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Abstract. We calculate the limiting gap distribution for the fractional parts of log n,
where n runs through all positive integers. By rescaling the sequence, the proof quickly
reduces to an argument used by Barra and Gaspard in the context of level spacing
statistics for quantum graphs. The key ingredient is Weyl equidistribution of irrational
translations on multi-dimensional tori. Our results extend to logarithms with arbitrary
base; we deduce explicit formulas when the base is transcendental or the rth root of
an integer. If the base is close to one, the gap distribution is close to the exponential
distribution.

§1. The gap distribution is a popular measure to quantify the degree of randomness
in a given deterministic sequence. Rudnick and Zaharescu have shown [12] that the gap
distribution of the fractional parts of 2nα (n = 1, . . . , N), for almost all α, converges in
the limit N →∞ to an exponential distribution—the gap distribution of a Poisson point
process. (2n may be replaced by any lacunary sequence.) The same is expected to hold
for the fractional parts of nkα, for any integer k ≥ 2 and α of bounded type, but this
remains unproven [10, 11, 8, 4]. Numerical experiments also suggest that the fractional
parts of nβ may have an exponential gap distribution provided β ∈ (0, 1

2
)∪ (1

2
, 1). In the

case β = 1
2
, Elkies and McMullen [3] have calculated an explicit formula for the limiting

gap distribution, which is evidently not exponential. Remarkably, their distribution co-
incides with the limiting gap distribution of directions of points in the affine lattice Z2+a
for any fixed vector a /∈ Q2 [9]. Both of these findings follow from the equidistribution
of translates of certain curves on the homogeneous space ASL(2,Z)\ASL(2,R). In the
present paper we show that also the fractional parts of logb n have a non-exponential
limiting gap distribution, which we calculate explicitly. Our derivation reduces quickly
to an argument used by Barra and Gaspard [1] in the context of spectral statistics of
quantum graphs. The key ingredient here is Weyl equidistribution on multi-dimensional
tori, similar in spirit to [5, Chap. 3].

§2. To state our main results, let us denote by ξn the fractional parts of logb n. We
denote by {ξn,N}n=1,...,N the ordered set of the first N elements of ξn, so that

(1) 0 ≤ ξ1,N ≤ ξ2,N ≤ . . . ≤ ξN,N < 1.

For purely notational reasons it will be convenient to set ξN+1,N := ξ1,N + 1, and also
consider the gap between the first and last element mod 1; this additional gap has of
course no effect on the existence and form of the limiting gap distribution.

For given N , the gap distribution PN(s) is defined as the probability density on R≥0,

(2) PN(s) =
1

N

N∑
n=1

δ(s−N(ξn+1,N − ξn,N)).
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Figure 1. The distribution of gaps between the fractional parts of log n,
where n = 1, . . . , 104. The piecewise continuous curve is the limit distri-
bution P (s) of Theorem 1 for b = e.
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Figure 2. The distribution of gaps between the fractional parts of logb n
with base b = e1/5 = 1.221402758 . . ., where n = 1, . . . , 104. The blue
curve is the limit distribution P (s) of Theorem 1, the red curve is the
exponential distribution e−s.

We denote by T the set of transcendental numbers b > 1; b = e is a natural example,
cf. Figure 1. The technique we present here also works for algebraic b, but in general
leads to more intricate limit distributions. In §10 we discuss the simple case of integer
base b, and in §11 the case when the base is the rth root of an integer.

Theorem 1. Let b ∈ T . For any bounded continuous f : R≥0 → R,

(3) lim
N→∞

∫ ∞
0

f(s)PN(s) ds =

∫ ∞
0

f(s)P (s) ds,
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where

(4) P (s) =


1

log b
s−2(F (s log b)− F (sb−1 log b)) if 0 < s < 1

log b

− 1
log b

s−2F (sb−1 log b) if 1
log b

< s < b
log b

0 if s > b
log b

,

(5) F (a) = a
∂

∂a
(a; b−1)− (a; b−1)

and

(6) (a; q) =
∞∏
n=0

(1− aqn) (q-Pochhammer symbol).

