ON THE PROBABILITY OF A RANDOM LATTICE AVOIDING A
LARGE CONVEX SET

ANDREAS STROMBERGSSON

ABSTRACT. Given a set € C R?, let p(€) be the probability that a random d-dimensional
unimodular lattice, chosen according to Haar measure on SL(d, Z)\ SL(d,R), is disjoint from
¢\ {0}. For special convex sets € we prove bounds on p(€) which are sharp up to a scaling
of € by a constant. We also prove bounds on a variant of p(€) where the probability is
conditioned on the random lattice containing a fixed given point p # 0. Our bounds have
applications, among other things, to the asymptotic properties of the collision kernel of the
periodic Lorentz gas in the Boltzmann-Grad limit, in arbitrary dimension d.

1. INTRODUCTION

1.1. General introduction. Let X; be the space of d-dimensional lattices L € R? of co-
volume one, equipped with its invariant probability measure . Let p(€) = p{¥(€) be the
probability that a random lattice L € X is disjoint from a given subset € C R? excluding the
origin, i.e.

(1.1) p(€) =pD (@) :=p({L € X1 : Lne\ {0} =0}).

In recent years this probability p(€) for certain specific choices of €, as well as a conditional
variant pp(€) which we discuss below, have appeared as limit functions in a number of asymp-
totic problems in number theory and mathematical physics, cf. [I4], Sec. 4], [9], [27, Thm. 2],
[15], [16].

Our aim in the present paper is to give bounds on p(€) and pp(€) for special choices of
convex sets € of large volume, and to point out some applications. For a general measurable
set € the following fundamental bound was recently proved by Athreya and Margulis ([1, Thm.
2.2]):

(1.2) p(€) < |7,

where |€] denotes the volume of €. Here and throughout the paper we keep the convention
that the implied constant in any “<”, “<”, or “big-O” depends only on d. As Athreya
and Margulis point out, (I2]) can be seen as a 'random’ analogue to the classical Minkowski
theorem in the geometry of numbers. We will be interested in giving stronger bounds than
(L2) for special sets €. (The bound (L2 itself is easy for convex €; cf. Lemma 2.5 below.)

The probability p(€) for arbitrary sets € was also studied in the late 1950’s by Rogers [19]
part II] and Schmidt [20], [21], from a different point of view. They obtained precise results
on the size of p(€) in the case of large dimension d and not too large volume |€]|.

The basic principle which we will use to obtain bounds on p(€) is the following result, which
as we will see is an easy consequence of classical reduction theory in SLy(R). Let S¢7! be the
unit sphere in R? and let volga-1 be the (d — 1)-dimensional volume measure on Scll_l.
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Proposition 1.1. Given d > 2 there exist constants k1, ke > 0 such that for every measurable
set € C R? we have

°° T da
(d) : (d-1)( ,d-1 i 1
(1.3) P () < mm{l, k1 /S‘f‘l /kzr P (al CNo ) e dvolsff_l('v)},

1
where 1 is the supremum of the radii of all d-dimensional balls contained in €, and aj ™" cnot
is viewed as a subset of R¥™1 wia any volume preserving linear space isomorphism v+ = R,

To bound p(€) for a given “nice” set €, a reasonable strategy seems to be to first use the
invariance relation

(14) p(€) = p(€M), VM € SLy(R),

so as to make the radius r maximal or nearly maximal, and then apply Proposition [Tl In
fact, if € is convex, then the resulting bound is sharp, up to a scaling of € by a constant
factor only depending on d; cf. Remark below. (We remark that for € convex we have
p(k2€) < p(k1€) for all 0 < ky < ko, cf. Lemma 26l From now on, when we say that a bound
p(€) < B is “sharp”, we mean that there is a constant & > 0 which only depends on d such
that p(k€) > min(3, B).)

We will see that for an arbitrary convex set € of large volume, if 0 lies outside € and not too
near €, then the Athreya-Margulis bound (TZ)) is sharp, viz. p(€) > |€|~!; cf. Corollary
below. On the other hand we trivially have p(¢) = 0 whenever 0 € € and 0 has distance > 1
to OC. Hence the question about the order of magnitude of p(€) for a general convex set € of
large volume is interesting primarily when 0 lies fairly near 0C.

1.2. Bounds on p(¢) for € a ball, a cut ball, a cone or a cylinder. Our first main result
is a sharp bound on p(€) for any d-dimensional ball ¢ C R?. Set

2
0 if 7< —p a1

(1.5) Fb(jl)l(T;v) = p2 if 7] < v_%
-1 4 . __2
T2 0 if 7>0v a1,

Theorem 1.2. Given d > 2 there exist constants 0 < ki < ko such that for any d-dimensional
ball € C RY of volume |€] > 1,

gl =
max(||ql|, 7)’

(1.6) Fi(rikal€)) < p(€) < Fyp(rskilel)  with 7=

where r and q are the radius and center of €.

Of course, by (L4]), Theorem immediately implies a sharp bound on p(€) in the more
general case of € an arbitrary ellipsoid. Theorem shows in particular that for € a ball or
an ellipsoid, the Athreya-Margulis bound in (LZ) can be improved to |€|~2 whenever 0 lies
sufficiently near 0€. Regarding the restriction |€| > % in Theorem [[.2] note that if ¢ C R¢

1

is any measurable set of volume |¢| < 1 then 1 < p(€) < 1 (cf. Lemma below). Note

also that in Theorem we make no assumption on € being open or closed; in fact we have
p(€) = p(€°) = p(€) for any set € with [0€| = 0 (cf. Lemma 23] below).

We remark that Theorem leads to good bounds on p(€) also for many sets € which
are not ellipsoids, using the obvious fact that p(€) < p(€’) whenever ¢ C €. For example
Theorem implies a simple explicit sharp bound on p(€) for any convex body € such that

OC has pinched positive curvature; cf. Corollary B.1l below.

Our second main result concerns a special situation with 0 € 0€, tailored to suit our
applications: We take € to be a “cut ball”, by which we mean an intersection of a d-dimensional
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F1GURE 1. Left: The cut ball in Theorem [L.3], in dimension d = 2. Right: The
doubly cut ball in Corollary

ball and a half space, and we assume that 0 belongs to the flat part of €. Set

cut . _2,1_
if e>ov data L.

F9D (e;t;0) = {U2(1 +oath=a) if t=0 or e<v ata !
ball

Theorem 1.3. Given d > 2 there exist constants 0 < k1 < ks such that the following holds.
Let B be a d-dimensional ball containing 0 in its closure, let w be a unit vector, and assume
that the intersection

¢:=Bn{xeR?: w-x>0}

has volume |€| > % Let v and p be the radius and center of B, let v’ and q be the radius and
center of the (d — 1)-dimensional ball B Nw™, and set

. / J—
t=1-2 p€[0,2) and e:;/HqHG[O,l]
r r
(we leave e undefined when ' =0). Then
(1.7) Fin (estikalel) < p(@) < Fip (ests kel ).

ball ball
Note that the special case t = 0 in Theorem[L3lis the same as the case 7 = 0 in Theorem [.2]
saying that p(€) < |€|~2 when € is a large ball with 0 € €. On the other hand if we keep ¢

bounded away from zero then F(Efg (e;t;v) < v=2+a for eva small, and FC(Z%

ball ball
large. Using this case of Theorem [L3] together with the monotonicity €’ C € = p(€) < p(¢'),
leads to sharp bounds on p(€) for many other sets € such that 0 belongs to a large flat part
of OC. We state this as a corollary for the useful special cases of a cone or a cylinder. Set

242 . _2
Jal) (e;v):{v 1 ifesvrd

(e;t;v) =0 for evi

2
0 if e>v7ad.

Corollary 1.4. Given d > 2 there exist constants 0 < k1 < ko such that the following holds.
Let B C R? be a (d — 1)-dimensional ball containing 0 in its closure, let p € R? be a point,

and let € be the cone which is the convex hull of B and p. Set e = w where v and q are
the radius and center of B. Assume |€| > 3. Then

(1.8) Fighe(eska|€]) < p(€) < F)(e; kale]).

Ezactly the same bound holds (with new ki, ks) if we instead take € to be the cylinder which
is the convex hull of B and some translate B’ of B, and we again assume |€| > %

Another observation which will be useful for us is that, again using €’ C € = p(€) < p(¢'),
Theorem [[.3] may be generalized to the case of a “doubly cut ball”, where the two cuts are
parallel (see Figure [I).
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F1GURE 2. The cone in Corollary [[L4l and Theorem [[.6] in dimension d = 2.

Corollary 1.5. Given d > 2 there exist constants 0 < k1 < ko such that the following holds.
Given any B, w, r, t, e as in Theorem [L.3 and any t' € (t,2], we set

C={xeB:0<w xz<(t'—t)r}

Assume that € has volume |€| > 1. Then

@ (¢ L. < (@) < F@D (o L.
(1.9) Fé (e 373 kalel) < p(@) < F (e 33 kalel).

1.3. The conditional probability p,(¢); the case of ¢ a cone and applications to
statistics of directions to lattice points. We next turn to a function related to p(€): the
conditional probability of L N €\ {0,p} = 0 given that L contains a fixed point p # 0. We
denote this probability by py (&), cf. Section [l below for the precise definition. We will prove
non-trivial bounds on pp(€) in two special cases both of which have important applications.
In both cases we will have 0,p € O€.

The first case is that of an open cone with 0 in its base and apex p. In this case it turns
out that pp,(€) satisfies the same kind of upper and lower bounds as p(€) (cf. Corollary [L4]):

Theorem 1.6. Given d > 2 there exist constants 0 < k1 < ks such that the following holds.

Let B C R? be a relatively open (d — 1)-dimensional ball with 0 € B, let p be a point # 0,

r—|4ll
T

and let € be the open cone which is the interior of the convexr hull of B and p. Set e =
where v and q are the radius and center of B. Assume |€| > % Then

(1.10) Fige(eska|€]) < pp(€) < FG)(es ki |€)).

cone cone

As an application, Theorem yields information on the tail behavior of a certain limit
density related to the fine-scale statistics of directions to lattice points in a fixed d-dimensional
lattice (cf. Marklof and Strombergsson [15, Sections 1.2 and 2.2-4]). To describe the problem,
fix a lattice £ C R? of covolume one. Let us write Bé‘,lw for the open ball in R? with center
0 and radius T', and consider, for large T, the set of non-zero lattice points in B%. We are
interested in the corresponding directions,

(1.11) |m|~tm e St for me £LNBE\ {0}

It is well known that, as T" — oo, these points become uniformly distributed on Sil*l with
respect to the volume measure volga-1. We are interested in the fine-scale statistics of these
1

directions, i.e. we wish to study the behavior of the point set in (LII]) when rescaled in such
a way that we have on average a constant number of points per unit volume. This question
was studied for d = 2 by Boca, Cobeli and Zaharescu [2]. Later a general result on the limit
statistics in arbitrary dimension d was proved by Marklof and Strémbergsson in [I5, Thm.
2.1] (cf. also [I5], Sec. 2.4]); we will recall this result here.

Given v € Sil*l and 0 > 0 we let Dr(o,v) be the open disc inside Scllf1 with center v and
volume volga—1(D) = odT~% thus the radius of Dy (o, v) is < T~a%T. We denote by Nr(o,v)
1
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the number of directions to lattice points which lie in Dy (o, v):
(1.12) Nr(o,v) =#{m e LN BL\ {0} : ||m| tm e Dr(o,v)}.

The motivation for the definition of Dy (o, v) is that it implies that the expectation value of
Nr(o,v) for random v is asymptotically equal to o as T — oo, cf. [15] (2.11)]. In particular
this means that the distance (viz., the angle) from a random direction to the nearest lattice

d
direction is typically on the order of 7~ 4-1. Now, as a special case of [I5, Thm. 2.1], for any
Borel probability measure A on Scll_l, and for any o > 0 and r € Z>(, we have that the limit

(1.13) Eo(r,o) = Th_r)réo M{ve St Np(o,v) = r})

exists. In other words, if v is picked at random according to A, then the random variable
Nr(o,-) has a limit distribution as T' — oo, which is independent of £! The limit probability

in (LI3) is given by
(1.14) Eo(r,0) = p({L € X1 : #(LN€\{0}) =r}),

where ¢ C R? is any d-dimensional cone with apex 0 and volume o.

The case r = 0 in (I3]) is of particular interest since it corresponds to the “spherical
contact”, or “empty space”, distribution function for our set of directions; cf., e.g., [26, p.
105]. To make this explicit, let us write ¢r(v) for the smallest angle from the point v € Scf_l
to a point in our set (LITI),

(1.15) ¢r(v) =min{p(v,m) : m e LN BF\ {0}}.

Here and from now on ¢(v,w) denotes the angle between any two non-zero vectors v, w. It

d
follows from (ILI3)) that the properly scaled random variable T'#-T 7 (v) has a limit distribution
as T'— oo: For any x > 0 we have

d
(1.16) Fo(w) := lim A({v € ST TTTpp(v) < 2}) =1 — Eo(0, kqz®™?),
where kg := d~' vol(B{™1).
Note that Fg(0,0) = p(€) in our notation, with € a cone with apex 0 and volume o, and it
is an easy consequence of the theory which we will develop in Section 2] that Eg(0,0) < o1
as 0 — oo (cf. in particular Corollary 2.14]). Hence the spherical contact limit distribution
function has the tail asymptotics

(1.17) 1 — Fo(z) < 174 as T — 00.

In particular this large tail asymptotics implies that there are many large “deserts” in the
set of directions to the points of £, to an extent that the (d — 1)th moment of the random

variable T% o7 (v) tends to oo as T'— oco. The main point we wish to make here, however,
is that using Theorem we are even able to give sharp bounds as x — oo on the density
corresponding to Fo(z). Indeed, it follows from [I5, Remark 2.2] that Fp(z) € C*(Rsg), and
by [15, (8.48)] we have

! _ d—2 1
fo(z) == Fy(x) = ka(d — 1)z volg 1(B) /Bpp(Q) dp,
where € is a cone with apex 0 and volume k429!, and B is the base of €, i.e. the (d — 1)-
dimensional ball with the property that € is the convex hull of B and 0; also dp denotes
the standard (d — 1)-dimensional Lebesgue measure. Using now pp(€) = pp(p — €) (cf. (B0)
below) and Theorem [, we conclude that volg_1(B)™! [ pp(€) dp =< |€|~2 when |€] is large,
and hence we obtain:

Corollary 1.7. fo(z) < 2~% as z — oco.
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FIGURE 3. The cylinder € in the definition of ®¢({, w, z), in dimension d = 3.

Using similar arguments as in [I8], building on the present paper, it should even be possible
to obtain an asymptotic formula for fo(x) as z — oo, in arbitrary dimension d. We hope to
carry this out in a later paper. Note that for d = 2 one knows a completely explicit formula
for fo(z); cf. Boca, Cobeli and Zaharescu [2), Cor. 0.4].

We stress that [I5, Thm. 2.1] is more general than ([I3)—(LI4); in particular it applies
also in the case when we consider the set of directions to any fixed shifted lattice, i.e. we
replace £ by q + £ in (LII)-(TI2), for any fixed ¢ € R%. Here, if ¢ € R? is not a rational
linear combination of points in £ then the limit distribution given by [I5, Thm. 2.1] is in fact
universal in the sense that it is independent of both £ and q. In this case, the limit spherical
contact density function is, by [15], (8.48)],

f(x) = kq(d — 1)a*? p(p — €)dp.

Hence also in this case we have the asymptotic relation f(z) < x
consequence of Corollary [L.4l

4 as r — 00, NOW as a

1.4. The case of € a cylinder, and applications to the periodic Lorentz gas in the
Boltzmann-Grad limit. The second case in which we prove a non-trivial bound on p, (<) is
that of an open cylinder, with 0 and p lying on its opposite bases. The function p,(€) in this
case occurs as the collision kernel between consecutive collisions, ®g(&, w, z), in the periodic
Lorentz gas in the Boltzmann-Grad limit, cf. [15], [I6], [I7]. It was the task of understanding
the asymptotics of this kernel which led us to undertake the present work; in fact we make
crucial use of both Theorem [[L3] and Theorem in the proof of Theorem [L8 below.
For any € > 0 and w, z € BS ! (ie. w, z € R |lwl), ||z] < 1), ®o(&, w, 2) is defined as

(118) ‘1)0(5,’11),2) :pp(g),

where € is the cylinder (cf. Figure [3)

(1.19) ¢ = {(xl,...,xd) eR? : 0<xy <, |(x2,...,xd)—zH < 1};
p=(¢2+w).

Note that ®o(§, w, z) only depends on the four scalars &, |[w]|, ||z, p(w, 2). Note also that if
¢ is an arbitrary open cylinder with ellipsoidal cross section and with 0 and p lying on the
opposite bases of €, then p,(€) can be expressed in terms of ®¢(&,w, z) (cf. (B.5) below).

Before stating our main results on ®¢(§,w, z), we briefly explain the connection with the
periodic Lorentz gas, borrowing from the presentation in [I8]. For more details see [15], [16],
[17].

The periodic Lorentz gas describes an ensemble of non-interacting point particles in an
infinite periodic array of spherical scatterers. Specifically, for a fixed lattice £ C R? of covolume
one and given p > 0 (small), we take the scatterers to be all the open balls Bg + € with £ € L.

We denote by K, C R< the complement of the union of these balls (the “billiard domain”), and
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FIGURE 4. Left: The periodic Lorentz gas in “microscopic” coordinates—the
lattice £ remains fixed as the radius p of the scatterer tends to zero. Right: The
periodic Lorentz gas in “macroscopic” coordinates —both the lattice constant
and the radius of each scatter tend to zero, in such a way that the mean free
path length remains finite.

THK,) = K, x S9=1 its unit tangent bundle (the “phase space”), with q(t) € IC,, the position
and v(t) € Sffl the velocity of the particle at time ¢. The dynamics of a particle in the Lorentz
gas is defined as the motion with unit speed along straight lines, and specular reflection at
the balls Bg + £ (€ € £). We may in fact also permit other scattering processes, such as the
scattering map of a Muffin-tin Coulomb potential (cf. [I6]). A dimensional argument shows
that in the Boltzmann-Grad limit p — 0 the free path length scales like p~(@=1  ie., the
inverse of the total scattering cross section of an individual scatterer. It is therefore natural
to rescale space and time by introducing the macroscopic coordinates (see Figure [])

(1.20) Q). V(®) = (" "alp™ V1), v(p~ " V1)).
The time evolution of a particle with initial data (Q, V) is then described by the billiard flow
(1.21) (Q(), V(1) = Fio(Q, V).

We extend the dynamics to the inside of each scatterer trivially, i.e., set Fy, = id whenever
Qe Bg + L; thus the relevant phase space is now Tl(Rd), the unit tangent bundle of R%.

Let us fix an arbitrary probability measure A on T!(R9). For random initial data (Q, Vo)
with respect to A, we can then view the billiard flow {F;, : t > 0} as a stochastic process.
The central result of [15], [16] is that, if A is absolutely continuous with respect to Lebesque
measure, the billiard flow converges in the Boltzmann-Grad limit p — 0 to a random flight
process {=(t) : t > 0}, which is defined as the flow with unit speed along a random piecewise
linear curve, whose path segments Si,S9,Ss,... € R? are generated by a Markov process
with memory two. Specifically, if we set & = ||S;|| and Vj_; = ”g—j” for j =1,2,3,..., then
the distribution of the first n path segments is given by the probability density

(1.22) A(Qy, Vo)p(Vo,&,V1)po(Vo, V1,8, Va) -+

"po(Vn3,Vn2,§n1,Vn1)/d
s

1

pO(Vn72, anly gna Vn) dVOlS?_l (Vn)’

see Theorem 1.3 and Section 4 in [I6]. The transition kernels p and po in (L22]) are given by

(1.23) p(V,& Vi) =a(V, Vi) ®(§b(V, V1)),
(1'24) pO(V07 V.¢, V+) = U(Va V+) Po (57 b(v7 V+)7 _S(V7 VO))?
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v+

FIGURE 5. Two consecutive collisions in the Lorentz gas.

where o(V', V) is the differential cross section, ®¢ is the function defined in (LIS)—(T19),
o
(1.25) sew) = [ [ Bl w.z)dzdn,
¢ JBi™!

and b(V, V) and s(V, V) are the impact and exit parameters (cf. Figure[5), both measured
in units of the scattering radius, and considered as vectors in R?~! via a fixed Euclidean space
isomorphism V+ 2 R (thus b(V,V,),s(V, V) € BIY).

Remark 1.1. The function ® may alternatively be defined by ®(¢, z) = p(€) where € is the
cylinder in (LI9)). Cf. [I5, Thm. 44 (a ¢ Q), (4.16), (8.32)], and [16, Remark 6.2].

Remark 1.2. If the scattering map is given by specular reflection (as in the original Lorentz

gas), we have explicitly o(V, V) = 1|V — V|37 for the scattering cross section, and

VoKV, (VKW
ok —al” "V VIS RV el

(1.26) s(V,Vy) =

for the exit and impact parameters. Here x| denotes the orthogonal projection of & € R?
onto ef = {0} x R%! and for each V € S¢~! we have fixed a rotation K (V) € SO(d) with
VK(V) = eq.

It can be seen from ([22) — (T24)) that ®o(&, b, —s) is the limiting probability density (in the
limit p — 0, and with respect to the reference measure d¢ db) of hitting, from a given scatterer
with exit parameter s, the next scatterer at time p~(¢~Y¢ with impact parameter b. Again,
cf. Figure Bl Similarly <I>(§, b) is the limiting probability density of hitting, from a generic
point in T*(R?), the first scatterer at time p~(@=1¢ with impact parameter b. These results
were proved in [I5, Thm. 4.4], and they form the first steps of the proof of the convergence of

the billiard flow {F}, : ¢ > 0} given in [16].

