PROBLEMS; “RIEMANNIAN GEOMETRY?”

ANDREAS STROMBERGSSON

This is a collection of problems for the course “Riemannian Geometry”,

1MAT196, fall 2017, at Uppsala University.
(http://www.math.uu.se/~astrombe/riemanngeometri2017/rg2017.html)
I remark that the purpose of many of the problems below is mainly to fill in
or explain some (pedantic) facts or details which I felt were appropriate to
mention in my lectures, and which I couldn’t find in Jost’s book. In a later
version, I will probably move the content of these problems into some kind
of appendices in the lecture notes.
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1. PROBLEMS

Problem 1. [Manifolds are path-connected] Prove that if M is a topo-
logical manifold (in the sense defined in the course, in particular M is con-
nected) then M is path-connected, i.e. for any two points p,q € M there is
a curve 7 : [0,1] — M with v(0) = p and (1) = q.

Problem 2. [A criterion for paracompactness.]

(a). Let M be any topological space which is locally Euclidean. Prove that
M is second countable iff M has a countable atlas.

[Pedantically, in Lecture #1 we only defined the notation of an “atlas” when
M is connected and Hausdorff; however the same defnition applies to any
locally Euclidean topological space.]

(b). Let M be a connected Hausdorff space which is locally Euclidean. Prove
that M is paracompact iff M has a countable atlas.
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Problem 3. [Invariance of dimension.] Brouwer’s Theorem on invari-
ance of dimension states: If nonempty open sets U C R% and V C R% qare
homeomorphic, then dy = dy. (Cf., e.g., Hatcher, [7, Thm. 2.26].) Using this
result, prove the following: If M is a connected Hausdorff space for which
every point has an open neighborhood U which is homeomorphic to an open
subset Q of R? for some d € Z>; (which apriori may depend on U), then in
fact all the dimensions d appearing must be one and the same.

(Thus, in Def. 1 in Lecture #1, we would not obtain any new objects if we
modify the definition so that the dimension is allowed to depend on U.)

Problem 4. [Every C* atlas determines a unique C* structure.]
Prove the following statement from Lecture #1 (here made slightly more pre-
cise): “Any C*° atlas on a topological manifold M is contained in a unique
C* structure on M, namely the family of all charts which are compatible
with every chart in the given atlas.”

Problem 5. [Basic property of C™ structures.]

(a). Let B,.(0) be the open ball in R? of radius r > 0, centered at the origin.
Prove that there exists an uncountable family H of homeomorphisms of
B1(0) onto itself, with each h € H satisfying h(z) = z for all x ¢ B 5(0),
such that for any two hy # he € H, the function hy o hy Lis not C°°.

[Hint. One can e.g. take each h to be of the form h(z) = f(||z||)||z|| '« (for = # 0) where

f is a piecewise linear function on (0,1).]

(b). Let M be a topological manifold. Prove that if M has one C*° structure
then there exists an uncountable family F of distinct C°° structures on M
such that for any two structures in F, the corresponding C'* manifolds are
diffeomorphic.

[Hint. One approach is as follows. Let H be as in part (a) and fix a chart (U,z) on M
with z(U) = B1(0) (prove that such a chart exists). Now for each h € H we can define a
homeomorphism ¢y : M — M by letting ¢n, be “given by h inside U and the identity map
everywhere else”. Now we get a new C* structure by “composing the given C*° structure

with ¢5,”. (These things have to be made precise.)]

Remark: The problem shows why it is much more interesting to ask for the
number of diffeomorphism classes of C'*° structures on a given topological
manifold M. (Cf. the end of Lecture #1.)



PROBLEMS; “RIEMANNIAN GEOMETRY” 3

Problem 6. [Open submanifolds] Let M be a C* manifold and let U
be an open subset of M.

(a). Prove that U inherits from M a natural structure of a (not necessarily
connected) C'* manifold. This C* manifold is called an open submanifold
of M.

(b). Prove that the inclusion map i : U — M is C*°.

(c). Let N be another C*° manifold and f a map from M to N. Prove that if
[ is €, then so is the map fjy : U — N for every open subset U C M (with
its inherited C*° manifold structure). Prove also the following converse: If

{Us} is a family of open sets covering M and fy, is C* for every a, then
f itself is C°.

Problem 7. [Existence of C* functions with desired properties.]
Let M be a C'°° manifold.

(a). Let f be a function from M to R and let U be an open subset of M such
that fi;y € C°°(U) and supp(f) C U. (Recall that supp(f) is the closure in
M of the set {p € M : f(p) # 0}.) Prove that f € C*°(M).

(b). Let U be an open subset of M and let f : U — R be a C* function
with compact support. Prove that the function

= = flp) ifpelU

: M — R, =
f f(p) { 0 ifpéU
is C°.
(c). Prove that for every p € M and every open subset U C M with p € U,
there exists a C*™ function f : M — [0,1] which has compact support
contained in U and which satisfies f(p) = 1.

(d). (A strengthening of (c).) Prove that if K is compact and U is open
with K C U C M, then there exists a C* function f : M — [0, 1] which
has compact support contained in U, and which satisfies fjx = 1.

[Hint: When M = R? the claim is a well-known fact of analysis; cf., e.g.,
[10, Thm. 1.4.1]. Thus it remains to reduce to this Euclidean setting...]

(e). (A simple consequence of (d) and (a).) Prove that if K is compact and
U is open with K C U C M, and if f: U — R is a C*° is a function, then
there exists a C>° function f, : M — R which satisfies fix = fk-
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Problem 8. [Basic facts about product manifolds]

(a) Prove that if M and N are C'*° manifolds then the Cartesian product
M x N also naturally carries the structure of a C* manifold. (Cf. [I2} p. 4
(Ex. 4)].)

(b) Prove that the projection maps pr; : M x N — M and pry : M XN — N
are C'*°.

(c) Prove that if f : M — Ny and g : M — Ny are C* maps of manifolds
then also the map (f,g) : M — Ny x Na, defined by

(f,9)(p) == (f(p), 9(p)),
is C°°.
(d) Prove that if f: M; — Ny and g : My — Ny are C*° maps of manifolds
then also the map
My x My — N1 x Nay  (p,q) = (f(p),9(q)),
is C°°.
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Problem 9. [Definition of quotient manifold.] Let M be a topological
manifold, and let Homeo(M) be the group of all homeomorphisms of M
onto itself (the group operation is composition). Let I' be a subgroup of
Homeo(M). We assume that I" acts freely on M, meaning that for any
v €T and p € M, if y(p) = p then v = Id. We also assume that I' acts
properly discontinuously on M, meaning that for any compact set K C M,
the set {y € T' : v(K)N K # (0} is finite. Let us define the relation ~ on M
by [p~ qiff 3y €T s.t. y(p) = q.

(a) Prove that ~ is an equivalence relation.

(b) Let us write [p] for the ~ equivalence class of a point p € M; let T\M :=
{[p] : p € M} be the set of all equivalence classes, and let 7 : M — T'\M,
m(p) := [p], be the corresponding projection map. Define a topology on I'\ M
by declaring U € I'\M to be open iff 7=}(U) is open in M. Prove that this
indeed is a topology; it is called the quotient topology. Prove also that T'\ M
with this topology is a topological manifold of the same dimension as M.

(¢c) Now on top of the previous assumptions we assume that M is a C*
manifold, and that every v € T is a diffeomorphism of M. (In other words,
I' ¢ Diff(M).) Prove that I'\M inherits from M a natural C* structure,
and that 7 is a C* map.

Problem 10. [Constructing a C*° manifold without requiring from
start that it is a topological space.]

(a) Prove that if {(U,,24)} is an atlas on a (topological) manifold M, and
V' is any subset of M, then V is open iff V N U, is open in U, for every «a.

(b) Let us define a “(d-dimensional) C*° fold” to be a set M together with
a family {(Uy, T )}aca where for each a € A, U, is a subset of M and z,, is
a bijection from U, onto an open subset of R%, such that M = UgecaU, and
for any o, 8 € A, 4(Uy NUpg) is an open subset of z,(Us,), and the map
zgoxyt on z4(U, NUp) is C°°.

Given a “C® fold” M, let us call a subset V'C M “open” if z4(V NU,) is
open in RY for every a € A. Prove that this defines a topology on M. Prove
also — by giving an example — that this topology is not always Hausdorff.

(c) Prove that a sufficient criterion for the topology defined in part (b) to
be Hausdorff is that for any two points p,q € M there is a € A such that
p,q € U,. (You may also like to prove the following partial converse: If M is
a C°° manifold then for any two points p,q € M there is a C*° chart (U, x)
on M such that p,q € U.)

(d) Let M be a “C fold” and assume that the topology defined above is
Hausdorff, and also connected and paracompact. Prove that then M is a
C*° manifold, with {(U,,x,)} being a C° atlas.
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Problem 11. [Partition of unity: Some variants.]

(a). Prove the following variation of [12| Lemma 1.1.1]: Let M be a C*
manifold and let & = (Uy)aeca be an open cover of M. Then there exist C'*
functions ¢, : M — [0,1] (o € A) such that supp ¢, C U, for every a € A,
and Y- o4 Pa(z) =1 for all z € M.

(Remark: Note that in the above statement it is not always possible to make
each ¢, have compact support; consider e.g. the case U = {M}; then we
are forced to choose the single p-function to be p = 1.)

(Hint: The above statement can e.g. be deduced as a consequence of [12
Lemma 1.1.1].)

(b). Prove that both in [I2, Lemma 1.1.1], and in the statement of (a) above,
we can further require that all functions ¢, are such that also /@, is C*°.

Problem 12. [Extending a function from a curve to a manifold.]

Let M be a C'* manifold, let ¢ : [a,b] — M be a C™ curve, let s € (a,b),
and assume ¢(s) # 0.

(a) Prove that there is ¢ > 0 and a (C*°) chart (U,z) for M such that
a<s—e<s+e<band

c(t) € U and z(c(t)) = (t — s,0,...,0), Vi€ (s—e,5s+¢).

(b) Prove that given any C'* function f : [a,b] — R, there is ¢ > 0 and a
C* function g : M — R such that a < s —e < s+¢e < band g(c(t)) = f(t)
forallt e (s —e,s+¢).

Problem 13. [Details in the definition of tangent space.]
In the following all references are to Lecture #2:
(a). In Definition 3, verify that ~ is an equivalence relation.

(b). On p. 4 (below Definition 3): Prove that for any fixed chart (U, z) with
p € U, the map u — [(U,z,u)] is indeed a bijection from R¢ onto T, M.

(¢). On p. 5: Verify the claim that if M is a ((connected)) open subset of a
finite dimensional vector space V over R, then there is a natural identifica-
tion “T,M = V7", for every p € M.

(d). On p. 7: Verify that df, is well-defined.

(e). On p. 7: Verify the chain rule d(go f), = dgs)odfy, when f: My — M
and g : My — M3 are C'°° maps between C'°° manifolds.

(f). On p. 8-9: Verify the three facts stated here!
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Problem 14. [Tangent vector of a curve.] Let M be a C° manifold of
dimension d, let ¢: I — M be a C*° curve, and let (U, z) be a chart on M.
For t € I with c(t) € U, we define ¢! (t),...,c%(t) € R by

z(c(t)) = (c'(t), ..., A1),
Then prove that
0
97
Also explain how this formula shows that the two definitions of “tangent
vector of a curve” in Lecture #2 (p. 2 and 8) are consistent with each other.

c(t) =& (1)

Problem 15. [Alternative definition of tangent space.]

(a). Let M be a C*° manifold and let p € M. By definition, a derivation at

p is an R-linear map D : C*°(M) — R that satisfies the Leibniz identity
D(fg) = D(f)-9(p) + f(p)- D(g),  Vf,g€C™(M).

Prove that there is a natural bijection between the set of all derivations at

p and the tangent space T),(M).

(b). A wector field X on M is by definition a C*° map X : M — TM
satisfying mo X = 1p7. (Thus using notation from Lecture #7, a vector field
on M is the same as a section in I'(T'M).) Also by definition, a derivation of
C*°(M) is an R-linear map D : C*°(M) — C*°(M) which satisfies D(fg) =
D(f)g+ fD(g) for all f,g € C°°(M). Prove that there is a natural bijection
between the set of vector fields on M and the set of derivations of C*°(M).

Problem 16. [The definition of the tangent bundle T'M.] Prove that
the construction in Lecture #2, p. 10, leads to a well-defined C'*° manifold
TM, and that the projection map 7 : TM — M is C*°.

[Hint: Use Problem [I01]

Problem 17. [Some facts about df.]

Let M, N be C*° manifolds and let f: M — N bea C®. Let 7 : TM — M
and 7’ : TN — N be the standard projection maps.

(a). Prove that df : TM — TN is a C*™ map and 7’ odf = fom. (Facts
from Lecture #2.)

(b). Prove that for any C* map ¢ : N — R and any X € T'M,
df (X)(p) = X(po f).

(c). Prove that if f : My — Ms and g : My — Ms are C'° maps between C*
manifolds, then d(g o f) = dg o df (equality between maps T'M; — T M3).
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Problem 18. [Riemannian structure on a submanifold of a Rie-
mannian manifold.] Let f : M — N be a C*° immersion of C*° mani-
folds, and assume that NV is equipped with a Riemannian metric.

(a). Prove that then also M gets naturally equipped with a Riemannian
metric, by setting, for any p € M and v, w € T),M:

(v, w) = (dfp(v), dfp(w)).
(In particular this means that any immersed submanifold of a Riemannian

manifold gets naturally equipped with a Riemannian metric.)

(b). Prove also that for any piecewise C* curve 7 : [a,b] — M we have
L(v) = L(f o) and E(y) = E(f o).

(c). Prove that d(p,q) > d(f(p), f(q)) for all p,q € M, and give an example
where strict inequality holds.

Problem 19. [Existence of a C* curve between any two points.]
Let M be a C'*° manifold.

(a). Prove that for any two points p,q € M there exists a piecewise C'®
curve 7y : [0,1] — M with 4(0) = p and (1) = q.

(b). Show that “piecewise C'™°” can be sharpened to “C°” in the previous
statement.

Problem 20. [Basic properties of the hyperbolic space H".]

Go through the discussion in [12] Sec. 5.4], and verify all claims up until the
computation of the curvature using Jacobi fields! In particular:

(a). Verify that if p € H™ then T,H" is orthogonal to p wrt the form (-,-),
and the restriction of I to T,H™ is positive definite, so that we obtain a
Riemannian metric on H™.