The derivative of the Pochhammer symbol is explicitly

(7)
∂

∂a
(a; q) = −(a; q)

∞∑
j=0

1

q−j − a
.

Note that P (s) has jump discontinuities at s = 1
log b

and b
log b

; however both the left and

right limits exist at these points, and are finite. We also note that lims→0+ P (s) = log b
b−1 .

A more elementary formulation, which is equivalent to the above, is that for every
s ≥ 0

(8) lim
N→∞

1

N

∣∣{n ≤ N : N(ξn+1,N − ξn,N) > s}
∣∣ =

∫ ∞
s

P (s′) ds′.

We will show in the final paragraph §12 of this paper that, in the limit b → 1, P (s)
converges to the exponential distribution e−s, cf. Figure 2.

§3. To gain a better insight into the limiting gap distribution P (s) for fixed b, let
us recall that the fractional parts of logb n are not uniformly distributed mod 1 [6].
However, the sequence of ηn (n = 1, . . . , N) given by the fractional parts of logb(n/N) =
logb n − logbN has a limit density mod 1, and evidently the same gap distribution (to
see this, recall that we have added the gap between the first and last element of the
sequence mod 1, and the ordering in the sequence remains the same). It is an easy
exercise to show that for any interval A ⊂ [0, 1],

(9) lim
N→∞

1

N

∣∣{n ≤ N : ηn ∈ A}
∣∣ =

∫
A

ρ(x) dx

with density

(10) ρ(x) =
log b

b− 1
bx.

§4. A more refined statement of Theorem 1 is to consider the joint distribution of ηn
and the subsequent gap; define the corresponding probability density on [0, 1]×R≥0 by

(11) PN(x, s) =
1

N

N∑
n=1

δ(x− ηn,N) δ(s−N(ηn+1,N − ηn,N)),

where {ηn,N}n=1,...,N is again the ordered set of the first N elements of ηn. The joint
distribution allows us to compare the statistics of gaps between elements near one point
x of the unit interval with the gap statistics at a second point x′.
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The explicit formula for the limit distribution will involve the density

(12) R(a, b) = (b−1; b−1) δ(a− 1) +


∂2

∂a2
(a; b−1) if 0 < a < 1

0 if a > 1.

The second derivative of the Pochhammer symbol is

(13)
∂2

∂a2
(a; q) = (a; q)

∞∑
j,k=0
j 6=k

1

(q−j − a)(q−k − a)
.

Theorem 2. Let b ∈ T . For any bounded continuous f : [0, 1]× R≥0 → R,

(14) lim
N→∞

∫ 1

0

∫ ∞
0

f(x, s)PN(x, s) ds dx =

∫ 1

0

∫ ∞
0

f(x, s)P (x, s) ds dx,

where

(15) P (x, s) = (bx−1 log b)2R(sbx−1 log b, b).

§5. To unravel the previous statements further, let us consider a strictly increasing
function [0, 1] → [0, 1] which maps the sequence ηj to a new sequence η̃j which now is
uniformly distributed mod 1. This function is given by (cf. [7])

(16) x 7→
∫ x

0

ρ(y) dy =
bx − 1

b− 1
,

and thus

(17) η̃n =
bηn − 1

b− 1
, η̃n,N =

bηn,N − 1

b− 1
.

We have, explicitly, for n ∈ [Nb−k, Nb−k+1) and k ∈ Z≥0,

(18) η̃n =
bkn−N
N(b− 1)

.

We will see in §8 that the knowledge of the joint distribution PN(x, s) for the original
sequence and the analogue for the rescaled and ordered sequence,

(19) P̃N(x, s) =
1

N

N∑
n=1

δ(x− η̃n,N) δ(s−N(η̃n+1,N − η̃n,N))

are equivalent:

Theorem 3. Let b ∈ T . For any bounded continuous f : [0, 1]× R≥0 → R,

(20) lim
N→∞

∫ 1

0

∫ ∞
0

f(x, s) P̃N(x, s) ds dx =

∫ 1

0

∫ ∞
0

f(x, s) P̃ (s) ds dx,

where

(21) P̃ (s) = (1− b−1)2R
(
(1− b−1)s, b

)
.