Our main result on ®¢(&, w, z) is the following.
Theorem 1.8. Let d > 3. We then have, for all £ >0, w,z € Bffl, writing ¢ = p(w, z),
e Hmin{1 (o) T if o<

1.27 P 2
20 e E €\ erminln elr - ) E) i g

N ERENIE

(If w = 0 or z = 0 then ¢ is undefined, but in these cases we have ®o({, w, z) = 0 whenever
¢ is sufficiently large, cf. Proposition [[.9 below.)
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For completeness we recall from [I7] that when d = 2 it is possible to give an explicit formula
for ®o(§, w, z) (now w = w and z = z are real numbers in the interval —1 < w, z < 1):

T (14 Sl =Dy w42 £ 0

(1.28) Po(,w,2) = —5 40 if wt+z=0,6"1<1+ |l
1 if w+z=0,&1>14+w,

where T (z) = max(0, min(1, x)).
Returning to the case d > 3, as a complement to the bound in Theorem [[.8 we are able to
give a sharp bound on the support of the function ®q. Set

min(¢~ 4 = if
salErg) i { GENCINE @ <

max(§ T2, (755)770) i o>

ISERNIE]

(and, say, sq(&, @) := £_£ when ¢ is undefined). Then:
Proposition 1.9. There exist constants 0 < c¢; < co which only depend on d such that if
Do (&, w, z) > 0 then ||lw],||z] > 1 — casa(, @), and on the other hand Po(§, w,z) > 0 does
hold for any € > 0, w,z € BI™! satisfying ||w, ||z]] > 1 — c15a4(&, ).

We stress that, in contrast to our bound on the support, we do not expect the bound in

Theorem [[L§ to be sharp in general. We will prove (cf. Propositions [[.7 and [T.8]) that the
bound in Theorem [[.§] is sharp in a natural sense when d = 3, and also for general d if either
K 5_% orm—p K 5_712. In particular, for d > 4, while we have ®¢(§, w, z) < 5_3+% for
e < <m—e¢ (any fixed £ > 0) and ¢ sufficiently large, ®o(&, w, z) takes significantly larger

2
values than 5_3+ﬁ both when ¢ = 0 and ¢ = .
An important consequence of the bound in Theorem [[.§] is that it implies a sharp upper
bound on the integral |, gi-1 Po(§, w, z) dz, and also implies that the main contribution to this
1

integral comes from z with ¢ = ¢(z,w) small. This integral is important since from it we can
recover, by further integration, both the collision kernel for a generic initial point, ®(&, b); cf.
(C25), and the limit density functions for the free path length between consecutive collisions
and the free path length from a generic initial point ([I5, Remark 4.6]):

1
Do) = ————— / / Do (¢, w, z) dw dz; P& = / P&, w) dw.
volg_1(B{™") Jui-t Jsi B
Corollary 1.10. Let d > 3. We have

(1.29) /d ) Do(¢,w, z)dz < 5_3+%
BY™

for all € > 1 and w € Bf_l. For any fized € > 0 the contribution from all z € Bf_l
with o(z,w) > ¢ in (L29) is <q. €3, Furthermore the integral in (L29) vanishes unless

1—|w] < 573. On the other hand, there is a constant ¢ > 0 which only depends on d such
that

(1.30) /d  Po(§,w, z)dz > 343
BY™

holds whenever £ > 1 and ||w|| > 1 — £

Indeed, the two upper bounds follow from Theorem [[.8 combined with Proposition [[L9 the

statement about vanishing follows from Proposition [[.9] since s4(§, ¢) < & i uniformly over
¢; and finally (L30) follows from the first lower bound in Proposition [7.8] below.
Corollary [LI0 immediately implies:

Corollary 1.11.
Do (¢) < 73 and — ®(&) < &2 as & — 00.
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Hence Corollary [LT0l can be viewed as a refinement of the upper and lower bounds obtained
by Bourgain, Golse and Wennberg [6, Thm. A], [I0, Thm. 1], which correspond to the fact
that f;o O(n)dn < 1 as € — oo

In the paper [18], which makes strong use of the results and methods of the present paper,
we will give an asymptotic formula for ®o(§, w,z) when ¢ is small and £ — oo. This also
implies precise asymptotic formulas for ®¢(¢) and ®(£) as £ — oo.

1.5. Organization of the paper. The paper is organized as follows. In Section 2l we discuss
bounds on p(€) for arbitrary measurable sets and general convex sets, proving in particular
Proposition [T as well as more precise versions for convex sets, Proposition [2.8] and Proposi-
tion In Sections BHal we apply these methods to the special cases of € a ball and a cut ball,
proving Theorem and Theorem [[L3l In Section [6] we recall the precise definition of pp(€)
and introduce a useful parametrization of the associated homogeneous space X;(p). Finally in
Section [6] we prove Theorem and in Section [l we prove Theorem [I.8 and Proposition [[.9

1.6. Acknowledgements. This paper complements the joint work [I8] with Jens Marklof,
which is part of our series of papers [I5]-[I8] on the periodic Lorentz gas in the Boltzmann-
Grad limit. I am grateful to Jens for many inspiring discussions and valuable comments on
the present paper. I am also grateful to Tobias Ekholm and Christer Kiselman for inspiring
and helpful discussions.

2. BOUNDS ON p(€) FOR A GENERAL CONVEX SET €

2.1. Preliminaries. Throughout this paper we write G = SL4(R) and I' = SLy4(Z). For any
M € G, Z%M is a d-dimensional lattice of covolume one. This gives an identification of the
space X7 with the homogeneous space I'\G. We write u for the measure on X; coming from
Haar measure on G, normalized to be a probability measure. We will sometimes write G(%)
and p(4 for G and p, if we need to emphasize the dimension.

Let A be the subgroup of diagonal matrices with positive entries,

ai
(2.1) a(a) = € G, a; >0,
aq
and let N be the subgroup of upper triangular matrices,
1wz -+ wgq
(2.2) n(u) = o e

Ud—1,d
1

Every element M € G has a unique Iwasawa decomposition
(2.3) M = n(u)a(a)k,
with k € SO(d). In these coordinates the Haar measure takes the form ([8, p. 172])

. 9d—1d(d+1)/4
2.4 - ]
(2.4) M) = T T <)

where dn, da, dk, are (left and right) Haar measures of N, A, SO(d), normalized by dn(u) =
[Ti<j<k<adujn, da(a) = H?;%(agl daj;) and fSO(d) dk = 1. For p(a) one has

(2.5) pla) = H % = Ha?ﬂfd*l.
j=1

1<i<j<d '

p(a)dn(u)da(a)dk
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We set Fy = {u : uj, € (—3,3], 1 <j <k <d}; then {n(u) : u€ Fy} is a fundamental
region for (I' N N)\/N. We define the following Siegel set:

(2.6)  Syi= {n(u)a(a)k Cu€Fy, 0<ajn < Za;(G=1,...,d— 1), ke SO(d)}.

It is known that Sy contains a fundamental region for X; = I'\G, and on the other hand Sy
is contained in a finite union of fundamental regions for X7 ([5]).
Given M = n(u)a(a)k € G, its row vectors are
(2.7) b, = (0,...,0,ar, Ap1Uk kt1; - - - AqUL,d)K, k=1,....,d.
If M € §; then we see that, for all k,
d—1
(2.8) ||br]] < Zaj O _@/V3Y)a < ar.
7=0

This bound implies that if M € S; and if the lattice Z?M has empty intersection with a large
ball, then a; must be large:

Lemma 2.1. For any M = n(u)a(a)k € Sy such that the lattice Z*M is disjoint from some
ball of radius R in RY, we have a; > R.

Proof. Choose c¢1,...,cq € R so that p =c1b; + ...+ ¢gby is the center of the given ball. Let
n; be the integer nearest to ¢;. Then niby + ... + ngby is a lattice point of Z4M, and has
distance < 2 (||b1|| + ...+ ||bal|) < a1 to p. This distance must be > R; hence a1 > R. O

Next we will introduce a parametrization of G which will be useful for us throughout the
paper. Let us fix a function f (smooth except possibly at one point, say) S‘li_1 — SO(d) such
that e; f(v) = v for all v € S¢1 (where e; = (1,0,...,0)). Given M = n(u)a(a)k € G, the
matrices n(u), a(a) and k can be split uniquely as

29 = (g o) a<a>:<f; aldfa(g); (o 4)/@

where u € R4 n(u) € N@Y a3 >0, a(a) € A4 and k € SO(d — 1), v € S¢1. We set
(2.10) M =n(u)a(a)k € G,

In this way we get a bijection between G and R X Scllf1 xR x GU-D: we write M =
[a1, v, u, M] for the element in G corresponding to the 4-tuple (a1, v,u, M) € R xSI71 xRI-1x
G=1) In particular note that

_d_
Sq = {[al,’lj,’u,%] SHE ],\\4,— € Sd*la ap < %af_l7 u € (_% %]d 1}
(2.11) C {[al,v u, M €G: MeS; 1, uc (-3, %]d‘l}.

One checks by a straightforward computation using (2.4]) that the Haar measure p takes
the following form in the parametrization M = [a1,v,u, M]:
d
(2.12) dp(M) = ¢(d) ™ dpl= (M) du dvolga—1 (v) g
Note that all of the above claims are valid also for d = 2, with the natural interpretation that
S; = SL(1,R) = {1} with () ({1}) = 1. We will also need to know the explicit expression of
the lattice Z%M in terms of a1,v, u, M: One computes that, for any m € Z% 1 andn € Z,

1

(2.13) (n,m)M = na;v +a; " (0,nua(a)k + mM) f(v).
In particular we always have
(2.14) ZM c |_| (najv + 'vL).

nez
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2.2. General bounds on p(€). We start by recalling two well-known inequalities. (Cf., e.g.,
[21] p. 167].)
Lemma 2.2. For an arbitrary Borel measurable subset € C R% we have
p(€¢) = 1—¢|.

Proof. p(€) > fX (I =#(LNne&\{0}))du(L) =1 — |€|, by Siegel’s formula (]24], [25]). O
Lemma 2.3. For any two Borel measurable subsets €, ¢’ C R* we have

|p(€) — p(@)| < max(|e\ &',|e"\ €]).

Proof. Any L € X; which is disjoint from €\ {0} must either be disjoint from €\ {0} or have
a point in (€' \ €) \ {0}; hence p(€) < p(€’) + (1 — p(€’'\ €)), and thus p(€) < p(¢) + |\ €]
by Lemma 221 Similarly p(€¢’) < p(€) + |€\ &|. O

Next we give the simple proof of (2] in the special case of € convex.
Lemma 2.4. If ¢ C R? contains some d-dimensional ellipsoid of volume V then
(2.15) p(€) < VL

Proof. (Cf. [I5] Lemma 8.15].) Using (L4) we may from start assume that € contains a ball
of volume V. This ball in turn contains a ball B of volume > 2-%V which does not contain
the origin. Now Z¢M N &\ {0} = () implies Z?M N B = §); hence by Lemma 1] there is some
A > Vi such that a; > A holds for all M = n(u)a(a)k € Sy satisfying Z4M N &\ {0} = 0.
We have

p(€) =p({Me X : Z'Mne\ {0} =0}) <p({M e S, : Z°Mne\ {0} =0}),

since Sy contains a fundamental region for X;. Using now (Z.I1)) and (2I2) we conclude

O, Je

(From now on we write simply dv for the (d — 1)-dimensional volume measure on Scllfl.) Here

day
/ dp =1 (M )dudvm<<A <V L
1 JSi

1 L
23]

we used the fact that ,u(d_l)(Sd_l) is finite, since Sy_1 can be covered by a finite number of
fundamental regions for T(¢=\G@-1), U

Lemma 2.5. If € C R? is convex then
p(€) < [e7h
(If |€| = oo this should be interpreted as p(€) = 0.)
Proof. 1f |€| < oo then € contains an ellipsoid of volume > |€] (cf. [11]); if |€] = oo (viz. €

has non-empty interior and is unbounded) then for every V' > 0 there is an ellipsoid E C € of
volume > V. Hence the lemma follows from Lemma 241 O

To conclude this section we give the proof of Proposition [LIl The idea is to use the
parametrization M = [a,v,u,M] € S; and note that if Z?M N ¢ C {0} then a; > r by
Lemma 21l and also by using (0,m)M ¢ € for all m € Z91\ {0} we obtain a precise
constraint on M (cf. [ZI3)).

Proof of Proposz'tz’on [I7l Let r be the radius of some ball contained in €. Then €\{0} contains
a ball of radius 37, and hence by Lemma[ZT if M = [a1,v,u, M] € S, satisfies ZIMNE C {0}
then a1 > kor, Where ko is a positive constant which only depends on d. Hence, using (2.11])

and (2.12)),
SO < ({1 €1 - TN e C (O}

- @M € Ssy : Zar,v,u, M| N € C {0}}) dudv -
/1927" /Stli—l/(_%7%]d1/l ({N d—1 [ 1 ] { }}) ai”l
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Using (2.13) with n =0 we get
da1

1
P (e / / D (M € Say 5 ay T f(v) N € C {0}}) do el
kor JS3- s ~ aj

- B 3 L da
@ / Lo m D € S sz N6l T {0} v Sk
27 1 1

where ¢ denotes the embedding ¢ : R4 3 (z1,...,24_1) = (0,21,...,24_1) € R% and
(2.16) Cp =1 HCf(v)h) c R
1)

. . . . . . . d— .
Now since S;_1 is contained in a finite union of fundamental regions for X f , we obtain

da
(dl FeY 1
<</S\d1/kQT al 6) dJrld

We have proved this for any r which is the radius of some ball contained in €; hence it also
holds for the supremum of these radii. Now (3] follows, since € N vt maps to &, by the
volume preserving linear space isomorphism v+ 3 z + !} (zf(v)~!) € RI-L O

2.3. Bounding p(¢) from above for € convex. For convezr sets € we have the following
monotonicity property which allows us to simplify the upper bound in Proposition [LT]

Lemma 2.6. For any convex set € C R? (d > 2) and any o > 1 we have p(a€) < p(€).

The proof is by finding an element 7' € G such that €T C a€. For the construction we
need the following auxiliary lemma.

Lemma 2.7. Let ¢ C R? be a compact convex set with 0 ¢ €. Then there exist two non-zero
vectors v,w € R? and two points q,,qy € €N Rwv such that ¢, -w < p-w < qy - w for all
pec.

Proof. We first assume that € has only regular boundary points and support planes (viz. to
each boundary point there corresponds exactly one support plane, and each support plane has
only one point in common with @; cf. [4, Sec. 3.9]). Let K be the set of @ € R? such that
CNRspa # 0. For ecach a € K set {1(a) = inf{t > 0: ta € €} and ¢2(a) = sup{t > 0 : ta € €}.
Let v € K be a point where supycx f2(a)/¢1(a) is attained; such a point clearly exists, and
in fact v € K°, and la(v)/l1(v) > 1. Set q; = £;(v)v (j = 1,2) and let w1, w2 # 0 be unit
vectors normal to the unique support planes of € at gy, qs, chosen so that q; - w1 < p- w;
and p - wy < gy - ws for all p € €. Using the fact that these two support planes are regular
and g, # g, it follows that v - w; # 0 for j = 1,2. Hence for each b ¢ R? there exist
unique z1,z2 € R such that (zjv +b) - w; = 0, viz. (if b ¢ Rv) the support plane for € at g;
contains the line g; + R(zjv +b). Since gy, gy are regular boundary points this implies that
lj(v+¢eb) =l;(v)(1+zje+o0(c)) ase — 0 (j = 1,2). Hence by our choice of v, z1 = x2 must
hold. Since this is true for every b € R< it follows that w; = w9, and we are done.

In the case of a general compact convex set € with 0 ¢ € we take a sequence NG
of compact convex sets converging to € such that each €™ has only regular boundary points
and support planes, and 0 ¢ €™ (such a sequence exists by [4, Sec. 6.27]). Applying the
above to each €™ we obtain vectors 'v("),'w("),qgn),qgn) satisfying the required conditions
for ¢ We may assume that all v, w( have length 1. By passing to a subsequence \(IV?
n

may assume that the four limits v = lim,, 0™ w = lim, e w™ and q; = lim, 00 q J

(j = 1,2) exist. These v, w,qy,q, are easily seen to satisfy the required conditions for €. O

Proof of Lemma [20. If € has no interior points then € is contained in some affine subspace
of R?, and thus p(a€) = p(€) = 1 (cf. Lemma 22)). Hence from now on we may assume that
¢ has interior points. If € is unbounded then |€| = oo and p(a€) = p(€) = 0 by Lemma
Hence from now on we may assume that ¢ is bounded. If 0 € € then ¢ C o€ for any a > 1,

and thus p(a€) < p(€); but also p(a€) = p(a€) by Lemma 23 hence p(a€) < p(<).
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Hence it only remains to deal with the case 0 ¢ €. Let v,w,q;,q, be as in Lemma 7]
applied to €. Note that v - w # 0, since € has interior points. Take any U € GL(d,R)
such that e;U € Rv and e;U € wt for j = 2,...,d, where e; = (0,...,1,...,0) is the jth
standard basis vector of R% Set T = U~! diag[a,a_ﬁ, e ,oz_ﬁ]U € G. We now claim
¢T C €. Indeed, consider an arbitrary point p € €. Then there are unique t € R and
u € w' such that p = tv + u and thus pT = atv+ofﬁu. But g, - w<p-w< gy -w
implies q; - w < tv - w < @, - w; hence tv lies on the line segment between g, and q,, and so
tv € €. Hence by convexity, sp + (1 — s)tv = tv + su lies in € for all 0 < s < 1. In particular
a pT =tv+ of%u € ¢, thus proving €7 C of.

It follows that p(a€) = p(a€) < p(€T) = p(¢), and Lemma 2.6 is proved. O

Remark 2.1. The convexity assumption in Lemma cannot be skipped altogether. For
example, for any given o > 1 with o ¢ Z, if ¢ > 0 is sufficiently small then the set

¢ = Bf/s \ U (a~'m + BY)
mezd\ {0}

satisfies p(a€) > 0 and p(€) = 0. Indeed, p(a€) > 0 holds since every L € X; sufficiently near
7% is disjoint from a€\ {0}. On the other hand, assume L € X is disjoint from €\ {0}. Write
L = 7Z%M with M = n(u)a(a)k € Sy and take by, as in (27); thus L = Zby + --- + Zbg. Now
LN\ {0} = 0 forces ||by| > (2a)~! provided e is sufficiently small; hence also a; > a~!, by
the same type of computation as in (Z8). It follows that ||bx|| < a1 = (a2 ---aq)™' < a7 !
and hence if ¢ is sufficiently small then by € Bf/e and thus by € o~ 1(Z4\ {0}) 4 B¢ for all

k. By the determinant formula for the covolume of L = Zb; + - - - + Zb, this forces a to be
“e-near” an integer, and we get a contradiction if € is taken sufficiently small. Hence p(€) = 0.

On the other hand for any a > 1 with a? € Z we have p(a€) < p(€) for every measurable
set € C RY, as is easily seen using the modular correspondence T'(a?) on X (cf., e.g., [23,
Ch. 3]). Indeed, if F C G is a fundamental region for X; = I'\G and 51, ..., 0, € My(Z) are
representatives such that T'(a?) = L5—1I'8; then

p(a(’,‘):/fI({ZdMﬂa¢C{O}})d,u(M)Sr‘lz/FI({oledﬁjMHQC{0}})du(M)

T

:T—lz/ I({Z°M ne c {0}}) du(M) = p(@).

7=1 ailﬁj}—

(We used Zdﬁj C Z% and the fact that I_J;:lof1 B;F is an r-fold fundamental region for I'\G.)
We next use Lemma [Z6] to simplify the bound in Proposition [LIl Recall that if ¢ ¢ R?is a

bounded convex set then the supremum of the radii of all d-dimensional open balls contained
in € is attained, although not necessarily for a unique ball; we call this supremum the inradius

of €.

Proposition 2.8. Given d > 2 there exist constants ki, ks > 0 such that for every bounded
convex set € C R? we have

(2.17) p(e) < min{l, kyr—d /d ) Py_1 <1€2Tﬁ€ﬂ ’vJ‘> d'v},
ST
where r is the inradius of € and where pl;_,(3) for 3 C R~ is defined by

pD(3)  if d>3;

(2.18) Paa(3) = {I(B\ <1) ifd=2

Proof. Given d we let k1, ko be as in Proposition LIl Now let ¢ € R? be a bounded convex set,
and let r be its inradius. If d > 3 then by Lemma[2.6], for all v € Scllf1 and all a; > kor we have
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1 1
pld=(af 7 enot) < pld=b) ((k:gr)ﬁﬁﬂvL) (note that this is true also when a{~' €Nvt = ().
Hence ([2Z.I7), with new k1, k2, follows directly from Proposition[I.Jl On the other hand if d = 2
then for any v € S} with |kor@ Novt| > 2 we have p(!)(a;€ Nvt) = 0 for all a; > kyr, since
a1€ N vt is a line segment of length > 2 and hence, after identifying v with R this line
segment must have non-empty intersection with Z\ {0}. Hence (2ZI7) (with new k1, k2) again
follows from Proposition [Tl O

2.4. Bounding p(€) from below for € convex. We next prove that for convex €, p(€) is
bounded from below by a similar expression as in the upper bound in Proposition 2.8 Recall
that if € € R? is a bounded convex set then the infimum of the radii of all d-dimensional
closed balls containing € is attained for a unique ball; we call this infimum the circumradius

of €.

Proposition 2.9. Given d > 2 there exist constants ks, kqy > 0 such that for every bounded
convex set € C R?,

(2.19) pD(e) > min{%, ka4 /d ) Ph_q <k4rﬁ¢ N vL> dv},
ST

where 1 is the circumradius of €, and where p!, | (3) is as in (2ZI8).