(b). Prove that O(1,n)[is a group, and that O(1, n) has a normal subgroup
of index 2, which we call O (1,n), such that each T € O*(1,n) acts on H"
by isometries.

(c). Prove that for any p € H" and v € T,H", v # 0, there is a transforma-
tion R € OF(1,n) whose set of fixed points in R"*! equals the 2-dimensional
plane spanned by p and v. (Hint: The map can be constructed as the “(-, -)-
reflection” in said plane.)

(d). Conclude by proving the formula which Jost states for a geodesic with
an arbitrary starting condition.

1 think the group which Jost calls “O(n, 1)” is more appropriately called “O(1,n)”, in
view of the definition of (-, ).
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Problem 21. [The maximal domain for exp, and the geodesic flow.]

The goal of this problem is to prove Theorem 2 in Lecture #4. Note that
the proof basically just consists in squeezing as much information as possible
out of the local ODE existence and uniqueness result (Theorem 1).

(a). For each p € M and v € T,M there is a uniquely determined open
interval I, C R containing 0 such that (i) there exists a geodesic ¢, : I, = M
with ¢,(0) = p, ¢,(0) = v and (ii) given any open interval J C R containing
0 and any geodesic v : J — M with v(0) = p, 4(0) = v, then J C I, and
Y = CylJ-

We call the above curve ¢, the (unique) maximal geodesic starting at
vel,M.

(b). Set W = {(t,v) e RxTM : t € I,} and define the map 6§ : W — T M
by 6(t,v) := év(a. Prove that for all v € TM and s € I, we have 6(0,v) = v,
and 0(0(s,v),t) = 0(t + s,v) (Vt € Ig(sn))-

(¢). There exist an open subset D C TM and a C* map exp : D — M
such that for each p € M and v € T,M, I, := {t € R : tv € D} is an
an open interval containing 0, and the curve ¢t — exp(tv), I, — M, is the
unique maximal geodesic starting at v. (Note that it is obvious that D and
exp are uniquely determined by the required properties.)

(d). Note that by (c), the set W in part (b) equals
W ={(t,v) e RxTM : tv e D},
and that this is an open subset of R x T M. For t € R, set
Wy={veTM : (t,v) e W}

Prove that for each t € R, W} is an open subset of T'M, and the map 6(¢, )
is a C*° diffeomorphism of W; onto W_, with inverse (—t, -).

(The map 0 : W — T'M is called the geodesic flow on T'M.)

IO(s,v) =1, — s,

2Here we use the natural notation Iy —s:={z—s: xz€l}

Solution:
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Problem 22. [Varying the center of normal coordinates.]
(a). Prove Theorem 3’ in Lecture #4.

[Hint: One approach is as follows. First prove that the differential of the map
(m,exp) : D — M x M at 0, is non-singular; hence by the Inverse Function
Theorem there is a neighborhood of 0,, in which (r, exp) is a diffeomorphism.|

(b). Let r > 0 and let U be an open subset of a Riemannian manifold M, and
assume that for every p € U, B,(0,) C D and eXPp| B, (0,) IS & diffeomorphism
onto an open subset of M; let us agree to write simply exp,, 1 for the inverse
map. Set

V= {(p,exp,(v)) : pe U, ve B(0,)} C M x M.

Prove that V is an open subset of M x M, and that the map V — TM,
(p,q) — exp,'(q) is C*°. (More generally one may let 7 be a continuous
function of p.)

Problem 23. [The Riemannian metric wrt polar coordinates.]

(The point of this problem is to go through the details in the proof of Jost’s
[12, Thm. 1.4.5].)

Let M be a Riemannian manifold, p € M, and take r > 0 so that exp,
restricted to B, (0) C T,(M) is a diffeomorphism onto an open subset U C
M. Let (U,z) be the corresponding normal coordinates. Let also (V) be
a chart on S9!, and define the (“polar coordinates”) chart (R*V,y) on RY
by

RV :={rv:r Rt veV}

W' = (el (7))

Set U’ = 271 (RTV N B,(0)); then (U’,yox) is a chart on M. Prove that in
the coordinates defined by this chart, the Riemannian metric satisfies

(an open cone) and

1 0 0
0 h o h

(hij(y)) = | . 22:(1/) 2dz(y) , Yy € (0,7) x p(V).
0 ha(y) - haa(y)

Problem 24. [Any (pw C*°) curve realizing d(p,q) is a geodesic.]

Prove Theorem 2 in Lecture #5: Let M be a Riemannian manifold and
let v : [a,b] — M be a pw C* curve which is parametrized by arc length.
Assume that L(y) = d(v(a),y(b)). Then v is a geodesic.
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Problem 25. [Completeness.]

Let M = R with its standard C* manifold structure. Give an example
of a complete Riemannian metric on M, and also an example of one non-
complete Riemannian metric on M.

(Thus, the parenthesis in Jost’s [12, Thm. 1.7.1(i)] is misleading; complete-
ness is not a property of the topology, but depends on the choice of metric.)

Problem 26. [A closed embedded submanifold is complete.]

(a). Let N be a complete Riemannian manifold and let M be an embedded
submanifold of NV which is closed. Prove that M is complete.

(b). Prove that if we replace “embedded submanifold” by “immersed sub-
manifold” in (a), then the conclusion is no longer valid, in general!

Problem 27. [Spheres and distances.]

The following properties play a role in the proof of the Hopf-Rinow Theorem.
Let (X, d) be an arbitrary metric space. Recall that for p € X and r > 0 we
write B, (p) for the open ball B,.(p) :={q € X : d(p,q) < r}.

(a). Prove that d is a continuous function (X x X — Rx).
(b). Prove that for any p € X, r > 0,
0B,(p) C{g€ X : d(p,q) =1},

and both these sets are closed. Furthermore if (X, d) is a Riemannian man-
ifoldd then equality holds: 9B, (p) = {q € X : d(p,q) = r}.

(c). Continue to assume that (X, d) is a Riemannian manifold. Let p,q € X,
r > 0, and assume d(p,q) > r. Assume that pg is a point on 0B, (p) where
d(*,q)aB,(p) is minimal. Prove that d(p,q) = d(p,po) + d(po, q)-

Problem 28. [Consequences of B,(0,) C Dp.]

Let M be a Riemannian manifold, let p € M and R > 0, and assume
Br(0,) C Dp. Prove that then for every point ¢ € Bg(p), the distance
d(p,q) is realized by a geodesic, and hence Br(p) = exp,(Br(0p))-

Problem 29. [Existence of geodesics in homotopy classes.]

Prove that Theorem 1 in Lecture #5 remains true for any complete (instead
of compact) Riemannian manifold.

3By this we mean: X is a Riemannian manifold and d is the metric on X which comes
from the Riemannian structure.
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Problem 30. [Injectivity radius on a surface of revolution.]
(The following problem is a slight variation of [I12, Ch. 1, Problem 11].)
Consider the surface of revolution

S :={(x,e’ cosa, e’ sina) : z,a € R}.
(a). Prove that S is a closed differentiable submanifold of R? (cf. the notes
to Lecture #2).

(b). Equip S with the Riemannian metric induced by the standard Riemann-
ian metric on R3 (cf. Problem [I& note that S is complete by Problem [28]).
Fix zp € R and let pg = (¢, €",0) € S. Prove that the injectivity radius of
po satisfies i(pg) < we™o.



PROBLEMS; “RIEMANNIAN GEOMETRY” 13

Problem 31. [The fundamental group of the n-punctured plane.]
Let p1,...,p, be n distinct points in R2. Compute w1 (R? \ {p1,...,pn}).

Problem 32. [Covering space; lifting of structure.]

A covering space of a topological space X is a topological space X together
with a continuous map 7 : X5 X satisfying the following condition: Each
point z € X has an open neighborhood U in X such that 7=1(U) is a union
of disjoint open sets in X , each of which is mapped homeomorphically onto
U by .

(a). Let M be a topological manifold of dimension d and let 7 : M — M
be a covering space of M which is connected and second countable. Prove
that then also M is a topological manifold of dimension d. (In fact the
assumption that M is second countable is redundant; see the remark at the
end of the solution.)

(b). Let M be a C* manifold of dimension d and let 7 : M — M be a
covering space of M which is connected and second countable. Prove that
then M has a unique structure as a C'°° manifold such that 7 is C'°°° and
each point p € M has an open neighborhood U in M such that 771(U) is a
union of disjoint open sets in M , each of which is mapped diffeomorphically
onto U by .

(c). Let M be a Riemannian manifold of dimension d and let 7 : M — M
be a covering space of M which is connected and second countable. Prove
that then M has a unique structure as a Riemannian manifold such that
is C*° and each point p € M has an open 1 neighborhood U in M such that
7~ 1(U) is a union of disjoint open sets in M, each of which is mapped (C*)
isometrically onto U by 7.

(d). Prove that for any topological manifold M and any subgroup I' <
Homeo(M) acting freely and properly discontinuously on M, if I'\M and
m: M — I'\M are as in Problem [0 then 7 : M — I'\ M is a covering space
of T\ M.

Solution:
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Problem 33. [Trivial vector bundle; basis of sections.]

Let (E,m, M) be a vector bundle of rank n and let U be an open subset of
M. Prove that the following statements are equivalent:

(a) Eyy is trivial;
(b) there is some ¢ such that (U, ) is a bundle chart for F;

(c) there is a basis of sections in I'Eyy, i.e. sections s1,...,s, € I'E)y such
that s1(p),...,sn(p) is a basis of E, for every p € U.

Problem 34. [Trivial vector bundle; one more (very!) basic fact.]

Let (E,m, M) be a vector bundle of rank n, let U be an open subset of M,
and let s1,..., s, € I'Ejy be a basis of sections in I'E};; (cf. Problem [33|(c)).
Prove that for every section s € I'E; there exists a unique n-tuple of func-
tions al,...,a" € C®(U) such that s = a’s;.

Problem 35. [About sections: restrictions and surjectivity to fibers.]
Let (E,m, M) be a vector bundle over a C*° manifold M.

a) Prove that for every open set U C M, every section s € I'(Ey;), and
y y 1%

every point p € U, there exists a section s’ € I'(E) such that 3\/\/ = sy for

some open set V C U containing p.

(b) Prove that for every point p € M there exist an open set V' C M with
p € V and sections by,...,b, € ['(E) such that byjy,..., b, form a basis
of sections of Ejy .

(c) Prove that for every p € M and every v € Ej, there is some s € I'E such
that s(p) = v.

Problem 36. [Defining a vector bundle without requiring from
start that it is a manifold.] Let M be a C°° manifold, let E be a
set and let m: & — M be a surjective map. Assume that for every p € M,
E, := 7 Y(p) carries the structure of an n-dimensional real vector space.
Also let {(Uy, ©a)}aca be a family such that for each a € A, U, is an open
subset of M and ¢, is a bijection of 7=1(U,) onto U, x R™ such that for
every p € Us, the map (©a)p := (¢a)|E, is a linear isomorphism of £, onto
{p} x R™. Assume that M = U,caU,, and that for any a, 8 € A, the map
ppopg! from (UyNUg) x R™ to itself is C*°. Prove that then E has a unique
C*° manifold structure such that (E, 7, M) is a vector bundle of rank n, and
(Uas o) is a bundle chart for every a € A.
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Problem 37. [Classifying all vector bundles over S'.]

(a). Prove that the Mdbius bundle over S' (cf. Lecture #7, p. 2) is not
trivial.

(b). Classify all vector bundles over S! up to isomorphism.

Problem 38. [Finite cover of trivializing sets.]

Let M be a C'°° manifold of dimension d and let E be a vector bundle over
M. Prove that then there exists an open cover Uy, ..., Ugzrq1 of M such that
Eyy, is trivial for each j =1,...,d+ 1.

[Remark: We will need to make use of this result a few times later. Then
what will matter for us is the fact that Uy, ..., Uyt is a finite open cover;
the exact number of open sets used will not be of importance.

[Hint: You may make use of the following theorem from dimension theory:
Let M be a topological manifold of dimension d. Then every open cover U
of M has a refinement WV such that for any d + 2 tuple of distinct open sets
Wi,...,Waio € W, one has Wy N - N Wyyo = 0.

Cf. [9, Thm. V.8 and p. 25 (Ex. II1.4)].]

Problem 39. [Definitions of F; ® F», Hom(E, E»), E*.]
Let (E1,m, M) and (Ea, 2, M) be vector bundles over a C° manifold M.

(a) Verify that Ey ® Fs, as defined in Lecture #7, is indeed a vector bundle
over M.

(b) Similarly define the vector bundle Hom(E, E2).
(c) Similarly define the vector bundle Ef.
Hint for parts (a)-(c): See Problem

Problem 40. [I'(Hom(E;, F3)) = bundle homomorphisms E; — Es.]

Let (Ey,m, M) and (Es, 79, M) be vector bundles over a C'*° manifold M.
Prove that there is a natural bijection between I'(Hom(F7, Es)) and the set
of bundle homomorphisms E; — FEs.

[Remarks: (1) From now on we will often identify these two sets, i.e. a
bundle homomorphism f : F; — F» is automatically viewed as an element in
I'(Hom(E, E2)), and vice versa. (2) See also Problem [43] below for another
important property of I'(Hom(E1, Es)).]

Solution:

p. [0

Solution:

p. 24

Solution:
p. 24

Solution:

p. 28



Solution:

p. 30

Solution:

p. 1331

Solution:

p. I35
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Problem 41. [Definition of subbundle.| Let (E, 7, M) be a vector bun-
dle of rank n. Recall that in Lecture #7 we defined a subbundle of E to
be a subset £/ C E such that for every p € M there exists a bundle chart
(U, p) for E such that p € U and

(1) (p(E/ N 71'_1([])) — U x R™
for some m < n, where we view R C R"™ through
Rm:{(;pl’...,;pn) cR"™ - 1 :"':ﬂfn:()},

In this situation, prove that
a

(a)
(b) (E', g, M) is a vector bundle of rank m, and for every bundle chart
(U, ¢) satistying (@), (U, p|g/nr—1(v)) is a bundle chart for E'.

m is independent of p and (U, ¢);

[Hint: cf. Problem [36]
(¢) E' is a differentiable submanifold of E.