Note that the limit distribution is independent of x. This is not a consequence of η̃j
being uniformly distributed mod 1, but reflects the fact that the gap distribution is the
same if we restrict the sequence to an arbitrary subinterval of [0, 1].

We will first prove Theorem 3 in §6 and §7, and then retrace our steps by subsequently
showing in §8 that Theorem 3 implies Theorem 2, where

(22) P (x, s) = P̃ (ρ(x)s)ρ(x)2 = (bx−1 log b)2R(sbx−1 log b, b).
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We obtain Theorem 1 from Theorem 2 by taking an x-independent test function.

§6. We now turn to the proof of Theorem 3 and study a more general setting. Consider
a finite sequence ω1, . . . , ωJ of positive real numbers (the “frequencies”). With each ωj
we associate a real number βj. We are interested in the statistical properties of the
multiset

(23) S =
J⊎
j=1

(βj + ω−1j Z).

Here ] denotes multiset sum, i.e. a union where we keep track of the multiplicity of
each element (this is only relevant if the sets βj + ω−1j Z, j = 1, . . . , J are not mutually

disjoint). The number of elements of S that fall into the interval I = [t− L
2
, t+ L

2
] is

(24) N(t, L) =
J∑
j=1

Nj(t, L), Nj(t, L) =
∣∣I ∩ (βj + ω−1j Z)

∣∣.
Evidently Nj(t, L) is periodic in t with period ω−1j . Furthermore

(25) ωjL− 1 < Nj(t, L) ≤ ωjL+ 1.

Therefore

(26) lim
L→∞

N(t, L)

L
=

J∑
j=1

ωj,

which means that the asymptotic density of S in R equals
∑

j ωj.

For any x ∈ R we write |x|Z ∈ [0, 1
2
] for the distance between x and the nearest

integer. We also set

(27) n(x, L) =
∣∣[x− L

2
, x+ L

2
] ∩ Z

∣∣.
The verification of the following lemma is a simple exercise.

Lemma 1. Given x ∈ R, L ≥ 0 and k ∈ Z≥0, we have n(x, L) = k if and only if
|x− 1

2
k|Z is both ≥ 1

2
(k − L) and > 1

2
(L− k).

In particular, if x is picked at random with respect to the uniform probability measure
P0 on [0, 1], then

(28) P0(n(x, L) = k) = E1(k, L) :=

{
1− |k − L| if L− 1 < k < L+ 1

0 otherwise.

The following observation is due to Barra and Gaspard [1].

Theorem 4. Assume that the frequencies ω1, . . . , ωJ are linearly independent over Q.
Then, for −∞ < a < b <∞ and k ∈ Z≥0,

(29) lim
T→∞

meas({t ∈ [aT, bT ] : N(t, L) = k})
(b− a)T

= E(k, L)

where

(30) E(k, L) =
∑

k1+...+kJ=k

J∏
j=1

E1

(
kj, ωjL

)
.
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In particular,

(31) E(0, L) =

{∏J
j=1

(
1− ωjL

)
if L < max(ω1, . . . , ωJ)−1

0 otherwise.

The convergence in (29) is uniform over all choices of β1, . . . , βJ ∈ R (but keeping
ω1, . . . , ωJ fixed).