The starting-point of the proof is to use p!@(€) > u({M € Sg : ZM N C {0}}),
which holds since Sy is contained in a finite union of fundamental regions for Xi, and then
integrate over M € Sy using the parametrization M = [ay, v, u, M]; cf. (2I1). The restriction
a; < %acll/ @1 i (210)) leads to a technical problem when considering bounds from below;

to handle this we first prove the following auxiliary lemma, which we will apply with d — 1
in place of d. The point of the lemma is to show that if a convex set € is contained in a
ball of radius r centered at the origin, then among all M € Sy satisfying ZM N & C {0},
a positive proportion (w.r.t. u) actually have ay < 2r, where a1 = a1(M) as always refers
to the aj occurring in the Iwasawa decomposition M = n(u)a(a)k, cf. (23]) and (2I)). The
lemma is proved by using, once more, the parametrization M = [a1,v,u, M], and noticing
that whenever a; > r the intersection Z4M N € is in fact contained in (0,Z9~YM N ¢, i.e. is
independent of u (cf. (Z.I3))).

Lemma 2.10. For every r > 1 and every convez set € C B_;? (d>2), we have
pD(e) « p({M €S8y : ay <2r, ZiMNecC {0}}).
Proof. Since p(€) < u({M € S; : ZM N €& C {0}}), it suffices to prove
p({M €Sy : a1 >2r, Z°M N € C {0}})
(2.20) <p({MeS;:r<a <2r Z'MnecC{0}}).

Writing M = [a1,v,u, M], and noticing that a; > r implies (najv + vh) N B_;? = () for all
v e St and n € Z )\ {0}, we see from (ZII)-(ZI4) that (Z20) will follow if we can prove
that, for each v € Scll_l,

[e%e) 4 1 d
f I € S < o B AT 0)]) S
" 1
ol (d-1) 2 TH a1 Y daq
(2.21) <</T WM € Sy ar < Fral T 2T M NaT e, C{O})) <5

1

where €, is as in ([2I6) (in particular €, is a bounded convex set). If €, = () then (221
holds, since p(d_l)({%f €8y1 a1 <2/V/3}) = ul?1(S;_1) = 1; hence from now on we may
assume &, # ().
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First assume d = 2. Using S; = G = {1} and r > 1, and writing 7€, = [a, 8] we sce that
our task is to prove

[e%¢) T 2 €T
(2.22) /2 I(Z N (az, Bz) C {0}) % <</1 I(Z N [ax, Bz] € {0}) i—g,

for any o < 8. This bound is verified by a case by case analysis. Indeed, if @ < 0 < 3 then
ZN oz, ﬁx] C {0} is equivalent with max(|al,|5])|x| < 1 and thus (2.22)) follows easily. Also
ifg—a>1 5 then the bound holds since the left hand side vanishes. Hence by symmetry it
remains to con81der thecase 0 < a < B < a+ . Now for every integer n € [o, 2cr) the interval

L= (%, ;:tl) is contained in [1,2], and each z € I,, satisfies Z N [ax, fz] C ZN (n,n+1) = 0.

Hence the right hand side of ([Z.22]) is > 87! 2 one] a 2a) [ In| = Zne[a %) % and if a > 11
then this is > 1 so that the bound (2.22]) holds. If <« < then we get the same conclusmn
since the right hand side of [222) is > 87|} N (1 2)| > 1 Also if 8 < 15 the right hand
side of (m is seen to be > 1 so that (2.22)) holds. Hence from now on We may assume
0<a< and 15 <ﬁ<04—i—2 If ax > 2 then z(f — o) > %(%—%)>1; hence only z
with Sx < 2 can Contrlbute to the integral in the left hand side of (2.22)). It follows that this
integral is < max(0,2(8~! — 1)). On the other hand if 8 < 1 then Z N [ax, Bz] C {0} holds
for all € (1,57!), so that the right hand side of (Z22]) is > $~! — 1. This completes the
proof of the bound (2.:22]), and hence also of (2.2]]) in the case d = 2.
Next assume d > 3. We first bound the left hand side of (Z.2]]) using

_d_ _1 _1
p VUM €S s ar < Zsal T, Z7M na €, € {0}}) < p V(a1 E,),
which holds since §;_1 can be covered by a finite number of fundamental regions for X fd

1
Also the function a; + pl@=V(a{~'€,) (for a; > 0) is decreasing, because of Lemma
Hence (2Z21)) will follow if we prove that for every a; € [v/3r,2r],

1 _d_ 1
(2.23)  p Y (afT¢,) < TV ({M €841 a1 < %af‘l, 2 M Naf '€, C {0}}).
1 . 1 d_
But a{"' ¢, C Bf/ with ' = a{~'r, and because of a; > +/3r we have v’ > 1 and \/g f E>

1

%affl V/3r = 2r'. Tt follows that the right hand side of (Z23)) does not increase if we replace
_d

the condition g < \2[ 4=1 therein by a; < 2r'. Hence (Z23) is true by induction. O

Proof of Proposition[2.9. Let B be the unique closed ball of radius r containing ¢. If r < %
then |€| < 1 and thus p(9(¢) > 1 by Lemma Hence from now on we may assume r > 3.

Let us first assume that B lies within distance r from the origin. Then B C B—:‘i". Hence if
a1 > 3r then BN (najv +v+) =0 for all n € Z\ {0} and v € S¢7, so that, by (ZI3),

__1
Zay,v,u, MINE=a; " W(ZT M) f(v)NE,  VweSTT weRT Me G,

Using also (2I1)) and (Z.12]) we get:
P @) > u({Me Sy : z'Mnec{o}})
da1

oo d
(2:24) > /S | H (g €S o< FolT 2 nal e < 01)
ax

Where ¢y is as in (2.I6). We have af '¢, C BY with r’ = 3mf_. Now if a; > 3v/3r then

7 f_ > 2r’ and 7’ > 1, and thus by Lemma 210, if also d > 3,

_1
pYAM e Sy ar < a7 1Mmaf ¢, C{0}}) > plT (a7 C,).
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1
Using this in (224)) and recalling that the function a; p(d_l)(af*&,) is decreasing by
Lemmal[2.0] it follows that (2.19]) holds for any fixed choice of k4 > (3\/§)ﬁ, and a correspond-

ing appropriate constant k3 > 0. On the other hand if d = 2 then if we write 3r&, = [0, B]
(set o, = By = 0 when €, = 0), (Z24) takes the form

(2.25) pD(@) > 2 /S 1 /1 T H(Z 0 [, Bor] € {0}) % dv.

However, by using some of the steps from the proof of (Z22)), the inner integral in (2.25]) (even
when restricted to z € [1,2]) is seen to be > 1 whenever 8, < o, + 3. Hence (ZI9) holds
with k4 = 9.

It now remains to treat the case when B has distance > r from the origin. We may assume
that the center of B is tey, where t > 2r. Given v € Scf_l we note that najv + v+ has
nonempty intersection with B only if |na; —tv - e;| < r, and hence (najv +v*-)N B = § holds
for all n € Z whenever a; > 0 satisfies a;ZN[tv-e; —r,tv-e; +r] = (). Let A, be the set of all
a1 > 0 satisfying this condition. By ([2.14) we have Z¢M N B = () whenever M = [a, v, u, M]
with v € S and a1 € A,. Hence by 211 and ([ZI2), and since r > 1,

4 da da
(d) (d-1) . 2, d71 1 1
P (¢)>>/s‘f‘1/vu ({Mesd_l'glgfl d“d >>/sd1/1, (3r,00) T

30
> it /Sdl ‘A'u N (3r, 307°)‘ dv =" /sdl /3 I(xZ Nlaw — 1,00 +1] = (Z)) dz dv,
1

where in the last step we wrote ay, := r~ v - e;. Now for every v € Scll_1 with |v - eq| > % we
have |ay| > 1, and this is easily seen to imply that the inner integral is > 1. It follows that
p@D(€) > r~? and thus (ZI9) holds. O

Remark 2.2. Proposition 2.9 (together with Lemma [2.6]) implies that the bound in Proposi-
tion [2.8]is sharp if we require the convex set € to have a bounded ratio between its circumradius
and its inradius. However, for every bounded convex set € with nonempty interior there is
some M € G such that the “John ellipsoid” of €M (viz. the unique d-dimensional ellipsoid of
maximal volume contained in €M) is a ball, and the ratio between the circumradius and the
inradius of €M is then < d; cf. [I1]. Also recall that p(€) = p(€M). Hence by induction on d
we obtain a fairly explicit, sharp upper bound on p(€) for € convex, which we now state.

For any bounded convex set ¢ C R? with non-empty interior, define F,;(¢) as follows. Set
F1(€) =1if |€| < 1, otherwise F}(€) = 0. Then for d > 2, define F;(€) recursively by taking
M € SL4(R) so that the John ellipsoid of €M is a ball, and setting

(2.26) Fy(¢) = min{l, ¢t /d Fa <‘¢,7d(cﬁn cM N vi> dv}.
S

(This makes F;(€) well-defined, although M is determined only up to multiplication from the
right by an arbitrary element of SO4(R).) We extend the definition to arbitrary convex sets
¢ C RY by setting Fy(¢) = 1 if ¢ has empty interior, and Fy(¢) = 0 if ¢ has non-empty
interior and is unbounded.

Then for any d > 2 there exist constants ki > ko > 0 such that for every convex set € C RY,

(2.27) min{ 3, Fy(k1€)} < p(€) < Fy(k2Q).

It is an interesting question whether Fy as defined in ([Z.26]) can be replaced by some
geometrically more transparent function, so that (Z27)) still holds.

To conclude this section, we point out some situations when the Athreya—Margulis bound
p(€) < |€|~! is sharp. The following is immediate from Proposition 201
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Corollary 2.11. Given d > 2 and € > 0 there is a constant ¢ = c(d,e) > 0 such that the
following holds. For any convex set € C R? which is contained in a d-dimensional ball of
volume < e|€| and which satisfies volga—1{v € 841 wtne =0} > ¢, we have

1

p(€) > min(}, c/e] ).

Note that Corollary ZTT] (just as Proposition [20) does not take into account the invariance
p(€M) = p(€). We next give a simple criterion which is invariant under € — €M (VM € G):

Corollary 2.12. Given d > 2 and € > 0 there is a constant ¢ = c¢(d,e) > 0 such that for any
convex set € C R?, iftq & € for all 0 < t < &, where q is the centroid of €, then

(2.28) p(€) > min(3, c[€[71).
For the proof we need the following simple geometric lemma.

Lemma 2.13. Given d > 1 and € > 0 there is some ¢ = c(d,e) > 0 such that for any d-
dimensional ball B and any convez set € C B of volume |&€| > ¢|B|, there exists a ball B" with
center at the centroid of € such that B' C € and |B'| > ¢|B].

Proof. Let € and B be given satisfying the assumptions. We may assume that the centroid of
¢ is 0. Let R be the radius of B, and let 7 > 0 be maximal with the property B’ := B¢ C €.
Then there is a point p € 9€ with [|p|| = r. After a rotation we may assume p = re;; then
¢C{z:xz e <r}. Forz € R wewrite ¢, = {y € R : (z,y) € €} and |€,| = volg_1(€,).
Now since the centroid of € is 0 we have 0 = [*__ #|€,dz < —r [ |€;]da +r [ |€;|dx,
and hence

|¢| :/ \Qx]dac—l—/ y@ydmg/ €, da < drvoly 1 (BE ) < rRTL

o0 -r -r
But also |€| > €| B| > eR%; thus r > eR and |B'| > r? > ¢R% > £4|B. O

Proof of Corollary [212. 1If € has no interior points then € is contained in some affine subspace
of R? and thus p(¢) = 1 by Lemma If € has interior points and is unbounded then
|€| = co. Hence from now on we may assume that € has interior points and is bounded. Then
by [11], after replacing € with €M for an appropriate M € G (note that both the assumption
and the conclusion of Corollary are invariant under any such replacement), there is a
d-dimensional ball B satisfying € C B and |€| > |B|. Hence by Lemma 213 there is some
r >0 with 7% > |B| and q + B? C €.

Now let p be the point in € lying closest to 0, and let a be the point on the line segment
Rqg N € lying closest to 0. Assume p # a. Let £ be the line through p and a, and let b and ¢
be the orthogonal projections onto ¢ of g and 0, respectively. Then a lies on the line segment
between b and ¢, since a lies on the line segment between g and 0. Also ||c|| < |lp]| < ||la]|
by the definition of ¢ and p; thus p and a must lie on the same side of b along ¢. Combining
this with the fact that p,a € 0¢€ it follows that b cannot belong to the interior of €, and in
particular b ¢ q + B2, viz. ||b — q|| > r. Using also Aca0 ~ Abagq we obtain:

16— 4l r
1Pl = llell =
la —q Iqll

The same conclusion, ||p|| > er, trivially holds also when p = a. Now if R is the radius of

B then R < r and € is contained in p + BZ, and also in the half space {z : = -p > ||p|*}.

It follows that ¢ N v’ = () for every v € S¢™! with ¢(v,p) < arctan(5g). Hence (2.28) now
follows from Corollary 2171 O

lall > 7=rllall > er.

Note that the criterion given in Corollary is optimal for € running through the family
of all d-dimensional ellipsoids. Namely, if € is a d-dimensional ellipsoid with center q # 0 and
volume > 1, then, by Theorem [L2 which we will prove below, p(€) > |€|~! holds if and only
if the distance from 0 to Rg N € is > ||q||. On the other hand, p(€) > |€|~! certainly holds
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also for many convex sets which do not fulfill the criterion in Corollary 2.121 For example it
holds when € is an arbitrary convex cone of volume > 1 with 0 as apex:

Corollary 2.14. Given d > 2 there is a constant ¢ = c¢(d) > 0 such that if € is the cone which
is the convex hull of 0 and some convex subset of a hyperplane ITI C R with 0 ¢ I1, then

(2.29) p(€) > min(3,c[€|™h).

Proof. Assume that € is the convex hull of 0 and the convex set 3 C II. As usual we may
assume that € is bounded and has interior points, i.e. that 3 is bounded and has a nonempty
interior relative to II. Using (I4]) and [11] we may furthermore assume that 3 is contained in
a (d — 1)-dimensional ball B with vol;_1(B) < volg_1(3), that the orthogonal projection of
0 onto II equals the center q of B, and that ||g|| equals the radius of B. It then follows that
¢Not =0 for all v € S¢! with p(v,q) < 7 and also that € is contained in a ball of volume
< |€|. Hence ([2.29]) now follows from Corollary 2111 O

3. THE CASE OF € A BALL; PROOF OF THEOREM 1.2

We now give the proof of Theorem Let €, r and q be as in Theorem [[L2] viz. € is
a d-dimensional ball of volume > %, with radius r and center q. After a rotation we may
assume g = ||q||e;. We will use the bounds in Propositions 2.8 and 291 Note that it is clear
from start that these bounds are sharp, since the inradius and the circumradius of € are the
same (= r); cf. the discussion in Remark Note also that since the intersection of € with
any hyperplane is again a ball (of dimension d — 1) or empty, the integrands appearing in
Propositions 2.8 and 2.9] can be bounded in a sharp way simply by induction, using Theorem
with d — 1 in place of d.

To treat the integrals over Scllf1 we parametrize a dense open subset of Scllf1 as follows:
(3.1) v =(v1,...,09) = (cos @, (sinw)ay, (sinw)ae, ..., (sinw)ag_1) € sd=1

where @ € (0,7) and a = (aq,...,aq4-1) € SI2. Thus @ is the angle between v and e;.
In this parametrization the (d — 1)-dimensional volume measure on Sil*l takes the following
form:

(3.2) dv = (sinw)? % dw da,
where da is the (d — 2)-dimensional volume measure on S92 (if d = 2, da is the counting
measure on S{ = {—1,1}).

Let us first assume 0 € €. Then 7 = ”qufr € [-1,0] in (L6). Given v as in (3.1]) and using
q = ||q|le1, we compute that € N vt is a (d — 1)-dimensional ball of radius

= /r2—||q|?cos?w =11 — (1+7)2cos?w = r\/sin2 w—T7(24 7)cos?w
(3.3) = r(sinw + /|7])
This ball contains 0 in its closure, and the distance from 0 to its boundary (relative to v')

is ' — ||q|| sinw. Hence if we write 7/ for the “r-ratio” (the analogue of 7 in (L6])) of this
(d — 1)-dimensional ball then 7" € [—1,0] and

. ' —|qsinw " —|q|?sin2@  1—(1+7)%cos?w — (1+7)2sin’w
-7 = = =

7! 74/2

A sin? o + |7|
7|
3.4 = —_—
(34) sin? w + | 7|
Now in the case d = 2, Proposition 2.8 gives
(3.5) PP (@) < r 2 / I(krr' < 1) dw,
0
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where k& > 0 is an absolute constant. By (B.3), kr’ < 1 holds only if sinw + /|7| < 72

Hence p?(€) <« r~* < |€|72, and if r*|7| is sufficiently large we even have p®(€) = 0.

Similarly using Proposition [2.9] and the assumption that |€| > %, we conclude that p(z)(@ >

r~* > |€|~2 whenever 74|7] is sufficiently small. Hence (L) holds when d = 2 and 0 € €.
Next assume d > 3. Then Proposition 2.8 gives

(3.6) P (@) < / P (krare N ot ) (sin )2 des,
0
where k > 0 is a constant which only depends on d. Here krisienot is a (d—1)-dimensional

1
ball of radius kr@17' which contains 0 in its closure and which has r-ratio 7" as in (3.4).
By induction we may assume that (LG]) holds for this ball; it follows that the integrand in
(B6) vanishes whenever |7/|(ra-1r")"d-2 is sufficiently large, viz. (by B3], (3:4])) whenever
1 2d 2d
|7|(sin w + |7]) 72732 is sufficiently large. In particular p(¥(€) = 0 holds whenever |7|rd-T
is sufficiently large. Furthermore for arbitrary 7 < 0 it follows that

(3.7 p(dfl)(krd_ilﬁ Not) < (rﬁr/)fﬂd*l) < 1~ (sin ) "H4Y),

Remark 3.1. Here we used the trivial fact that, for suitable ki, the right inequality in (.0))
holds also when the given body has volume less than %, since p(€) < 1 by definition.

Now in (B.6) we may restrict the range of integration to w € (0,5) by symmetry (w <>

d
m —w). For w < r~ @1 we use the trivial bound p(dfl)(krﬁcﬁ Novt) < 1 and for w larger
we use (B.7). This gives

P (¢) <« r? (/
0
1

By a similar computation using Proposition 9] (and the assumption || > 3) we obtain

pD(€) > 772 whenever 7 < 0 and ’T‘?“d%dl is sufficiently small. Hence we have proved that
(CH) holds when d > 3 and 0 € €.

We now turn to the remaining case, 0 ¢ €. Now 7 = ”'ﬁ'{'}ﬂr € (0,1) in (L8). For any

v € 8971 as in BI) we note that € N v is nonempty if and only if | cos w| < Tar =1-—m7or

__d_
d—1

d—1

oo
w2 dw +/ 4 2 —d dw) < r 4
T

equivalently if and only if @ € [w,, 7 — w@,], where w, := arccos(1 —7) € (0, §). In particular,

by Proposition 29 (and since |€| > 3), p(@(€) > r=¢ < |¢|~! whenever 7 > &, in agreement
with (L@). Hence from now on we may assume 0 < 7 < % (and_ thus 0 < w, < arccos 1% < %)
Now for any v € S¢~! with @ € [w,, 7 — @,] we note that € N v is a (d — 1)-dimensional
ball of radius
= /r2 —|q|?cos?w =1/1—(1—71)"2cos?2w = ry/(1 —7)% — cos? w@.
Setting w; := min(w — w;, ™ — w, — w) € [0, § — @w;| we may continue:
(3.8)

=< ry/1—1—cos(wy +w1) =rv(1 —7)(1 — coswy) + sinw, sinw; < rv/(w + w,)w;.

Furthermore the ball € N v+ does not contain 0, and the distance from 0 to its boundary is
lq|| sin — r’. Hence the 7-ratio of €N vt is

,_lalsinm—r' _gPsinte —?  JgP-r  (Q-m-1 7
~ lallsine - — lglPsin’w g?sin*w  (1-7)sin’ @ sin?w

(3.9)

Now in the case d = 2, Proposition 2.8 gives

(3.10) PP (€) < r2 <wT + /2 ' I(krr' < 1) dw1>,
0
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where k£ > 0 is an absolute constant. The contribution from w; < w, in the integral is
subsumed by the term w;; hence it suffices to consider w; € (w,, g—wT). For any such w; we

have ' < rw; by [3.8). Hence, using also @, < 72, we conclude that P2 (¢) < 7“_2(7'% +r72).
Similarly using Proposition ZZdl (and |€| > 1) we obtain pP(€) > T_Q(T% +772). Hence (L6)
holds when d =2 and 0 ¢ €.

Next assume d > 3. Then Proposition 2.8 gives

p (@) < rd </ T(sinw)d_2 dw + /2
0

wr

< r @ (w;“l + /2 pld=1) <krﬁcjm vi)wd‘Q dw),
2

wWr

pld=b <l<:7"ﬁ N vL> (sin ) ? 2 dw)

where k > 0 is a constant which only depends on d. Here kriiC Nl is a (d —1)-dimensional

ball of radius krﬁr' which does not contain 0 in its closure and which has 7-ratio 7 as in
(B9). By induction we may assume that (I.6]) holds for this ball (also recall Remark B.1]); it
follows that

p () < r7d (wﬁ‘l +/2 min{l,(rdwd_l) (r/@?) " + (wad—1)—z}wd_2 dw>
2w,

_af =1 g d=2 4 < —2d_2-2d\ _d—2
<r T2 + r %2 w %do + mm{l,r w }w dw
2

o 2w

g1 max(2w.,—,r_%) 0o
< r ¢ <7’2 4+t / o2 dw + / 4 P2 dw>
2 r

o d—1
< r 4 <T% + ’I“_d).