Problem 42. [Basic facts about the pulled back bundle f*E.]
Let f: M — N be a C*™ map and let (E,m, N) be a vector bundle.

(a). Prove that the pulled back bundle, f*E, defined in Lecture #7 as a
subset of M x F with extra structure, really is a vector bundle over M.

[Hint: cf. Problem [301]
(b). Prove that f*F is a differentiable submanifold of M x FE.

Problem 43. [Properties of the functor I'.]

Let (Ey,m1, M) and (E2, 72, M) be vector bundles over a C'*° manifold M.
Prove that there exist natural identifications (isomorphisms of C*°(M)-
modules) as follows:

(b). T(ET) = (PEY)".

(¢). T'(Hom(E1, F3)) = Hom(T'Eq,T'E,).

(d). T(E1 ® Ez) =T(E1) @ T'(Ey).

[Remarks: As we stressed in the lecture, any space of sections I'E is a
C°°M -module, and when applying dual, “Hom” or “®” to spaces of sec-
tions, it should always be viewed as operations on C°°M-modules! Thus
(TEy)* is the C*°M-module of C*°M-linear maps from I'E; to C*°M,
“Hom(I'Eq,T'Ey)” is the C*°M-modules of C'*°M-linear maps from I'E;

to I'Ey, and “T'(E;) @ T'(Es)” is the C°°M-module which in a more precise
notation would be denoted I'(E1) @cee(ary I'(E2).]
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Problem 44. [Sections along a function; I'fF.]
Let f: M — N be a C*™ map and let (E, 7, N) be a vector bundle.

(a). A section of E along f (or “alift of f to E”)isaC*® mapo: M — E
such that moo = f. The set of sections of E along f is denoted I'yE. Prove
that I'y £/ has a structure as a C°°M-module, and that there is a natural
isomorphism of C°°M-modules I'f*E = T'yE.

[Remark: From now on we will often use the above isomorphism to identify
I'f*E and I'yE. As will be seen, to view a section s € I'f*E as an element
in I'y ' simply means considering pryos : M — E, i.e. “forgetting the first
component of s, which anyway contains redundant information about the
base point”. On the other hand, one can not in any reasonable way define
f*E directly as a subset of E, unless f is injective; indeed, for any two
points p # ¢ in M with f(p) = f(q) we want (f*FE), and (f*E), to be two
disjoint copies of Eyy.]

(b). Note that for any s € I'E' we have so f € I'yE =T f*E; we call so f
the (f-)pullback of s. Prove that if V' is an open set in NV and U is an open
set in M with f(U) C V, and if s1,...,s, is a basis of sections in I'E}y,
then sy o f,..., sy 0 f is a basis of sections in I'(f*E) .

(c). Prove any section of f*E can be expressed as a function-linear combina-
tion of f-pullbacks of sections of E. (In other words: Any o € T'f*E can be

expressed as a finite sum o = 77" | ;- (sj 0 f) where a1, ..., an € C*(M)
and S1,...,8m € 'E.) [Hint: Problems [I1] and B8 may be useful.]

Problem 45. [Interpreting I'(Hom(E,, f*E>)).]

Let f: M — N be a C*™ map and let (Ey1, 1, M) and (E2, 7, N) be vector
bundles. We say that a map h : E1 — Ej3 is a bundle homomorphism
along f if h is C*°, mg o h = f om, and for each x € M the fiber map
hy :==Mhg,,  E1o — Ea () 18 linear.

(a). Prove that there is a natural bijection between I'(Hom(E1, f*E2)) and
the set of bundle homomorphisms F; — FEs along f.

(b). Explain how the result in (a) can be seen to generalize both Problem [0l
and Problem F4{(a).

Problem 46. [Extending a section from a curve to the whole space.]

Let (E,m, M) be a vector bundle, let ¢ : (a,b) — M be a C* curve, let
s € I'.E (cf. Problem l4la)), let typ € (a,b), and assume ¢(tg) # 0. Prove
that there exist ¢ > 0 and a section s; € I'E such that a < tg—e < tg+e < b
and s1(c(t)) = s(t) for all t € (tg —e,tg + €).

(Hint: cf. Problems [12] and B3l )

Solution:

p. 141l

Solution:

p. 144

Solution:
p. 40



Solution:

p. 47l

Solution:

p. 148l
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Problem 47. [Lie product of vector fields.]
Let M be a C'*° manifold.

(a). For any vector fields X,Y on M, prove that there exists a unique vector
field Z on M satistying Z(f) = X (Y (f)) =Y (X(f)) for all f € C*>°(M). By
definition, this vector field Z is denoted “[X,Y]”, and called the Lie product
of X and Y.

[Hint: Use Problem [I5(b).]

b). Prove that our definition in part a is equivalent with Jost, [12] Def.

2.2.4].
().

Prove the Jacobi identity:
1X,Y), 2] + IV, 2, X] + [[Z.X],Y] =0, ¥X,Y,Z € I(TM).

(d). Prove that for any X,Y € I'(T'M) and f € C*(M),
(X, fY]=(Xf)- Y+ [ [XY]
and
X Y]=-(Yf)- X+ [ [X,Y].

Problem 48. [Basic properties of the exterior derivative.]
Let M be a C'°° manifold.

(a) Following Jost, [12, Def. 2.1.15], we define d : Q"(M) — Q"F1(M) by
the requirement that for any w € Q"(M) and any C* chart (U, x) on M, if
Wi = D Wi dz! (with wy € C*®(U)) then (dw) iy = >y dwr A da’. i Prove
that this indeed gives a well-defined, R-linear map d : Q" (M) — Q"F1(M).
(In other words, explain in detail what happens in [12], Cor. 2.1.2].)

(b) Prove that if f: M — N is a C* map then d(f*(w)) = f*(dw) for all
w € Q"(N). (In other words, provide more details for [12, Lemma 2.1.3].)

(c) Prove that for any w € Q"(M) and Xo,..., X, € I'(TM),

T

[dw](Xo, ..., X) =Y (=1 X (w(Xo,..., Xj, ..., Xp))

j=0
+ > ()X, X Xoy L X X X,
0<j<k<r

[Explanation of notation: “Xo,..., X]‘, ..., X" denotes “Xo, X1, X2, ..., X, but with the
term X, removed”. Similarly  “[X;, Xx], Xo, . .. ,Xj, oo, Xk, ..., X, denotes
“IX;, Xk, Xo, X1, X2,..., X, but with both X; and X removed”. Also, the sum in
the second line runs through all pairs (j, k) € Z? satisfying 0 < j < k < r.]

4Note that dw; = % d:cj; hence our definition indeed agrees with [12] Def. 2.1.15].
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Problem 49. [Wedge product of vector valued forms]|

(a). Let Fq and E3 be vector bundles over a C°° manifold M. We define
the wedge product A : Q"(Ey) x Q%(Es) — Q"T5(F; ® E»), for any r,s > 0,
to be the unique C*°(M)-bilinear map satisfying

(1 @ wi) A (p2 @ wa) = (p1 ® p2) ® (w1 Awz),
V/Ll c F(El), w1 € QT(M), Mo € F(Eg), Wy € QS(M)

Prove that this indeed makes A a well-defined C°°(M)-bilinear map . Note
also that in the special case F1 = Fo = M x R, this gives back the standard
wedge product Q" (M) x Q5(M) — Q"5(M).

(b). [Associativity and “commutativity”.] Let Ey, Eq, E3 be vector bundles
over M and let r,s,t > 0. Prove that

CIAN (82 VAN 83) = (81 AN 82) N 83, Vs € QT(El), So € QS(EQ), S3 € Qt(Eg).

(Here both expressions lie in Q" +T(E), where E = E1 @ By ® E3 = By ®
(B2 ® E3) = (By ® Eq) ® E3.) Prove also that

s1Asy=(—1)"" J(SQ A s1), Vsy € QT(El), So € QS(EQ),
where J is the isomorphism of C°°(M)-modules
J: (B ® E) = QB ® E))

which maps J(pe @ 1 @ w) = p1 @ pg @ w for all puy € TEy, uy € TE,,
w e QTS (M).

(c). [“vector-wedge-product”; extending commutativity.] Let Ey, Es, E be
vector bundles over M and assume given a “multiplication rule” from Fi, Fo
to E, i.e. a C®(M)-linear map m : T'(E, ® Ey) — I'(E). By extending with
the identity map on Q" (M), this defines for each r > 0 a C°°(M)-linear map
Q" (B ® Ey) — Q' (E), which we also call m. Let m’ be the multiplication
rule m’ : T(Ey ® Ey) — T(E) defined by m/(sy ® s1) = m(s; ® s3) for all
s1 € TEy, s3 € T'Esy, and call m’ also the corresponding map Q" (E; ® Ep) —
Q"(E). Prove that

(2) m(sy A s2) = (—1)""m(s2 A s1), Vs1 € Q"(Ey), so € Q°(Es).

[Comments: In many cases we will write simply “m(s1,s2)” or “s; A s3”
to denote the combined vector-wedge-product m(s; A s2)! For example this
appears in [12] (4.1.26)]; “A AN A”, wherein Fy = Ey = E = EndE and m
is — of course — composition. Other examples appear in the computation of
DF a bit further down on [12] p. 139]; e.g. “[A, F]”; here again E; = Ey =
E = End E but m is Lie bracket. Another example, in a slightly generalized
setting, is in [12] p. 154]; “ﬁ(F, ..., F)”. A main example where the relation
@) applies is when E := E; = Ey = E is a commutative (weak) algebra
bundle over M (with m being the multiplication rule). In this case m’ = m,



Solution:
p. 55
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and so (2) shows how the commutativity of E extends to Q(F). On the
other hand, a natural example with Ey # Fs is when F; = E (an arbitrary
vector bundle over M), E; = E* and E = M x R, with the multiplication
rule m (as well as m’) being the standard contraction from I'(E ® E*) (or
INE*® E)) to C*°(M).]

(d). [extension of associativity.] Let Ey, Ea, E3, E1o, Eos, E123 be vector
bundles over M and assume given multiplication rules

F(El (= Eg) — F(Elg); P(Elg (= Eg) — F(Elgg);
F(Eg (= Eg) — F(Egg); P(El ® E23) — F(Elgg).

For each of these, we denote the image of s ® s’ simply by “s-s'”. Assume
that these multiplication rules satisfy the associativity relation

(81 . 82) - 83 = 81 - (82 . 83), Vs1 € 'Eq,89 € 'Ey, 83 € 'E3.

In line with the above comments, let us write s1 A so € Q" 7¥(Fys) for the
combined vector-wedge-product of any s; € Q"(F;) and sy € Q°(FE»); and
similarly for the other three product rules. Then prove that

(81 VAN 82) NS3 =81 A\ (82 AN 83), Vs € QT(El), So € QS(EQ), S3 € Qt(Eg).

[Comments: A main example of the above situation is of course when E :=
Ey = Ey = E5 = F1y = Ea3 = Fjo3 is an associative (weak) algebra bundle
over M. A general example where Ey, F5, F3 may be distinct vector bundles
is when E; := Hom(F}y, F}) for j = 1,2,3, where I, F5, F3, Fy are four
arbitrary vector bundles over M, and all multiplication rules are composition
(thus E12 = Hom(F3, F1), etc., and the associativity relation holds).]
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Problem 50. [Wedge-product of matrix valued forms made ex-
plicit.]

Let Eq, E5, E3 be vector bundles over M; then we have a standard multipli-

(1PN}

cation rule “o” (composition of homomorphisms)
P(HOIIl(EQ, Eg)) X F(HOH](El, Eg)) — F(HOH](El, Eg))

(1PN}

Let us write “o” also for the corresponding vector-wedge-product
Q" (Hom(Es, E3)) x Q*(Hom(FE1, E3)) — Q" *(Hom(E, F3))
(cf. Problem @9(c)). Let U be an open subset of M such that there exist
bases of sections
at,...,an €EPEYy and  Bi,..., By, € TEyy  and  71,..., 7y € TE3y
(here ny = rank Ey). Let
ol aMr e FE}]U and BY, ..., [0"* ¢ FE;‘U
and ~Y, ... 4" ¢ LE3
be the dual bases.

Then for each p € Q" (Hom(FEs, E3)) there exist unique r-forms ,ug? €
Q"(U) such that pu; = ﬁj*®yk®,u;?, and similarly for each n € Q*(Hom(F1, Es))
there exist unique s-forms 77;“ € Q°(U) such that ny = o/* @ f, ® 17§-€ . Prove
that in terms of this representation,

(nomy =™ @y & (uf Anp).

[Comment: Note that “u; = B @y ® ,uf” means that if we use the given
bases to identify Eyy with U X R™ and Eyp with U X R™, then py is
represented by the matriz

pho o,

() = :

A
(wherein each entry is an r-form). Similarly “n; = a¥* @ By, ®n;” means that
nyu is represented by the matrix (nf) and “(uon)y = ™ @y @ (uf Ant)”
means that (u o n)y is represented by the matrix (115 Anf)k.;. Hence when
r = s = 0, the formula gives back the usual formula for matrix product;

(o = (1 - nf)i» as it should]
Solution:

p. 58
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Problem 51. [Wedge product; alternative definition)]

(a). Let (E,m, M) be a vector bundle. Prove that there is a natural identi-
fication of Q"(E) with the space of alternating C'*°(M )-multilinear maps

D(TM)"™) =D(TM) x --- x I(TM) — T'E.

r times

(b). Let E7 and Ey be vector bundles over M. Prove that using the iden-
tification in part (a), the wedge product s; A so (cf. Problem d9(a)) of any
s1 € Q(Ey) and sg € Q°(Es) is given by
(s1 A 82)( X1, Xrys)
1
~ sl > sgn(0) 51Xy, - Xow) @ 52(Xorr1)s - - Xo(rrs))s
0’667-+5

VX1,..., Xrps € T(TM),

where &, is the group of all permutations of {1,...,r + s}. Prove also a
similar formula for the product “s; - so € Q"T*(E)”, in the case when there

is given a multiplication rule from Ey, By to E (cf. Problem E9(c)).
Solution:

p. 50
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Problem 52. [Restricting a connection to open sets.]
Complete the proof of Lemma 1 in Lecture #9; that is, prove the following:

Let (E,m, M) be a vector bundle. For (a) and (b), let D be a connection on
FE and let U C M be open.

(a) Vs1,80 €ETE @ sy = soy = (Ds1)jp = (Ds2)v-
(b) There is a unique connection “D;;” on Ejy; satistying (Ds)y = Dy (sv)
for all s e I'(E).

