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Abstract. The three gap theorem (or Steinhaus conjecture) asserts that there are at
most three distinct gap lengths in the fractional parts of the sequence α, 2α, . . . , Nα,
for any integer N and real number α. This statement was proved in the 1950s inde-
pendently by various authors. Here we present a different approach using the space
of two-dimensional Euclidean lattices.

Imagine we divide a cake by cutting a first wedge at an angle α, then an identical
second, third, and so on as illustrated in Figure 1 (left), until the remaining piece is
either of the same size as the previous, or smaller. We now have a cake comprising
wedges of at most two distinct sizes: the size of the original and that of the left-over
wedge. Suppose we continue cutting but insist that after each cut we rotate the
knife by the same angle α as before, see Figure 1 (right). How many different sizes
of cake wedges are there after N cuts? The celebrated “three gap theorem” states
that for each N there will be at most three! This surprising fact was understood
by number theorists in the late 1950s [6, 7, 8, 9]. Various new proofs have appeared
since then, with connections to continued fractions [5, 10], Riemannian geometry [1]
and elementary topology [4, App. A], as well as higher-dimensional generalisations
[2, 3, 11]. Our aim here is to provide a simple proof of the three gap phenomenon
by exploiting the geometry of the space of two-dimensional Euclidean lattices.

α

α

Figure 1. For each given N, there are at most three different wedge sizes.

The standard example of a Euclidean lattice in R2 is the square lattice Z2. We can
generate any other Euclidean lattice L in R2 by applying a linear transformation to
Z2. Writing points in R2 as row vectors x = (x1, x2), we have explicitly

(1) L = Z2M = {(m, n)M | (m, n) ∈ Z2},
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where M is a 2× 2 matrix with real coefficients. If

(2) M =

(
a b
c d

)
, det M = ad− bc 6= 0,

then a basis of the lattice L = Z2M is given by the linearly independent vectors

(3) b1 = e1M = (a, b), b2 = e2M = (c, d),

where e1 = (1, 0), e2 = (0, 1) is the standard basis of Z2. All other bases of L
with the same orientation can be obtained by replacing M by γM provided γ ∈
Γ = SL(2, Z), the group of matrices with integer coefficients and unit determinant.
In the following we restrict our attention to lattices L = Z2M whose basis vectors
span a parallelogram of unit area. This means that det M = ±1, and by reversing
the orientation of a basis vector where necessary (this will not change the lattice),
we can assume in fact that det M = 1. Let us therefore denote by G = SL(2, R) the
group of real matrices with unit determinant. The “modular group” Γ = SL(2, Z)
is a discrete subgroup of G, and the space of lattices can in this way be identified
with the coset space Γ\G = {Γg | g ∈ G}.

In order to translate the three gap problem into the setting of lattices, let us mea-
sure all angles in units of 360◦. That is, angles are parametrized by the coset space
R/Z = {x + Z | x ∈ R} (the set of reals taken modulo one), which we can think of
as the unit interval [0, 1] with the endpoints 0 and 1 identified. Fix α ∈ R/Z, and
let ξk = {kα} be the fractional part of kα. The quantity ξk represents the angular
position of the kth cut. The angles of the resulting cake wedges after N cuts are
precisely the gaps between the elements of the sequence (ξk)

N
k=1 on R/Z. These

gaps are, in other words, the lengths of the intervals that R/Z is partitioned into by
(ξk)

N
k=1.

The gap between ξk and its next neighbor on R/Z (this is not necessarily the
nearest neighbor, as the gap to the element preceding ξk may be the smaller one) is
given by

(4) sk,N = min{(`− k)α + n > 0 | (`, n) ∈ Z2, 0 < ` ≤ N}.

The substitution m = `− k yields

(5) sk,N = min{mα + n > 0 | (m, n) ∈ Z2, −k < m ≤ N − k}.

We rewrite (5) as

(6) sk,N = min{y > 0 | (x, y) ∈ Z2A1, −k < x ≤ N − k},

with the matrix

(7) A1 =

(
1 α
0 1

)
.

The lattice Z2A1 and sk,N are illustrated in Figure 2.
Now take a general element M ∈ G and 0 < t ≤ 1, and define the function F by

(8) F(M, t) = min
{

y > 0
∣∣∣∣ (x, y) ∈ Z2M, −t < x ≤ 1− t

}
.
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Figure 2. Illustration of the the expression for sk,N in (6) (here N = 4,
k = 1).

To see the connection of F with the gap sk,N, define

(9) AN =

(
1 α
0 1

)(
N−1 0

0 N

)
∈ G,

and note that, by rescaling the set in (6), we have

(10) sk,N =
1
N

min
{

y > 0
∣∣∣∣ (x, y) ∈ Z2AN, − k

N
< x ≤ 1− k

N

}
.