This proves that the right inequality in (L8] holds for d > 3, 0 ¢ .
The proof of the left inequality in (6] is similar: Note 7 > 1, since €| > 1.
Proposition 2.9] gives, with a new constant k& > 0 (which only depends on d),

311)  pD(€) > r¢ (/ ' (sinw)?? dow + /2 plb <krﬁ(’: N vl) (sin )42 dw) .
0 @

It follows from (B.8]) that there is a constant ¢ > 0 which only depends on d such that

Now

or T < % and for all @ € (0, cr_#) the intersection kr=1€ N vl is either empty or is a
(d— 1)-dimensional ball of radius < 1, so that p(dfl)(krﬁcﬁﬂ v1) > I by Lemma @2l Hence
the right hand side of (EII)) is > r~2¢. But also, by just considering the first integral, the
right hand side of (311 is > 72 r=4. This concludes the proof of the left inequality in (L.6l)
for d > 3, 0 ¢ €, and hence the proof of Theorem is complete. ood
Remark 3.2. Let us note that the case of the right inequality in (L6]) which says that p(€) =0

whenever 0 € € and |7'||€|% is sufficiently large, may alternatively be proved by a simple
application of Minkowski’s Theorem: We may assume that € is the open ball ¢ = (r —t)e; + B¢
(0 <t <r,r>0; thus 7 = —t/r). We then claim that the box

-t [ ) [ )

N~

d — 1 copies

is contained in the union € U (—¢€). To verify this it clearly suffices to check that every point
(r1,...,24) € F with 7 > 0 lies in €. For such a point we have

(1 —(r—t)?+a23+...+23 <max((r—t)% (3r— (r—1))%) + itr
= max(r2 +t(t — %7’), ir2 +t(t — %7’)) <r?
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thus proving the claim.

Now assume p(€) > 0. Then there exists a lattice L € X satisfying L N &€ = {0}. Also
LN(—¢) = {0}, since L = —L. Hence LNF = {0}, and since F is convex and symmetric about
the origin we conclude via Minkowski’s Theorem (cf., e.g., [25] Thm. 10]) that the volume of

— 2d 2
Fis|F| <24 But |[F| < ‘T’%Td. Hence p(€) > 0 implies |7|rd-1 < 1, viz. |7]|€]3T <« 1, as
desired.

To conclude this section let us prove that Theorem leads to a simple explicit sharp
bound on p(€) for any convex body € such that O€ has pinched positive curvature (or, more
generally, for any € which can be transformed to such a body by a map in SLy(R); cf. (I4)).
For any given convex body € of class C! and any ¢ in 7%(9€), the unit tangent bundle of 9¢,
we denote by p;(t) and ps(t) the lower and upper radius of curvature of € at the base point
of t, in direction ¢ (cf. [22] Sec. 2.5]).

Corollary 3.1. Given d > 2 and C > 1 there exist constants 0 < ki < ko such that the
following holds. For any convex body ¢ C R of class Ct, volume |€| > L, and satisfying

27
SuPser1(ge) Ps(t)/ Infier(pe) pi(t) < C, we have

d . o
(3.12) RO (r:ka|€]) < p(€) < B (mikale]),  with 7= RS

where § is the signed distance from 0 to O€ (negative if 0 € €°, positive if 0 ¢ &), and Fb(al)l is
the function defined in (LH).

Proof. Let € C R% be any convex body satisfying the assumptions, and set 71 = infieri(oe) pi(t)
and 12 = SUPger (ge) Ps(t) (thus r2/ry < C). Let p be the point in O€ lying closest to 0, and
let €/, ¢” be the open balls of radii r; and 7o, respectively, which are tangent to O¢€ at p and
lie on the same side of the tangent plane as €. Then @ C ¢ C ¢”. If 0 € € and ||p|| > 71 then
we replace ¢’ with the ball Bﬁlp”; note that ¢’ C € is still true. Let 7¢ and 7¢» be the T-ratios
of ¢ and €”, as in (LG). Now by Theorem [[.2] we have, for some constants 0 < k1 < ko which
only depend on d,

(3.13) Fiap(ren, ka|€”]) < p(€”) < p(€) < p(€') < Fyapy(rer, b |€']).

(Here note that |€”| > |€| > I, and also recall Remark B11) It follows from our construction
that ¢/ <, |€"] <. |€], and if 7 = 0 then 7¢v = 7¢#» = 0; if 7 > 0 then 7¢/, 7¢» > 0 and
Ter X, Ten <, 73 if 7 < 0 then 7¢/,7¢v < 0 and |7¢/| <, |7er| <, |7|. (Here the implied
constant in each “<_.” depends only on d and C.) Hence there exist constants k] € (0, k)
and k) > ko which only depend on d and C' such that Fb(al)l(T@ ki|€’]) < b(a”(T k1|€]) and

Fb(i)l(ﬂ kh|€]) < Fb(i)l(T@”’ k2|€"]). Combining this with (BI3)), the proof is complete. O

4. THE CASE OF € A CUT BALL; PROOF OF THEOREM 1.3

4.1. Reduction to the case of small cut ratio. We now start preparing for the proof of
Theorem [[3 In the following, by a “cut ball”, we will always mean a set € C R? of the form
in Theorem [[L3] viz.

(4.1) ¢:=Bn{xeR?: w-z >0},

where B is a d-dimensional ball with 0 € B and w is a unit vector such that ¢ has nonempty
interior. Then if r and p are the radius and center of B, we will say that € has radius r
and cut ratio t = 1 — r~Y(w - p) € [0,2). Also if ' and q are the radius and center of the
(d — 1)-dimensional ball BNw" C O¢ then r’ — ||g|| is the distance between 0 and the relative
boundary of B Nw™, and we will refer to the ratio e = % as the edge ratio of €. (We
leave e undefined when ' = 0, viz. when ¢ = 0.)
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Similarly if € is as in Corollary [[L4] viz. a cone or a cylinder containing 0 in its base, then

we define the edge ratio of € to be e = %, where g and 7’ are the center and radius of the

base which contains 0.
To start with, using simple containment arguments, we will prove a lemma which reduces
our task to that of proving Theorem [[3] in the case of small cut ratio. Specifically:

Lemma 4.1. Let d > 2. Assume that there exist constants 0 < k1 < ko such that
d
(4.2) Fé (o5 alel) < p(©) < FGi (e 1)

holds for any d-dimensional cut ball € with |€| > %, edge ratio e € [0,1] and cut ratio t = .
Then there also exist constants 0 < k| < kb such that

(4.3) Fip (et:1€]) < p(@) < B (et K¢
ball
holds for any d-dimensional cut ball € with |€| > 1, edge ratio e € [0,1] and cut ratio + <t < 2.

It is convenient to first prove an auxiliary result which says that Theorem [[.3]in the special
case t = % implies Corollary [L4l In precise terms:

Lemma 4.2. Let d > 2. Assume that there exist constants 0 < k1 < ko such that
d
(4.4) Fl (e dalel) < p(@) < B (e b5l

holds for any d-dimensional cut ball € with |€| > 1 5. edge ratio e € [0,1] and cut ratio t =

Then there also exist constants 0 < kj < ki) such that for any d-dimensional cone or cylinder
¢ as in Corollary [1.7),

(45) f?c(one(6 k2|€|) < p(Q:) c(glr)ze(e; ki |€|)a

1
5
er

where e is the edge ratio of €.

Proof of Lemma [{.3. First assume that € is an arbitrary cylinder as in Corollary [[.4] with
edge ratio e. Then there is some M € G such that the two bases of €M are balls (just as for €
itself), €M is right (viz. the line between the centers of its bases is orthogonal to the bases),
and the radius of €M equals its height. Note that €M has the same edge ratio as €. Let B
be the base of €M which contains 0. Now one checks by a quick computation that if we let
¢’ be the unique cut ball with cut ratio ¢ = % for which the flat part of 9¢’ equals B, with ¢’
lying on the same side of B as €M, then €M C €. (If €M has radius and height r then the
radius of ¢’ is 2r.) Also |¢’| > |€| > L. Hence by ([@4) (using also Lemma [Z3),

(4.6) p(©) = p(€M) = p(€) > Fy,)

cut

d)
(e 33 KI']) > Fi (es K'[€])
for certain constants k, k' > 0 which only depend on d, k1, ko.
For our next construction it is convenient to use explicit coordinates. Let €j be the (closed)

cone which is the convex hull of L(Bffl) and e; — 3ey. Let € be the (open) cut ball
61:(1—1561 62+Bl/12)ﬂ{ac cx-ep >0}

One then checks by a straightforward computation that (seq + €1) C €y for all 0 < s < ;g
Now if € is an arbitrary cone as in Corollary [L4] with edge ratio e € [0,1], then there are
some M € G and ¢ > 0 such that €M = ¢((1 — e)es + €p), and hence we conclude

c((1 —e+s)es + ;) C €M, Vs € [0, 5.

We apply this with s = max(0, e — 55); then ¢((1 — e + s)es + €;) is a cut ball with cut ratio

t = +, edge ratio min(1,20e), and volume |c€;| > |c€y| = |€|. Hence by the right inequality

5’
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in (£4]) (which we may assume holds also when the cut ball has volume < %, similarly as in
Remark B.1]), we get:
(4.7)
p— d .
P(€) = p(@M) < p(c((1 = e+ s)es + €1)) < Feyy (min(1, 20e); g3 ble€1]) < Figh (es]€])
ball
for certain constants k, ¥’ > 0 which only depend on d, k1, ko. Hence we have proved that the
right inequality in (£3]) holds for €. Furthermore we may inscribe € in a cylinder €’ which
has the same base as € and thus edge ratio e, and which has volume |€’| = d|€] < |€|. Hence
using p(€) > p(¢’) and applying (6] to €', we conclude that also the left inequality in (435
holds for €.

On the other hand, if € is an arbitrary cylinder as in Corollary [[4] then the left inequality
in (4.3) holds because of ([A6]), and the right inequality in (£5) follows by inscribing a cone
¢’ in € with the same edge ratio as € and volume |¢’| = d~!|¢| > |€|, using p(€) < p(¢’) and
applying (1) to €. O

Proof of Lemma[{.1. Let € be an arbitrary cut ball with |&| > %, cut ratio é <t < 2 and edge

ratio e. If 1 <t < 2 then let € be the unique closed right cylinder which has the flat part of

J¢ as one base, and has minimal height subject to the condition € C €. Then p(€) > p(¢’),

3 <1€| <|¢| < |¢], and ¢ has the same edge ratio as €. Hence we obtain, using Lemma Z2}
P(€) > pl€) = F). (e €)= Fiy (et K]€)),

cut
ball

where k, k' > 0 depend only on d, k1, k. Thus the left inequality in ([Z3]) holds.

A variant of this construction also works if é <t < 1. Namely, with B and w as in ([@]), let
a be a non-zero vector with ¢(a,w) = arcsin(1 — ¢); if p ¢ Rw then we furthermore assume
a € Rw + Rp and that a and p lie on distinct sides of the line Rw in the plane Rw + Rp. Let
3 be the infinite cylinder consisting of all points which have distance < r to the line p + Ra
(then clearly B C 3), and set

¢ =3n{xcR: 0<w-x<(2-1t)r}.

Then € C ¢, 3 < |€] < |¢/| < |€|, and there is some M € G such that ¢’M is a cylinder as
in Corollary [[L4] with edge ratio =< e; thus the left inequality in (£3]) again holds.

The right inequality in (£3]) is proved in a similar but easier way by inscribing a cone in €
and using Lemma O

4.2. Some more lemmas. Let
(4.8) ¢:=Bn{xeR?: w-x>0}

be a cut ball of radius r > 0, cut ratio ¢ € [0,2) and edge ratio e € [0,1]. By Lemma AT} if
we can prove Theorem [[3 whenever ¢ € [0, ] then Theorem [[3] holds in general. We may
furthermore assume 0 ¢ 9B, since then the remaining cases with 0 € 9B follow by a limit
argument, using Lemma 23l Hence from now on we will assume 0 < t < % and 0 <e < 1.

In order to prove Theorem [[3] we will use the bounds in Propositions 2.8 and Just
as in the proof of Theorem it is clear from start that these give sharp bounds on p(¢),
since the inradius and the circumradius of € are comparable because of our assumption ¢ < é
Furthermore, the intersection of ¢ with a hyperplane v (v # +e;) is again a cut ball (of
dimension d — 1); hence we will again be able to use induction to bound the integrands
appearing in Propositions 2.8 and 2.9l However first we need to make a careful study of how
the size and shape of this cut ball € N v+ varies with v.

Let p be the center of the ball B in ([4.8]). After a rotation we may assume

(4.9) w=e; and p=r(l—t)e; +rsey, where s=(1—e)\/t(2—1).

We write ' = r/t(2 — t) and g = rsey for the radius and the center of the (d—1)-dimensional
ball B Nw".
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In the integrals in Propositions[Z.8 and 2.9, we note that we may restrict tov € (v1,...,vq) €
Scf_l satisfying vy > 0, since (—v)L = v+. If d > 3 then we parametrize a dense open subset

of 8971 N{vy > 0} as follows:

v=(v1,...,0q)
(4.10) = (cosw,sinw cosw, (sinwsinw)ay, (sinwsinw)ay, ..., (sinwsinw)ag_s) € sd-1
where @ € (0,7), w € (0,%) and & = (ay,...,a4-2) € S{7*. Thus w is the angle between
v and e, and w is the angle between v’ := (vg,...,v4) and e; in R?1. Note in particular

that v # +ey, since w € (0,7). The (d — 1)-dimensional volume measure on S¢~! takes the
following form in our parametrization:

(4.11) dv = (sinw)? % (sinw)? 3 dw dw dev,

where da is the (d — 3)-dimensional volume measure on Scll_?’ (if d = 3: da is the counting
measure on S§ = {—1,1}).

As noted above, for any v € 71\ {#e;} the intersection € N vt is a (d — 1)-dimensional
cut ball inside v'. To express the radius and cut ratio of ¢ N v’ in a convenient way we
introduce the following functions, for 0 < ¢ < %, u € [0,1/t(2 — 1)) and @ € [0, 7],

(4.12) h(u,w) = (1 — t)sinw — u cos w;
(4.13) g(u, @) = Vt(2 = t) — w2+ h(u, @)%
(4.14) flu, @) =g(u,w) + h(u,w) = H2—t) —u

9(u, @) — h(u, @)’
gu, @) — h(u, @) (2 —1t) — u?

9(u, @) g(u, @) f (v, @)
(All four functions depend on ¢ but we leave this out from the notation.) We compute that,
for any v with @ € (0,7) and w € (0, %), the (d — 1)-dimensional cut ball € Nv! has radius
rg(scosw,w) and cut ratio T(scosw,w).

In the remaining case d = 2 we parametrize v € S% as v = (cos w,sinw), where we may
restrict to w € (0,7). We then compute that € N v is a line segment of length r f(s,w); in
fact this line segment may be viewed as a 1-dimensional cut ball of radius rg(s,w) and cut
ratio T'(s, w).

In the next four lemmas we give some information on the size of the functions h, g, f,T. Set

(4.15) T(u,w) =

wo(u) = arctan(lit) €[0,%).

Lemma 4.3. For any u € [0,1/t(2 —t)) and @ € (§,7] we have
h(uaw): ‘h(u?w” > ‘h(u,w—w)‘, Q(U,W)Zg(uaﬂ—w)a and f(u,W)Zf(u,T('—W)
Proof. Clear by inspection. O

Lemma 4.4. For any fized u € [0, t(2— t)), h(u,w) is a strictly increasing function of

w € [0, 5] with h(u,wo(u)) = 0; also f(u,w) is a strictly increasing function of w € [0, 5],

and T'(u,w) is a strictly decreasing function of w € [0, 5] with T'(u,wo(u)) = 1.

Proof. The statements about h are clear. The statement about f follows from this, using the
first formula in (£I4) for w € [wo(u), 5] and the second for w € [0, wg(u)]. Also the statement
h

N e is a strictly decreasing function of h € R. O
—t)—u

about T follows, since 1 —

Lemma 4.5. For any u € [0,/t(2 —t)) and @ € (0, 3wo(u)] we have

glu,@) =Vt and f(u,@) = \/t(2—1) —u.
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Proof. For these u,w we have u < —h(u,w) < u, and thus g(u,w) =< v/t. Now the claim
about f follows using the second formula in (Z14]). O

Lemma 4.6. For any u € [0, /t(2 —t)) with 2wo(u) < § we have
g(u, @) =< flu, @) =< Vt + w, for all @ € [2wy(u), ).

Proof. Assume 2wy < w < 5, where we write wy = wo( ). Then sinw > (1 — 27%) sinw +
sinwy, and thus h(u,w) < sinw =< w. Hence g(u, @) < \/t(2 —t) — u? + @, and now either
u < 1\/t(2—1t) in which case g(u,@) =< vt + @ is clear, or else u > 1,/t(2—1t) in which

case w > 2wy > u > /t so that g(u, @) < v/t + w still holds. Now also f(u,@) < VvVt + @
follows. g

Finally in the next lemma we give some bounds on |&,], i.e. the (d — 1)-dimensional volume

of €N v (recall Z.I6)), in the case d > 3.

Lemma 4.7. If d > 3 then for any v € S{™1 with w € (0, 5) and @ € (0, 5] we have

(4.16) 1€y > 1T (e + w?)?.
If 0 < @ < 2wy (scosw) then this bound is sharp, i.e.
(4.17) €] = 1T (e + w?)t.
Finally if 2wg(scosw) < w < § then

(4.18) €| < r4 N (VE+ @)L

Proof. Recall that €, is a (d — 1)-dimensional cut ball of radius rg(scosw,w) and cut ratio
T(scosw,w). If w < wp(scosw) then T'(scosw,w) > 1 (cf. Lemma (4] and hence, writing
f=f(scosw,w), g =g(scosw,w) and T = T (s cosw, w),

&l = 2= D)™ = (L) Tttt =1 (g1

(4.19) = pd-1 (t(2 —t)— s2 cos? w) 2 “ir 1_‘f

If @ € (0, 3o (s cosw)] then using the next to last of these expressions together with LemmalZL5]
and the fact that

(4.20) V2 —t) —scosw = /t(2 —t) (e + (1 — e)(1 — cosw)) = V(e + w?),

we obtain ({.I7). Furthermore the last expression in (4.I9) is an increasing function of w €
[0, 5], since f is increasing and T is decreasing (cf. Lemma B.4)). Hence (EIG]) holds for all
w € (0,wp(scosw)]. Finally for w € [wp(scosw),%]| we have T < 1 and hence |€,| =<

)
(rg)¥=1. But g = g(scosw,w) is strictly increasing as a function of @ € [wy(scosw), 5]
(by (EI3) and Lemma EA); thus g > /t(2 —t) — s2cos?w < /t(e +w?) (cf. @E20)) and
€| > (r t(e+w2))d_1. Hence (&I6]) is valid (but crude) also when @ € [wg(scosw), T].
Finally if 2cg(scosw) < @ < I then we have g < vt + @ by Lemma L6, and hence (IR)

holds. O

4.3. Proof of Theorem 1.3. We keep the notation from the previous section. We will start
by proving the right inequality in (7). First assume d = 2. Note that the inradius of € is
> 1r, since t < é; hence by Proposition 2.8 (and using (—v)* = v') there exists an absolute
constant k£ > 0 such that

(4.21) pP(e) <« 7“_2/ L I(k‘r|€v| < 1) dv = 7"_2/ I(erf(s,w) < 1) dw.
vES] 0
(v2>0)

Using Lemma [4.3] and Lemma and the fact that wo(s) < v/, it follows that there exists
an absolute constant ¢ > 0 such that kr?f(s,) > 1 holds whenever c¢(r=2 + V1) < @w <
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7 —c(r~? + vt). Hence p?(¢) <« 7 2(r=2 + t%) < |2 (1 + |€|t%) Furthermore, by
Lemma (3] if er?ts is larger than a certain absolute constant then kr?f(s,z) > 1 holds
for all w € (0,4wy(s)], and hence by Lemma A3 and Lemma FA4] it actually holds for all
w € (0,7); thus p(®(€) = 0. Hence we have proved the right inequality in (7)) for d = 2.

Next assume d > 3. Now by Proposition [2Z.§ there exists a constant k& > 0 which only
depends on d such that

(4.22) p (@) < rd ﬁ)es‘fl pld=b (k:rﬁ(’: N vL> dv.
(v2>0)

By induction we have, for any v € S¢~! with w € (0, %) and w € (0,7),

d—2

(23) PO (ke n o) < min(L (€))7 + (1€ ]) (s coso, ) 1),

If w € (0, 5] then we use T'(scosw,w) < 2 and ([@IG)) to see that (#23) implies

— _ 2
(4.24) ply (lﬂ“ e ’UJ‘> < min (1, (rdtd21wd) —2ta >
If furthermore 2wy (s cosw) < @ < T then we get a stronger bound by using (£.I8) and
t(2 —t) — s?cos? w t
T =
(scosw, ) po— < P

(cf. (@I5) and Lemma [A6]), namely:
2d(d—2)

d(d—2) d—
(4.25) p(dfl) <k:rd_i1€ N 'UJ‘) < min (1, r72d(t + w2)1’d +rT T aT (t4 w2)_ L t%)

Finally we consider the case w € [§, 7). For these @ we have, with notation as in the proof
of Lemma &7 T < 1 (since h(scosw,w) > 0) and hence |€,] < (rg)?!. Thus in view of
Lemma [4.3] we certainly have |€,| > |€3|, where © is the unit vector corresponding to 7 — w
in place of w, but the same w and a (cf. (£10)). Also T'(scosw,w) < T(scosw,m — w), by
(£15) and Lemma 43l Hence the right hand side of ([4.23)) is (possibly up to a constant factor
which only depends on d) smaller for v than for . Hence when bounding the integral in
(E22)) using @.23)) it suffices to consider w € (0, §).