(c) Let (Uy)aea be an open covering of M, and for each o € A let D, be a
connection on Ejy, . Assume that for any two o, 8 € A, if V:= U, NUp # 0
then (Da)y = (Dg)jv- Then there exists a unique connection D on E
satisfying Dy, = Dy for every a € A.

Solution:
Problem 53. . p. 1621
[Dys depends only on the values of s along a curve with ¢(0) = v.]
Let (E,7,M) be a vector bundle and let D be a connection on E. Let
v € TM and let s1,s9 € I'E. Assume that there exists a C'°° curve c :
(—e,e) = M such that ¢(0) = v and si(c(t)) = s2(c(t)) for all t € (—¢,¢).
Prove that then D,s; = D,ss. .
Solution:
Problem 54. [The connection “d” (for given local coordinates).] p. 164
Let (U,¢) be a bundle chart of a vector bundle (E,r, M), let s1,...,s, €
['(E)y) be the corresponding basis of sections and define the map d : T'(E|y;) —
M(E®T*M)y) by d(a*si) = sp ® da* for any a',...,a" € C*U. Prove
that this is a connection on Ejy;. (Cf. p. 6 in Lecture #9.)
Solution:
Problem 55. [Restriction of a connection to a subbundle.] p.
Let D be a connection on a vector bundle (E, 7, M) and let E’ be a vector
subbundle of E. Then also E' @ T*M is a vector subbundle of F ® T*M.
Assume that Ds € I'(E' ® T*M) for all s € T'E’. Prove that then the
restriction of D to I'E’ is a connection on E’. Also give an example to show
that the given condition is not always satisfied.
Solution:

p. [IGH)



Solution:
p. IG5
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Problem 56. [Alternative definition of the dual of a connection.]

Let D be a connection on a vector bundle (E, 7, M), and let D* be the
dual connection on E*. (Cf. Lecture #10.) Recall that given any C*°-curve
v :(—¢e,e) = M we have a linear isomorphism

Py =)+ Ero) = By

for each h € (—¢,¢); let us write P, for the dual of that map; this is a
linear isomorphism Ej;(h) — E:;(o)' Prove that for any p € TE*,

Poalety() — () -
3 m- Ly (0)-

:(0) () = }ng})

Problem 57. [Defining the pullback of a connection.]

(a). Let f: M — N be a C* map and let D be a connection on a vector
bundle (E, 7, N). Prove that there exists a unique connection f*D on f*FE
such that for any s € I'F,

(f*D)(s 0 f) = Dy (s) € T(Hom(T'M, f*E)) = T(f*E ® T*M).

2

[Explanation: “Dg(.)(s)” stands for the map

TM — E, [’U — Ddf(v) (S)],

which is a bundle homomorphism along f, and hence can be viewed as an
element of I'(Hom(T'M, f*E)) by Problem [45]]

(b). (Comparing with Jost’s definition of f*D, [12], p. 205].) Prove that f*D
in part (a) is the unique connection on f*F such that the following holds: For
any s € 'f*E =T'yE and any C* curve c: (—¢,e) — M, if s; € I'E satisfies
s1(f(e(t))) = s(c(t)) for all t € (—¢,¢), then (f*D)é(O)(s) = Das(e(0))(51)-

(c). Let ¢: (—&,e) = M be any C'* curve such that foc is a constant point
q € N. Prove that for any s € I'f*E,

" d
(f*D)eoy(s) = (E(s ° c)(ﬂ)lt:o € Ey,
where %(3 oc)(t) € Ts(c(t))(Eq) = E, stands for the tangent vector of the
curve socin E,.

(Comments: In the situation in (c), if s is not constant along c, the formula in (b) cannot
be used directly to compute (f*D)s(0)(s), since there cannot exist any s; € I'E satisfying

s1(f(c(t))) = s(c(t)), YVt € (—e,e). Note also that the tangent vector of the curve s o c,

4 (soc)(t), is always a well-defined vector in Ty(c())(E); however in the situation in (c)

we can view so c as a curve in the fiber Eg; hence % (soc)(t) € Tyc(1))(Eq), and this last
tangent space can naturally be identified with E4 by Problem [I3}c).)
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Problem 58. [The tensor product of two connections.]

Prove Proposition 2 in Lecture #10, i.e. the following: Let Fq, E5 be vector
bundles over M with connections D;, Do, respectively. Then there is a
unique connection D on E; ® E5 such that

D(p®@v)=(Dip) @v+p® (Do), Vu eTE,, v € T'Es.

Problem 59. [A Leibniz rule for general connections.]

Let F4, Es, E5 be vector bundles over M, each equipped with a connection
“D”. Let us write “D” also for the corresponding connections on Ej and
E; ® Ey and HOIH(El, EQ) = Eik ® Fs, etc.

(a). Given any
[eAS F(El & EQ) and [ € F(E‘;< (9 Eg),

let us write “(«, 3)” for the section in I'(Es ® E3) obtained by contracting
the Eq-part of o against the Ej-part of 8. Prove that then

: 1
D(a75) = (DCY,,B) + (a, D,@) in Q (E2 [ Eg).
(Here “(Da, B)” is again defined by contracting the Ei-part of Do against the E7-part

of 3, and similarly for “(a, D3)”; note that these can be viewed as vector-wedge-products
4 la Problem H9c), from Q" (E1 ® E2) x Q°(Ef ® E3) to Q" (E2 ® E3), coming from the
given product (-, -) from I'(F1 ® E2) x I'(ET ® E3) to I'(E2 ® Es).)

(b). Prove that for any o € I'(Hom(E>2, F3)) and 8 € T'(Hom(E1, E»)),
D(aof) = (Da)of+ao(DB) in Q' (Hom(Ey, Fs)).

(c). Prove that for any o € I'(Hom(E1, E)) and 8 € T'Eq,
D(a(B)) = (Da)(B) + a(DB)  in Q'(Ey).

Solution:

p. Il

Solution:

p. 74



Solution:
p. 75
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Problem 60. [The exterior covariant derivative.]
Let D be a connection on a vector bundle (E,m, M).

(a). Prove Proposition 4 in Lecture #10, i.e. the following: Then for any
p > 0 there exists a unique R-linear map D : QP(E) — QPTL(E) satisfying

D(p@w)=(Dp) ANw+ p & dw, VuelE, we QP(M).

(b). Let (U,¢) be a fixed bundle chart for E; let d be the corresponding
naive connection on Fjy and set A =D —d € Q' (End Ey), as usual. Prove
that for any p € QP (Ey),

Du=du+ANu in Qp+1(E|U),

where d is the naive exterior covariant derivative QF(Ey;) — QPTH(E)y)
coming from the given bundle chart, and A A y is the image of A and p un-
der the combined vector-wedge-product (cf. Problem E9(c)) Q' (End E;) x

QP (Ey) — Qp+1(E|U) coming from the standard contraction (“evaluation”)
F(EndE‘U) X FE|U — FE|U

(c). Let El,Eg,E be vector bundles over M, each equipped with a con-
nection “D”. Assume given a multiplication rule from Ei, Es to I, ie. a

C°(M)-linear map I'(Ey ® Es) — T'(E). We write s1 - so € T'E for the
product of s1 € I'Fq, so € 'Ey, and we write “A” for the corresponding
vector-wedge-product as in Problem [d9(c). Assume that the connections
respect the multiplication rule, in the sense that

D(sy - s2) = (Ds1) A sa+s1 A (Dsa), Vs1 € T'Eq, s9 € T'Es.
Prove that then for any r,s > 0,
D(p1 A pg) = (Dpa) Apz + (=1)"p1 A Dug,  Yun € Q7(Ev), pg € Q°(E2),
where “A” is the vector-wedge-product as in Problem A9(c).

(d). Addendum to (c): Let m be the multiplication rule in (c), i.e. a C>°(M)-
linear map I'(Ey ® Ep) — I'(E). By Problem H3((c), the multiplication rule
can be identified with a section m € I'(Hom(Ey ® Ej, E)). Prove that the

given connections on F1, Fy, E respect the multiplication rule iff
Dm = 0.

(Here D is the connection on Hom(E; ® EQ,E) induced by the given con-

nections on Fy, Es, E.)
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Problem 61. [Explicit formula for exterior covariant derivative (us-
ing Lie product of vector fields).]

Let D be a connection on a vector bundle (E, 7, M ); let r > 0, and write “D”
also for the corresponding exterior covariant derivative Q7 (E) — Q" T1(E).
Prove that for any s € Q"(E) and X,..., X, € I'(TM),

T

[Ds|(Xo,...,X:) = Y (1) Dx;, (s(Xo,.... Xj,..., X))

7=0
+ Y (CES(XG, X Xos o X XL X,
0<j<k<r

[Here “[Ds](Xop,...,X,)” stands for the contraction of the form part of Ds €
Q"L E) against X, ..., X,; and similarly for all “s(---)” in the right hand

side. For the rest of the notation, cf. Problem (48](c).] Soluti
olution:

p. IS0l
Problem 62. [One more explicit formula for exterior covariant de-
rivative.]

Let D be a connection on a vector bundle (E, w, M); let » > 0, and write “D”
also for the corresponding exterior covariant derivative Q7 (E) — Q" T1(E).
Recall from the solution of Problem Bl that £ ® A"M is in a natural way
a subbundle of E ® T?(M); accordingly for any section s € Q7 (E) let us
write “ 37 for s viewed as a section in I'(E ® T°(M)). Furthermore let V
be an arbitrary torsion free connection on T'M, and let us write “[}]” for
the connection on E ® T°(M) induced by D and V. Then prove that for
any s € Q" (F) and Xo,...,X, € I'(TM),
T
Ds](Xo,.., X,) = _20(—1)] (1814, %) Koo Ky X0).
’ Solution:
p. 1811

Problem 63. [Basic facts about AdE (for E with a bundle metric).]

Let (E,m, M) be a vector bundle equipped with a bundle metric. Recall that
AdF (as a subset of End E) was defined in Lecture #11, p. 11.

(a). Prove that AdE is a vector subbundle of End E.

(b). Prove that if D is any metric connection on E, and if we write D
also for the corresponding connection on End E, then Ds € Q'(AdE) for
all s € I'(AdE) C I'(End E). (Hence by Problem [55] the connection D on

End E descends to give a connection on AdE.) Soluti
olution:

p. 1IR3l



Solution:
p. [[36!
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Problem 64. [Some facts about \"(V) for V a vector space]
(See Sec. 7.2 for the definition and some basic properties of A"(V).)
Let V be a finite dimensional vector space over R and let r > 1.

(a). For any vy,...,v,,w1,...,w, € V, the following statement about vec-
tors in A\"(V):

[vl/\"'/\vr:c-wl/\---/\wr for some c € R, and v1 A+ - Av,. #0

holds if and only if vq,...,v, are linearly independent and vq,...,v, and
w1, ..., w, span the same r-dimensional linear subspace of V.

(b). Prove that if V is equipped with a scalar product (-,-) then there is
a corresponding scalar product (-,-) on A"(V) which has the following two
properties:

(i) If eq,..., e, is any ON-basis for V' then (e;) is an ON-basis for A" (V),
where I runs through all r-tuples I = (i1,...,4,) € {1,...,n}" with i1 <
o<y, and er :==e; A---Ae, .
(ii) For any v1,..., 0, w1y, ..., w, €V,

<U1 N+ ANUpywp A= A wr> = det((vi,5j>)i7j.
Prove also that this scalar product on A"(V) is uniquely determined by the
requirement that either (i) or (ii) hold.

(c). With notation as in (b), for any vy,...,v, € V, the “length”

log A= Ao = \/<v1/\~-/\vr,v1/\-~/\vr>

equals the volume of the r-dimensional parallelotope spanned by vq,..., v,
(wrt. the natural r-dimensional volume measure induced by the the scalar
product (-,-) on V).



PROBLEMS; “RIEMANNIAN GEOMETRY” 29

Problem 65. [Equivalent criteria for a manifold being orientable.]

(a). Let M be a C*° manifold of dimension d. Prove that the following
three statements are equivalent:

(i) M possesses an oriented C° atlas, i.e. an atlas such that all chart tran-
sition maps have everywhere positive Jacobian determinant.

(ii) There exists an atlas of bundle charts for the vector bundle (T'M, 7, M)
which makes it an oriented vector bundle (< makes it have structure group
GL} (R); cf. Lecture #12, Def. 4).

(iii) There exists a nowhere vanishing d-form w € Q4(M).

[Comment: M is said to be orientable if one and hence all of the conditions
(i)—(iii) hold. Note that (i) is the definition given in Jost, [I2] Def. 1.1.3].]

(b). Prove that T'M is always an orientable manifold, regardless of whether
M is orientable or not.

Problem 66. [Total covariant derivative of a tensor field.]

(a). Let M be a C*° manifold of dimension d and let V be a connection
on T'M. Write also V for the corresponding connection on 7, M, for any
7,5 > 0. Let A be a tensor field in T'(T{! M), and let Ag be the coefficients
of A wrt a given C*° chart (U,z) on M. (Thus: Ag € C*(U) for all
i,j €{l,...,d} and Ay = Al dit ® %.) Also for each k € {1,...,d} let
Ag;k be the coefficients of V o A. Prove that

ok

, o

i j

Ay = WA

(b). Generalize the above to the case of a tensor field A € I'(T7 M), for any
r,s > 0.

Tf, - A)+T7, AL i U

i_

Solution:

p. 188l

Solution:

p. 1911
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Problem 67. [Some explicit computations in vector bundles over S%.]

Consider the sphere
S ={z= (.. atH eRM . @) 4. 4 @TH2=1)

with its standard C°° manifold structure (cf. [12, p. 3, Ex. 1]), and let (U, y)
be the chart on S¢ given by
1 d

U =25%\{0,...,0,~1)}; W):(”“’i . ”“’7)

I

(a). For d = 2, prove that the vector field ylaiyl on U can not be extended

to a (C*°) vector field on S2.
(b). For d = 3, prove that the vector field

0 0  1-@w)-0+°)" 0
1,3 2 2.3, 1
(y'y y)8y1+(yy +y)ay2+ 5 997
on U can be extended to a (C°°) vector field on S3.

(c). Prove that for d = 2, the section
1

A+ G P

of TY(U) has a unique extension to a (C™) section of T9(S?). Prove also

that the above section defines a Riemannian metric on U, but its extension
to T9(S?) does not define a Riemannian metric on S2.

