is easily seen
to imply V = L(U) for some subspace U ⊂ Rk. Thus

N = H ∩ π−1({1d}) = {1d}n L(U).

This is a normal subgroup of G. Given any M ∈ SL(d,R), by Lemma 6 there exists some
ξ ∈ (Rd)k such that h := (M, ξ) ∈ H, and then H ∩π−1({M}) = Nh. Using also the fact that
(Rd)k = L(U) ⊕ L(U⊥) it follows that for each M ∈ SL(d,R) there is a unique η ∈ L(U⊥)
such that (M,η) ∈ H. Hence if we let H ′ be the closed Lie subgroup of HU⊥ given by

H ′ := H ∩HU⊥ ,

then H ′ contains exactly one element above each M ∈ SL(d,R), and H = NH ′ = H ′N . Note
that the unipotent radical of HU⊥ = SL(d,R) n L(U⊥) equals {1d} n L(U⊥), and thus H ′

is a Levi subgroup of HU⊥ . Hence by Malcev’s Theorem ([30]; [26, Ch. III.9]) there exists
some ξ ∈ L(U⊥) such that H ′ = (1d, ξ) SL(d,R)(1d, ξ)−1. (Recall that we view SL(d,R) as
embedded in G through M 7→ (M,0).) Hence

H = NH ′ = (1d, ξ)HU (1d, ξ)−1.

Finally using (7.10) we see that ξ must lie in (e⊥1 )k. �

Next, for any linear subspace U ⊂ Rk, q ∈ Z+ and ξ ∈ (e⊥1 )k, we set

XU,q,ξ = {gΓ : g ∈ G, g−1ξ ∈ L(U) + q−1(Zd)k} ⊂ X.(7.11)

Note here that the set L(U) + q−1(Zd)k is invariant under the action of Γ; hence if g−1ξ ∈
L(U) + q−1(Zd)k then also (gγ)−1ξ ∈ L(U) + q−1(Zd)k for every γ ∈ Γ. Note also that if U
intersects Zk in a lattice (viz., Zk ∩U contains an R-linear basis for U), then L(U) + q−1(Zd)k
is a closed subset of (Rd)k, and it follows that XU,q,ξ is a closed subset of X.

Lemma 8. There exist q ∈ Z+ and ξ ∈ (e⊥1 )k, and a linear subspace U ⊂ Rk which intersects
Zk in a lattice, such that supp(ν) = Hg0Γ/Γ ⊂ XU,q,ξ.

Proof. Take U ⊂ Rk and ξ ∈ (e⊥1 )k as in Lemma 7; then H = (1d, ξ)HU (1d,−ξ). Now Γ

intersects g−1
0 Hg0 in a lattice; hence if g = g−1

0 (1d, ξ) then g−1Γg intersects HU in a lattice.

Set ξ′ = g−1
0 ξ; then g = (M, ξ′) = (1d, ξ

′)M for some M ∈ SL(d,R), and since M normalizes

HU , it follows that Γ̃ := (1d, ξ
′)−1Γ(1d, ξ

′) ∩ HU is a lattice in HU . By [37, Cor. 8.28], this

implies that Γ̃r := {v ∈ L(U) : (1d,v) ∈ Γ̃} = (Zd)k ∩ L(U) is a lattice in L(U), and π(Γ̃) is
a lattice in SL(d,R). The first condition implies that Zk ∩U contains an R-linear basis for U ,
i.e. U intersects Zk in a lattice. Next we compute

π(Γ̃) = {γ ∈ SL(d,Z) : (1d − γ)ξ′ ∈ L(U) + (Zd)k}.

This is a subgroup of SL(d,Z) and a lattice in SL(d,R); hence π(Γ̃) must be a subgroup of

finite index in SL(d,Z). Now fix any γ ∈ π(Γ̃) for which 1d − γ is invertible (for example
we can take γ as an appropriate integer power of any given hyperbolic element in SL(d,Z)).
Then 1d − γ ∈ GL(d,Q), and we conclude ξ′ ∈ (1d − γ)−1(L(U) + (Zd)k) ⊂ L(U) + (Qd)k, i.e.
ξ′ = u+ q−1m for some u ∈ L(U), q ∈ Z>0 and m ∈ (Zd)k.

Now for every g ∈ Hg0Γ we have (1d,−ξ)g0Γg−1(1d, ξ) ∩HU 6= ∅, i.e. there is some γ ∈ Γ
such that (1d,−ξ)g0γg

−1(1d, ξ)0 ∈ L(U), or equivalently g−1ξ ∈ γ−1g−1
0 (1d, ξ)L(U). But

we have g−1
0 (1d, ξ) = (M, ξ′) = (M,u + q−1m) and hence γ−1g−1

0 (1d, ξ)L(U) = γ−1(L(U) +



22 CARL P. DETTMANN, JENS MARKLOF, AND ANDREAS STRÖMBERGSSON

q−1m) ⊂ L(U) + q−1(Zd)k. Hence every g ∈ Hg0Γ satisfies g−1ξ ∈ L(U) + q−1(Zd)k, i.e. we
have Hg0Γ/Γ ⊂ XU,q,ξ. �

Recall that we have fixed µ as an arbitrary weak* limit of (µρ) as ρ→ 0. The proof of the
following Lemma 9 makes crucial use of the genericity assumption (7.3) in Theorem 3; later
Lemma 9 combined with Lemma 8 will allow us to conclude that in the ergodic decomposition
(7.9), we must have ν = µX for P -almost all ν.