Proof. Decomposing [aT, bT ] into intervals of length ω−11 and usingN(t, L) =
∑J

j=1Nj(t, L),

we see that meas({t ∈ [aT, bT ] : N(t, L) = k}) equals

∑
k1+...+kJ=k

nb−1∑
n=na

ω−11 meas({s ∈ [0, 1) : Nj(ω
−1
1 (s+ n), L) = kj for j = 1, . . . , J}) + E,

(32)

where na = bω1aT c, nb = bω1bT c, and E is a real number whose absolute value
is bounded above by the measure of the symmetric difference between [aT, bT ] and
[naω

−1
1 , nbω

−1
1 ]; thus |E| ≤ 2ω−11 . Let us define αj,n ∈ R/Z through the relation

βj + ω−1j Z = nω−11 + ω−1j (αj,n + Z). Then Nj(ω
−1
1 (s + n), L) = kj holds if and only

if
∣∣[ω−11 s − L

2
, ω−11 s + L

2
] ∩ ω−1j (αj,n + Z)

∣∣ = kj, and by Lemma 1 this holds if and

only if 2
∣∣ωj

ω1
s − αj,n − 1

2
kj
∣∣
Z is both ≥ kj − ωjL and > ωjL − kj. It follows that

meas({t ∈ [aT, bT ] : N(t, L) = k}) equals∑
k1+...+kJ=k

nb−1∑
n=na

ω−11 fk1,...,kJ (α1,n, α2,n, . . . , αJ,n) + E,(33)

where fk1,...,kJ : (R/Z)J → [0, 1] is defined by

fk1,...,kJ (α1, α2, . . . , αJ) =

∫ 1

0

J∏
j=1

I
(

2
∣∣∣ωj
ω1

s− αj −
1

2
kj

∣∣∣
Z
> |kj − ωjL|

)
ds.(34)

Note that each function fk1,...,kJ is continuous on (R/Z)J . It follows from our definition
of αj,n that αj,n+1 = αj,n − ωjω−11 mod Z. In particular α1,n is independent of n; in
fact α1,n = α1 := ω1β1 in R/Z for all n. On the other hand our assumption implies that
the numbers 1, ω2ω

−1
1 , ω3ω

−1
1 , . . . , ωJω

−1
1 are linearly independent over Q, and hence by

Weyl equidistribution we have∑nb−1
n=na

fk1,...,kJ (α1,n, α2,n, . . . , αJ,n)

nb − na
→
∫
(R/Z)J−1

fk1,...,kJ (α1, α2, . . . , αJ) dα2 . . . dαJ(35)

as nb − na → ∞. Note that the convergence here is uniform over all choices of
β1, . . . , βJ ∈ R. The right hand side equals∫

(R/Z)J−1

∫ 1

0

J∏
j=1

I
(

2
∣∣∣ωj
ω1

s− αj −
1

2
kj

∣∣∣
Z
> |kj − ωjL|

)
ds,(36)

and changing order of integration and then substituting αj := xj +
ωj

ω1
s − 1

2
kj (xj ∈

R/Z) we see that the expression factors as
∏J

j=1E1(kj, ωjL). Finally noticing also that

nb − na ∼ ω1(b− a)T as T →∞, we obtain (29). �

We now turn to the gap distribution. We order the elements of S and label them as

(37) . . . ≤ λ−2 ≤ λ−1 ≤ λ0 ≤ λ1 ≤ λ2 ≤ . . . .
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Theorem 5. Assume that the frequencies ωj are linearly independent over Q, and that
ω1 is the largest among ω1, . . . , ωJ . Then, for −∞ < a < b < ∞, and any s ≥ 0,
s 6= ω−11 ,

(38) lim
T→∞

1

(b− a)T
|{j ∈ Z : λj ∈ [aT, bT ] and λj+1 − λj > s}| =

∫ ∞
s

Pω(s′)ds′

where

(39) Pω(s) = ω1

J∏
j=2

(
1− ωj

ω1

)
δ(s−ω−11 )+


J∑

h,i=1
h6=i

ωhωi

[ J∏
j=1
j 6=h,i

(
1− ωjs

)]
if 0 < s < ω−11

0 if s > ω−11 .

The convergence in (38) is uniform over all choices of β1, . . . , βJ ∈ R (but keeping
ω1, . . . , ωJ fixed).