(d). Let d = 2 and set V = S2\ {(0,0,1)} (recall U = S?\ {(0,0,—1)}). Fix
an integer m, and define the function p: U NV — GL2(R) by

_ (cos(ma(y)) —sin(ma(y))

uly) = <sin<ma<y>> cos(m a(y))
(Thus «a(y) is the argument of the complex number y' + iy?; note that this
number is non-zero for all points in U NV.) Prove that there exists a vector
bundle E of rank 2 over S? which has bundle charts (U, ¢) and (V, ) with
transition function g, that is, so that ¢, = u(p) - ¢p : E, — R? for every
pelUNV. (Hint: Problem B6l may be useful.)

dy' @ dy* + dy* ® dy?)

> , where a(y) := arg(y' + iy?).

Solution:
p. (02
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Problem 68. [More about the pullback of a connection.]

Let f: M — N be a C*™ map; let (E,m, N) be a vector bundle of rank n,
and let D be a connection on FE.

(a). Let (U,x) be a chart for N and let s1,..., s, be a basis of sections in
[(Ejy). Also let (V,y) be a chart for M with V' C f~1(U), and recall that
then syo f,...,s,0f is a basis of sections in I'((f*E)y); cf. Problem 44{(b).
Set d = dimN and d’ = dim M. Let Ffj € C*(U) be the Christoffel

symbols of D with respect to the bases sq,...,s, and %, cee %, and let

ff] € C*°(V) be the Christoffel symbols of f*D with respect to the bases

s1of,...,sp0f and aiyl""’%' Give a formula for Ffj in terms of Ffj!

(b). Let D be a connection on E. For clarity in this problem let us write
dP : Q"(E) — Q"Y(E) (instead of just “D”) for the exterior covariant
derivative corresponding to D; then also write d/ P : Q"(f*E) — Q" T1(f*E)
for the exterior covariant derivative corresponding to the connection f*D on
f*E (ct. Problem [57)). Prove that for every r > 0 there is a unique R-linear
map f*: Q"(E) = Q"(f*F) satisfying

fflrew)=(uo f)® ff(w) for all p € TE and w € Q"(N).
Next prove that for any s € Q" (E),
(@ P)(f*(5)) = f*(dPs).

[Comment: In particular for » = 0 we have f*(u) = po f for all up € TE,
and d” =D : QUE) —» QYE) and d/ P = f*D : QU(f*E) — Q'(f*E). In
this case the above formula says:

(f*D)(f*(s)) = f*(D(s)),
which can be viewed as a (nicer!) reformulation of the formula in Prob-

lem [B7)(a)!]

Solution:
p. 109



Solution:
p. 203
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Problem 69. [Basic about sectional curvature.]

In Lecture #15, Def. 1, prove that K (X AY') indeed only depends on the
2-dimensional plane spanned by X,Y in T,,M.

Problem 70. [Scaling a Riemannian metric.]

Let M be a C*° manifold equipped with a Riemannian metric (-,-), and
let ¢ > 0 be a constant. Let [-,-] be the Riemannian metric on M defined
by [-,:] := ¢(-,-) (that is, [v,s] = c¢(v,w) for any p € M, v,w € T,M).
Prove that the two Riemannian manifolds (M, (-,-)) and (M, [-,]) have the
same Levi-Civita connection and curvature tensor, but that the sectional
curvatures K on (M, (-,-)) and K on (M, [-,]) are related by

K(XAY)=c'K(XAY)
for any p € M and any linearly independent X,Y € T),M.
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Problem 71. [Ricci curvature as average of sectional curvatures.|

(a). Let M be a Riemannian manifold of dimension d. Prove that there is
a constant Cy > 0 which only depends on d such that for any p € M and
X € T,M with || X|| = 1, the Ricci curvature in direction X, Ric(X, X),
equals Cy times the uniform average of the sectional curvatures of all planes
in T, M containing X. Also determine the constant Cy explicitly.

(b). Similarly, prove that there is a constant C’, > 0 such that the scalar
curvature at any point p € M equals C/ times the uniform average of the

Ricci curvatures of all unit vectors in T,,M.
Solution:

Problem 72. [Explicit formula for the curvature tensor in terms of P- 204
sectional curvature.] Let V' be a vector space over R and let

R:VxVxVxV >R

be a multilinear form having the same symmetries as the curvature tensor
field Rm (cf. Lemma 1 in Lecture #14); that is, for all X, Y, Z, W € V:

RX,Y,ZW)=-RY,X,ZW)=-R(X, YW, Z) =R(Z, W, X,Y)
and
RX, Y, ZW)+R(Y,Z,X,W)+R(Z X, Y,W) =0.
Set
K(X,Y):=R(X,Y,Y, X).

Find an explicit formula expressing R(X,Y, Z, W) in terms of the function
K. Note that this gives a proof of a corrected version of [12] Lemma 4.3.3].
Solution:
[Hint: One way to obtain this is by appropriately working through the P- 200
steps in proof of the uniqueness Lemma 1 in lecture #15.]

Problem 73. [Analogue of Schur’s Theorem for Ricci curvature.]

Prove the second part of Theorem 1 in Lecture #15 (=[12, Thm. 4.3.2]);
“if dim M > 3 and the Ricci curvature is constant at each point then M is

: D))
Einstein”. Solution:

p. 208



Solution:
p. 209
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Problem 74. [The pullback of a metric connection is metric.]

Let F: H — M be a C* map of manifolds, let (E, 7, M) be a vector bundle
equipped with a bundle metric (-, -), and let D be a metric connection on E
preserving the bundle metric. Prove that (-, -) in a natural way gives rise to
a bundle metric on F*(FE) (which we may also denote (-,-)), and that the
pullbacked connection F*(D) is metric with respect to this bundle metric.

(Comment: This fact is used in the proof of Lemma 1 in Lecture #16, and
also in Jost, [12, p. 206, lines -5 to -4].)

Problem 75. [Pullback and torsion.]

Let FF: H - M be a C*° map of manifolds and let V be a connection on
TM.

(a). Prove that the map
S :T(TH)xT(TH) = T(F*(TM));
S(X,Y)=(F"V)x(dFoY)— (F*V)y(dF o X) —dF o [X,Y],
is well-defined and C'*°(H )-bilinear. Conclude that S can be identified with
a section in I'(T*H @ T*H ® F*(TM)).
(b). Prove that if V is torsion free then S = 0.
(c). Use the above to give a detailed justification of the identity
V%c' = V% d

appearing in the proof of Lemma 1 in Lecture #16 (and also in Jost, [12} p.
206 (line -4 to -3)]).

Problem 76. [Pullback of curvature.]

(a). Let f: M — N be a C* map, and let D be a connection on a
vector bundle (E,m, N), with curvature tensor R € Q?(End E). Also let
R € Q2(End(f*E)) be the curvature tensor of the connection f*D on f*E.
Prove that for any p € M and X,Y € T),(M),

R(X,Y) = R(df(X),df(Y)) in End(f*FE), = End(Ey(y)).

(b). Use the above to give a detailed justification of the identity

VaVa @(t,s):Vng@(t,s)-l-R

s ot 0s 5t os OS

(@ @) 9e
ot’ s/ 0s

appearing in the proof of Theorem 1 in Lecture #16 (and also in Jost, [12]
p. 208 (lines 4,7,8)]).
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Problem 77. [Interpretation of curvature in terms of parallel trans-
port around a ’square’]

Let D be a connection on a vector bundle (E,m, M) and let F' = Fp be

its curvature. Given p € M, X,Y € T,M and v € E,, prove the following

formula for FI(X,Y)(v): Let n > 0 and let f be a C* function from
(=m,m)? = {(z,y) €R?* : = <,y <n}

to M satisfying f(0,0) = p, df(070)(%) = X and df(o,o)(a%) =Y. For
0 <e<mn,let P, : E, — E, denote parallel transport around the (“square”)
curve

£(t,0) if0<t<e
fle,t—e) if e<t<2e
fBe—tye) if 26 <t <3e
f(0,4e —t) if 3e <t < 4e.
Then

Problem 78. [Constant curvature metrics in normal coordinates.]

Let M be a Riemannian manifold with constant sectional curvature p. Let
p € M and let (U,z) be normal coordinates with center p, and let (g;;(x))
represent the Riemannian metric with respect to (U, z). Prove that for any
z € xz(U)\ {0}:

o sin?(p)2 <5
xixj  sin“(p ||33H)<5 ﬁ) if p>0

]| Pl T x?

12
:EZ:L"J2 sinh (’p,l/szH) <5ij B :EZJEJ2> if p<0.
] o] ] ]

(Verify also that the above expression extends to a C'*° function on all of
x(U), as it should.)

Solution:

p.RI11



Solution:

p. 214

Solution:
p. 216
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Problem 79. [Some relations for (g;;) in normal coordinates.]

Let M be a Riemannian manifold, let p C M, and let (U, z) be a chart on M
which gives normal coordinates centered at p. Let the Riemannian metric
be represented by (g;;(x)) with respect to (U, z). Prove that for every ¢,

9ii,i(0) =0
and for any i # j,
ii,j(0) = g55,i(0) = —2g5,.4;(0).

0
Here g;j ie() := ngj(x)-

[Some hints/suggestions: For symmetry reasons we may assume i, j € {1, 2}
and then it suffices to study g;;(x) for x = (z1,22,0,...,0). One can show
that Jost’s [12, Thm. 1.4.5] (< Problem 23] implies that at any point
x = (x1,22,0,...,0) the vector xlaixl + :1726%2 has length /27 + 23, and
is orthogonal to the vector —azga%l + xla%Q. Now investigate carefully what
these facts imply for the functions g;;(z1,x2,0,...,0) for 4,5 € {1,2}]

Problem 80. [A formula for sectional curvature.]

Let M be a Riemannian manifold, let p C M, and let II be a plane in
T,M (viz., a 2-dimensional linear subspace of T,M). Let D, C T,M be
the open disc of radius r in the plane II, centered at 0. For r sufficiently
small, we know (by Theorem 3 in Lecture #4) that exp,(D,) is an embedded
2-dimensional submanifold of M; call its area A,. Prove that
2
K(II) = lim 12 Lfﬁ
r—0t mr
(The Riemannian metric on exp,(D;) is the one induced from M; cf. Prob-
lem I8 Also the “area” of expp(Dr) is the same as its “volume”; cf. p. 1 in

Lecture #12.) [Hint: The results from Problem [79 may be useful.]
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Problem 81. [On a surface of revolution: geodesics, parallel trans-
port and sectional curvature.]

Let f be a C'* function from R to R<g, and consider a surface of revolution
S :={(z, f(x)cosa, f(z)sina) : z,a € R}.

We take it as knownl] that S is a closed differentiable submanifold of R3, and
that for any real interval J = (a,b) with b < a + 27 the inverse of the map
(z,a) = (z, f(x) cos o, f(z)sina) from R x J to S is a chart on S. Equip S

with the Riemannian metric induced from the standard Riemannian metric
on R3.

(a). Make explicit the ode describing an arbitrary geodesic on S, V54 =0
(cf. p. 9 in Lecture #13), in the (z,«) coordinates. Your answer should be

of the form
i+ % i+ [*]éa +[*]aa =0
& +[*)ad + [ *ia +[*]aa =0,
with each * ” being an explicit expression in z,«, f. Prove also from

this equation that f(x)? - & remains constant along any geodesic. Finally,
describe all geodesics which have x = constant or o = constant.

(b). Given x € R, consider the closed curve ¢(t) = (x, f(z)cost, f(x)sint),
t € [0,27], in S. Describe explicitly the parallel transport of an arbitrary
tangent vector v € T,)S along c.

(c). Compute the sectional curvature of S at an arbitrary point
(x, f(x) cos o, f(x)sin ).

(In particular, where is this sectional curvature positive/negative? Also, as
a consistency check, verify that you get back the known answer for the case

fl@)=vr2—a2 |z|<r.)

5(cf. Problem B0)(a))

Solution:

p. I8l



Solution:
p. 223

Solution:
p.
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Problem 82. [A formula involving V? of a 1-form.]

Let M be a Riemannian manifold and let V be the Levi-Civita connection
on T'M. By the standard definitions of dual and tensor product connections
(cf. Propositions 1,2 in Lecture #10) V gives rise to a connection on any
tensor bundle

T'(M)=TM® - @TMRT*M®--- @ T*M,

S

r times s times
which we also call V. This V is a map from I'T (M) to
3) QYT (M) = T(I7 (M) ® T*M) = [(I7,,(M)).

Prove that for any n € T'(TY(M)), the tensor field
Vi = V(Vn) i D(T3(M))
satisfies
(V2)(X,Y, Z) — (V*n)(X, Z,Y) = n(R(Y, 2)X ).
for all vector fields X,Y,Z € I'(T'M).
(Remark: We stress that the “new” T™M-factor is put last in (B]); thus for
any F € I'(T/(M)) and any w',...,w" € T(T*M), Yi,...,Y, € T(TM),
X e(TM),
(VF)(w', ... ,w" V1,..., Y5, X) = (VxF) (', ..., 0", Y1,...,Y}).

Note also that the connections V : I'(T3(M)) — I'(Ty,,(M)) considered
here should not be confused with the exterior covariant derivative defined
in Proposition 4 in Lecture #10.)

(Hint: The formula can be proved either by expressing everything in local
coordinates using Christoffel symbols, or by working through the definitions
expressing all “V” appearing in terms of the original Levi-Civita connection
V:T(TM) — QYTM).)

Problem 83. [Basic fact on existence of variations of a curve.]

Let M be a C* manifold, let ¢: [0,1] = M be a C* curve, and let Y be a
vector field along c.

(a). Prove that there exists a variation of ¢ with ¢ =Y, and that if Y/ (0) =
0 =Y (1) then this variation can be taken to be proper.

(b). Prove that if vp, v : (—€’,¢') — M are C* curves with v(0) = ¢(0),
4(0) = Y (0), v1(0) = ¢(1), 41(0) = Y (1), then there exists a variation of ¢
with ¢ =Y such that ¢(0,s) = v0(s) and ¢(1,s) = 71(s) for all small s.
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Problem 84. [On proper variations through geodesics.]