Lemma 9. Let q ∈ Z+ and let U be a linear subspace of Rk of dimension < k which intersects
Zk in a lattice. Then µ

(
∪ξ∈(e⊥1 )k XU,q,ξ

)
= 0.

Proof. Let BdC be the closed ball of radius C in Rd centered at the origin. It suffices to prove
that for each C > 0, the set

XU,q,C :=
⋃

ξ∈(BdC∩e
⊥
1 )k

XU,q,ξ ⊂ X(7.12)

satisfies µ
(
XU,q,C

)
= 0. Let N be the family of open subsets of G containing the identity

element. Then for any Ω ∈ N , ΩXU,q,C is an open set in X containing XU,q,C . Hence, since
µ is a weak* limit of (µρ) as ρ → 0 along some subsequence, it now suffices to prove that
for every ε > 0 there exists some Ω ∈ N such that lim supρ→0 µρ(ΩXU,q,C) < ε. We have

gΓ ∈ XU,q,C if and only if the set g(L(U)+q−1(Zd)k) in (Rd)k has some point in common with

(BdC ∩ e⊥1 )k. The latter is a compact set, which for any η > 0 is contained in the open set V k
η ,

where (after increasing C by 1)

Vη :=
{

(ξ1, . . . , ξd)
t : |ξ1| < η, ‖(ξ2, . . . , ξd)‖ < C

}
⊂ Rd.(7.13)

Hence for every η > 0, there exists some Ω ∈ N such that

ΩXU,q,C ⊂ XU,q,C,η :=
{
gΓ : g(L(U) + q−1(Zd)k) ∩ V k

η 6= ∅
}
.(7.14)

Hence it now suffices to prove

lim
η→0

lim sup
ρ→0

µρ(XU,q,C,η) = 0.(7.15)

By the definition of µρ we have µρ(XU,q,C,η) = λ(Tρ), where

Tρ =
{
v ∈ U : D(ρ)n−(v)M(1d,φ(v)) ∈ XU,q,C,η

}
=
{
v ∈ U : D(ρ)n−(v)M(L(U) + q−1(Zd)k + φ(v)) ∩ V k

η 6= ∅
}
.

It follows from our assumptions on U that there exists some w ∈ Zk \ {0} such that U is
contained in w⊥, the orthogonal complement of w in Rk. Now every ξ ∈ L(U) + q−1(Zd)k
satisfies ξ · w ∈ q−1Zd, and hence for any v ∈ U , every ξ in the set D(ρ)n−(v)M(L(U) +
q−1(Zd)k + φ(v)) satisfies

ξ ·w ∈ D(ρ)n−(v)M(q−1Zd + φ(v) ·w).(7.16)

But on the other hand, for every ξ ∈ V k
η we have

ξ ·w ∈ ‖w‖Vη =
{

(ξ1, . . . , ξd)
t : |ξ1| < ‖w‖η, ‖(ξ2, . . . , ξd)‖ < ‖w‖C

}
.(7.17)

Hence

Tρ ⊂
{
v ∈ U : D(ρ)n−(v)M(q−1Zd + φ(v) ·w) ∩ ‖w‖Vη 6= ∅

}
.(7.18)

Therefore, if we alter the constant “C” appropriately in the definition of Vη, we see that it
now suffices to prove that

lim
η→0

lim sup
ρ→0

λ

( ⋃
m∈q−1Zd

T̃mρ

)
= 0,(7.19)
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where

T̃mρ : =
{
v ∈ U : D(ρ)n−(v)M(m+ φ(v) ·w) ∈ Vη

}
.(7.20)

For v ∈ Rd−1 and u = (u1, . . . , ud)
t ∈ Rd let us write u⊥ := (u2, . . . , ud)

t ∈ Rd−1 and

`v(u) = u1v+u⊥ ∈ Rd−1, so that n−(v)u =

(
e1 · u
`v(u)

)
. Then the set T̃mρ can be expressed as

T̃mρ = Xm
ρ ∩ Ymρ ,(7.21)

where

Xm
ρ =

{
v ∈ U : `v(M(m+ φ(v) ·w)) ∈ Bd−1

Cρ

}
and

Ymρ =
{
v ∈ U : e1 ·M(m+ φ(v) ·w) ∈ (−ηρ1−d, ηρ1−d)

}
.

Let us note that the genericity assumption (7.3) in Theorem 3 immediately implies that

lim
ρ→0

λ(Xm
ρ ) = 0 for each fixed m ∈ q−1Zd.(7.22)

Next, since φ is Lipschitz and U is bounded (after the initial reduction on p. 18), there exists
a constant C1 > 0 such that for any ρ > 0 and m ∈ q−1Zd,

|e1 ·Mm| > C1 ⇒ Leb
(
Xm
ρ

)
� ρd−1|e1 ·Mm|1−d.(7.23)

(Here and in the rest of the proof, the implied constant in any � bound is allowed to depend
on C, q,M,w,φ, but not on m, η, ρ.) Furthermore, increasing C1 if necessary, and assuming
that ρ is so small that ηρ1−d ≥ 1 and Cρ < 1, we see that

|e1 ·Mm| ≥ C1ηρ
1−d ⇒ Ymρ = ∅.(7.24)

and

‖(Mm)⊥‖ ≥ C1

(
1 + |mM · e1|

)
⇒ Xm

ρ = ∅.