Using now (£22)), (£24]) and ([£.25) we get

(d) —d 5 [olseose) A=t dy =2+ %) __d-2 d—3
pY(C) «r / / mln(l7 (r't 2 w?) d*1> w" * dw w”° dw
0o Jo

. proo
(4.26) +rd / ’ / min(l, r24(t 4 w2)1*d> w2 dw wd 3 dw
0o Jo

3 [ _ 2d(d—2) _d(d—2) d—2
—i—?“_d/ / min(l,r -1 (t4w?)” -1 tdfl) w2 dew w3 dw.
0 0
Using wo(scosw) < v/t we see that the first term is

P 4,41 . _ 2d
a—1 [2 d—1 —oy -2 r~% 2 if t<p a1
<r 4% / min(l, (rdt 2 wd) 2+d*1>wd*3 dw = { - }
0

1 __2d
p2m2dgl =g if ¢ > pTdt
The second term in ([£.20) is

Vit 00
< r_d/ min(l, T_Zdtl_d) @2 dw + r_d/ min(l, T—zdwz—zd) @2 dw
0 Vi

d—1 . _2d . _2d

_ rmltr ppm2d f < pTdT _ r2d if t<r a1

—~ 1—d _2d —~ 1—d . _2d .
r3dt s if t>p a1 r3de s if > Tt
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The third term in (£26]) is

Vi 2d(d—2)
< r_d/ min(l, rd-1 t2_d) w2 dw + r_d/
0 Vit

et +r1’2dtd2__dl if t<rman | [P i <
B ar= if >t [ e it s et |
2d
Collecting these three bounds we conclude that p@(€) < =24 if t < r~d-1, and p¥(¢) <«

2-2d,1-1 -5 :
T t*~a if t > r d4-1. In other words, for general r and t:

o 2d(d—2) 2d(d—2) d—2

min(l,ri =1 ¢ d-1 tﬂ)wd_zdw

(4.27) p(d)(g) < r2d 4 p22dpl— ‘Q:’,Q (1 n ’Q‘%t%).

Next we wish to prove that p(¥)(€) = 0 holds whenever e[ﬁ\%tl_é is larger than a certain
constant which only depends on d. This can of course be proved using (£.22]) and induc-
tion; however we get a simpler proof by using Minkowski’s Theorem in a similar way as in
Remark Namely, recalling ' = r1/t(2 — t), let us note that the box

F:[—r,r]x[—l’l’]x[ \/_ \/_}x--x[ Ve \/_

ser’, ser ———
2 2 2\/— 2\/— 2\/— 2\/—

d — 2 copies

is contained in the union € U elL U (—€). To verify this, it clearly suffices to check that every
point (x1,...,x4) € F with 21 > 0 lies in €. For such a point we have

(x1—r(1 =)+ (o — 1 —e)r)V +224+.. . +22< (1 -t +(1— 6)27"2—1-467“2

<(1—=t)%2 4o :r2,
and this implies (z1,...,74) € € (cf. (@3), @EJ)). Having thus verified F C € U ef U (—€),
the argument in Remark B.2] (and using Lemma 2.3 to see p(d)(ﬁ) = p(d)(Q U ell)) now gives
that if p(®(¢) > 0 then ]F] <24 But |F| < st T rd < e%t%m In other words p{®(€) = 0

holds whenever e|€]| itl-d s sufficiently large. Taking this fact together with (£27]), we have
now proved that the right inequality in (I.7)) holds for d > 3.

Remark 4.1. The last discussion applies also when d = 2, i.e. it gives an alternative proof of
1
the fact that p®(€) = 0 whenever e|€|t2 is sufficiently large.

Next we prove the left inequality in (L7]). We give the proof for d > 3; the case d = 2 can
be treated in a similar way.
By Proposition 2.9 there is a constant k& > 0 which only depends on d such that

(4.28) pD(E) > min{l,r_d /d ) pld=b (k:rﬁci N vL> dv}.
ST

By @IR) we have |€,| < r (vt + w)? whenever 0 <w<%and 2wy < w < F,

where @y = wp(scosw). Also r > 1 since [€] > 1, and wy < V1 for all w € (0,%). Hence
there exist some constants ¢y, ce > 0 which only depend on d and k such that 2027“_# <3
holds, and also, if ¢t < clr_%, then |€,| < (2k917r)~! holds for all v with w € (0,3) and
w E [027“_#,2027“_0%1]. Note that, by Lemma 22, |€,| < (2k9~1r)~! implies that

d—1 . 1 1
p( )(krdﬂQﬂv ) > 5.
Hence if t < eyr™ dQ—dl, then

(4.29)  p(€) > r¢ Volstlifl ({v esdt:welo, 5), @€ [czr*%ﬂ@r*%]}) > 2,
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On the other hand, for all w € (0, %wo] we have

€| =< 4™ L% (e+w )%
by (AIT). Hence there exist some constants c3 € (O c1 ) and 04 > 0 which only depend on d,
k, c1, such that if t > ¢1r ~7T and e < car ~243"  then cyr~ 't 20 < Z,and |€,| < (2k4 1)t
holds for all v with w € (0,47~ Lg'sd ) and w € (0, iwo]. In thls situation we also have

e < %(clr_%t_l)d%dl < 2 and w < Z, and thus wp > s = (1 —e)/t(2—t) > V1, ie.

%wo > ¢5v/t where ¢5 > 0 is an absolute constant. Hence, arguing as before, the following

_2d 1-d
holds whenever t > ¢;r~d-1 and e < c3r— 2t d :

(4.30) p(€) > r¢ volsff_l ({v € Scll*1 wE (O,C4r*1tl2;dd), w € (O,%\/ﬂ}) > 27247

Taking (I_Z_LZ&I) and (&30) together, we conclude that p(€) > |€¢]|~2(1+|€] itT ) holds whenever

e < car ~24'3% | Tn other words, we have proved the left inequality in (L7]).
This Concludes the proof of Theorem [T.31 ood

4.4. Proof of Corollary 1.4 and Corollary 1.5.
Proof of Corollary[I.4) This follows from Theorem [[L3 and Lemma O

Proof of Corollary 1.3 Also this result will be derived from Theorem [I.3] by a containment
argument, i.e. using the fact that p(€) < p(¢’) whenever ¢’ C €.

As before we may assume 0 ¢ 0B, thus t > 0. If t > % then (L9) follows from Corollary
[L4] by a similar argument as in the proof of Lemma [l Hence we may assume 0 < ¢t < é
After a rotation we may write

Qz{(xl,...,xd)E]Rd s 0<z < (t' —t)r,
(xl—(1—t)r)2+(g;2—(1—e)r')2+x§+...+x§<7~2},

d—
where 7 = ry/t(2 —t), and 0 < e < 1. Note that |€| < (¢ — t)t'Tlrd. Now let E be the
ellipsoid

(4.31) E= {(xl,...,xd) eRY: a(x —Br)i+(m—(1—e)r)? +23+... +22< 77“2}

where
2t + 2t/ (1 — )t —t)? ot —tt)?

2 —
o=@ 0 P e awrw VT e—awaar

Noticing t? — 2t + 2t/ = (' — )2 +#'(2 — t’) >0andt+t —tt' =1— (1 —t)(1 —t) >0 we
see that «, 5,7 are well-defined and positive.
We claim that E C B. A sufficient condition for this is clearly

yr? — alr) — 57")2 <r?_ (x1 —(1— t)r)2, Vz1 € R.

However noticing that a3 =1 —t and v — af82 = 1 — (1 — t)? we see that the above inequality

(,5(/2 5) > 0. Hence

we indeed have E' C B. Note also that E C {1 < (¢ —¢)r}, since S+ /v/a =t —t. Hence
¢’ C ¢, where

simplifies to (a — 1)z? > 0, and this is true for all z; € R since a — 1 =

¢ := En{z; > 0}.
Set
(4.32) My = diag[a%,a*i,a*i,...,a*i] edq.
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Then €' Mj is a cut ball of radius ofﬁvér and cut ratio

. B t(2—t) t
T=1- = = —,
o t+@-t Y

Also its edge ratio is e since BNei = ENei. Since 7 < 1 we have
d d—1
|| = |¢' M| =< ofévﬁrd =t —t)t" 2 rd

where the last relation follows since a < ¢/(#' —)~2 and v =< /. Thus |¢/| < |€|. Now by
Theorem [[.3] we have

d d t

P(©) < p(€) = p(€My) < Figp (e HIE]) < G (e 511,

ball ball © 1

for some constants k, ¥’ > 0 which only depend on d. Hence the right inequality in (I9]) holds.
We now turn to proving the left inequality in (L9). If 1 < # < 2 then the desired inequality
follows directly from the left inequality in (7)) in Theorem [[3] applied to the cut ball € =
{x€B : w-x >0} since € C ¢, |€] =< |¢| and ¢t < ¢/t' in this case. Hence from now on
we may assume ¢’ < 1 (and 0 < t < % as before). Furthermore we may assume t' > 2t, since
otherwise the desired statement again follows from an application of Corollary [[L4] similar to
what we did in the proof of Lemma [Tl Now let E be the ellipsoid (£31]), but with
2t
o=t
We then claim € C F. A sufficient condition for this is clearly
2 —afzy — Br)2 > 12 — (z1 — (1 —t)r)?, Vay € (0, (t —t)r).

But the inequality is equivalent with (1 —#')x1(7%; —r) < 0, which is indeed true for all
z1 € (0, (t' —t)r), since 1 — ¢ > 0. Hence € C E, and thus also

¢c ¢ :=En{xr >0}

o =t —t y=t2-1).

Take My as in ([E32]), but with our new a. Then €' Mj is again a cut ball of radius ofﬁwér,

8 v (2—t—t) _ vty 2—t—t') _ t(2—t) _
e 1 - % =1-1 t/)(éft’) L = t/E27t’) = t_t" and edge

ratio e. As before we find |¢/My| = |€| (for this we use # > 2t to see that o =< '~ ! and

v =< t'), and now the left inequality in (L9]) follows from Theorem [[3] applied to ¢'Mj, since
p(€) = p(€') = p(¢'Mo). O

cut ratio 7 = 1 —

5. BASIC FACTS ABOUT THE CONDITIONAL PROBABILITIES Vp AND pp

5.1. Definitions and basic properties. We start by recollecting some definitions from [15].
Recall that we have identified X; with the homogeneous space I'\G (where I' = SL4(Z) and
G = SL4(R)). Given any p € R?\ {0} we define X;(p) to be the subset

Xi(p)={Me X, : peZ'M}.
For any k € Z%\ {0} we set
Xi(k,p) = T\'Gy. p,
where
Grp = {M eqG : kM:p}.

Then X (k,p) is a connected embedded submanifold of X; of codimension d, and X;(p) can
be expressed as a countable disjoint union,

(5.1) Xi(p) = || X1(ke1,p).
k=1

(Cf. [15], Sec. 7.1] for details.)
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For every p € R?\ {0} we fix some M,, € G such that p = e; M,,. Then
Grp = My, "HM,,

where H is the closed subgroup of G given by

(5.2) H={geqG : elg:el}:{<3u 2) s v e R AeG(dq)}’

Let 17 be the Haar measure on H given by dug(g) = dul4=1(A) dv, with A, v as in (5.2), and
let vp, be the Borel measure on Gy, ,, which corresponds to ¢ (d)~pg under the diffeomorphism
h — Mk_thp from H onto Gy p. This measure is independent of the choices of Mj, and M.
Finally we use the same notation v} also for the measure on Xj(k,p) corresponding to vp
via the covering map Gy p — X1 (k,p), and also for the measure on X;(p) obtained via (GII).
(Again cf. [I5] Sec. 7.1] for details.)

The measure v, on X;(p) is a probability measure ([I5, Prop. 7.5]). In fact, as the fol-
lowing proposition shows, v, may be viewed as determining the conditional distribution of a
(u—)random lattice L € R? of covolume one, given that p € L.

Proposition 5.1. Let £ C Xy be any Borel set. Then p — vp(E N X1(p)) is a measurable
function of p € R\ {0}, and for any (Lebesgue) measurable set U C R%\ {0} we have

(5.3) /{S H(LOU)du(L) = /U vp(€ N X1 (p)) dp.

Proof. The measurability of the map p — vp(€ N X (p)) was proved in [15, Prop. 7.3], and it
was seen in the proof of the same proposition that

(5.4) / wENXi(p)dp= > wFné&),
v kezd\ {0}

where F C G is a fixed (measurable) fundamental domain for I'\G and & is the set of all M €
G satisfying both T'M € € and kM € U. Using p(F N &) = [ I(TM € &, kM € U)du(M)
in the right hand side of (5.4]) and then changing order of summation and integration, we

obtain (5.3]). O

Remark 5.1. For a general point process £, the precise concept which corresponds to the
intuitive notion of conditioning on £ having a point at a given position, is the Palm distribution
(cf., e.g., [12], [13], [7]). In the special case of the point process L (a p-random lattice C R?),
it follows from Proposition [5.1] that the measures v, for y € R?\ {0}, together with y itself
for y = 0, give a version of the local Palm distributions. Note in this connection that, by
Siegel’s formula (cf. [24], [25]), the intensity EL of the point process L equals the sum of the
standard Lebesgue measure on R¢ and the Dirac measure dg assigning unit mass to O.

Having defined the conditional measure v, we now define p,(€): For any p € R?\ {0} and
any measurable set € C R% we set

pp(€) = vp({M € X1(p) : Z°M N\ {0,p} = 0}).
We record that we have the natural invariance relation
(55) pP(Q:) = pPM(QM)’ VM € Ga

due to a similar relation for vp, cf. [I5] Lemma 7.2]. We will furthermore have use for the
symmetry relation

(5.6) pp(€) = pp(p — @),
which holds since L = p — L for all L € X;(p).
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5.2. A useful parametrization of X;(p). We will now give a parametrization of X;(p)
which allows us to use the (Siegel-)reduced lattice bases introduced in Section 2.1l when bound-
ing pp(€). We will assume d > 3 for the remainder of this section[] We start by parametrizing
Grp, where k = (k1,...,ky) € Z4\ {0} and p € R?\ {0} are fixed and arbitrary. Let us write
k' = (ko,...,kq) € Z4"1. Then by ZI3) we have [a1,v,u, M] € G p if and only if

1

1 1
(5.7) p = ka1, v, u, M| = kja;v + L<k‘1a1 “tua(a)k + a4 d’lk’]\A/jf)f(v),

where ¢ and k (and v in (5.8) below) are defined through the Iwasawa decomposition of M,
cf. 2I0), and ¢ denotes the embedding ¢ : R 3 (z1,...,24-1) = (0,21,...,24_1) € R%

Let us first assume k; # 0. Now (5.7)) implies p - v = ka1, and thus v must lie in the open
half sphere

Szlz}Jr = S{! ﬂRkler, where Ry, := {ze R w-x > 0}.

Conversely, for any M € GU=1 and any v € S9! there is a unique choice of a; > 0 and

u € R such that [al,'v,u, M] € Gy p, namely:

k1p+

(58) w=kl(p-v);  w=klal N ((p— k) f(0) )k lale) ! — kK (w).

Let us write [v, M|y p for this element [a1, v, u, M| € Gy p. We have thus exhibited a bijective
map

Sy XG5 (v, M) = [v, Mk p € Grp.

Note that this map depends on our fixed choice of f : Sil*l — SO(d) made in Section 211
We now express the measure v, in the parameters v, M:

Lemma 5.2. Given k € Z¢ with k1 # 0 and p € R?\ {0}, the measure v, on Gy, takes the
following form in the [v, M|y p-parametrization:

(5.9) dvp = ((d) " p - v dpl V(M) do.

Proof. Recall that v, is the Borel measure which corresponds to ¢ (d)~'pg under the diffeo-
morphism h — M, thp from H onto G p, and this measure is independent of the choices
of My, and M,. Take vy € S{~! so that f : S¢! — SO(d) is smooth on S¢~1\{vg}. Then
[v, M|k p depends smoothly on v, M, p in the set

S = {(vaMap> S Scllil XG(d_l) X (Rd\{o}) : klp"v > 0’ v 7£ ’Uo}.

Given any point p, € R?\ {0} we may assume M, to be chosen so as to depend smoothly
on p in a neighborhood of py; then also Mg[v, M]k pM € H depends smoothly on v, M, p
when (v, M,p) € S and p is near p,. Hence, since p, is arbitrary, it follows that there is a
smooth function o : S — R>g such that dvp = a(v, M, p) dp(d_l)(M) dv on all of S. Hence
to prove (B.9) it suffices to prove that

Gao) [ d\{0}< / p(M)dup<M>) o= (@)™ [ plloMlug)lp- ol 4 (0 o dp.

holds for any p € C.(G) (the space of continuous functions on G = SL4(R) with compact
support).

But the left hand side of (5.I0) equals [, p(M)du(M), by the definition of 1, and [I5
Lemma 7.4], and using (2.12]) this is

da; _
M ( Dy _
/sd 1/<d 1>/ /Rd o, v, M]) du d+1d (M) dv

Hemma and its proof is in fact valid also for d = 2, but we will not make direct use of this fact.

k,p
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Here for any fixed v, M we note that the formula (5.7)) gives a diffeomorphism between (a1, u) €
R x R~ 1andpeR

under which dp = ]klldal L duday = Ipd+|1 duday. Hence we get

kiv+>
/d 1/ / Pl Mlep) [P0l *dp dp- 1)(],\4)61”7
S GE=D IR o
which agrees with the right hand side of (5.10). O

We next turn to the case k; = 0, i.e. k = (0,k’). In this case la1,v,u, M] € Gy p implies
v € pt and

(5.11) E'M =y, where y = y(a1,v) :==af . (pf(v)7!)
(cf. (81)). In other words M € Gy ,, where of course Gy, is a subset of G (recall

that we are assuming d > 3). Conversely, for any a1 € Ry, v € Scll71 Np*, u € R¥! and
M € G y(a,,0) We have [a1,v,u, M| € Gy p. We thus have a bijective map between Gy, and

the subset of (a1,v,u, M) in Ry x (841 npt) x RE1 % G4 for which M € G y(a) v)
The following lemma expresses the measure vp, in this parametrization. Let us write dp(v) for

the Lebesgue measure on the (d — 2)-dimensional unit sphere Scf_l Np*. Furthermore, G y
is of course endowed with a Borel measure vy, defined as in the beginning of this section.

Lemma 5.3. Given k = (0,k') (k' € Z971, k' #0) and p € R?\ {0}, we have

1 —d
pdvy, = ——— </ pllar,v,u, M]) dv. Z\N4>a day dp(v) du
LM > = ST Joomist-t s U, 1) diy (M) ) ai dar dp(0)
for all p € LY (G p, vp). Here y = y(a1,v) is as in (EII).

Proof. By a similar argument as in the proof of Lemma we see that it suffices to prove
that

d
() / < / ( / p(lar, vy, M)) dvy(M) ) a7 day dp(v )du) P
RA\(0} \JRox (3971 npt)xri-1 \ay, IIpl

(5.12) = [ o) dutan

holds for any p € C.(G).

In the left hand side of (5.12]) we express p in polar coordinates as p = fw (¢ > 0, w € Scll_l).
Then note that the pair (v,w) runs through the set of all orthonormal 2-frames in R?, viz
the Stiefel manifold V5(R%) = {(v,w) € S9! x 471 : v - w = 0}, and we have

/ ) dy(v) dw = / ) dy(w) dv
VQ(Rd) VQ(Rd)

for any 1 € C(Va(R9)), this being the unique O(d)-invariant measure on V3(R%) up to a
constant. Hence the left hand side of (5.12]) equals

d
! a1.v.uw. M) d d—2
_ p [ 1,0, W, ] 1% (M) d ( ) 14 dl dv du .
A ‘/Rdl /Stli ! ‘/0 /Stli_l Nv+ (/Gk’,y ( ~ ) yi~ > al

1
Here y = af "t (fwf(v)™!), and we note that (for any fixed aj,v) this formula gives a
diffeomorphism between (w,¢) € (Sd 'nol) x Reg and y € R, Hence we get

daq
/ /Rd 1/Sd1/Rd1/ p([a1, v, u, M]) dvy (M ))d’yd’vdu ey

Using now the definition of 14, and [15] Lemma 7.4] (with d — 1 in place of d) this is

da
M) dp =D (M) dv du —~
/ A“AMXQU o150, M) dp = () o
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and by 2.I2) this equals [ p(M) du(M), i.e. (EI2) is proved. O

6. BOUNDING pp(€) FOR € A CONE; PROOF OF THEOREM 1.6

6.1. Bounding p,(¢) from above. Using the parametrization from last section we will now
prove Theorem Thus let d > 2 and let € C R? be the open cone which is the interior of
the convex hull of a point p and a relatively open (d — 1)-dimensional ball B with 0 € B. We
will start by proving the bound

(6.1) pp(€) < |€724,
Using (5.5]) we may assume
(6.2) B =tey + L(Bffl) and p=re; +tey, forsome 0<t<r,

We may furthermore assume that r > 1, since otherwise the bound (6.) is trivial.
By definition we have, since 0,p ¢ €,

pp(€) = vp({M € Xi(p) : Z'MNE=0}).

Recall the splitting (5.10). If £ > 2 then every lattice ZeM with ke M = phasetM =k~ 'pe
¢; i.e. every lattice in X;(keq,p) has non-empty intersection with €. Hence

pp(€) = vp({M € Xi(e1,p) : Z'M NE=0}).

In the special case d = 2 we now find directly from the definitions (cf. the proof of Theorem 2
n [17]) that p,(€) is less than or equal to (6/7%) times the Lebesgue measure of the set of
v €[0,1) for which (0,r™') +v(r,t) ¢ €, viz. < Sr (¢t +r)~! < r~2. Hence the bound (1)
is proved for d = 2, and from now on we assume d > 3.