Prove that if ¢(¢, s) is a proper variation of a geodesic ¢ through geodesics
(viz., ¢s is a geodesic for every s), then E(s) = E(cs) and L(s) = L(cs) are
constant functions of s.

(Comment: This means that Jost’s sentence in [12] p. 216 (lines 13-14)] is
somewhat misleading; namely the length is always constant on the whole
family, for a proper variation through geodesics.)

Problem 85. [Around Cor. 3 in Lecture #17 ~ Jost’s Cor. 5.2.4.]

(a). Let M = S? with its standard Riemannian metric, and let p € M.
Give an example of a piecewise smooth curve v : [0,1] — T, M such that
(L(ex[pp 0]7)) = ||v(1)]| but  is not a reparametrization of the curve ¢t — ¢-y(1)
te0,1]).

(Comment: This shows that the last statement in Jost’s [I12, Cor. 5.2.4], i.e.
the criterion for when equality holds, is incorrect.)

(b). Use “Gauss Lemma” (= Cor. 2 in Lecture #17 = Jost’s [12] Cor. 5.2.3])
to derive the following strengthening of a result from Problem 23t Let M be
a Riemannian manifold, let p € M, and let D, = T, M ND be the maximal
domain of exp, (cf. Problem 21]). Let (W,y) be a C* chart on T,,M with
W C Dp, which we assume is “polar coordinates” in the sense that

yw) = ul,  vwew,

and

(2 (cw),. ..,y cw)) = (1 (w),. ..,y (w)) whenever ¢ >0, w € W, cw € W.

Prove that at every point § € y(W), the matrix representing the symmetric
bilinear form

(v,w) — (d(exp, oy~ 1);(v), d(exp,, oy H)(w)), v,w e RY,
is of the form

10 0
(his (7)) = 0 h22:(y) hzd:(y)
0 hax(g) - haa(y)

(Comment: As explained in Lecture #17, the above fact can be used to prove
Cor. 3 in Lecture #17, which is [12, Cor. 5.2.4] with a modified criterion for
equality.)

(c). Prove the following alternative criterion for equality in #17, Cor. 3:
“If equality holds, and there does not exist a point conjugate to ¢(0) along
¢, then v must be a reparametrization of the curve ¢t — tv (¢t € [0, 1]).”

Solution:
p. 226

Solution:
p. 276



Solution:

p. 220

Solution:

p. 2300
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Problem 86. [Remark 2 in Lecture #18]
Let ¢ : [a,b] — M be a geodesic and let tg # t1 € [a,b]. Prove that c(tp) and
c(t1) are conjugate along c iff the differential

(deXPC(to))(tl—to)-é(to) : Tc(to)M - Tc(tl)M

is singular.

Problem 87. [On the metric space Cj; of C* curves on M.]

Let M be a Riemannian manifold. Introduce the space Cy; with its metric
d as on p. 3 in Lecture #18.

(a). Prove that d is well-defined, and is indeed a metric on Cy;.
(b). Prove that the metric space (Chs,d) is not complete.

(c). Prove that neither E nor L are continuous on (Cyy,d); in fact for every
c € Cy and 6 > 0, both E and L are unbounded on the open ball Bs(c).

(d). As a small consolation, prove that both E and L are lower semicontin-
uous on (Cyy,d).

Problem 88. [Approximating a non-C* vector field along a curve.]

Let ¢ : [a,b] — M be a geodesic and let Y be a “pw C vector field along ¢”,
i.e. Y is a continuous function Y : [a,b] — T'M such that Y(t) € T, (M)
for all ¢t € [a,b], and such that there exist a finite number of ’break-points’
a=ty <ty <--- <ty = bsuch that the restricted function Y|[tj717tj} is C*°
for each j = 1,2,...,m. Prove that then for every € > 0 there exists some
C° vector field Z along ¢ such that
m—
Zt)=Y({t)  Vtelab\ U —e,tj+e)

and

|1(Z,2) - I(Y,Y)| <e
(Of course here “I(Y,Y)” is well-defined, for example it can be defined as
25 IVt ) iy at)-)
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Problem 89. [Equivalence of definitions of injectivity radius.]

Let M be a Riemannian manifold and let p € M. Let » > 0 be such that
exp,, is defined and injective on the open ball B,(0) in T),(M). Prove that
then exp, g, (o) is a diffeomorphism of B,(0) onto an open subset of M.

(Comment: This proves that the injectivity radius of p can be defined either
as the supremum of all r > 0 for which exp, is defined and injective on
B, (0) C T,(M), as in Jost [12, Def. 1.4.6], or as the supremum of all r > 0
for which expy, g, () is a diffeomorphism.)

Solution:

p. 2311
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Problem 90. [Vanishing derivatives up to order £.]

Let M be a C* manifold and let f € C>*(M), p € M and k € Z>o. We say
that f has vanishing derivatives up to order k at p if for some chart (U, z) for
M with p e U, any 1 <r <k and any j1,...,7, € {1,...,d} (d = dim M),
0 0
oz (%cjf'f =0 at p.
Prove that when this holds, it follows that every chart (U,z) with p € U
has the same property.

Solution:
p. 232
Problem 91. [Geodesics and conjugate points on a perturbed sphere.]

Let S? be unit sphere equipped with its standard Riemannian metric, which
we denote by (-,-). For any function f € C°°(M) which is everywhere
positive, we write S? for S equipped with the Riemannian metric

[va] = f(p) : <U7w>7 Vp € Sda v, W € Tpsd‘

Fix a geodesic ¢ : [0, 7] — S? parametrized by arc length (thus the endpoints
¢(0) and ¢(m) are antipodal points). For k € Z>g, let F, be the family of all
positive functions f € C°°(M) such that for every point p along ¢ we have
f(p) = 1 and f has vanishing derivatives up to order k at p (cf. Problem [00).

(a). Prove that c is a geodesic in S? for every f € Fi.

(b). Prove that for every f € Fs, the following holds in S?: c is a geodesic,
¢(0) and ¢(7) are conjugate along ¢, and there is no point before ¢(m) con-
jugate to ¢(0) along c.

(c). Let U C S¢ be an open set which has nonempty intersection with the
geodesic ¢, and let f be any function in F; which satisfies f > 1 on all S¢
and f(p) > 1 for all p € U \ ¢([0,7]). Prove that then ¢ is a strict local
minimum for L in S? among pw C'° curves with fixed endpoints.

(d). Take U as in part (c), and let f be any function in F; which satisfies
f<lonall S%and f(p) < 1forall p€ U\c([0,7]). Prove that then cis not
a local minimum for L in S? among pw C'° curves with fixed endpoints.

[Comment: It is a standard fact from analysis that there ezist functions f
as in (c) and (d), also in Fj, with k arbitrarily large. It then follows from
(b), (c¢), (d) that in the situation described in the remark immediately be-
low Theorem 1 in Lecture #18 — i.e. when the endpoints of ¢ are conjugate
but there is no previous point along ¢ conjugate to the starting point — one
cannot make any general statement about ¢ being or not being a (strict or

) non-strict) local minimum for L]
Solution:

p. 2331
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Problem 92. [A comparison result for lengths of curves.]

Let My and M be d-dimensional complete Riemannian manifolds such that
My has constant sectional curvature p and the sectional curvature of M
is everywhere < u. Fix points p € M and py € My, and identify both
T,M and T),, M with R? in a way carrying the respective Riemannian scalar
products to the standard scalar product in R?. Take > 0 so small that
exp,, restricted to the open ball B.(0) C R? is a diffeomorphism onto an
open subset of M. Prove that for any pw C'* curve c: [a,b] — B,(0),

L(exp,oc) > L(exp,, oc).
(Here exp,, oc is a curve on M while exp,, oc is a curve on Mp.)

[Hint: Try to prove a stronger statement comparing the norms of d(exp,,).(v)
and d(exp,, ):(v) for any x € B,(0) and v € R?. Here use can be made of
Corollaries 1 and 2 in Lecture #17 and Theorem 1 in Lecture #19 (the
Rauch Comparison Theorem).]

Problem 93. [Focal points (special case).]

Let v : [-n,n] = M and ¢ : [a,b] — M be geodesics on the Riemannian
manifold M, satisfying c(a) = v(0), é¢(a) # 0, and (¢(a),%(0)) = 0. For
T € (a,b], c(1) is called a focal point of - along c if there exists a nontrivial
Jacobi field X along ¢ such that X(7) = 0, and

X(a) € Span(%(0)) and X(a) L 4(0) in T q)(M).

Prove that if there is some 7 € (a,b) such that ¢(7) is a focal point of v
along ¢, then there exists a variation ¢ : [a,b] X (—e,&) — M of the curve
¢ such that c(a,s) € y([-n,n]) and c(b,s) = ¢(b) for all s € (—¢,¢) and
L(s) < L(0) for all s € (—e,e) \ {0} (with L(s) := L(c(-, s)), as usual).

[Hint: If v is a constant point then the result follows from Theorem 1 in
Lecture #18; thus try to extend the proof of that theorem to the present
situation. See also Problem [R3|(b).]

[Comment: More generally one can define the notion of “focal point” for
any submanifold of M (in the place of v above); cf., e.g., [2 p. 23TM].
The general definition looks different from our definition above, however in
the special case which we consider, i.e. that of a submanifold which is a
geodesic, the two formulations can be shown to be equivalent. Note also
that the definition given in Jost, [12 Exc. 5.2], is completely incorrect.]

Solution:

p. 2371

Solution:
p. 239
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Problem 94. [Local isometry = covering map.]
Let M and M be Riemannian manifolds with M complete, and let
T M— M

be a local isometry. Prove that then M is complete and 7 is a covering map.

Solution:

p- 2411 Problem 95. [The Killing-Hopf Theorem.|
Prove the Killing-Hopf Theorem: Let M be an n-dimensional complete,
simply connected Riemannian manifold with constant sectional curvature.
Then M is isometric to R (with its standard Riemannian metric) or a
sphere of radius r» > 0 in R"*! (with its standard Riemannian metric) or

S0l the hyperbolic space H"(p) introduced in [12] Sec. 5.4] (cf. Problem [20]).

olution:

p. 2411
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2. SOLUTION SUGGESTIONS

Problem [Ik For any p € M, let U, be the set of points ¢ € M for which
there exists a curve from p to ¢q. Using the fact that M is locally Euclidean
one verifies that

4) Vp e M : [Up is open].

Next let us note:
(5) Vp,ge M : [UyNU; #0=qeU,).

[Proof: Assume U, NU, # 0; then there is a point ¢ € U,NU,. Now ¢ € U,
means that there is a curve 41 in M from p to ¢/, and ¢’ € U, means that
there is a curve o in M from ¢ to ¢. Then the “product path” of v; and
the “inverse path” of v, [l is a curve in M from p to ¢q. Hence q € U,.]

Now for any p € M, if g € EUp (complement wrt M) then also U, C CUp,
by (@), and Uy is open (by @), and ¢ € U, (immediate from the definition of
U,). Hence every point in EUp has an open neighborhood which is contained
in CU,. Hence CU,, is open (viz., U, is closed).

Hence for every p € M, both U, and (U, are open. Furthermore M equals
the disjoint union of these two sets. Hence since M is connected, either U,
or CUp must be empty. But p € Up; hence CUp = (), i.e. U, = M. By the
definition of U, this means that for every ¢ € M there exists a curve from
p to gq. O

6ywe will discuss these notions in Lecture #6, and the product path in question will be

denoted “y1-7%,”; however it should hopefully be clear already at this point how the curve
in question is constructed; just draw a picture!
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Problem

(a). First assume that M has a countable atlas A. For each chart (U, x) €
A, since z(U) (an open subset of R?) is second countable, we can choose a
base U = Uy ) for the topology of x(U). Then set

u' = Z,[(’U’x) = {x_l(V) Ve U(U@)}.
This is a countable family of open subsets of U. Next let " be the union

of all families Z/{(’U ) A8 (U, ) runs through A. This is a countable family of

open subsets of M. We claim that U” is a base for the topology of M. In
order to prove this, let €2 be an arbitrary open set in M, and let p € €. Take
a chart (U,z) € A with p € U. Then QN U is an open set in U containing
p, and so (2N U) is an open subset of z(U) and z(p) € z(QNU). Hence,
since Uy ) is a base for z(U), there is V € Uw,) such that

z(p) eV Cz(QNU).
Then = 4(V) e U’ Cc U” and
pez ' (V)cQnU cQ.
This proves that U” is a base for the topology of M. Done!
We now prove the opposite implication. Thus assue that M is second

countable; let U be a countable base for the topology of M. Also let A be
the family of all charts on M; this is an atlas for M. Set

U :={U €U : there is some z: U — R? s.t. (U, z) € A}.
We claim that U’ covers M, ie. UyeyU = M. To prove this, take an
arbitrary point p € M. Then there is some chart (U,z) € A with p € U,
and since U is a base for M there is V € U such that p € V C U. Now
(V,z)y) is also a chart for M (since the restriction of a homeomorphism to
an open subset is itself a homeomorphism onto its image), i.e. (V, x‘v) €A,

and thus V € U’. Hence U’ indeed covers M. It follows that if for each
U € U' we choose one map zy : U — R such that (U, zp) € A, then

{(U,:EU) : UGZ/[/}

is an atlas for M. This atlas is countable since U’ is countable (since U’ C U).
Done! O

(b). By the notes to Lecture #1, this is clear from part (a). O
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Problem Bk Let M be a connected topological space for which every
point has an open neighborhood U which is homeomorphic to an open subset
Q of R? for some d € Z>; (which apriori may depend on U). Note that we
actually don’t need to assume that M is Hausdorff for the following argument
to work.

For each d € Z>1, let Fy be the family of all open sets U C M which are
homeomorphic to an open subset of R?. Then the assumption on M implies
that

(6) M:dG(U U>.

=1 UeFy

Using Brouwer’s Theorem on invariance of dimension, we now have:
(7) Vd#dlezzli VU € Fq, VeFy: UNV =0

[Detailed proof: Take such U, V and set W := UNV. Note that W is an open
subset of both U and V. Now U € F; implies that U is homomorphic to an
open subset of R%; this homeomorphism then restricts to a homeomorphism
of W to a (smaller) open subset of R%. Similarly V' € Fy implies that W is
also homeomorphic to an open subset of R% . Hence by Brouwer’s Theorem
on invariance of dimension, using d = d’, we must have W = (), qed.]