Hence if we set

A1 = {m ∈ q−1Zd : |e1 ·Mm| < C1ηρ
1−d};

A2 = {m ∈ q−1Zd : |e1 ·Mm| > C1};

A3 = {m ∈ q−1Zd : ‖(mM)⊥‖ < C1(1 + |e1 ·Mm|)},

then for any 0 < η < 1 and 0 < ρ < min(C−1, η1/(d−1)), we have

λ

( ⋃
m∈q−1Zd

T̃mρ

)
≤

∑
m∈A1∩A3

λ
(
Xm
ρ

)
�

∑
m∈A1∩A2∩A3

ρd−1|e1 ·Mm|1−d +
∑

m∈A3\A2

λ(Xm
ρ ).

(In the last bound we used the fact that λ(A)� Leb(A) uniformly over all Borel sets A ⊂ U ,
because of our initial reduction on p. 18.) Here A3 \ A2 is a finite set, and hence the last
sum above tends to zero as ρ → 0, by (7.22). Finally the set A1 ∩ A2 ∩ A3 can be covered
by the dyadic pieces Ds = A3 ∩ {2sC1 < |e1 · Mm| ≤ 2s+1C1} with s running through
0, 1, . . . , S := dlog2(ηρ1−d)e. Here #Ds � 2sd and so

∑
m∈A1∩A2∩A3

ρd−1|e1 ·Mm|1−d � ρd−1
S∑
s=0

2sd · 2s(1−d) � ρd−12S � η.

Taken together these bounds prove that (7.19) holds, and the lemma is proved. �

We are now in a position to complete the proof of Theorem 3.
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Conclusion of the proof of Theorem 3. We wish to prove that our arbitrary weak* limit µ
necessarily equals µX . Assume the contrary; µ 6= µX ; then in the ergodic decomposition (7.9)
we have P (E \ {µX}) > 0. Using then Lemma 8, and the fact that there are only countably
many q ∈ Z+, and countably many subspaces U ⊂ Rk intersecting Zk in a lattice, it follows
that there exists some such subspace U of dimension < k, and some q ∈ Z+, such that
µ
(⋃{

XU,q,ξ : ξ ∈ (e⊥1 )k
})

> 0. This contradicts Lemma 9. Hence Theorem 3 is proved. �

Next we note the following consequence of Theorem 3.

Corollary 10. Let M ∈ SL(d,R), let U ⊂ Rd−1 be an open subset and let E1 : U → SO(d) be

a smooth map such that the map x 7→ E1(x)−1e1 from U to Sd−1
1 has a nonsingular differential

at (Lebesgue-)almost all x ∈ U . Let φ : U → (Rd)k be a Lipschitz map, and let λ be a Borel
probability measure on U , absolutely continuous with respect to Lebesgue measure. Assume
that for every w = (w1, . . . , wk) ∈ Zk \ {0},

λ

({
x ∈ U :

k∑
j=1

wj · φj(x) ∈ RM−1E1(x)−1e1 + Qd

})
= 0.(7.25)

Then for any bounded continuous function f : X × U → R,

lim
ρ→0

∫
U
f
(
D(ρ)E1(x)M(1d,φ(x)),x

)
dλ(x) =

∫
X×U

f(g,x) dµX(g) dλ(x).(7.26)

Proof. Let us first note that if (7.4) holds for every bounded continuous function f : X → R,
then by a standard approximation argument (cf. [34, proof of Thm. 5.3]), also the following
more general limit statement holds: For each small ρ > 0, let fρ : X ×U → R be a continuous
function satisfying |fρ| < B where B is a fixed constant, and assume that fρ → f as ρ → 0,
uniformly on compacta, for some continuous function f : X × U → R. Then

lim
ρ→0

∫
U
fρ
(
D(ρ)n−(v)M(1d,φ(v)),v

)
dλ(v) =

∫
X×U

f(g,v) dµX(g) dλ(v).(7.27)

Now Corollary 10 is proved by a direct mimic of the proof of [34, Cor. 5.4], using (7.27) in
place of [34, Thm. 5.3]. (Recall that we translate from the setting in [34] by applying the
transpose map, which also changes order of multiplication. Following the proof of [34, Cor.
5.4], the task becomes to prove that D(ρ)n−(x̃)E1(x0)M(1d,φ(x)), for x in a fixed small
neighborhood of an arbitrary point x0 ∈ U , becomes asymptotically equidistributed in X as

ρ → 0. Here x̃ = −c(x)−1v(x) with c(x) and v(x) given by

(
c(x)
v(x)

)
= E1(x0)E1(x)−1e1.

The condition for equidistribution, (7.3), then becomes

λ

({
x :

k∑
j=1

wj · φj(x) ∈ RM−1E1(x0)−1

(
1
−x̃

)
+ Qd

})
= 0,

or equivalently, (7.25).) �

Finally from Corollary 10 we derive the following equidistribution result, which is more
directly adapted to the proof of Theorem 2. Recall from Section 6 that we have fixed the map
v 7→ Rv, Sd−1

1 → SO(d), such that Rvv = e1 for all v ∈ Sd−1
1 , and such that v 7→ Rv is smooth

throughout Sd−1
1 \ {v0}. Note that since the proof below involves using Sard’s Theorem, the

proof does not apply to arbitrary Lipschitz maps.