Proof. This is a corollary of Theorem 4, cf. e.g. Theorem 2.2 in [7]. The limiting gap
density is given by the formula

(40) Pω(s) =
d2E(0, s)

ds2
.

�

§7. Proof of Theorem 3. It suffices to prove that (20) holds when f is the characteristic
function of a box [0, a] × [0, A] with A 6= (1 − b−1)−1, i.e. to prove that for any fixed
a ∈ [0, 1] and A ≥ 0, A 6= (1− b−1)−1, we have

Ga,A(N)→ a

∫ A

0

P̃ (s) ds(41)

as N →∞, where

Ga,A(N) :=
1

N

∣∣∣{n ∈ {1, . . . , N} : η̃n,N ∈ [0, a], N(η̃n+1,N − η̃n,N) ∈ [0, A]
}∣∣∣(42)

(cf., e.g., [2, Example 2.3]).

Set ωj = b−j(b−1) and β
(N)
j = β(N) = − N

b−1 for j = 1, 2, . . .. For any given J,N ∈ Z≥1
we note that by (18), {Nη̃1, . . . , Nη̃N} equals the multiset sum of (β(N) +ω−1j Z)∩ [0, N)

for j = 1, 2, . . . , J and a remaining multiset of cardinality dNb−Je consisting of Nη̃n for
n = N and all n < Nb−J . Hence if we order the elements of SN := ]Jj=1(β

(N) + ω−1j Z)
as . . . ≤ λ−2 ≤ λ−1 ≤ λ0 ≤ λ1 ≤ λ2 ≤ . . ., then

Ga,A(N) =
1

N

∣∣∣{j ∈ Z : λj ∈ [0, aN ], λj+1 − λj ∈ [0, A]
}∣∣∣+O

(
N−1 + b−J

)
.(43)

Since b is transcendental, the frequencies ω1, . . . , ωJ are linearly independent over Q;
thus Theorem 5 applies, and we obtain, for any fixed J ∈ Z≥1,

lim sup
N→∞

Ga,A(N) ≤ a

∫ A

0

Pω,J(s′) ds′ +O(b−J);(44)

lim inf
N→∞

Ga,A(N) ≥ a

∫ A

0

Pω,J(s′) ds′ −O(b−J),
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where Pω,J(s) = 0 if s > ω−11 while for s < ω−11 we have

Pω,J(s) = ω1

J∏
j=2

(
1− ωj

ω1

)
δ(s− ω−11 ) +

d2

ds2

J∏
j=1

(
1− ωjs

)
.(45)

We now compute that

∫ A

0

Pω,J(s′) ds′ =
J∑
j=1

ωj −


0 if A > ω−11

J∑
j=1

ωj

J∏
i=1
(i 6=j)

(1− ωiA) if A < ω−11 .
(46)

Hence, letting J →∞ in (44) and using ωj = b−j(b− 1), we conclude

lim
N→∞

Ga,A(N) = a+ a


0 if A > b

b−1( ∂
∂s

(
(1− b−1)s; b−1

))
|s=A

if A < b
b−1

 = a

∫ A

0

P̃ (s) ds,

(47)

where the last equality follows by a direct computation using (12) and (21). Hence (41)
holds, and Theorem 3 is proved. �

§8. Let us now prove that Theorem 3 implies Theorem 2. (An entirely analogous
argument also shows that Theorem 2 implies Theorem 3, so that the statements of
these two theorems are in fact equivalent.) Given a bounded continuous function f :
[0, 1] × R≥0 → R, we wish to prove that (14) holds. Since the sequence of probability
measures PN(x, s) ds dx is tight (cf., e.g., Lemma 2.1 in [7]), a familiar approximation
argument shows that without loss of generality we may assume that f has compact
support, i.e. there is some B > 0 such that f(x, s) = 0 whenever s ≥ B.