The property (7)) implies that the unions Uyer,U are pairwise disjoint
for d = 1,2,.... Also each such union is an open set, since it is a union of
open sets. Hence ([0]) expresses M as a union of disjoint open sets. But M
is connected; therefore Uyez,U must be empty for all except (at most) one
d, say dp. This means that F; = {0} for all d # dy, and this implies the
desired result. O

Problem [ Let the dimension of M be d. Let A be the given C*° atlas,
and let A’ be the family of all charts which are compatible with every chart
in A. Let us start by proving that A" is a C* atlas. Clearly A C A’ and
thus the charts in A’ cover M. Thus it remains to prove that any two charts
in A" are C* compatible. Thus consider any two charts (U, ), (V,y) € A’;
we need to prove that the map

(8) yor L:z(UNV)—=yUNV)cR?

is C*°. (It is clear that that map in (§]) is a homeomorphism, since (U, x)
and (V,y) are charts.) Take p € UNV; it suffices to prove that there is some
open neighborhood Q C z(UNV) of x(p) such that (yoz~')q is C*. Since
A is an atlas, there is some chart (W, z) € A with p € W. By assumption
both (U, z) and (V,y) are compatible with (W, z); hence both the maps

9) zox L ix(UNW) — 2(UNW)
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and
(10) yoz l:z2(VNW)—=y(VNW)
are diffeomorphisms. Now set

Q:=x(UNVNW).

This is an open subset of z(U), since UNV NW is an open subset of U and z
is a homeomorphism. Restricting the diffeomorphisms in (@) and (I0)) to the
open subsets Q and z(U NV N W), respectively, we obtain diffeomorphisms

(11) zox L Q= 2UNVAW)
and
(12) yoz L:z2(UNVAW)=yUnVNW).

It follows that the composition of these two maps is also a diffeomorphism,
from Q onto y(U NV NW). But this composition equals (y o x_l)m. Hence
we have proved, in particular, that (y o x_1)|Q is C°°. This completes the
proof that A’ is a C° atlas.

It is immediate from the construction of A’ that A’ is C™ structure, i.e. a
mazimal C* atlas. (Indeed, suppose that A” is any C* atlas with A" > A’.
Let (U,z) € A”. By definition of “atlas”, (U,x) is compatible with every
chart in A”; and A C A" C A”; hence (U, x) is compatible with every chart
in A, and therefore (U,z) € A’, by the definition of A’. Hence we have
proved that A” C A’, and so in fact A" = A')

It remains to prove that A’ is the only C*° structure on M with A C A’.
Thus assume that A” is an arbitrary C* structure on M with A c A”.
Since A" is a C*° atlas, every chart (U,z) € A” is compatible with every
chart in A”; in particular (U, z) is compatible with every chart in A, and
thus (U,x) € A, by the definition of A’. Hence A” C A’. But this implies
that A” = A’, since A” is a maximal C* atlas. This completes the proof.
O



PROBLEMS; “RIEMANNIAN GEOMETRY” 49

Problem

(a) One simple way to construct such a set H is as follows. Given any
real number 0 < ¢ < 2, let

tr if re(0,1]
fi:(0,1) — (0,1), filr) =Lt -1+ @2—t)r if re (s, 3]
r if re(3,1).

One verifies that f; is continuous, strictly increasing, and bijective, with
inverse

t=1r if 7€ (0,%]
f1:(0,1) — (0, 1), Ay =@t r+i1-1) if re (L,
r if re(3,1)

which is also continuous and strictly increasing. (These facts are most easily
verified by simply drawing the graph of fi; this graph is a union of three
line segments: one from (0,0) to (4, 4t) one from (4, 4t) (%, %), and one
from (3, 3) to (1,1).) Hence f; is a homeomorphism of (0,1) onto itself.

Next define h; : B1(0) — B;(0) through
0 ifx=0
ho () —
O AL, g
T

Note that

1he(2) || = fell=l)), Vo € Bi(0) \ {0};

and recall fi(r) € (0,1) for all »r € (0,1); hence h; is indeed a map into
B1(0). Clearly h is continuous in B;(0)\ {0}; but we also have ||h¢(x)|| — 0
(i.e. hy(x) tends to the origin) as z — 0, since f(r) — 0 as r — 07; therefore
ht is continuous in all B;(0). Similarly one verifies that

N 0 if2=0

ha(w) = 4 f ()

]

defines a continuous map hy : By (0) — By (0) satisfying ||h;(z)|| = f7(||=])
for all z € B1(0) \ {0}. Now we have

hi(he(z)) = hy(hy(z)) =2,  Va € By(0).
(Proof: This is immediate for z = 0. Now assume z # 0. Then

- ft(”ht( )H) ft(ft (Hl’”))
hi(he(x tﬂ?—ihtﬂfzit
@) == ol "= T M = e

The proof of hy(hy(z)) = z is completely similar.) Hence hy and hy are both
bijections of By (0) onto B;1(0), and they are each other inverses. Since they

x ifx#0.
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are both continuous, it follows that hy is a homeomorphism of B1(0) onto
itself.

Note also that h; satisfies hy(z) = = for all x € B1(0) \ By/2(0), since
fe(r)y=rforre [%, 1).
We now let H be the family of all these homeomorphisms hy:
H:={ht : t €(0,2)}.

This family clearly satisfies all the requirements, if we can only prove that for
any two t1 # to € (0,2), the homeomorphism hy, o ht_zl is not C*°. (Indeed,
this will in particular imply that hy, # hy, for all ¢; # t2 € (0,2), and so the
family H is uncountable.)

Thus let t1 # t9 € (0,2) be given. Now for all x # 0 we have:

1)) — fu (f (lz]) ft§1(||$\|)x B ftl(ftgl(‘|$”))x

Using the explicit formulas for f; and ft_1 given above, we compute

tity e if e (0,1t
fo(f'(r) =S 3t — 1) + 3= (r + 152) if r € (32, 3]
T if re(3,1).

From this we see that the (continuous) function fi, o fy, : (0,1) — (0,1) is
not C'*°; for example at r = % the function has left derivative g:g and right
derivative 1, and these are not equal, since t; # t5. (Similarly the function
has different left and right derivatives at r = %tg.) From this it follows that
the function hy, o ht;l : B1(0) — B1(0) is not C*°. (Indeed, if hy, o ht;l were
C™ then, writing e; for the standard unit vector (1,0,...,0) € RY, it would
follow that the function

(=1,1) = (=1,1), T htl(hgl(rel)) -eq,
were C'*°; but it follows from (I3)) that htl(htgl(rel)) cep = ftl(ftgl(r)) for

r € (0,1), and so we would have a contradiction against the fact that f;, o fi,
is not C*°.) O
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(b). Let A be a fixed C*° structure on M (it exists by assumption). Fix
some chart (V,y) € A. Let yo be a point in y(V'); then since y(V') is open,
there is some r > 0 such that B,(yo) C y(V). Set U := y~ (B, (yo)); this
is an open subset of V', and (U, yy) € A, since A is a maximal C* atlas.
Define the map

z:U—=RY a(p) = %(y(p) — %0)-

Then (U,x) € A, since = equals y;; composed with a diffeomorphism of
B, (yo) onto B1(0). Note that z(U) = B;1(0). From now on we keep this
chart (U,x) fixed.

Now for any given homeomorphism h of B;(0) onto B;(0) satisfying
h(q) = q for all ¢ € B1(0) \ By/2(0), we define a function ¢, : M — M

as follows:
p if pg¢U
onle) = {x—1<h<x<p>>> it pe .

We claim that ¢y, is continuous. It is immediate from the definition of ¢,
that the restrictions of ¢ to U and to M \ U are both continuous. Hence
since U is open (and so M \ U is closed) it now suffices to verify that if
P1,D2, - - - is any sequence of points in U such that p; — p € M\U as j — oo,
then ¢y (pj) — ¢n(p). However the fact that (p;) tends to a point outside U
implies that (p;) has only finitely many points in any fixed compact subset

of U; in particular for all sufficiently large j we have p; ¢ z~ (B /2(0)),
and thus h(z(p;)) = z(p;) and pn(p;) = p;j. Also @u(p) = p since p ¢ U,
and it follows that ¢n(pj) — ¢n(p). This completes the proof that ¢y, is
continuous.

Furthermore, one verifies immediately that ¢ is a bijection with inverse
map equal to ¢p-1 : M — M, and the above argument applies also to ¢;,-1,
showing that ;-1 is continuous. Hence ¢y, s a homeomorphism of M onto
itself.

Next we prove:

Lemma 1. If A is a C* structure on M, and ¢ is a homeomorphism of
M onto itself, then also

Ay ={(e 7 (V),yop) : (Viy) € A}

is a C™ structure on M. Let us write (M, A) for the C* manifold given by
A, and (M, A,) for the C* manifold given by A,. Then ¢ is a diffeomor-
phism of (M, A,) onto (M, A).

(Remark: The whole lemma can be seen as obvious. Namely, (M, A,) can

be seen as “what one gets from (M, A) after changing names on all points
7 '

according to ¢”. Viewed in this way, ¢ “is identity map”!)
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Proof. Let T be the family of all charts on the topological manifold M. Note

that for any (V,y) € T we have (o~ (V),y o @) € T; hence we have a map
T =T, V)= (' (V)yoyp)

In fact @ is a bijection, with ®~1(V,y) = (o(V),y o p~1). Note that

(14) Ay ={2(V,y) : (V,y) € A}.

Next we note that for any two charts (V,y),(W,z) € T, we have the
equivalence

[(V,y) and (W, z) are C* compatible]

(15) < [®(V,y) and ®(W, z) are C°° compatible].
Indeed, by definition (V,y) and (W, z) are C*° compatible iff the map
(16) zoy Tl y(VNW)—=2(VNW)

is a diffeomorphism (it is always a homeomorphism), and similarly ®(V,y)
and ®(W, z) are C*° compatible iff the map

(17)  zopo(yop)™: (yop)le (V)N (W)
= (zo @)@ (V)N ' (W))

is a diffeomorphism. However, o= 1(V) N Y (W) = ¢~ 1(V N W), and now
by inspection one verifies that the two maps in (I6) and (7)) are the same.
Hence the equivalence in (IH]) holds.

Clearly the charts in A, cover M, since the charts in A cover M. Note
also that any two charts in A, are C* compatible; this follows from (I4))
and (I3) and the fact that A is a C* atlas. Hence A, is a C*° atlas. In fact
(I4) and ([I5]) show that for any chart (V,y) € T, if (V,y) is C*° compatible
with A, then ®71(V,y) is C*° compatible with A; hence ®~1(V,y) € A
since A is a mazimal C* atlas, and so (V,y) € A,. Hence A, is a maximal
C* atlas on M, i.e. A, is a C™ structure on M.

It remains to prove that ¢ is a diffeomorphism of (M, .A,) onto (M, A).
For this, our task is to verify that for any (V,y) € A, and any (W, z) € A,
the map

zopoy Tt iy(VNe (W) = 2(V g™ (W)

is a diffeomorphism. However (V,y) € A, means that (V,y) = ®(V,y) =
(0= Y(V),7 o ) for some (V,7) € A, and so

1 1

zopoy Tt =zopo(Fop) t=z0f"

on the set
y(V N (W) = 3(e(V N (W) = J(e(V) N W) = G(V N ).

Thus, our task is to verify that zopoy ™! is a diffeomorphism from 17(170 W)

onto z(V N W), and this holds since (V,y) and (W, z) are charts in A. [
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Now take H as in part (a), and form the family
F:={A,, : heH}.

By Lemmalll each Ay, in F is a C*° structure on M, and all C*> manifolds
defined by these C'*° structures are diffeomorphic. Hence it now only remains
to prove that Ay, # Ay, forany two hy # ho € H. Let us write Ay = Ay, |
and Ay = A¢h2 for short.

Recall that (U,z) € A; hence (cpgll(U),a: o p,) € A; and (gp,‘nl(U),x o
©h,) € Az. Note that the map
(Town)o(@own,) ™t (2own)(@,) (V) = (xoen)(e;, (U))
is the same as
Z 0 Qp, O (’p;; ox L B1(0) — B41(0),
and by the definition of ¢y, this is the same as
hiohyt:  Bi(0) — Bi(0),

which is not C°°. Hence the two charts (cpﬁll(U),a: o ¢p,) and (gpgzl(U),x o
©n,) are not C* compatible, and therefore A; # As. O
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Problem All this is “completely obvious” once one understands the
basic machinery with (C°°) atlases. Let us go through the details:

(a). Here we are talking about a new type of object: “a (not necessarily
connected) C* manifold”. The definition should hopefully be obvioud] ...
Namely: A “(not necessarily connected) C°° manifold” is a topological space
M such that every connected component of M is a C°° manifold!

We now solve the given problem. Note that every connected component
of U is also an open subset of M. Hence if we can prove that every connected
open subset of M has a natural structure of a C* manifold, then it follows
that U has a natural structure of a (not necessarily connected) C'* manifold,
and so we will be done.

Thus from now on assume that U is a connected open subset of M. Let
the dimension of M be d. We endow U with the restricted topology; then
U is a connected Hausdorff space.

Let A be the C° structure of M. Thus A is a maximal C* atlas on M.
Set

A ={(V,z) : (V,x) e A, V CU}.

We wish to prove that Ay is a C* atlas on U. Clearly every (V,z) € Ay
is a chart on U and these charts are pairwise C'°° compatible, since A is
a C° atlas. Hence it remains to prove that the charts in Ay cover U.
Take p € U. Then there is a chart (V,z) € A with p € V. Now note that
also (V NU,zjyqy) is a chart on M, and (V N U, zyny) is C°° compatible
with every chart in A since (V,z) is C* compatible with every chart in
A. Hence, since A is maximal, we have (V N U,zjyny) € A. Thus also
(VNU,zyny) € Ay, since VU CU. Also of course p € VN U. Hence
Ay contains a chart which contains p. Since this is true for every p € U, we
conclude that the charts in Ay indeed cover U. Hence Ay is a C™° atlas

on U, and so determines a unique C'*° structure on U (cf. Problem []). B

It remains to prove that U is paracompact. This is equivalent to proving
that U is second countable (cf. the notes to Lecture #1). However this is
clear from the fact that M is second countable; indeed it is easy to prove that
any open subset of a second countable topological space is second countable.

O

(b), (¢) ... we leave this to the reader ... (Note that the first part of (c)
is immediate from (b), since fi; = f 01i.)