Theorem 11. Let U be an open subset of Rm (m ≥ 1), let λ be a Borel probability measure
on U which is absolutely continuous with respect to Lebesgue measure, and let f : U → Rd be a
smooth map. Assume that f(J) 6= 0 for all J ∈ U and λ is f -regular. Also let φ : U → (Rd)k
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be a smooth map such that for every m = (m1, . . . ,mk) ∈ Zk \ {0},

λ

({
J ∈ U :

k∑
j=1

mj φj(J) ∈ Rf(J) + Qd

})
= 0.(7.28)

Then for any h ∈ Cb(X × U), writing v(J) := ‖f(J)‖−1f(J),

lim
ρ→0

∫
U
h
(
D(ρ)Rv(J)

(
1d,φ(J)

)
, J
)
dλ(J) =

∫
U

∫
X
h(p,J) dµX(p) dλ(J).(7.29)

Proof. Note that v is a smooth map from U to Sd−1
1 , and the fact that λ is f -regular means

exactly that v∗(λ) is absolutely continuous with respect to the Lebesgue measure on Sd−1
1 .

Hence m ≥ d − 1, and by Sard’s Theorem the set of critical values of v has measure zero
with respect to v∗(λ), and so the set of critical points of v has measure zero with respect to
λ. For each point J ∈ U which is not a critical point of v, there exists a diffeomorphism ι
from the unit box (0, 1)m onto an open neighborhood of J in U such that v(ι(x)) depends
only on (x1, . . . , xd−1), and this function gives a diffeomorphism of (0, 1)d−1 onto an open

subset of Sd−1
1 . Hence by decomposition and approximation of λ, it follows that it suffices to

prove Theorem 11 in the case when λ is supported in a fixed such coordinate neighborhood.
Changing coordinates via the diffeomorphism ι, we may assume from now on that U = (0, 1)m

and that v(x) depends only on (x1, . . . , xd−1) and gives a diffeomorphism of (0, 1)d−1 onto an

open subset of Sd−1
1 .

Let us first assume m = d − 1. Then v is a diffeomorphism of U = (0, 1)d−1 onto an open

subset of Sd−1
1 . Recall that v 7→ Rv is smooth throughout Sd−1

1 \ {v0}. If v0 is in the image
of v, then we replace U by U \ v−1(v0). Now the map x 7→ Rv(x) is smooth throughout U ,

and x 7→ R−1
v(x)e1 = v(x) has everywhere nonsingular differential. Now (7.29) follows from

Corollary 10 applied with M = 1d and E1(x) = Rv(x).
It remains to consider the case m > d−1. We are assuming that λ is absolutely continuous;

hence λ has a density λ′ ∈ L1((0, 1)m, dx). Now (7.28) says that∫
(0,1)m

I

( k∑
j=1

mjφj(x) ∈ Rv(x) + Qd

)
λ′(x) dx = 0.

Decompose x as (x1,x2) ∈ Rd−1 × Rm−d−1, and recall that v(x) only depends on x1, i.e. we
may write v(x) = v(x1). It follows that for (Lebesgue) a.e. x2 ∈ (0, 1)m−d−1,∫

(0,1)d−1

I

( k∑
j=1

mjφj(x1,x2) ∈ Rv(x1) + Qd

)
λ′(x1,x2) dx1 = 0.

Furthermore
∫

(0,1)m λ
′(x1,x2) dx1 dx2 = 1; hence for a.e. x2 we have

∫
(0,1)d−1 λ

′(x1,x2) dx1 <

∞. For each fixed x2 ∈ (0, 1)m−d−1 which satisfies both the last two conditions, our result for
the case m = d− 1 applies, showing that

lim
ρ→0

∫
(0,1)d−1

h1

(
D(ρ)Rv(x1)(1d,φ(x1,x2)), (x1,x2)

)
λ′(x1,x2) dx1

=

∫
(0,1)d−1×X

h1

(
p, (x1,x2))λ′(x1,x2) dx1 dµX(p).

Now (7.29) follows by integrating the last relation over x2 ∈ (0, 1)m−d−1, applying Lebesgue’s
Bounded Convergence Theorem to change order of limit and integration. �

8. Proof of Theorem 2

We now give the proof of Theorem 2. We will only discuss the proof of (6.13) in detail.