Thus,

(11) sk,N =
1
N

F
(

AN,
k
N

)
.

We first check F is well-defined as a function on the space of lattices Γ\G (Propo-
sition 1), and then establish that the function t 7→ F(M, t) only takes at most three
values for every fixed M ∈ G (Proposition 2). The latter implies the three gap
theorem via (11).

Proposition 1. F is well-defined as a function Γ\G× (0, 1]→ R>0.

Proof. Let us begin by showing that

(12)
{

y > 0
∣∣∣∣ (x, y) ∈ Z2M, −t < x ≤ 1− t

}
is nonempty for every M ∈ G, t ∈ (0, 1]. Let

(13) M =

(
a b
c d

)
,

and assume first that a = 0. Then c 6= 0 and b = −1/c, and (12) becomes

(14)
{

bm + dn > 0
∣∣∣∣ (m, n) ∈ Z2, −t < cn ≤ 1− t

}
⊃ |b|N,
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Figure 3. Illustration of the lattice configuration in the proof of Propo-
sition 2.

which is nonempty. If a 6= 0, we have

(15) M =

(
a b
c d

)
=

(
a 0
c a−1

)(
1 ba−1

0 1

)
,

and so (12) equals

(16)
{

y + ba−1x > 0
∣∣∣∣ (x, y) ∈ Z2

(
a 0
c a−1

)
, −t < x ≤ 1− t

}
.

Since −t < x ≤ 1− t implies |x| ≤ 1, the set in (16) contains the set

(17)
{

y + ba−1x
∣∣∣∣ (x, y) ∈ Z2

(
a 0
c a−1

)
, −t < x ≤ 1− t, y > |ba−1|

}
=

{
bm + dn

∣∣∣∣ (m, n) ∈ Z2, −t < am + cn ≤ 1− t, n > |b|
}

.

If c/a is rational, there exist (m, n) ∈ Z2 with n > |b| such that am+ cn = 0. If c/a is
irrational, then the set {am + cn | (m, n) ∈ Z2, n > |b|} is dense in R. Therefore, in
both cases, (17) is nonempty, and the minimum of (12) exists due to the discreteness
of Z2M.

Finally, we note that F( · , t) is well-defined on Γ\G since F(M, t) = F(γM, t) for
all M ∈ G, γ ∈ Γ. �

The following assertion implies the classical three gap theorem; recall (11).

Proposition 2. For every given M ∈ G, the function t 7→ F(M, t) is piecewise constant
and takes at most three distinct values. If there are three values, then the third is the sum of
the first and second.

Proof. Among all points of L = Z2M in the regionA = (−1, 1)×R>0, let r = (r1, r2)
be a point with minimal second coordinate r2. See Figure 3. Next let s = (s1, s2)
be a point in A ∩ L \Zr with s2 minimal. (If such a vector s does not exist, then
F(M, t) = r2 for all t.) Then s2 ≥ r2 > 0. Let us assume s2 > r2 (the case s2 = r2 is
treated at the end of the proof).
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The parallelogram 0, r, s, r + s does not contain any other lattice points: if u were
such a lattice point, then u or r + s− u would have second coordinate smaller than
s2, contradicting the assumed minimality of s2. This implies that r, s form a basis of
L.

Note that r1 and s1 must have opposite signs, i.e. r1s1 < 0, since otherwise s −
r ∈ A with a second coordinate that is smaller than s2, contradicting the assumed
minimality of s2. It follows that, if we set Jr = (0, 1] ∩ (−r1, 1 − r1] and Js =
(0, 1] ∩ (−s1, 1− s1], then one of these intervals is of the form (0, q] and the other
is of the form (q′, 1], for some q, q′ ∈ (0, 1). Note that both intervals are nonempty
since r, s ∈ A by construction, and thus |r1|, |s1| < 1. More explicitly,

(18) Jr =

{
(−r1, 1] if −1 < r1 ≤ 0
(0, 1− r1] if 0 ≤ r1 < 1,

and similarly for Js. Now in view of definition (8), we obtain

(19) F(M, t) =


r2 if t ∈ Jr

s2 if t ∈ Js \ Jr

r2 + s2 if t ∈ (0, 1] \ (Jr ∪ Js).

(Here the set (0, 1] \ (Jr ∪ Js) may be empty.) Thus, for any fixed M, the function
F(M, · ) can only take one of the three values r2, s2, r2 + s2.

Now consider the remaining case s2 = r2. We choose r, s ∈ A ∩ L so that r =
(r1, r2) has minimal r1 ≥ 0, and s = (s1, r2) has maximal s1 < 0. We can then
proceed as above to obtain F(M, t) = r2 for t ∈ (0, 1− r1] ∪ (−s1, 1] and F(M, t) =
2r2 for all other t in (0, 1].
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