Let T : [0, 1] → [0, 1] be the map in (16) and define T : [0, 1] × R≥0 → [0, 1] × R≥0
through T(x, s) = (T (x), T ′(x)s). This is a bijection, with inverse given by

T−1(x, s) =
(
T−1(x),

s

T ′(T−1(x))

)
.(48)

Now apply Theorem 3 with the test function f ◦ T−1. Then in (20) we have∫ 1

0

∫ ∞
0

f ◦ T−1(x, s) P̃N(x, s) ds dx =
1

N

N∑
n=1

f(ηn,N , sn,N),(49)

where sn,N := N · T (ηn+1,N)− T (ηn,N)

T ′(ηn,N)
. Let FN be the set of those n ∈ {1, . . . , N} for

which ηn+1,N − ηn,N ≤ BbN−1. Then since T ′(x) = ρ(x) is continuous and bounded
away from zero on [0, 1] we have sn,N = N(ηn+1,N − ηn,N) + o(1) uniformly over all
n ∈ FN as N →∞, and hence, since f is uniformly continuous,

f(ηn,N , sn,N) = f(ηn,N , N(ηn+1,N − ηn,N)) + o(1),(50)

uniformly over all n ∈ FN . On the other hand if n /∈ FN then N(ηn+1,N − ηn,N) >

Bb > B and also sn,N > Bb inf T ′

supT ′
= B, so that both sides of (50) vanish. Hence (50) in

fact holds uniformly over all n ∈ {1, . . . , N} as N → ∞, and it follows that the limit
in the left hand side of (14) exists, and equals the limit in (20) (with f ◦ T−1). Finally
substituting (x, s) = T(x′, s′) in the right hand side of (20) we see (via (22)) that this
limit equals the right hand side of (14), and the proof is complete.
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Figure 3. The distribution of gaps between the fractional parts of logb n
with base b = 10, where n = 1, . . . , 104. The piecewise continuous curve
is the limit distribution P (s) in (56).

§9. Theorem 1 is now a direct consequence of Theorem 2. As to the explicit formula
for the gap distribution,

P (s) =

∫ 1

0

P (x, s) dx

=

∫ 1

0

(bx−1 log b)2R(sbx−1 log b, b) dx.

(51)

With the variable substitution a = sbx−1 log b, da = sbx−1(log b)2 dx = (log b) a dx we
have

(52) P (s) =
1

s2 log b

∫ s log b

sb−1 log b

R(a, b) a da.

Recall the definition of R(a, b) in (12). The integral over the first term in (12) yields
(b−1;b−1)
s2 log b

if sb−1 log b < 1 < s log b and 0 otherwise. For the second term, we use integra-

tion by parts, ∫ a1

a0

a
∂2

∂a2
(a; b−1) da =

[
a
∂

∂a
(a; b−1)

]a1
a0

−
∫ a1

a0

∂

∂a
(a; b−1) da

=

[
a
∂

∂a
(a; b−1)− (a; b−1)

]a1
a0

,

(53)

where a0 = min{1, sb−1 log b} and a1 = min{1, s log b}. This yields (4).

§10. As we have noted, the technique presented here works also for algebraic b. Let
us consider briefly the simplest case of b > 1 being an integer. In this case, the multiset
sum SN = ]Jj=1(β

(N) + ω−1j Z) considered in the proof of Theorem 3 has all its points

lying in β(N) + ω−11 Z, i.e. the only gap lengths appearing are 0 and ω−11 = (1− b−1)−1;
furthermore SN is periodic with period ω−1J = bJ−1ω−11 . One finds that the average

multiplicity of β(N) + ω−11 k in SN for varying k ∈ Z equals 1−b−J

1−b−1 . Hence following the
proof of Theorem 3 and taking the limit J →∞, we conclude that for b > 1 an integer,



10 JENS MARKLOF AND ANDREAS STRÖMBERGSSON
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1.2

Figure 4. The distribution of gaps between the fractional parts of logb n
with base b =

√
10, where n = 1, . . . , 104. The piecewise continuous curve

is the limit distribution P (s) in (62) with r = 2.