The proof of (6.12) is completely similar; basically one just has to replace σ(k)(J) with the

constant σ
(k)
λ throughout the discussion; cf. Remark 8.1 below.
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Recall that

v(J) =
f(J)

‖f(J)‖
∈ Sd−1

1 (J ∈ U).(8.1)

We start by making some initial reductions. First, the assumptions of Theorem 2 imply
that the open subset

{J ∈ U : v(J) 6= v0, uj(J) 6= v0 ∀j}(8.2)

has full measure in U with respect to λ, and so we may just as well replace U by that set.
Hence from now on Rv(J) is a smooth function on all U , and the same holds for Ruj(J) for

each j ∈ {1, . . . , k}. Next let us set, for η > 0,

Uη := {J ∈ U : ‖φj(J)− φ`(J)‖ > η ∀j 6= `},(8.3)

where ‖ · ‖ denotes distance to the origin in Td (viz., ‖x‖ = infm∈Zd ‖x̃−m‖ for any x ∈ Td,
where x̃ is any lift of x to Rd). Note that the fact that (φ1, . . . ,φk) is (θ, λ)-generic implies
that for any j 6= `, φj(J) 6= φ`(J) holds for λ-a.e. J ∈ U . Hence λ(Uη) → 1 as η → 0, and
thus by a standard approximation argument (cf., e.g., [27, Thm. 4.28]), it suffices to prove
that for all sufficiently small η > 0, the convergence (6.13) holds when U is replaced by Uη
and λ is replaced by λ(Uη)−1λ|Uη . In other words, from now on we may assume that there
exists a constant 0 < η < 1 such that ‖φj(J)− φ`(J)‖ > η for all j 6= ` and J ∈ U .

For any j ∈ {1, . . . , k}, ρ > 0, T > 0, we introduce the following “cylinder” subset of Rd×U :

Aj,ρ,T :=

{(
tf(J)− ρR−1

uj(J)

(
0
x

)
,J

) ∣∣∣∣ (x,J) ∈ Ωj , 0 < t ≤ Tσ(k)(J)ρ1−d
}
.(8.4)

For any subset A ⊂ Rd × U and J ∈ U , we write A(J) := {x ∈ Rd : (x,J) ∈ A}. Let us set

C := sup
{
‖x‖ : j ∈ {1, . . . , k}, (x,J) ∈ Ωj

}
;(8.5)

this is a finite positive real constant, since each Ωj is a non-empty bounded open set.

Lemma 12. For any 0 < ρ < η/(10C), (θ,J) ∈ Td × U , n ∈ Z+ and T > 0, the following
equivalence holds:

ρd−1tn(θ,J ,D(k)
ρ )

σ(k)(J)
≤ T ⇔

k∑
j=1

#
(
Aj,ρ,T (J) ∩ (φj(J)− θ + Zd)

)
≥ n.(8.6)

(In (8.6), φj(J)−θ+Zd denotes a translate of the lattice Zd, i.e. a subset of Rd. Note that

this set is well-defined, i.e. independent of the choice of lifts of φj(J) and θ to Rd.)

Proof. Let ρ, (θ,J), n and T be given as in the statement of the lemma. Note that the given
restriction on ρ implies that each target set,

Dρ(uj ,φj ,Ωj)(J) =

{
φj(J) + ρR−1

uj(J)

(
0
x

) ∣∣∣∣ x ∈ Ωj(J)

}
⊂ Td(8.7)

is contained within a ball of radius < η/10 < 1/10, centered at φj(J). In particular each

target is injectively embedded in Td, and the targets for j = 1, . . . , k are pairwise disjoint,
since ‖φj(J)−φ`(J)‖ > η for all j 6= `. Hence the left inequality in (8.6) holds if and only if

k∑
j=1

#

{
t ∈
(
0, Tσ(k)(J)ρ1−d] : θ + tf(J) ∈ Dρ(uj ,φj ,Ωj)(J)

}
≥ n.(8.8)

Note that each set in the left hand side is a discrete set of t-values, since the target set
Dρ(uj ,φj ,Ωj)(J) is contained in a hyperplane orthogonal to uj(J), and uj(J) · f(J) > 0 by

assumption. Lifting the situation from Td to Rd we now see, via (8.7) and (8.4), that for each
j the corresponding term in the left hand side of (8.8) equals #

(
Aj,ρ,T (J)∩ (φj(J)−θ+Zd)

)
.

Hence the lemma follows. �
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Next we prove that the linear map D(ρ)Rv(J) takes the cylinder Aj,ρ,T (J) into a cylinder
which is approximately normalized, in an appropriate sense. Indeed, for any real numbers

Y < Z, define Ãj,Y,Z ⊂ Rd × U through

Ãj,Y,Z :=

{((
t

−R̃j(J)x

)
,J

) ∣∣∣∣ (x,J) ∈ Ωj , σ
(k)(J)‖f(J)‖Y < t ≤ σ(k)(J)‖f(J)‖Z

}
,

(8.9)

where R̃j(J) is as on p. 16. We then have the following lemma.

Lemma 13. Given ε > 0 and T > 0, there exists ρ0 > 0 such that for all ρ ∈ (0, ρ0),
j ∈ {1, . . . , k} and J ∈ U ,

Ãj,ε,T−ε(J) ⊂ D(ρ)Rv(J)Aj,ρ,T (J) ⊂ Ãj,−ε,T+ε(J)

Proof. By direct computation,

D(ρ)Rv(J)Aj,ρ,T (J) =

{
te1 − ρD(ρ)Rj(J)

(
0
x

) ∣∣∣∣ x ∈ Ωj(J), 0 < t ≤ σ(k)(J)‖f(J)‖T
}
.

Using ρD(ρ) = diag(ρd, 1, . . . , 1) and (8.5), it follows that for every x ∈ Ωj(J),

ρD(ρ)Rj(J)

(
0
x

)
=

(
r

R̃j(J)x

)
where |r| ≤ Cρd. Note also that, by (6.8),(

σ(k)(J)‖f(J)‖
)−1

=

k∑
j=1

Leb(Ωj(J))uj(J) · v(J)

and this sum is bounded from above by a constant independent of J , since each set Ωj is
bounded. The lemma follows from these observations. �

Let G1 = SL(d,R) n Rd. This is the group “G for k = 1”; in particular G1 acts on Rd (cf.