Recall from Section[Blthat X;(eq,p) = ['\I'Ge, p. For any v € I we have 7Ge, p = G
1

el’y_l?p’

and {e;7~" : v € I'} equals the subset 74 of primitive vectors in Z%: thus

(6.3) Xi(e1,p) =T\( || Gryp)-
keZd

Furthermore the measure “vp on G, ,-1," (as defined just below (5.2))) corresponds to “vp
on Ge, p” under the diffeomorphism Ge, p > M — YM € G 1 p- Hence since §; contains a
fundamental domain for I'\G, we get

(6.4) pp(@) < D p({M € GrpnSy: Z'MNE=0}) =" +>

keZd

ey

where ), and ), are the sums corresponding to k1 = 0 and k; # 0, respectively. By
Lemma 211 if M = [a,v,u,M] € S, satisfies ZM N € = @ then ay > Cr, where C is

positive constant which only depends on d. Also recall that M € S; forces u € (—%, %]d 1.
We first consider ;. By (B.8) only k with |k1| < ||p||/(Cr) < 2/C contribute to this sum (cf.

[62) for the last inequality). Hence, using (21I1), 2I3]) with n = 0, and Lemma [5.2] we get

Z Z / Z (d=1) <{M€Sd 1 u(v,k, M) € (—%,%]d_l and

|kk\l<;éc K czd-1
(6.5) ZM e e, = @}) L
wherein
S=5k) = {yesit . kip-v)>Cr}
and a; = ki '(p - v), and u(v,k, M) is glven by (5.8]). Also €, = 71(€f( )71 as in (2.16]).

Note that in (5.8) the term z = k; 'a d Y ((p—kav) f(v) T ) La(a)~! is independent of
k', and (-1, 3]97! is a fundamental domaln for R%~!/Z4~!n(u); hence for any fixed v € S and
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M € 8;_; there are exactly |ki|?~! choices of k' € Z4~! for which u(v,k, M) =z — kT K n(w)
lies in (—4, 11971, Thus

272
1 dv
(6.6) < |k31|d1/,u MeS; 1 : 72 " Mnam "¢, =0}) —.
Zl Iklg/c s ({N ~o }) (Fq |r)®
k1#0

We will use the following lemma to bound the integrand in the right hand side.

Lemma 6.1. For any v as in [@I0) with w,w € (0,7), &, contains a (d — 1)-dimensional
cone of volume > r®1(sinw)?, the base of which contains 0.

Proof. Note that (by (6.2)), and since 0 < w < 7) BNwv™ is an open (d — 2)-dimensional ball of
radius 7’ = v/r2 — t2 cos? w. Furthermore the diameter of B which is perpendicular to e; Nv+
intersects efﬁvL at the center ¢ of BNv™, and if y, and y, are the endpoints of this diameter,
taken so that ||y, —c|| < ||y, —c||, then ||y, —¢|| = r—t| cosw|. Since y; and y, lie on different

sides of the hyperplane v+ it follows that v must intersect either the line segment py, or the
s

line segment py,, say at the point y’ € py;. The angle between ell and the line py; is 7 (cf.

(6-2))) and thus the distance between y’ and e; Mot must be > 273 ly;—c| > 273 (r—t| coswl).
By convexity @ N vt contains the (d — 1)-dimensional open cone with base B N v' and apex
o/, and this cone has volume > (r — t| cosw|)r’"* 2 > r@=1(1 — | cos w])g > ril(sinw)d. O

The lemma together with (L.2]) imply that, for any v as in (£I0) and any a; > C'r,
1
(6.7) pld=b (aj7€,) < min(1,r%(sinw)™?).

Hence we get from (G.06]), using also (@I1]) and the fact that Sy_1 can be covered by a finite
number of fundamental regions for I'¢=1\G@-1),

w/2
—d - —d, —dy, d—3 2-2d
(6.8) E < /0 min (1, rw™)w*? dw < 7%
It remains to treat ) . Using (Z11]), (213) and Lemma [5.3] we get

o) _1
Syl [ Y w({Me Gy i 2 6T e, = 0)) dyfo) i dan,
Cr JS{~ ﬁplk
1

'e7d—1

[un

where y = y(a1,v) = af "7 (pf(v)~!) as in (BI0). Now for any fixed a;,v we have,
using (6.3]) applied to deil (e1,y), and the fact that S;_1 is contained in a finite union of
fundamental regions for '@\ G@-1)

~—

g 1 L
Vy({%[ € Gy N1+ 27 M N €, = @}> <py V(afTe,).
k'€7Zd-1
But ¢, is isometric with € N v*, and (since v € Scllfl Np*) this set equals the (d — 1)-

dimensional open cone with base B N v’ and apex p. This cone has height > r and radius
r' = Vr? —t?2cos?w > rsinw, where as usual w € [0, 7] is the angle between v' = (vg,...,v4)
1

and e in R%1. Hence if a; > Cr then the set afj ¢, contains a (d — 1)-dimensional open

cone with 0 in its base, apex ¥y, and which has volume > 7%(sinw)4~2. Hence by induction
we have
1)/ a1 . oy —2+ -2
p?(Jd 1)(af '¢y) < (r(sinw)®?) o
This gives

2

Zo < ’I“_d/ min(l, (rd(sinw)d_z)_2+ﬁ> dp(v).

S‘f_l Npt
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Finally note that the map v — ||v’|| "%’ is a diffecomorphism from S~ Npt onto S¢~2 whose
Jacobian determinant is uniformly bounded from below by a positive constant which only
depends on d, since ¢(p,e;) < 7. Hence we get

(6.9)

r~Slog(1+7) if d=3

Zo < T_d/o min(l, (r_d(sinw)Q_d)%%) (sinw)d_3 dw < {r2d it d> 4,

since (2—d)(2 — 727) +d — 3 equals —1 when d = 3 but is less than —1 when d > 4. Now the
bound (6.1]) follows from (6.8]) and (6.9).

6.2. Proof that p,(¢) vanishes whenever e[(’:\% is sufficiently large. Let € be as in
the previous section (cf. (6.2)). As in the proof of Lemma there is some M € G such
that we may imbed in €M a cut ball with cut ratio t = %, edge ratio min(1,20e) and volume
> |€|. Applying now the argument just above Remark[Z.1]in Section [A.3linvolving Minkowski’s
Theorem, we conclude that there is a constant ¢ > 0 which only depends on d such that if
e> c\Q:]_% then there does not exist any lattice L € X; which satisfies both L Nei = {0}
and LN€ = (). Hence a fortiori there is no such lattice in X;(p). This implies that p, (&) = 0,
once we note that

(6.10) vp({M € X1(p) : Z°M net #{0}}) =0.

This relation is valid for any p ¢ ei and can be proved in many ways; for instance if d > 3
it follows immediately from [I5, Prop. 7.6] (applied with ¢ = 1, @ = 0, y = p and F as the
characteristic function of e; N B%, and then letting R — o0). For d = 2, (6.10) follows in a
similar way from [I5], Prop. 7.8], or more easily directly from the definition of v, (cf. [I5] Sec.
7.1] and also the proof of Theorem 2 in [17]).

Hence we have proved that p,(¢) = 0 holds whenever e > 0]6\_%. Combining this with
(61)) we have now proved the right inequality in (LI0).

6.3. Bounding p,(¢) from below. Finally we will prove the left inequality in (LI0), viz.
that there exists a constant ¢ > 0 which only depends on d such that whenever |&| > % and

the edge ratio is e < c|€|7% then
(6.11) pp(€) > |72+,

If d = 2 then this statement can be verified easily by an explicit computation; alternatively it
follows from the explicit formula in [I7, Theorem 2] (cf. (IL28])), as we now indicate. We keep
¢ as in ([6.2). Let @ be the open parallelogram with vertices (0,¢ & r), (r,%r). Then € C &,
and using (5.5 and the definition of ®g (cf. (LIT)) we see that p,(€) > pp(€') = Bo(r?, L, L).

Yoy

Now if e = =t < Zr=2 and r > 1 then ®g(r?, L, 1) = %%&T—w > r~2; on the other hand if
r <1 then ®g(r?, £, L) > 2 for all ¢ € [0,r]. Hence (G.11]) holds whenever e < 2r—2 = 1|¢|!

and |¢] > 1.

From now on we assume d > 3. Arguing as in ([6.3]), (6.4), (6.5]) (considering only k3 = 1)
and using the first relation in (2.I1]) and the fact that Sy can be covered by a finite number
of fundamental regions for I'\G, we obtain

d
pol@> [ S w({Mresii o< ZalT ulok M) € (S5 4
Sp+ ezt
d
(6.12) Zerw:@}) =
p-v|

wherein a; = p-v, k= (1,k'), and u(v, k, M) is given by (5.8), and M = [v, M p.

Let us restrict the range of v to the set

(6.13) S={wes{t 0<w<ino<w<a},
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where from start we assume 0 < ¢ < % andr >1,e= %ﬂt < % In particular er—! < % <
and hence for all v € S the number a; = p - v is bounded from above and below by

ol

(6.14) 2727 < reosw < reosw + tsinweosw =p - v < lpl| < 227,

Let us note that for any v € S and any n € Z\ {0}, the hyperplane na;v + v is disjoint from
¢. Indeed, for n > 1 this holds since p € ajv + v+ and p(v,e;) = @ < T; on the other hand
for n < —1 it holds since for every € € we have x1 > 0, zo >t —r and ||(z3,...,zq)|| <1,
and thus (using also (@I0), = < 1 and sinw < 3):

. . . . 1 _1
x-v>rosinwceosw — [[(23,...,2q)||sinwsinw > (sinw)(t —r —5r) > =27 2r > —ay.

Using the disjointness just proved and (2.13)), [2.14]), we now have

pp(€) > rd/s > “({%f €81t ar < (27 2p)an, u(v,k, M) € (3,441,
k'ezd-1

74 Al e, = 0})dv.

As we noted above (6.6)), for any fixed v € S and M € Sg_; there is exactly one k' € 731 for
which u(v, k, M) € (3,471, Hence

(6.15)  pp(Q) >>r_d/

S
Note that for v € S, the set &, is contained in a (d — 1)-dimensional cylinder of radius

Vr?2 —t2cos?w and height v/2(r — tcosw) < er + ¢2r~1; hence |€,| < rg_l(er + 027’*1)%.
Using also (6.14]) it follows that if the constant ¢ is sufficiently small (in a way that only

M({M €851 :a1 < (2_1/27“)11%1, Zd_ll\gﬂaf%l&, = @}) dv.

1
depends on d) and if e < c[ﬁ\_%, then |a{ " €,| < 1 holds for all v € S. Hence there is some

C' > 1 which only depends on d such that if both e < C|Q:|7% and |€] > C hold, then the
integrand in (6I5) is > % for all v € S; and thus by also using @II)) it follows that (G1I)
holds.

The case when 3 < |€| < C may be treated by applying the following lemma to € and an
appropriate cone € with |¢’| = C.

Lemma 6.2. If ¢, ¢ C R? are two open cones with |€| < |&| which both contain O in their
bases, with equal edge ratios, and if p,p’ are their respective apexes, then pp(€) > py (€').

Proof. Using (5.5) we may assume that ¢ and ¢ have the same base B = tey + +(B% 1)
(0 <t < 1), and that € has apex p = he; and € has apex p’ = he; (some h' > h > 0).

Set M = diag[h/l, (W /h)TT, -~ (W /h)TT] € G; then p'M = p and ¢’M > €; hence
Py (&) = pp(T'M) < pp(€). 0

We conclude that, with a new constant ¢, (EII) indeed holds whenever |€[ > I and e <
0]6\_%. This concludes the proof of Theorem ogdog

Remark 6.1. Regarding the restriction [€| > & in Theorem [ we remark that pp(€) > 15
holds whenever |€| < 4. This follows from [15, Prop. 7.6] applied with F' as the characteristic
function of €; for note that the right hand side of [I5] (7.30)] is then < |€| + Y 5%, p(t)t~% <

¢(2) 1,2_9
‘¢’+@_1<§+5_ﬁ'
7. BOUNDING ®¢ (&, w, z); PROOF OF THEOREM 1.8 AND PROPOSITION 1.9

7.1. On the support of ®¢; proof of Proposition 1.9. Our first task is to prove that
®o(&, z,w) > 0 implies e < s4(&, ), where

e:=max(l —|z|,1 — |w]),
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and

sa(€, ) = {min(&d;(%)_ﬁ) if o<

max(€772, (z2)771) if ¢ >

ERNE]

29

and s4(§, ) := £_£ when ¢ is undefined. We will prove this using Minkowski’s Theorem,
similarly as in Section and in Section [£3] just above Remark 1l We first make some
convenient reductions by invoking Theorem

Recall that ®¢(&,w, z) = pp(C), where € is the open cylinder which is the interior of the
convex hull of the two (d — 1)-dimensional balls

By =z + Bf_l) and By = E&ep + By,
and where p = (¢, z +w). Now by Theorem [L.6, since € contains the open cone with base B
and apex p, ®o(§, w, z) > 0 implies 1 — ||z]| € ]Q\_% < ¢71. Next let us set
¢ =p-¢.
Then pp(€) = pp(€’) by (E8), and since ¢ is the convex hull of B} = ((w+B{ ") and £e; + B,
we conclude

(7.1) Do (¢, w,2) = Po(&, 2z, w).

Hence ®g (&, w, z) > 0 also implies 1 — [|w| < ¢~ and thus e < £ 4. This gives the desired
conclusion in the case ¢ < 5_5, since then sg(&,¢) > 5_%. Hence from now on we may

assume ¢ > £ ~i. We may also assume that e is small (since otherwise e < & -7 forces £kl
. 1
and thus s4(§,¢) > 1); say 0 < e < 5.
Using (5.5]) we may assume

(7.2) w = (y,w,0,...,0); z=(y,2,0,...,0),
for some y > 0, w,z € R. Now let F' be the box

_ e ﬁ] o x [_\/5 \/5]
2v/d’ 2vd 2v/d 2vd

~
d — 3 copies

F =[5, 3¢ x [-s,8] x [~3]2 = w], 32 = wl] x |

/

where s = m. We then claim that
(7.3) F c cuduUefu(-¢)u(-a).

Indeed, let @ = (z1,...,x4) be an arbitrary point in F. Using |z3| < %]z — w| and splitting
into the two cases zw < 0 and zw > 0 we check that min(|zg — 2|, |z — w|) < (2| + |w|).
Hence we have for &' := (x9,x3,...,24):

min(|j2’ — 2|, &' — wl*) < (s +9)° + § (2] + [wl)® + fe
<yPt2sy+ S+ 3w tle<i(I+(1-e)?+e) <1,

where we used 2sy < %e, 52 < ﬁe and the fact that one of 32 + 22 and y? +w? equals (1 —e¢)?

while both are < 1. The above inequality proves that @ € € U € whenever z; € (0, %f]
Similarly & € (—€) U (—€’) whenever z; € [—3£,0), and this completes the proof of the
inclusion (7.3)).

Now assume ®¢ (&, w, z) > 0, viz. pp(€) > 0. Then by (6.10) there is some lattice L € X;(p)
which is disjoint from € and which satisfies L N ei = {0}. As noted above L must also be
disjoint from € and thus also from —€ and —¢’. Hence by (Z3), L N F = {0}, and now
Minkowski’s Theorem implies |F| < 2¢, thus

(7.4) &slz — wle% < 1.
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Note that |z — w| = [z — w| > ¢. (Indeed this is obvious if ¢ > 7, since | z||, |w]|| >
1—e > &, and if ¢ < 5 then [z — w|| > miner ||z — tw|| = |z[[siny > ¢.) Using

this together with (Z4)) and s > 55 we obtain e < (@5)_%, which is the desired bound if

p < 5, since we are assuming ¢ > 575. On the other hand if ¢ > 7§ then we note that
y < m— p, e.g. since the area of the triangle with vertices 0, w, z can be expressed both as

Tylz—w| < y and as 3||w||-||z||sinp =< 7 —¢. Hence s < min(y/e, ﬂf(p) and thus (4] implies
e K max(§7ﬁ, (%)7%) Hence in all cases we have e < s4(&, ¢), and this concludes the

proof of the first statement in Proposition [.9l O

We now turn to the proof of the second statement of Proposition [[9] viz. that there is
a constant ¢ > 0 which only depends on d such that ®¢(&,w,z) > 0 holds whenever e <
¢ 54(&,¢). Note that in order to prove ®g(&,w,z) > 0 it suffices to construct a lattice
L € X,(p) satisfying L N € = {0,p}. The reason for this is that L N € = {0,p} (and thus
LN ¢ = () must then hold for all L in some neighbourhood of L in X;(p).

Given w, z as in (7.2), to construct an admissible lattice L we take v = (1,¢,0,0,...,0)
with € > 0 small, and let I,, : R~ — v be the linear map

Iv(xl, e ,xd_l) = (—sxl,xl,. .. ,xd_l).

We will take L to be the lattice spanned by I,,(L") and p for an appropriate (d —1)-dimensional
lattice L’ € R%'. Then note that L C L,ecz(np + v*). We claim that, if ¢ < %5, then

(7.5) (np+vH)N€=0, VneZ\{0,1}.

Indeed, assume & € (np + v-) N € for some n € Z\ {0,1}. Then (x —np)-v = 0, ie.
exe = —x1 + n(§ + 2ey). Since z1 € [0,&], y > 0 and n > 2 or n < —1, this forces exy > £ or
exy < —€. Therefore x| > 2 and ||’ — z|| > |22 — y| > 2 — 1 = 1, contradicting = € €.
Because of (T.5), LN € = {0, p} holds if and only if I,,(L’)N€ = {0} and (p+ I,(L'))N€ =
{p}. The latter condition is equivalent with I,,(L') N ¢’ = {0}, since I,(L') = —I,(L'). From
the definition of I,, we see that for any £ = (¢1,...,¢4_1) with £; > 0 we have I,(€) - e; < 0,
and thus I, (£) ¢ €U . Hence we have LN € = {0, p} so long as every non-zero lattice point
£=(lq,...,04-1) € L' with ¢; < 0 satisfies both || — z|| > 1 and |[£ — w|| > 1.
Let us first assume ¢ > 7 (or ¢ undefined, i.e. z =0 or w = 0). Then choose
ﬁ61,362,2\/563, . ,2\/Eed_1} c R
for some o > 4. To verify that L’ has the required property, we consider an arbitrary non-zero
lattice point £ = (¢1,...,03-1) € L' with ¢; < 0. If fo # 0 then ||£]] > [¢2] > 3 and thus

I|€ — z|,||€ — w| > 1. On the other hand if /o = 0 and ¢; < 0 then ¢; < _O‘\/E:y and this

(7.6) L = Spanz{oz

gives
e

Ve+y

(We used the fact that (y + O‘\/Ee+y)2 > y? + ae; this is clear if y > /e, and if y < /e then

it follows from (3ay/e)? > ae.) In the same way || — w|| > 1. Finally if /1 = ¢, = 0; then
since £ # 0 we must have d > 4 and ¢; # 0 for some j > 3; then |[(;| > 2y/e and thus
€ —z||> > y? + 22 +4e > (1 — €)? + 4e > 1 and similarly ||£ — w]||?> > 1. Hence L’ has the
required property, i.e. L' leads to a lattice L C R? with p € L and LN € = {0, p}.

Note that covol(L) = (£ + 2ey)covol(L’). Hence if fﬁ 3 (2/e)43 < L then by
appropriate choice of & > 4 and £ > 0 small we obtain covol(L) = 1, and thus ®¢(§, w, z) > 0.
Also note that /e +y < /e + m — ¢; indeed this is clear if e > 55, and if e < 15 it follows
from y < m — ¢ which we proved above. Combining these facts we conclude that there is a
constant ¢ > 0 which only depends on d such that ®¢({, w, z) > 0 holds whenever ¢ > ¥ and

—7 (LT
e < cmax(§{ @ 2,(7r7g0) a-1),

2
€ —z|> > (6, —y)? + 22 > <y+a > +22 >+ 22 tae> (1 —e)? +4e > 1.
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We now turn to the remaining case, ¢ < 5. First assume that z # w and that the triangle
AOzw is acute or right. We then again write w, z as in (Z.2]), and choose

(7.7) L= Spanz{aeel, 5(p +Ve)es, 2\ ees, . . ., 2\/Eed_1} c R,

for some o > 3. In order to prove that this L’ has the required property, we first note that
under the present assumptions we have

(7.8) VIZ@2<2p+ve) and  y>23(1—e).

Indeed, if |z| < 272 (1— yQ)% then the first inequality follows from 1 —y% < 1— (1 —e)?+ 2% <
2¢ + 3(1 — ). On the other hand if |z| > 27%(1 - yQ)% then since AOzw is acute or
right we have ¢ > ¢(ej, z) and thus tanp > % > 2_%(1 — y2)%. If ¢ < 7 then we get

0> Ttanp > T273(1 —y2)7 > 1(1 —42)2, while if ¢ > T then trivially (1 — 2)2 <1< 2.
Hence we have proved the first 1nequahty in (IZEI) Next note that ¢ = p(e1,z) + p(e, w),
since AOzw is acute or right. Hence since ¢ < 7, at least one of (e, 2) and (e, w) must
be < 7, and now the second inequality in (Im) follows since cos p(ey, z) = ﬁ < 1% and
s1m11ar1y cos (e, w) < L.

Now consider an arbitrary non-zero lattice point £ = (¢1,...,0q_1) € L' with ¢; < 0. If
ly # 0 then |fs] > 5(p + v/€) > 54/1—y? and using |2| < /1 —y? we get [|€ — z[> >
(6 — )2+ (b — 2)> > y* + (34/1 —y?)? > 1. Similarly ||£ — w|| > 1. On the other hand if
o =0 and /1 < 0 then ¢; < —ae and hence

€ —z||> > (ce +y)* + 22 > (1 — ) + 2aey + a?e® > (1 —e)? 4 2e > 1,

where 2aey + a?e® > 2e holds since either e > 1 or y > £, by (). Similarly [[£ — w]| > 1.
Finally if ¢4 = ¢5 = 0 then || — z|| > 1 and ||£ — w|| > 1 just as for (Z.6)). Hence L’ has the
required property.