0.5 1.0 1.5 2.0 2.5 3.0

0.2

0.4

0.6

0.8

1.0

1.2

Figure 5. The distribution of gaps between the fractional parts of
10 log10 n (= logb n with base b = 101/10 = 1.258925411 . . .), where
n = 1, . . . , 104. The blue curve is the limit distribution P (s) in (62)
with r = 10. The red curve is the exponential distribution e−s.

we have a limit result as in (20) in Theorem 3, but with the limit density being given
simply by

P̃ (s) = b−1δ(s) + (1− b−1)δ
(
s− (1− b−1)−1

)
.(54)

As to the limit of the unscaled sequence ηn, the first equality in (22) yields

(55) P (x, s) =
log b

b− 1
bx−1δ(s) + (log b)bx−1δ

(
s− b1−x

log b

)
,
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and therefore

(56) P (s) = b−1δ(s) +

{
1

log b
s−2 if 1

log b
< s < b

log b

0 otherwise.

See Figure 3 for an illustration in the case b = 10.

§11. The findings of the previous paragraph can be generalised to bases of the form
b = m1/r, with m and r positive integers such that m1/p is not an integer for any prime
divisor p of r. In this case, the multiset sum SN = ]Jj=1(β

(N) + ω−1j Z) considered in

the proof of Theorem 3 has all points in the set ∪rj=1(β
(N) + ω−1j Z). Our assumption

implies that the polynomial Xr −m is irreducible over Q (since any monic polynomial
of degree d < r dividing Xr − m must have zeroth coefficient of absolute value md/r,
which is irrational). Hence ω1, . . . , ωr are linearly independent over Q, and we now see
by the same argument as in the proof of Theorem 4 that the limit (29) exists in the
case k = 0 and is given by

(57) E(0, L) =

{∏r
j=1

(
1− b−j(b− 1)L

)
if L < (1− b−1)−1

0 otherwise.

Using the finite q-Pochhammer symbol

(58) (a; q)r =
r−1∏
n=0

(1− aqn),

we can write this as

(59) E(0, L) =

{
((1− b−1)L; b−1)r if L < (1− b−1)−1

0 otherwise.

We note that for L < (1− b−1)−1

(60) − d

dL
E(0, L) = (1− b−1)E(0, L)

r−1∑
j=0

1

bj − (1− b−1)L

and thus

(61) − d

dL
E(0, L)

∣∣∣∣
L=0

= (1− b−1)
r−1∑
j=0

1

bj
= 1− b−r.

The fact that this value is less than 1 is due to the non-trivial multiplicity of values
in our sequence, which results in a positive density of zero gaps. The statements of
Theorems 1–3 therefore hold with the following limit distributions. The limiting gap
distribution of Theorem 1 is

(62) P (s) = b−r δ(s) +


1

log b
s−2(Fr(s log b)− Fr(sb−1 log b)) if 0 < s < 1

log b

− 1
log b

s−2Fr(sb
−1 log b) if 1

log b
< s < b

log b

0 if s > b
log b

,

with

(63) Fr(a) = a
∂

∂a
(a; b−1)r − (a; b−1)r.

The joint limiting gap distribution of Theorem 2 is

(64) P (x, s) =
log b

b− 1
bx−r δ(s) + (bx−1 log b)2Rr(sb

x−1 log b, b)
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and the rescaled gap distribution of Theorem 3 is

(65) P̃ (s) = b−r δ(s) + (1− b−1)2Rr

(
(1− b−1)s, b

)
,

with

(66) Rr(a, b) = (b−1; b−1)r−1 δ(a− 1) +


∂2

∂a2
(a; b−1)r if 0 < a < 1

0 if a > 1.

See Figures 4 and 5 for illustrations in the cases b = 101/2 and b = 101/10.