(7.2)). For g = (M, (ξ1, . . . , ξk)) ∈ G and j ∈ {1, . . . , k} we write g[j] := (M, ξj) ∈ G1. We

also introduce the short-hand notation N := {1, . . . , N}. Given real numbers Yn < Zn for
n ∈ N , we define B[(Yn), (Zn)] to be the following subset of X × U :

B[(Yn), (Zn)] :=

{
(gΓ,J) ∈ X × U :

k∑
j=1

#
(
Ãj,Yn,Zn(J) ∩ g[j](Zd)

)
≥ n ∀n ∈ N

}
.(8.10)

In the following the Lebesgue measure in various dimensions will appear within the same
discussion; for clarity we will therefore write Lebm for the Lebesgue measure in Rm.

The following is a “trivial” variant of Siegel’s mean value theorem [41]:

Lemma 14. For any j ∈ {1, . . . , k} and f ∈ L1(Rd),∫
X

∑
m∈Zd

f(g[j](m)) dµX(g) =

∫
Rd
f(x) dx.(8.11)

In particular for any Lebesgue measurable subset A ⊂ Rd,

µX({Γg ∈ X : g[j](Zd) ∩A 6= ∅}) ≤ Lebd(A).(8.12)

Proof. (Cf., e.g., [46, proof of Lemma 10].) In the left hand side of (8.11) we write g =
(M, (ξ1, . . . , ξk)), integrate out all variables ξ`, ` 6= j, and then substitute ξj = Mη; this gives∫

X

∑
m∈Zd

f(g[j](m)) dµX(g) =

∫
F

∫
[0,1]d

∑
m∈Zd

f(M(m+ η)) dη dµ(M),(8.13)

where F ⊂ SLd(R) is a fundamental domain for SLd(R)/ SLd(Z) and µ is Haar measure on
SLd(R) normalized so that µ(F ) = 1. Now (8.11) follows since the inner integral in (8.13)
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equals
∫
Rd f(x) dx for every M . The last statement of the lemma then follows by noticing

that the left hand side of (8.12) is bounded above by the left hand side of (8.11) with f equal
to the characteristic function of A. �

Lemma 15. The number (µX × λ)
(
B[(Yn), (Zn)]

)
depends continuously on ((Yn), (Zn)).

(Here we keep ((Yn), (Zn)) ∈ RN × RN subject to Yn < Zn for all n ∈ N , as before.)

Proof. Let D(J) ∈ SL(d,R) be the diagonal matrix

D(J) = diag
[(
σ(k)(J)‖f(J)‖

)−1
,
(
σ(k)(J)‖f(J)‖

)1/(d−1)
, . . . ,

(
σ(k)(J)‖f(J)‖

)1/(d−1)
]
.

Using the fact that µX is G-invariant (thus invariant under gΓ 7→ D(J)gΓ) we see that

(µX × λ)
(
B[(Yn), (Zn)]

)
= (µX × λ)

(
B′[(Yn), (Zn)]

)
,(8.14)

where B′[(Yn), (Zn)] is the set obtained by replacing Ãj,Y,Z(J) by Ã′j,Y,Z(J) := D(J)Ãj,Y,Z(J)

in the definition (8.10). Hence it now suffices to prove that (µX × λ)
(
B′[(Yn), (Zn)]

)
depends

continuously on ((Yn), (Zn)). Note also that

Ã′j,Y,Z(J) :=

{(
t
−x

) ∣∣∣∣ x ∈ Ω̃j(J), Y < t ≤ Z
}
,(8.15)

where Ω̃j(J) is as in (6.18).

To prove the continuity, consider any real numbers Yn, Zn, Y
′
n, Z

′
n for n ∈ N , subject to

Yn < Zn and Y ′n < Z ′n. Writing 4 for symmetric set difference, we have

B′[(Yn), (Zn)]4B′[(Y ′n), (Z ′n)]

⊂
⋃
n∈N

k⋃
j=1

{
(gΓ,J) ∈ X × U :

(
Ã′j,Yn,Zn(J)4 Ã′j,Y ′n,Z′n(J)

)
∩ g[j](Zd) 6= ∅

}
,

and hence by (8.12) and (8.15),

(µX × λ)
(
B′[(Yn), (Zn)]4B′[(Y ′n), (Z ′n)]

)
≤
∑
n∈N

k∑
j=1

∫
U

Lebd
(
Ã′j,Yn,Zn(J)4 Ã′j,Y ′n,Z′n(J)

)
dλ(J)

≤
∑
n∈N

k∑
j=1

∫
U

Leb1

(
(Yn, Zn]4 (Y ′n, Z

′
n]
)

Lebd−1(Ω̃j(J)) dλ(J).