On the other hand if AOzw is obtuse or z = w then we choose coordinates as follows.
Using the symmetry (7)) we may assume that the angle at z is > 7, and we rotate € so that

/
w =y e + wey; z = yer,

for some ¢/ >y >0, w € R. Now e = 1 —y, and also |w| < /1 -y < /2(1 —v¢') < V2e.

Note that (Z.5) remains true for our present p, so long as £ < %5 . Now choose

(7.9) L= Spanz{aeel,ll\/geg, 2/ ees, ... ,2\/Eed_1} c R,

where a > 1. Consider an arbitrary non-zero lattice point £ = (¢1,...,04_1) € L' with ¢; <0.
If £y # 0 then |fy] > 4\/e and thus |[f3—w| > (4—v/2)y/e > 2y/€ and |[£—w]> > y/*+(ly—w)? >
(1—e)?+4e > 1. Also ||[€ — z|?> > (1 — e)2 + 16e > 1. On the other hand if o =0 and ¢; < 0
then /1 < —ae and hence y — 01 > y—¥1 >y+ae=1+ (a—1)e > 1, thus || — z|| > 1 and
| — wl| > 1. Finally if ¢; = ¢ = 0 then ||[£ — z|| > 1 and || — w]|| > 1 as before. Hence L’
has the required property.

Note that both for (7)) and (Z.9) we have covol(L') < «e =n (<p + v/e). Hence, arguing
as before, we conclude that there is a constant ¢ > 0 which only depends on d such that
(¢, w, z) > 0 holds whenever ¢ < § and e < cmin(f_%, (gp&)*%).

This concludes the proof of Proposition [LL9l odoo

7.2. Bounding ®¢(¢,w, z) from above. We will now prove Theorem [[.§, viz. the bound
(for d > 3, and with ¢ = ¢(w, 2))

2
e imin{1, o) T} o<

. @ -
(7.10) ol w,2) < 2 min{1, (6(r - )2 L i o>

ISTE R SIE
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The main idea of the proof is to use the parametrization from Section Bl and try to carefully
bound the integrals arising, just as in the proof of Theorem in Section [Gl

Given &, w, z we may use (5.3]) to see that ®o(§, w, z) = pp(€), where € is a cylinder which
has radius and height both equal to 7 = £!/¢. More specifically we may take € as the interior
of the convex hull of B; and By, where

(7.11) By =urz+B%*"Y), By=re;+ By, and p=r(l,w+ z).

We might also assume z = zej, w = w(cos )e; + w(sin p)ey for some z,w € [0,1). However
in order to make the symmetry between z and w somewhat more explicit in our arguments,
and also make the lemmas in the present section and the next more directly applicable when
we will later derive an asymptotic formula for ®¢ (&, w, z) in [18], we will just assume that the
points z, w € Bf_l satisfy the following:
(7.12) ?f p < ple1, z), pler, w) < ¢;

pler,z) Sm—p, @(—e,w)<m—0p.

[SERNE

if o>

(We tacitly assume z,w # 0; this is ok in view of Proposition [L9) We may furthermore
assume that r = /¢ > 1, since otherwise the bound (Z-I0) is trivial.
It is convenient, as preparation for the next section, to define

Sy = {la1,v,u, M] € Sg : v-e; > 0}.

Note that if M = n(u)a(a)k lies in S; but not in S/, then if we set D = diag[—1,—1,1,...,1] €
I' and take v € ' N so that yDn(u)D € Fy, we obtain yDM € S, since YDM has the
Iwasawa decomposition yDM = (yDn(u)D)a(a)Dk, and e; Dk = —v. Hence since S; contains
a fundamental domain for I'\G, it follows that also the subset S, contains a fundamental
domain for I'\G. Now by the same argument as in Section [6] we have

(T.13)  Do(¢,w.2) =pp(€) < Y 1p({M € GpnS) : ZMNE=0}) =3+ .
keZd

where ), and ), are the sums corresponding to ki = 0 and ki # 0, respectively, and

there is a positive constant C' which only depends on d such that a; > Cr holds for all

M = [a1,v,u,M] € 8} satisfying Z*M N ¢ = (. We first consider > ;. Note that for

M = [v, Mg p € Gy p we have, using (ZI3) and kM = p,

1 1

L(m)M:alﬁL(mZ\Nf)f(v) and (k4 u(m))M =p+a; © Y (mM) f(v), vm e 7971,

1
Hence Z¢M N¢ = () implies that the (d—1)-dimensional lattice a; © ' ¢(Z%~ M) f(v) is disjoint
from both € and from ¢’ := p — €. Note here that ¢’ is the cylinder which is the interior of
the convex hull of ((rw + B¢ 1) and re; + t(rw + BZ~!). Mimicking now the argument in
Section [0 leading up to (6.0]), we get

(T14) Y < Y \k\dl/ <{J\N4€Sd1:Zd‘1ﬂgmaf%(€vu€;):®})ﬁ,

|k1]<2/C
k170
where €, = 1~ 1(€f(v)~!) (as usual), €, = .~ f(v)"!), a; = k' (p - v), and
(7.15) S=85W0)=lve S‘li_1 cw >0, k7N (p-v) > Cr).

Recall that €, is isometric with € Nv". The following lemma gives a precise description of
a certain (d — 1)-dimensional cone contained in € N wv; the point is that this will allow us to
apply Corollary [[.4] to obtain a bound on the integrand in the right hand side of (7ZI4]). For
v = (vy,...,vq) we write v’ := (vq,...,v4) and

(7.16) wy = p(v, 2) and  wy 1= p(v’, w).
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Lemma 7.1. For any v € Scf_l with 0 < vy < 1, the intersection € N vt contains a right

2
relatively open (d — 1)-dimensional cone with O in its base, of height < r min(1, %) >
rw?, radius < r(1 — ||z|| + sin? wz)% > rsinw, (thus volume > r4~ w2 (sinw,)92), and edge
ratio < min(1, %)

(We say that a cone is “right” if the line between its apex and the center of its base is
orthogonal to the base. In the present section we will only use the fact that the cone has
volume > r%~1(sinw, )?; the more detailed information in the lemma will be used later.)

Proof. After a rotation inside +(R?"!) we may assume, for the proof of the present lemma,
that z = ze; (0 < z < 1), and thus w, = ¢(v’,e1). Now B; N is a (d — 2)-dimensional ball
with center

2 Cosw
(717) q:(QM"'an):T'L(’Z_iz />

gl

and radius 7’ = 7y/1 — 22 cos? w, = r(1 — z + sin? wz)% > rsinw,. Note that the point q + h
lies in €, where

1 1—z|coswz|)

18) h = (hy,..., hy) :=7ré(||v||*e; — ! ith § = mi
(7:18) b= (b, sha) s= v (o) Per = onn(@). - with 6= min (5, =T,

Indeed 0 < hy <7, and ¢ = (q2,...,qq) and b’ = (ha, ..., hy) satisfy
zZcoswy + ovp [|v']]

Iz~ (@ + )| =7| e v

< 7°<z]coswz\ + (1 - z[coswz])) <

hence indeed ¢ + h € €. Note also g,h € v*. Hence € N v’ contains the (d — 1)-
dimensional cone which is the relative interior of the convex hull of B; N v+ and q + h.
Also h is orthogonal to By N v+ (since h € Span{e;,v}), thus the height of this cone is

|h|| = rd||v'|] =< rmin(1, %), where we used the fact that if 2”5,”2 < 1;Z‘ITS,TFZ| then
|v']] < 1.

If w, > 5 then we may replace h in the above argument by
(7.19) h = (hi,...,hg) = 7|V 1 (|V||Pe1 — vie(v")).

We still have 0 < hy < 7, and rz — (¢’ + h') = rZ<%¥z+% 4/ has length < r since cosw, < 0;

llv"ll
hence q + h € € just as before. With this choice the cone has radius r’ = rv/1 — 22 cos?2 w, as
before but height ||| = 7.

Finally the edge ratio of the cone is, in both cases, r’—m;"& = min(1, Sirllgi ). O

In the same way we have that ¢’ N v® contains a (d — 1)-dimensional cone of volume
> 1?71 (sin wy, )9, with 0 in its base. Hence by Corollary L4}, and using the fact that S;_; can
be covered by a finite number of fundamental regions for F(dfl)\G(dfl), we get

_ 2d(d—2)
d—1

(7.20) u({% €S ¢ Zd_lMﬂ af%l(ﬁ, uel) = @}) < <rmax(sinwz,sinww)>

whenever a1 > C'r.

Set @g := min(y, m—¢). This is the distance between || z|| 'z and ||w|~'w inside S92 /{+}
with its quotient metric from S92, Similarly the distance between ||z||~'z and || 10’ is
min(w,, ™ — w;) and the distance between ||v'||~1v" and ||w|~!w is min(wy, ™ — wy). Hence
by the triangle inequality at least one of min(w,, 7™ —w,) and min(wsy,, ™ — Wy, ) must be > %gpo,
and thus max(sinw,,sinw,,) > sin %gpo for all v € S‘li_1 with ' # 0. Note also that if we
parametrize v as in (@I0) then |w — w,| < o, by (ZI2) and the triangle inequality in S¢~2.
Using this latter fact whenever 2¢pg < w < 7 — 2¢¢ we obtain, for all v € Scllf1 with v’ # 0,

(7.21) max(sin wy, sin wyy) > max(sinw, o).
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Hence

(7.22) Zl <r /O7r min{l7 (r max(sinw, <p0)>

The integrand is invariant under w <> m — w, and furthermore the part of the integral where
w € (0, 3¢0) is bounded above (up to a constant which only depends on d) by the part where

w € (30, ¢0). Hence

_ 2d(d—2)

}(sin w)43 dw.

/2 2d(d—2) ; a2
(7.23) Zl < T_d/ min{l, (rw)” d-1 }wd—?’ dw < min{r2_2d, T%{J,d% 1 }
®0/2

In the case when ¢ is near m we can do better, and in fact we have

2d__ 34 ™
. a— >
(7.24) Zl L rd-1 whenever ¢ > 5

To prove this, first note that v € S implies |p - v| > Cr and therefore since ||p|| < 3r there
exists a constant ¢; > 0 which only depends on d such that for all k; # 0 and all v € § = S+1)
we have |p(p,v) — 5| > 2¢1.

Now note that (.24]) follows from (T.23]) unless r is large and ¢y = ™ — ¢ is small. Fur-
thermore we may assume that both ||w| and ||z|| are near 1, since otherwise ®o(§,w,z) =0
by Proposition [[L9 In particular, since p = r(1,w + z), we may assume that ¢(p,e1) < ¢1
holds. This implies |¢(p,v) — ¢(e1,v)| < ¢1 by the triangle inequality for the geodesic metric
on 41 Tt follows that |p(e,v) — 5| > c1 (viz. [ — §| > ¢1) holds for all v € S. But we
also have v = cosw > 0 for v € S; hence in fact 0 < w < § —¢;1.

First consider v € S withw € [F, ). Writing p : R? — R for the projection (z1,...,24) —
(z2,...,24), we note that

p€novt)y={zerz+B"" : 0< vy (z-v) <r}.

Recalling (@I0) and (ZI6) we see that p(¢ NvL) is a “doubly cut ball” as in Corollary 7]
of radius r and with cut parameters t = 1 4 ||z]| cosw, and ¢ = min(2,¢ + cot ). (Thus if
cotw > 1 — ||z|| cosw, then p(€ NwvL) is a cut ball with cut ratio ¢t = ¢;.) Note that Pyl is a
linear map v+ — R%! which scales volume with a factor cosw = 1; thus ¢, can be mapped
by a map in G4 to a doubly cut ball of radius =< r and cut parameters ¢t and ¢’ as above.
Since w € [§,7) and |w, —w| < g (as noted previously), and we are assuming ¢g to be small,
we may assume that we always have w, > %71. Thus t < % We also have t' —t > 1, since
@ < § — c1. Hence by Corollary [L5]

1
(7.25) u({%f €841 : Zdil%f Nai '€, = (7)}) P

whenever a1 > C'r.

On the other hand if w € (0,%) then we instead consider ¢,. Similarly as above we find
that p(¢’ Nvt) is a doubly cut ball of radius 7 and with cut parameters ¢ = 1 + ||w|| cos we,
and ¢’ = max(2,t 4 cot @). Now |wy — (7 — w)| = |p(v',w) — p(v', —e1)| < p(w, —e1) < o,
by (CI2]), and thus we may assume that we always have w,, > %7‘(’. We now obtain, as before,

1
(7.26) M({M €S, : Zd_lMﬂ al~el = @}) < P22
whenever a; > Cr. Using (Z.25]) and (7.26]) in (Z.14)) we obtain ((7.24]).

We next turn to ) ;. Mimicking the argument in Section [ we get

— > d—1 1 —d
(7.27) S« ] o ) (o) o
1

d—1,—1

where y = y(ai,v) = o '+ (pf(v)~!) as in (5II). Here for any fixed a;,v we have as in
Section B, using the fact that € N v+ contains the (d — 1)-dimensional relatively open cone
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52

51

FIGURE 6. The quadrilateral in Lemma

with base B; N v’ and apex p,

- T oy 2
(7.28) pg,d 2 (af7¢,) < (r(sinw,)*?) o
But note also that € N v' contains the (d — 1)-dimensional relatively open cone with base
By N vt and apex 0. This cone has volume > r9~!(sinw,, )9 2. Hence (since a; > Cr)
1

ale ¢, C R contains an open cone of volume > r?(sin w,, )% 2 with apex 0 and with y in
its base. Hence by Theorem (and using the general symmetry relation py(y —3) = py(3)),

1 2
— — . _ —24 =

(7.29) pg(,d Y (a1 ¢y) < (r(sinwe,)*?) o

Note that the map v — ||v/[| "'’ is a diffeomorphism from S¢~! Np onto S¢~2 whose Jacobian

determinant is uniformly bounded from below by a positive constant which only depends on

d, since ¢(p,e;1) < arctan 2 < w. Hence, mimicking the discussion around (7.20)—(7.23]),

(7.30)

ZO < rd/

%0/2
Let us note that this bound can be slightly improved in the case d =3, ¢ > 7m — %, by using
the fact that for any fixed a1, v appearing in (Z27), € Nv' contains the relative interior of the

convex hull of B; Nvt and By Nwv+. If d = 3 then this convex hull is a quadrilateral with two
parallel sides which have distance > r from each other, and lengths 2r/1 — | z][2 cos?w, >

/2

IS8
w

o2 r~6log(2 + min(r, o5 ! if d=3
min{l, (rdwd72) 27T } w3 dw < 8 (d 42,0072
r~2dmin(1, (rdpd %) "d-1) if d > 4.

2rsinw, and 24/1 — [|w|? cos? wy, > 27 sinw,,. The following lemma is a simple consequence
of the explicit formula for ®¢ in dimension 2.

Lemma 7.2. Let € C R? be the interior of a quadrilateral with two parallel sides sq,so, such
that 0 € s1. Let p be a point on sg such that my - (mg — p) > 0, where my, my are the
respective midpoints of si,82. Assume furthermore that hf > 2, where h is the height of €
(viz. the distance between the two lines containing s1 and s3) and £ is the length of the shortest
of the two sides s1, sa. Then pp(€) = 0.

Proof. Because of the symmetry relation pp(€) = pp(p — €) we may without loss of generality
assume that ¢ is the length of s;. Now there is a subsegment s, C so of length ¢ and with
midpoint m/, such that my — p and m/, — p have the same direction (or one is zero), and thus
my - (mf — p) > 0. Let ¢ be the parallelogram which is the interior of the convex hull of s;
and sh. Then ¢ C € and thus pp(€) < pp(¢'). By (B5) we have pp(€’) = ®o(5|¢|, w, 2) for
some w, z € [—1,1] with wz < 0. Also |¢'| = h{ > 2. Now pp(€) = pp(€’) = 0 follows from
the fact that ®o (&, w, z) = 0 whenever £ > 1 and wz < 0, by (L28). O

Now to carry through our argument for d = 3, ¢ > ® — % it is convenient to make the

specific choices z = (2,0), w = w(cos p,sin p) (0 < z,w < 1). We parametrize v in (L.27) by

writing ¥’ := ||v|| "'’ = (cosw,sinw). Since (—v)* = v! we need only consider 0 < w < T;
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thus w, = w. Now if 0 < w < ¢ then w,, = ¢ —w and the midpoints of the two line segments
By Novt and By Not are
my =70,z — z(cosw,)v') and My =7(1, 2z + w(coswy,)V');

and thus
r2my - (Mg — p) = (z — 2(cosw,)V') - (—w + w(Cos Wy )V') = zwsinwsin(p — w) > 0.

Hence by Lemma [7.2] we have pg)(a}/QQﬁv) = 0 for all a; > Cr and all w € (0,) for which
3min(sinw, sin(p — w)) > C~L. Using pglz)(a}/QQv) < 1 for all remaining w € (0,¢), and
pg/z) (a}/zQ:v) < r7 3yt for all w € [p, ) (cf. (T28) and (Z29) and note that w,, = w — ¢ when

w € [p,m)) we get in (C27):
(7.31) Zo <r3 (r_?’ + gpo(r_ggoal)) < r 8,

Adding the bound (Z.23]) (improved as in (Z.24]) when ¢ > %) and the bound (Z30) (im-
proved as in (Z31]) when d = 3 and ¢ > 7), we finally obtain (L27)). This completes the proof
of Theorem [L.8 ood

r

7.3. A better bound on the contribution from k; # 1 for ¢ small. Let us fix a funda-
mental domain F4 C S}, for I'\G. Replacing S with F; in (ZI3)), and arguing as before (6.4)),
we get an equality

(7.32) Do(&w,2) = ¥ rp({M e GrpnFy: Z'MNE=0}).
keZd

To prepare for the derivation in [I8] of an asymptotic formula for ®¢(&, w, z) for ¢ small and
& — oo, we give in this section some further bounds on the various contributions in the sum
in (Z.32)), which fit naturally in the present discussion.

Our first result says that for ¢ small, the contribution from all terms with k; # 1 in (Z32])
(or in (TI3))) is of strictly lower order of magnitude than the right hand side of (L27]), and

2

furthermore if £4-1 max(1 — ||z, 1 — ||w]|) is sufficiently large then these terms in fact vanish!

Proposition 7.3. Let By, By, p, w, z be as in (LII)), (ZI2), with ¢ < 7, and let € be the

the interior of the convex hull of By and B, as before. Then the contribution from all terms

with k1 # 1 in (T32) is

7.33 _

(7.3 ¢ 2min(L, (Ep?2) 1) if d> 4.

Furthermore there is a constant ¢ > 0 which only depends on d such that if either 1 — ||z|| or
2

1 —||lw| is > c& a1, then all terms with ki # 1 in (L32) vanish.

< {5_2 log(2 4+ min(¢, 07 Y) if d=3

We stress that for the proposition to be valid it is crucial that we assume Fy C S, viz.
vy > 0 for all [ay,v,u, M] € Fy.

We will need the following variant of (a part of) Corollary [[.4]

Lemma 7.4. Assumed>2,7>h >0 and A> 0. Let € C R? be a right open cone of height
h whose base is a (d — 1)-dimensional ball of radius r containing O in its relative interior.
Then

(7.34)  p({M =n(u)a(a)k € Sy : a1 > A, ZMNe = 0}) < A min (1, (Ahrd*2)%71).
In fact the left hand side of (.34]) vanishes unless the edge ratio of € is e K (Ahrd_2)7%.

Proof. After applying an appropriate rotation My € SO(d) we may assume € is the interior
of the convex hull of B and p, where

B =tey+ L(Bffl) and p = hey +tey, forsome 0<t<r.
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(We keep My € SO(d) in order that the map M — MMy leaves “a;” invariant; this is the
reason why we require € to be a right cone from start.) Mimicking the proof of Proposition [[T]
we obtain that the left hand side of (7.34)) is

da
(d— 1) dl 1
<</Sdl/ 6) d+1d

This is of course < fA 1d Yda; < A=? and this suffices to prove (Z34) when d =
Next, if d > 3 then by a small modification of the proof of Lemma [6.1] we see that for
any v as in (£I0) with w,w € (0,7), €, contains a (d — 1)-dimensional cone of volume

hod—1(gin, N\d d—2 (g \d : . :
> st Lsinw)? > hr¢=2(sinw)?, the base of which contains 0. Hence we get, using
(L2) in dimension d — 1,

™2 13-1,2-d, —d\, d day
<</ / min(l,Ai h™ re %w™ )w 3 dw T
A 0 aft

1

and this leads to the bound in (Z.34]). (Note that we do not get any better bound by using
Corollary [[4] in place of (L2).)

We next prove the statement about vanishing. For d = 2 one notes that &€, is a line segment
of length > eh for all v € S¢~!\{#e;}, and hence if Aeh is sufficiently large then p(!)(a;&,) =
0 for all a; > A and all v € S¢'\{#e;}, and hence the left hand side of (Z.34)) vanishes.
Next assume d > 3. Note that for any v € S\ {+e;}, as in (m) with w,w € (O ), the
intersection € Nv* contains a (d — ) dimensional cone of radius r’' > r(e + sin w) height
h' > ﬁ(r — t|cosw]|) =< h(e + sin?w), and edge ratio ¢’ < min(l, —5—). Thus if a; > A
then

2 2(d—2)
e’|a1 'y |d I>e (Ahrd %(e 4 sin? w)%) ST gl a1 Aaot lemax(e,sin2w)ﬁ

> (eiAhrd_z)%.