§12. We conclude this investigation with a few remarks on the family of limit distri-
butions which we have obtained for different values of b ∈ T . It is helpful to introduce
the random point process in R given by the sequence

(67) ϕ
(b)
N = {N(η̃n + t+m) : 1 ≤ n ≤ N, m ∈ Z}

where t is uniformly distributed in [0, 1]. This process is clearly stationary and has
intensity one. By using the same strategy as in the proof of Theorem 3, one can deduce

from Theorem 4 a limit law for the one-dimensional distribution of ϕ
(b)
N : For every closed

interval A ⊂ R, k ∈ Z≥0,

(68) lim
N→∞

P(|ϕ(b)
N ∩ A| = k) = E(b)(k,meas(A)),

where

(69) E(b)(k, L) = lim
J→∞

∑
k1+...+kJ=k

J∏
j=1

E1

(
kj, (b− 1)b−jL

)
,

with E1(k, L) as in (28). In the case k = 0, relation (68) in fact follows directly from
Theorem 3 (exploiting again Theorem 2.2 in [7]), where

(70) P̃ (b)(s) =
d2E(b)(0, s)

ds2
.

Although (68) requires b ∈ T , the family of distributions (69) is well defined for any
real b ∈ (1,∞). Let us briefly analyse the limiting cases b→∞ and b→ 1.

For b → ∞, E(b)(k, L) converges to the statistics of the point process given by the
randomly shifted integer lattice Z + t, with t uniformly distributed in [0, 1]. That is,
E(b)(k, L)→ E1(k, L) as in (28). The rescaled gap distribution satisfies

(71) P̃ (b)(s)→ R(s,∞) = δ(s− 1).

The limit of the raw P (b)(s) distribution is slightly more involved since the asymptotic
density ρ(b)(x) in (10) converges to δ(x − 1). We therefore cannot expect P (b)(s) to
converge to a non-trivial limit without further rescaling. Let us extend ρ(b)(x) to a
probability density on R≥0 by setting ρ(b)(x) = 0 for x > 1. We have the scaling limit

(72)
b− 1

log b
ρ(b)
(

x

log b

)
→ ex,

which, however, is not a probability density on R≥0. Working directly from (4), we see
that for s fixed,

(73)
1

log b
P (b)

(
s

log b

)
→

{
0 if 0 < s < 1

s−2 if s > 1.
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In the limit b→ 1, E(b)(k, L) converges to the Poisson distribution. That is,

(74) E(b)(k, L)→ Lk

k!
e−L, P̃ (b)(s)→ e−s.

To see this, note that for L fixed and b sufficiently close to 1,

(75) logE(b)(0, L) =
∞∑
j=1

log(1− (b− 1)b−jL) = −L+O(b− 1),

which proves the claim for k = 0 and the gap distribution P̃ (s) (via Theorem 2.2 in [7]).
Again, for L fixed and b sufficiently close to 1, we have for the remaining cases k ≥ 1,

E(b)(k, L) = E(b)(0, L)
∑

j1<...<jk

E1(1, (b− 1)b−j1L) · · ·E1(1, (b− 1)b−jkL)

E1(0, (b− 1)b−j1L) · · ·E1(0, (b− 1)b−jkL)

= (b− 1)kLkE(b)(0, L)
∑

j1<...<jk

b−(j1+...+jk)

(1− (b− 1)b−j1L) · · · (1− (b− 1)b−jkL)

= LkE(b)(0, L)

(
1

k!
+O(b− 1)

)
.

(76)

As to the limit of the unscaled sequence ηn, we have for the density

(77) ρ(b)(x)→ 1, x ∈ [0, 1],

i.e., we have uniform distribution mod one. In view of (22), P (b)(x, s)→ e−s and thus,
for the raw gap distribution, P (b)(s)→ e−s.

The above discussion can be readily adapted to bases of the form b = m1/r considered
in §11. In particular, we again observe that both the raw and rescaled limiting gap
distributions (62) and (65) converge to the exponential distribution e−s when r → ∞
for fixed m, cf. Fig. 5.

Acknowledgments. We thank Jon Keating and Zeév Rudnick for their comments on
the first draft of this paper.
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