However it follows from (6.16) and (6.18) that

Lebd−1(Ω̃j(J)) = σ(k)(J) Lebd−1(Ωj(J))uj(J) · f(J),

and using also (6.8) it follows that

k∑
j=1

Lebd−1(Ω̃j(J)) = 1(8.16)

for all J ∈ U . Hence we conclude∣∣∣(µX × λ)
(
B′[(Yn), (Zn)]

)
− (µX × λ)

(
B′[(Y ′n), (Z ′n)]

)∣∣∣ ≤∑
n∈N

∣∣Yn − Y ′n∣∣+
∑
n∈N

∣∣Zn − Z ′n∣∣.
This proves the desired continuity. �

We wish to prove that the limit relation (7.29) in Theorem 11 holds with h equal to the
characteristic function of B = B[(Yn), (Zn)]. For this we need to prove that the boundary,
∂B, has measure zero with respect to µX × λ. Here by ∂B we denote the boundary of B in

X ×U , and similarly ∂Ãj,Yn,Zn denotes the boundary of Ãj,Yn,Zn in Rd ×U . (The alternative

would have been to consider the boundaries in X × Rm and Rd × Rm, respectively.)
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Lemma 16. For any B = B[(Yn), (Zn)], if (gΓ,J) ∈ ∂B then g[j](Zd) ∩ (∂Ãj,Yn,Zn)(J) 6= ∅
for some j ∈ {1, . . . , k} and n ∈ N .

Proof. Assume (gΓ,J) ∈ ∂B. Then there exist sequences {(gmΓ,Jm)} and {(g̃mΓ, J̃m)} in

X × U such that both (gmΓ,Jm) → (gΓ,J) and (g̃mΓ, J̃m) → (gΓ,J) as m → ∞, and

(gmΓ,Jm) ∈ B and (g̃mΓ, J̃m) /∈ B for all m. In particular for each m there is some n ∈ N
such that

k∑
j=1

#
(
Ãj,Yn,Zn(J̃m) ∩ g̃[j]

m (Zd)
)
< n.(8.17)

By passing to an appropriate subsequence, we may in fact assume that n is fixed in (8.17),
i.e. n does not depend on m. On the other hand (gmΓ,Jm) ∈ B for each m, and thus

k∑
j=1

#
(
Ãj,Yn,Zn(Jm) ∩ g[j]

m (Zd)
)
≥ n.(8.18)

Hence for each m there is some j ∈ {1, . . . , k} such that

#
(
Ãj,Yn,Zn(J̃m) ∩ g̃[j]

m (Zd)
)
< #

(
Ãj,Yn,Zn(Jm) ∩ g[j]

m (Zd)
)
.(8.19)

By again passing to a subsequence we may assume that also j is independent of m. We
have gmΓ → gΓ as m → ∞, and by choosing the gm’s appropriately we may even assume
gm → g; similarly we may assume g̃m → g. Using now gm → g and Jm → J together with
the fact that Ωj is bounded, it follows that there exists a compact set C ⊂ Rd such that

(g
[j]
m )−1Ãj,Yn,Zn(Jm) ⊂ C for all m, and in particular the cardinality of Ãj,Yn,Zn(Jm)∩g[j]

m (Zd)
remains the same if we replace Zd with the finite set C ∩Zd. Now (8.19) implies that for each

m there is some q ∈ C ∩ Zd such that g̃
[j]
m (q) /∈ Ãj,Yn,Zn(J̃m) but g

[j]
m (q) ∈ Ãj,Yn,Zn(Jm); and

since C ∩Zd is finite we may assume, after passing to a subsequence, that q is independent of

m. Taking now m→∞ it follows that (g[j](q),J) ∈ ∂Ãj,Yn,Zn , and the lemma is proved. �

Lemma 17. Every set B = B[(Yn), (Zn)] satisfies (µX × λ)(∂B) = 0.

Proof. In view of Lemma 16 and (8.12) in Lemma 14, it suffices to prove that for every

j ∈ {1, . . . , k} and n ∈ N , ∂Ãj,Yn,Zn has measure zero with respect to Lebd×λ. Recalling
(8.9) we see that, for any Y < Z,

∂Ãj,Y,Z =

{((
t

−R̃j(J)x

)
,J

) ∣∣∣∣ (x,J) ∈ ∂Ωj , σ
(k)(J)‖f(J)‖Y ≤ t ≤ σ(k)(J)‖f(J)‖Z

}
⋃{((

t

−R̃j(J)x

)
,J

) ∣∣∣∣ (x,J) ∈ Ωj , t ∈
{
σ(k)(J)‖f(J)‖Y, σ(k)(J)‖f(J)‖Z

}}
.

Now the claim follows by Fubini’s Theorem, using the assumption from Theorem 2 that ∂Ωj

has measure zero with respect to Lebd−1×λ. �

We are now ready to complete the proof of Theorem 2.

Conclusion of the proof of Theorem 2. Let φ̃ : U → (Rd)k be the map

J 7→
(
φ1(J)− θ(J), . . . ,φk(J)− θ(J)

)
.