-1 2
Hence if e% Ahrd—2 is large then also €’[a; ' €,| 7T is large, uniformly over all a; > A and all

_1
v € 8971\ {+e,}, and by Corollary I (in dimension d — 1) this forces p(®~1(af"€,) = 0 for
all these a1, v, which means that the left hand side of (7.34]) vanishes. O

Proof of Proposition [7.3. Let us first consider the terms with k; > 2 in (Z.32]). We now refine
the argument around (Z20)-([Z.22). Given M = [v,M]xp € Gip, by applying (2.I3) with
n= L%J we see that there is some a € R~! such that

1

(L%Lm)M: B a1v+a; T (0,a +mM) f(v),  VYm ez

Hence if Z?M N€ = ) then in particular € has empty intersection with L Lajv +ap ? =T (a +
Z9IM)f(v). The latter is a (d — 1)-dimensional lattice inside the hyperplane |5 v + vt
and because of a1 = kfl(p - v) this hyperplane contains the point ¢tp where t := k:fl L%J
Note that % <t < % since k1 > 2. Now there is an absolute constant ¢ > 0 such that
[tw — (1 — t)z|| <1 —cforall z,w € B¢ with p(z, w) <Zandall § <t < i hence if

we take ¢ < 3 , we necessarily have tp + B%. C €. Hence if Z4M N ¢ = (D then a, s lZd 1M

must have empty intersection with a certain ball of radius cr, and thus using a; > Cr and

_d
Lemma 2Tl (and M € Fy C S = M € Sq—1), we conclude that a; > C'ra-1, where C' is a
positive constant which only depends on d. Hence the contribution from k; > 2 in (.32) is,
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by mimicking the argument in Section [@ leading up to (6.6]):
(7.35)

1
< Y / p({Mesi @ >0ra, 2 M el (€U E,) = 0})
2<k1<2/C o

dv
(kyr)d?

where S = S*1) is as in (ZI5), and a; = k; ' (p - v) as before (thus a; > Cr for all v € S*1)).
Now by Lemma [T, € N v+ contains a right relatively open (d — 1)-dimensional cone with
0 in its base, of radius 7/, height A’ and edge ratio ¢’ satisfying

1
2

(7.36) > r(l -z +sinw,)?, B> r(l -z +sinw,), ¢/ =< min(1, 25%-)

sin“ wz /"’

where we write z = ||z||. We may also assume b’ < 7/, so that Lemma [T 4] applies; for if h’ > r/
then We may shrink the cone by decreasmg R/ until h/ = 1/; the bounds (7.36) remain true.

Now a{ =T ¢, has radius a{~ "7 and height af 'h/, and by Lemmal[T.4], applied with A = C'rasT
and with d — 1 in place of d, it follows that (for v € S\ {e1}) the integrand in (7.35]) vanishes
whenever the product

(d—2)d d—1

L+ 2
min(l,sii;zz) 2rd1t a1 (1—z+4sinwy,) 2

is larger than a certain Constant which only depends on d. The last expression is seen to be
rd(1 - 2) G = 5(1 - HZH) , independently of w,; hence we conclude that (7.35]) vanishes
whenever {(1— ||z ||)T is sufficiently large Similarly, using €, in place of &€,, one proves that

([T35) vanishes whenever (1 — Hw”) T s sufficiently large. Furthermore, Lemma [74] also
implies (using just v’ > rsinw, and A’ > rsin® w,, and the corresponding result for ¢’ N vL)
that for general z,w (with ¢ < 7), ([Z339) is

21
(7.37) < r /d ) P4 min{l, <rd max(sinwz,sinww)dfl) ot }dv.
gi-

Now by (Z.2I]) we have max(sin w, Sin wy,) > sinw; thus the above is

w/2 /2
(7.38) < 7"d/ r¢ min{l, (wadfl)%_l} w3 dw < 3t / dw < 5_3+%.
0 0

Hence we have now proved both the desired vanishing and the desired bound for all the terms
with k1 > 2 in (7.32).

We next consider the terms with k; < —1. We will again refine the argument around
(C20)-([Z2Z2). Note that if v € S*1) for some k; < —1 then p-v < 0 and v; > 0; hence
(z4+w)- v <0, viz. p(z+w,v') > 72r By Proposition [[L9 we may assume z,w to be close
to 1 without loss of generality; hence since ¢ = ¢(z,w) < 7 there exists an absolute constant
¢ > 0 such that p(z +w,2z) < 5 —cand p(z + w,w) < g c. It follows that

5 <pz4+w,v) <p(z+w,2z)+ p(z,v) < T —c+ws,

viz. w, > c¢. Similarly w, > c¢. Hence by Lemma [, ¢ N v contains a relatively open
(d — 1)-dimensional cone of volume > r¢~!(sinw, )42 with 0 in its base, and ¢’ N v contains
a relatively open (d — 1)-dimensional cone of volume > r9~!(sinw,, )92 with 0 in its base.
Hence by Corollary [[.4] we have

(7.39)
N _2(d-2)
N({% €Sg-1 : Zd*l]}g Nai " (€, UC,) = @}) < (rd max(sinwz,sinww)dﬁ) =1

whenever a; > Cr. Using this improvement of (Z.20) and the same type of argument as
in (C22), (Z23]), we obtain that the contribution from all terms with k; < —1 in (Z32) is
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bounded by exactly the same integral as in (Z.30)), i.e. this contribution is

SN

) ifd=3
-3

(7.40)
=) if d > 4,

B

_6 . 1

r~°log(2 + min(r,

< gf (. i
p—2d min(1, (rdgpd_g)

which agrees with (7.33)). To prove the statement about vanishing we note that the (d — 1)-

dimensional cone inside € N v* provided by Lemma [l in fact has volume > r@=1(1 — 2 +

2 z

sin wz)d%Q; also the edge ratio is < min(1, Sii;w ), and hence from Corollary [[.4] it follows

that for any k1 < —1 the integrand in (Z.I4]) vanishes if the product

d—1 d—2
(7.41) min (1, ﬁ) 2 rd(1 — 2 +sin’w,) 2
is larger than a certain constant which only depends on d. This product is > £(1 — z)%

d—1

Hence all terms with k1 < —1 in (732 vanish whenever {(1 — ||z|) 2 is sufficiently large.
Similarly, using €, in place of €,, we see that this vanishing statement also holds whenever
d—1

(1 —||lw]|) 2 is sufficiently large.

It now only remains to consider the terms with k; = 0. The contribution from these terms
has already been proved to satisfy the bound (Z33)); cf. (Z30)). To prove the desired vanishing
we note that the (d — 1)-dimensional cone inside € N used in the proof of (Z30) in fact has

volume > 7471 (1—z+sin? wz)%, since the base B;Nv™ has radius > r(1—z+sin? wz)% just as

in the proof of Lemmal[7.Il Also the edge ratio is < min(1, Si}};i - ), and hence by Corollary [L4]

it follows that the integrand in (7.27]) vanishes if the product in (4] is sufficiently large.

Hence we have ), = 0 whenever (1 — ||z||)% is sufficiently large; and similarly we also have
d—1

>0 = 0 whenever (1 — [Jw|]) 2 is sufficiently large. O

We next give a bound which shows that when considering the contribution for k1 = 1 in
(C32)), we may restrict the range of v in M = [a1, v, u, M| somewhat, at the cost of an error
satisfying the same bound as in Proposition [Z.3l

Proposition 7.5. Take notation as in Section [7.2, assume ¢ < 3, and keep ki = 1, so that
ay =p-v. Let C' > 1 be an arbitrary constant, and set

A:{’vescffl cp-v>Cr, OgvlgC'(gp+w)2}.

Then
. d—1 ﬁ AN dv
/Au<{ﬂgesd_1 Lz el (€ ue,) =0} PR
. [ opz b min(es 1) i d=3
' 2 min(1, (€p"2) ") if d >4,

where the implied constant depends only on d and C'.
The proof depends on the following lemma.

Lemma 7.6. For every v € A° with wy > %cp, ¢ Nw contains a (d — 1)-dimensional cone of

d—l( )d—2

volume > r sinw, with O in its base. (The implied constant depends only on d and

")

Proof. We may assume w, < 1—10, since the claim otherwise follows from Lemma [l Now
v € A° and w, > 2o imply 0 < v1 < C'(p +w)? < C'(2w, + wx + ¢)? < 25C"w2. Now
to construct our cone we rotate temporarily, as in the proof of Lemma [.I] to the situation
where z = zej for some 0 < 2z < 1; thus w, = ¢(v’,e1). Fix 0 < ¢ < 1 so small that
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cosa+25C"ca? < 1 for all a € (0, 15]. Now By Nv™ is a (d — 2)-dimensional ball with center
q as in (TI7) and radius r’ > rsinw,. Instead of (TI8) we set

h=(hy,...,hg) = cr||v'H_1(H’v'||261 —v(v')).
Indeed this gives 0 < h; < r and

zZCcoswz +cuvy
[l

by our choice of ¢; hence ¢ + h € €. The desired conclusion now follows as in the proof of
Lemma [Z11 O

|rz— (' +n)|| = TH = r(zcoswy + cvy) < r(cosws + 25C"cw?) < 7,

Proof of Proposition [7.9. For every v € A° it follows from Lemma and its analogue for
w that at least one of € N v or € N v contains a (d — 1)-dimensional cone of volume >
rd-1 max(sin wy, sin ww)d*2 with O in its base. Indeed this is direct if w,,wqy, > %cp; on the
other hand if w, < %cp then by the triangle inequality in Silil we have %gp < Wy < %cp < %77 <
™ — %gp and thus ¢ N v contains a (d — 1)-dimensional cone of volume > 7971 (sin wy,)?~2 >

rd-1 max(sin wy, sin ww)d 2. similarly the statement also holds if wy, < %gp.

Hence (7.39) holds for all v € A°, and integrating over v we obtain the stated bound. [

7.4. Lower bounds on ®¢(&, w, z). In this section we prove some lower bounds on ®¢(§, w, z).
Our first proposition says that the bound in Theorem [[.§ is sharp in a natural sense when

d = 3. Note that for d = 3, Theorem [[§ states that ®o({, w,z) < min({fg,f_zgo_Z),
uniformly over ¢ € [0, 7].

Proposition 7.7. There is an absolute constant ¢ > 0 such that, for d = 3,
(7.43) B (&, w, z) > min(1,£75,6 %2
holds whenever ||w||, ||z]| > 1—c- s3(& ¢).

The next proposition says that for general d > 3 the bound in Theorem [[.8is sharp if either

K& iorm— pLE =3 (To see that the restrictions on ||w||, ||z|| below are natural, note
2 1

that for £ large we have s4(§, ) < 5_% if p < 5_%, and sq(§,0) <& 2 if T —p K& d-2))

Proposition 7.8. Let d > 3. There is a constant ¢ > 0 which only depends on d such that, if
1 2

¢ < c&7d and |wl], ||z]| =1 —c£74 then

(7.44) Do (&, w, z) > min(1,§_2+%)

whereas if T — p < cfii_i? and ||lw|,||z|| > 1 - cg_ﬁ then
(7.45) ®o (¢, w,z) > min(1,£7?).

When proving these two propositions we will again let € and p be as around ((ZI1]) (wherein
r=¢Y%>0), with z, w as in (ZI2). We start by giving some auxiliary lemmas.

Lemma 7.9. For any v € Scll_1 with % < w1 < 1, the intersection € N v+ is contained in
a right (d — 1)-dimensional cylinder with 0 in one of its bases, of height < r(1 — ||z|| + w?),
Lollz=ly,

radius < (1 — || z|| 4 sin? wz)% and edge ratio < min(1, 7=

Proof. This is similar to the proof of Lemma [T.1] O
Lemma 7.10.

_ A g Pt
pp(€) > 1 d/{vesd o ({Mesd_l Loy < (30)7T, 2 M N e (€, U E) :(ZJ}) v,

100

where a1 = p - v.
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Proof. Arguing as in Section we see that (6I2) holds for our ¢. Now for any v € S¢!
with % < vy < 1 we have |[v/|| < 3; and thus

lay —r|=lp-v—r| <r(l—uv)+ lw+z] V] < 3,

ie. %7“ <ap < %r. Now the lemma will follow by arguing in the same way as in Section
(up to (GI3), if we can only prove that (najv +v*+) N € = holds for all n € Z\ {0,1} and
all v € S‘lj_1 with % < w1 < 1. But note that for any such v and any x € €, we have, using
] <&, 0<a <7, |(z2,...,24)|| <2r and 2r < a; < 37

—a1 < —%’I“< —27"-2% <:1r:-'u<r+2r-2i0 :%r<2a1.
Hence (najv +v-)Ne& =0 for all n € Z\ {0, 1}, and we are done. O
Lemma 7.11. For any fived w,z € Bffl the function ®o(&, w, z) is decreasing in &.
Proof. Let 0 < & < ¢ be given, and set

Qi:{(xl,...,xd)e]Rd 0<x <€, (xg,...,xd)—zH <1}; p= (£ z+ w);
¢ = {(z1,...,2q) eR?:0<z <&, H(a:Q,...,xd)—zH <1} p = (¢ z+w),

so that ®¢(§, w, z) = pp(€) and Po(¢’',w, z) = pp (¢’). Furthermore set o = % > 1 and

T <a 51(1—adll)(w+z)) ca

__1
0 a 4115 4

We now claim €7° C €. Indeed, take an arbitrary point = (x1,...,24) € € and set
y=(y1,...,yq) = xT. Then y; = az; € (0,£), and

H(HQ, cesYd) — zH = Hx1£_1(1 — ofﬁ)(’w + 2) +a7ﬁ(az2,...,xd) — zH
— |1 = 0" TT) (@1 w — (1 — 216 H)z2) + @ T (s, .., 24) — 2)]|
<(l-a @) +a 71 =1

Hence y € @ and the claim is proved. Noticing also pT = p’, it now follows that p,(€) =
pp (€T) > pp (&), ie. o(&,w, z) > Po(¢,w, 2). O

Proof of ([L44]) in Proposition[7.8 We assume from start 0 < ¢ < 1, and consider some ar-

bitrary &, w,z with ¢ < 0575 and ||w|,|z|]| > 1 - 057%. Now for every v € S9! with

% < vy d< 1and w = p(v',e1) < cr;l we have w,,wy < 2cr™!, and hence by Lemma [7.9]

|€y| < c2r~! and similarly €| < c2r~!. Also recall from the proof of Lemma [I0] that
1

a1 =p-v < 3r. Hence if ¢ is sufficiently small then |af ' (€, U@,)| < & holds for all v € gd-1
with % < <1 and w < er~!. Considering the contribution from these v in Lemma [Z.10]
we obtain, if r = £¥/¢ is sufficiently large,

—1

cr
0

Note also that Remark applies to our €, thus ®¢(§, w, z) > 1—10 for all w,z € Bf_l and all
0 < &< 277! where vy =[B! = 72 T(4L)~1. Now () follows for all ¢ > 0 by

using the monotonicity in Lemma [Z.11] O

We next give the proof of (7.45]) in Proposition [Z.8in the case d > 4. The remaining case
d = 3 will be treated below in the proof of Proposition [T.7}
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Proof of (45]) in Proposition [7.8 when d > 4. We have

Po(6w,2) > Y = D vp({MeGor) NSy Z'MNC=0})
K/ eZd-1

Z T_l/ /d—1 / vy({M € Gy y + M €Sy, Z'MNC = 0}) dudp(v) ay * das,
R>0 Sl ﬁpL Rd—1

k' e7d-1

where in the last step we used Lemma [5.3] and in the last line y = y(a;,v) is as in (5.11]), and
we write M = [a1,v,u, M]. Note that € C Bf,, and thus if a; > 3r then €N (najv +v*) =0
for all n € Z\ {0}. Hence, using (2.13]) and (2.I1]), we see that the above expression is

—d—1 ‘ .
> Z / /Sd 1 Vy MEGk/ NFg_1 : @1§%(3r)d—1,

k' eZd-1

1
2 M Naf ' e, = @}) dp(v) day,

where Fy_1 C Syq_1 is some fixed fundamental domain for T'@~D\G@=1D  Using ([63) in
dimension d — 1 we get, so long as r is larger than some constant which only depends on d,

(7.46) rd- 1/Sd gl /3 iley) - 100>da1d (v).

_d _d
Now for every v ESd Yrpt with w < er™ = we have w, < 2cr™ d-2 and T — wy < 2cr™ d-2,
__d_ 2d_
because of (T12) and m—¢ < ¢r™ 4-2. Furthermore ||w||,||z]| > 1—c¢r™ 4-2 and hence as in the

proof of LemmalZ.1], the (d—2)-dimensional balls B;Nv and BaNw both have radii <« R Tar=2
Since €Nwv does not intersect the central axis of € (provided ¢ is sufficiently small) it follows

that |&,| < ¢ “Z*r=1. Hence if c is sufficiently small then |a{ 1&,] < iforallveS{npt
1
with w < er~ 22 and all ai € (3r,4r), and since d — 1 > 3 and Ry Naj ¢, = (0,1)y, the
1

argument in Remark applies to give py(a{lTl Cy) > 1—10. Considering the contribution from
these v in (7.46]) we get

d

cr d-2
Po(&,w, z) > ’I“_d/ w3 dw > r2d = ¢72,
0

This has been proved for all sufficiently large £; the case of smaller £ is treated as in the proof

of (T.44)). O

Proof of Proposition [7.7. We will prove that there exists an absolute constant 0 < ¢ < 1 such
that if £ is sufficiently large and if |[|w]||,||z] > 1 —c¢- s3(&, ¢), then (T43]) holds. This suffices,
since the case of smaller £ can then be treated as in the proof of (.44]). We will successively
impose conditions on ¢ being sufficiently small.

Let us fix the choice z = (2,0) and w = w(cos ¢,siny) in (1), with ¢ € [0,7] and
z,w € (0,1). We write

v = (cos w, sin w cos w, sin w sinw),

where we will keep @ € (0, 15) (thus 2% < v; < 1) and w € (0,7). Hence w, = w and

Wy = | — wl. Let us also write ¢ = max(1 —w, 1 — z). Thus we are assuming ¢ < ¢ - s3(&, ¢).
As a variant of Lemma [7.9] one proves that, for any v € Sili with w € (0, 10) and w € (0,7),
the union €, U €/ is contained in some right 2-dimensional cylinder (viz. a rectangle) with 0

in one of its bases, which has height =< r(t + w2 + w2,), radius =< r(t% + sinw, + sinwy, ), and
edge ratio =< min(1, max(sirllg;z, sj};—;")) if w > ¢, otherwise edge ratio 1.



52 ANDREAS STROMBERGSSON

Let us first assume 0 < ¢ < §. By (Z44) in Proposition [Z.8 there is an absolute constant
¢1 > 0 such that, provided c is sufficiently small, ®¢ (&, w, z) > 57% holds whenever ¢ < 0157%

(since t < c¢-s3(&, ) < c&‘g). Hence we may now assume 015_% < ¢ < 5. Then

(7.47) t<cos3(€,0) < clpf) ™ < e

Let us consider the contribution in Lemma [Z.10] from v with w € (0, %0) and w € (%go, %gp)

For any such v we have sinw, < w, X sinw,y, X Wy < ¢, and thus (using also (C47)) €, U €,

is contained in a rectangle of base < r¢, height =< ry? and edge ratio =< tp~2. Recall from the
1

proof of Lemma [ZI0 that a; = p - v < 7; hence |a (€, UL)| < ¢ > ¢}, Now Corollary [
1

gives, using (T4T) and provided that c is sufficiently small: p (a2 (¢, U€,)) = (€¢*)~L. On

the other hand p({M € Sz : a1 > (%T)%}) = 773 = ¢! (cf. the proof of Lemma [2Z.4). Hence

without keeping explicit track of implied constants, our usual subtraction argument cannot be
carried through unless ¢ is sufficiently small. As a simple way to remedy this, note that we may

1
fix an absolute constant c; > 1 such that u({M € Sy : a1 > cz(%r)%}) < ip@(ai (e, U )
holds for all £, w, z, v which we are currently considering. Let

(7.48) S3(K) := {n(u)a(a)k cu€ Fy, 0<as < Kay, 0<az < %ag, k e SO(d)}

(thus 83 = 83(%), cf. (2.8)); then for any K > 0 the set S3(K) is contained in a finite union

of fundamental regions for X; ([5]). Using this fact with K = ¢y in the proof of Lemma [.T0]
it follows that

1
Pp(€) > ¢ / ves? M({% €8 a1 < ea(3r)2, Z2M Naf (€, UC,) = @}) dv

wlot

10 1 ®
(749) >¢! / ’ / 9@ (af (€,U€,) ) dw (sinw) dew > €74 [ (66" dw = €272,
0 3¢ 3¢

as desired.

Next assume § < ¢ < 7. Recall that we write pg = m — . First note that if c is sufficiently

small, then there is an absolute constant c3 € (0,1) such that if ¢y < ¢3¢, then for any v
1

with @ € (0, 55) and w € (¢ — 371, ), af (€, U €}) is contained in a rectangle of area < 3

(the proof of this makes use of t < c- s3(£, ) = € 2). It follows that if ¢ is larger than a

certain absolute constant and if ¢y < c3¢~1, then

©
pp(€) > 5‘1/ Ldw> 72
p—cgg1

Hence we may now assume § < ¢ < — e3¢~ 1. Then
(7.50) t<c-s3(&,90) < ceytpol ! < ecg il

Now consider the set of v with @ € (0, %) and w € (T — o, m — %gpo). For any such v we
have w, =< 1 and sinw, X sin Wy, X Wy X o, and thus (using also (T50)) €, U € is contained
1

in a rectangle of base < reyp, height < r and edge ratio =< tpy2. Hence |a} (€, U €,)| =
&po > c3, and thus Corollary [[L4] gives, using (Z50]) and assuming that c is sufficiently small:

1
pP(a? (€, UCL)) = (Epo)~L. Repeating the argument from (748), (ZZ9) we now obtain
1
o [TV -1 -2
po@ > € [ g o 62,
T—5%0

as desired. O
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