Then Theorem 11 applies for our U , λ,f and φ̃; in particular, the condition (7.28) holds for φ̃
since we assume that (φ1, . . . ,φk) is (θ, λ)-generic. Now for any fixed set B = B[(Yn), (Zn)],
since (µX × λ)(∂B) = 0 by Lemma 17, a standard approximation argument (cf., e.g., [27,
Thm. 4.25]) shows that the conclusion of Theorem 11, (7.29), applies also for h = 1B, the
characteristic function of B. In other words,

lim
ρ→0

λ
({
J ∈ U :

(
D(ρ)Rv(J)

(
1d, φ̃(J)

)
, J
)
∈ B

})
= (µX × λ)(B).(8.20)
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Combining this with the definition of B = B[(Yn), (Zn)], (8.10), we conclude:

lim
ρ→0

λ

({
J :

k∑
j=1

#
(
Ãj,Yn,Zn(J) ∩D(ρ)Rv(J)

(
φj(J)− θ(J) + Zd

))
≥ n ∀n ∈ N

})
= (µX × λ)(B).(8.21)

Now let positive real numbers T1, . . . , Tn be given, and consider a number ε subject to
0 < ε < 1

2 min(T1, . . . , Tn). Applying (8.21) with Yn = ε and Zn = Tn − ε we get, via
Lemma 13:

lim inf
ρ→0

λ

({
J :

k∑
j=1

#
(
Aj,ρ,Tn(J) ∩

(
φj(J)− θ(J) + Zd

))
≥ n ∀n ∈ N

})
≥ (µX × λ)

(
B[(ε)Nn=1, (Tn − ε)Nn=1]

)
.(8.22)

Similarly if we take Yn = −ε and Zn = Tn + ε then we get

lim sup
ρ→0

λ

({
J :

k∑
j=1

#
(
Aj,ρ,Tn(J) ∩

(
φj(J)− θ(J) + Zd

))
≥ n ∀n ∈ N

})
≤ (µX × λ)

(
B[(−ε)Nn=1, (Tn + ε)Nn=1]

)
.(8.23)

These relations hold for all sufficiently small ε > 0; letting ε→ 0 we get, via Lemma 15, when
also rewriting the left hand side using Lemma 12:

lim
ρ→0

λ

({
J :

ρd−1tn(θ,J ,D(k)
ρ )

σ(k)(J)
≤ Tn ∀n ∈ N

})
= (µX × λ)

(
B[(0)Nn=1, (Tn)Nn=1]

)
.(8.24)

The fact that (8.24) holds for any T1, . . . , TN > 0 implies that (6.13) in Theorem 2 holds. �

Remark 8.1. As mentioned, the proof of (6.12) in Theorem 2 is completely similar; in principle

one only has to replace σ(k)(J) with the constant σ
(k)
λ throughout the discussion. However a

couple of extra technicalities appear. First of all, it may happen that σ
(k)
λ = ∞; however in

this case (6.12) is trivial, with τi = 0 for all i. Hence from now on we assume 0 < σ
(k)
λ < ∞.

Secondly, the last steps of the proofs of Lemmata 13 and 15 do not carry over verbatim. One
way to manage those steps is to assume from start that 0 < η < ‖f(J)‖ < η−1 for all J ∈ U ;
this is permissible by the argument given below (8.3), but with Uη replaced with

Uη := {J ∈ U : ‖φj(J)− φ`(J)‖ > η ∀j 6= ` and η < ‖f(J)‖ < η−1}.(8.25)

With this assumption, we have
(
σ

(k)
λ ‖f(J)‖

)−1
<
(
σ

(k)
λ η

)−1
for all J ∈ U , and using this the

proof of Lemma 13 extends to the present situation. Furthermore, by (6.17) and (6.16),

Lebd−1

(
Ωj(J)

)
=
(
σ

(k)
λ uj(J) · f(J)

)
Lebd−1

(
Ωj(J)

)
< σ

(k)
λ η−1 Lebd−1

(
Ωj(J)

)
,

which is bounded from above by a constant independent of J , since the set Ωj is bounded.
Using this fact, the proof of the continuity in Lemma 15 carries over to the present situation.

Concerning the distribution of the limit variables (τ̃1, . . . , τ̃N ), we see from the above proof
of (6.13) that for any T1, . . . , Tn > 0,

P
(
τ̃n ≤ Tn ∀n ∈ N

)
= (µX × λ)

(
B[(0)Nn=1, (Tn)Nn=1]

)
.(8.26)
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Combining this with (8.14) and (8.15), we get

P
(
τ̃n ≤ Tn ∀n ∈ N

)(8.27)

= (µX × λ)

({
(gΓ,J) :

k∑
j=1

#

{(
t
x

)
∈ g[j](Zd) : 0 < t ≤ Tn, x ∈ −Ω̃j(J)

}
≥ n ∀n ∈ N

})
.

Hence the limit variables (τ̃i)
∞
i=1 may be described as follows. Recall (6.14). Let J be a

random point in U distributed according to λ, and let gΓ be a random point in X distributed
according to µX , and independent from J . Then (τ̃i)

∞
i=1 can be taken to be the elements of

the random set
k⋃
j=1

P(g[j](Zd), Ω̃j(J)),(8.28)

ordered by size. Similarly, (τi)
∞
i=1 can be taken to be the elements of the random set

k⋃
j=1

P(g[j](Zd),Ωj(J)),(8.29)

ordered by size. This description clearly agrees with the one in (6.19) and (6.20). Let us

also note that it follows from (8.26) and Lemma 15, and the σ
(k)
λ -analogues of these, that the

distribution functions P
(
τn ≤ Tn ∀n ∈ N

)
and P

(
τ̃n ≤ Tn ∀n ∈ N

)
depend continuously on

(Tn) ∈ RN>0, as stated in Section 6.
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