In the literature it varies whether one defines a “manifold” to always be connected.
However recall that in our course, we do require every manifold to be connected!
8(In fact one can show that Ay is itself a C* structure on U.)
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Problem [Tt

(a) Let W = M \ supp(f); this is an open subset of M, and WUU = M.
We have fji; € C°°(U) by assumption. also fir = 0; hence fjyr € C*°(W).
(Cf. Problem [0 regarding the fact that U and W are C'* manifolds; hence
the function spaces “C>°(U)” and “C°°(W)” are defined.) Hence every point
in M has an open neighbourhood in which f is C*°. Hence by Problem [6(c),
feC>®(M).

(b) Let K = supp(f); by assumption this is a compact subset of U.
We claim that Supp(f) = K; if we prove this then the desired statement
f € C*(M) follows from part (a). Note that K is a compact subset of M
(since “compactness is an absolute property”; for example, use the fact that
the inclusion map i : U — M is continuous, and the image of any compact
set under a continuous map is compact). Hence K is a closed subset of M.
Also note that {p € M : f(p) # 0} C K, by the definitions of f and K.
Hence supp(f), being the closure of {p € M : f(p) # 0} in M, is contained
in K. The opposite inclusion is obvious; hence Supp(f) = K. Done! O

(c). This is a special case of part (d).

(d). Let {(Ua,xa)} be a C™ atlas on M. Let (V3)gep together with
(p8)pep be a partition of unity subordinate to (Uy), as in [12, Lemma 1.1.1].
For each 8 € F' we write Kg := supp pg; this is a compact set contained in
Vs.

Let us start by noticing that for each § € B, there exists a C*° function
fs : Vg — [0,1] which has compact support contained in Vg N U and which
satisfies fgnr, = 1. Indeed, since (V3)gep is a refinement of (Uy,), for our
given 3 € F' there exists some « such that Vg C U,. Using now the chart
(Uq, 74) to translate the problem into Euclidean coordinates, we are reduced
to proving that for any compact set K and open set U with K CU C RdN,
there is a C™ function f : R* — [0, 1] with compact support contained in U
and which satisfies f|1~( = 1. For this, cf., e.g., [10, Thm. 1.4.1] (one considers

the convolution of the characteristic function of K and a “bump” function
with sufficiently small support).

For any € B such that K N V3 = () we may of course choose the above
function fg to be identically zero; from now on we require this to hold.
NextforeachﬁGFwedeﬁnefg:M%RbyﬁzfginVB andfgzo
outside Vg; by part (a) we then have fg € C*°(M). We next set
f=>_ vafs

BeB

Clearly f € C*°(M). Also for every p € M we have f(p) > 0 and f(p) <
dep pp(p) < 1.
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Fix an arbitrary point p € K. We have > 5.5 ¢p(p) = 1 by the defining
property ot (¢g). Also fz(p) =1 for every f € B with p € Kz (since we
are assuming p € K), and thus fg(p) = 1 for every 8 € B with ¢3(p) # 0.
Hence f(p) = > sep cpg(p)fﬁ(p) = > pepPp(p) = 1. We have thus proved
that fix =1.

In order to prove that f has compact support, we will use the requirement
from above that fg =0 (and so fg = 0) whenever K N V3 = (). This means

that the sum defining f may just as well be restricted to the following subset
of B:

F:={peB: KnVg#0}.

Now since (V) is locally finite, F' is a finite set. (This is a standard fact; here
is a detailed proof: Since (V) is locally finite, for every p € M we can choose
— using the axiom of choice — an open set U, C M such that p € U, and
#{B € B : VgNU, # 0} < oo. Since K is compact, there exists a finite subset
F' C K such that K C UpepUp. Now for every 3 € F there is some p € F’
such that V3 N U, # 0; hence #F < ZpeF, #{BeB : VgnU, # 0} < .
Done!)

It follows from f(p) = > 5cp SOB(Z))fﬁ(p) =D ger SOB(I))JFB(Z)) that
supp(f) € |J supp(f5) = | supp(fs)

BeEF BEF

(for the inclusion one uses the fact that Ugep supp(fg) is a closed subset of
M; for the equality see part (b)). The last set is a finite union of compact
sets, hence itself compact. Also by construction, supp(fg) C U for each
B € F. Hence supp(f) C U, and also since supp(f) is closed and contained
in a compact set, supp(f) is itself compact.

Hence the function f has all the desired properties. O

(e) Let g : M — [0,1] be a function as in part (d), i.e. g is C*°, has
compact support contained in U, and satisfies g = 1. Set

_Jap)f(p) ifpelU
fl(p)’_{o it peU.

Then clearly fix = fix. Also the function p +— g(p)f(p) is a C> function

U — R with compact support, and f; is the same as “f in part (b), but
starting from the function p — ¢(p)f(p) on U”. Hence f1 is C*°, by part
(b). O
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Problem [8l

(a). We endow M x N with the product topology (viz., a subset of M x N
is open iff it can be written as a union of sets of the form U x V with U C M
and V C N). Then M x N is Hausdorff and connected. (We leave the details
to the reader...) We will verify at the end that M x N is also paracompact
(according to Wikipedial the product of to general paracompact topological
spaces need not be paracompact; thus we need to make use of the fact that
M, N have more structure).

Let the dimensions of M and N be d and d’, respectively. Let A be a
C* structure on M and let B be a C'°° structure on N. For any charts
(U,z) € Aand (V,y) € B, U x V is an open set in M x N, and we write
(z,9) [ for the map

(z,y) : UxV =R RY =R (2,1)(p,q) := (2(p), y(q))-

This map (x,y) is in fact a homeomorphism from U x V onto z(U) x y(V)
(which is an open subset of R? x RY).

[Outline of proof: (z,y) is clearly a bijection from U x V onto z(U) xy(V).
We leave it to the reader to verify — or recall from basic point set topology
— that (z,y) is continuous. Similarly the inverse map, (z,y)~* = (z=1,y7!)
is continuous since 2! and y~! are continuous.]

Hence for any charts (U, z) € A and (V,y) € B, we have that (UxV, (z,y))
is a chart on M x N. Now set

C:={UxV,(z,y) : Uz)eA (Vy) €B}.
This is clearly an atlas on M x N.

Let us now verify that M x N is paracompact. By the notes to Lecture
#1, with reference to math.stackexchange.com/questions/527642, it suffices
to prove that M x N is second countable, and this is a simple consequence of
the fact that M and N are second countable. Indeed, let /s be a countable
base for M and let Uy be a countable base for IV, and set

U={UxV : UeclUy, VelUy}.

”

INote that there is a glitch between this notation “(x,y)” and the notation “(f,g)
used in part (¢). Let us discuss this carefully in the abstract setting of maps between
sets: Thus if A, B1, Be are three sets and a: A — By and 3 : A — By are maps, then we
define the map “(a, 8) : A — B1 X B2” by (o, 8)(p) := (a(p), B(p))”. This is the notation
which we use in part (c), and it is also the standard notation for “category theoretical
product”; cf. 'wikipedia. On the other hand if A;, A2, By, B2 are sets and v : Ay — B
and § : A2 — B are maps then we define the map [y,0] : A1 X A2 — Bi X By by
v, 8](p,q) == (v(p),d(q)). The “(x,y)” which we use here in our solution to part (a) is
this constructions; we use the notation “[-,-]” in this footnote for clarity, but in practice
there is no problem to use “(-,-)” for both, and it is also quite standard. Note that the
two constructions are related by the simple relation [y, ] = (y o pry,d o pry); indeed see
part (d) of the present problem.


https://en.wikipedia.org/wiki/Paracompact_space
https://math.stackexchange.com/questions/527642/
https://en.wikipedia.org/wiki/Product_(category_theory)
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Then U is countable. We claim that I/ is a base for M x N. To prove this,
let W be an open set in M x N, and let (p, q) be a point in W. Then, by the
definition of the product topology on M x N, there exist open sets U’ C M
and V' C N such that (p,q) € U' x V' € W. Next, since Uy and Uy are
bases, there exists U € Uy with p € U C U’ and there exists V' € Uy with
qeV CV'. ThenU xV €U and (p,q) € U x V.C W. The fact that such
a set exists in U for any given W, p as above proves that I/ is indeed a base
for M x N. Hence M x N is second countable.

Finally, we claim that C is a C°° atlas. To prove this we consider an
arbitrary pair of charts in C, say (U x V, (z,y)) and (W x £, (r, s)), where
(U,z),(W,r)) € Aand (V,y), (2, s) € B. We have to prove that the map

(r,s) o (z,y) " : (2,9)(U x V) = R? x RY = R4+

is C°°. However this map equals (roz~!,soy~!), and this map is C*° since

both r o 27! and s o y~! are C*°. (Indeed, recall that by definition a map
f from an open subset D C R™ to R™ is C*° if and only if, when writing
f(2) = (fi(2),..., fu(2)) for z € D, each “component” map f; : D — R is
C*>. When applying this to f = (roz™1,soy™1), each component f; is in
fact a component of either 7 o z7! or s o y~!, hence C*.) Hence C is a C*
atlas on M x N, and so determines a unique C* structure on M x N (cf.
Problem []).

Hence M x N is a C°° manifold.

(b). Let the C*° atlases A, B,C be as in part (a). In order to prove that pr,
is C'*° we have to prove that for any charts (W, z) € A and (U XV, (z,y)) € C
(with (U,z) € A and (V,y) € B), the map

zopryo(@,y) ™ (2. (U x V) piT (W) = 2(W) C R?
is C>°. We may here note that (U x V) Npr; /(W) = (UNW) x V. But the
above map equals:
(18) zopryo(z,y)t = (zox) o py,

where p; is the projection map R4 = R4 x RY — R% The map zo 2z~ *
(from z(U N W) to z(W)) is C since (U,x),(W,z) € A and A is a C*
chart. The map p; is obviously C*°. Hence the composed map in (18] is
C°°, and we are done.

The proof that pry is C*° is completely similar. O
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(c). Let the dimensions of M, Ny, No be d, dy, da, respectively. Let A, Ay, Ay
be C'*° structures on M, N1, No, respectively, and set

A= {(UxV,(z,y) : (Uz)€ A, (V,y) € As}.
By part (a), A is a C™ atlas on Nj x Ny. Our task is to prove that for any
charts (W, z) € A, (U,z) € Ay and (V,y) € As, setting

W= WA (f,9) (U x V),

the map
(19 (@yo(figos 't 2(W) = (zy)(Ux V) CRIT®
is C'*°. Now we compute:
(20) (z,y)o(fig)ozt =(xofortyofor
or, in other words, for all a € 2(W') C R¢:

(z,9)0 (f,9) 027 (@) = (2(f(z7H (@), u(F (=7 ()

in R% x R% = RU+4%  However the two maps zo foz! and yo foz™!
are C* since f and g are C*° and A, A1, A are C™ atlases; hence also
the map in (I9), 20) is C* (indeed, this is a basic fact about C'°° maps
between open subsets of Euclidean spaces; cf. the argument at the end of
our solution to part (a)). This completes the proof. O

(d). This is immediate from parts (b) and (c) since the map in question
equals

(21) (f opry,gopry),

where we use the “(-,-)” notation from part (c), and pry, pry are the projec-
tion maps pry : My x My — M; and pry : My x My — M.

[Detailed explanation (cf. also footnote @ above): Write M := M; x My;
then f opr; is a C*° map M — Ny, by part (b) and since any composition
of C* maps is C'*°. Similarly g o pry is a C°° map M — N,. Hence by part
(¢), (fopry,gopry) isa C>® map M — Ny x Na. And this is indeed the
map which we are interested in, since for every (p,q) € My x My = M we
have:

(fopry,gopra)(p,q) = (f opri(p,q), g o pra(p, q)) = (f(p), 9(q))-
Donel] O
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Problem [0l

(a). ~ is reflexive since Id € I'. To see that ~ is symmetric, assume
p ~ @; then there is v € I" s.t. 7(p) = ¢; but then v~ € ' and v~ 1(q) = p;
hence ¢ ~ p. Finally let us prove that ~ is transitive. Assume p ~ ¢ and
q ~ r. Then there exist 7,7 € I such that v(p) = ¢ and 7/(¢q) = r. Then
¥ ~(p) =r, and 4’y € T'. Hence ~ is transitive. Done! O

(b). The fact that the definition gives a topology on I'\M is immediate
if we note that “r~! respects intersections and unions of sets”, i.e. for any
family {U,} of subsets U, C T'\M we have 7~} (UaUqs) = Uam H(U,) and
71 (NaUs) = Nam 1 (U,). (This is in fact a property of the inverse of any
map. Here we use it for finite intersections and arbitrary unions.) We also
use the fact that 771(0) = () and 7#—}(I'\M) = M, both of which are open
in I\ M.

Note also that it is immediate from the definition of the topology on I'\ M
that the projection map 7 : M — T'\M is continuous.

We next prove that I'\ M is Hausdorff. This is considerably more difficult.
Thus consider two distinct, arbitrary points in I'\M, say [p] and [q], where
p,q € M. Since M is locally Euclidean we can choose open sets U,V C M
such that p € U, ¢ € V, and U and V are compact. Now since I' acts
properly discontinuously, the set

F={yel :vU)NV #£0}

is finite. (Indeed, F is contained in {y € T' : y(K)NK # (0} for K := U UV,
and K is compact.) Now for each v € F' we have v(p) # ¢ (since [p] # [q]);
hence since M is Hausdorff, there exist open sets V., W, such that ¢ € V,,
v(p) € W, and Vo, N W,, = 0. Set U, := v~ 1(W,); then p € U,, and U, is
open. Set

Uy =U N (ﬂ Uy>; Vii=V N (ﬂ VV).
VEF vEF

Then U; and V; are open sets in M (since F is finite), and p € U; and
q € V1. We claim that

(22) Vyerl: ~(Ur) NV = 0.

To prove this, assume the opposite, i.e. yv(Uy) N Vy # 0 for some v € T.
Using U; C U, Vi C V, and the definition of F, it follows that v € F. Using
Ui C Uy, Vi C Vy it then follows that v(U,) NV, # 0, i.e. W, NV, # 0,
contradicting our choice of V,, W,. Hence (22]) is proved.

Now set

(23) Uy :=7(Uy); Vo :=m(V7).
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These are open subsets of I'\M! (Proof: One verifies that 71 (Us) =
Uyery(Uz); and this is a union of open sets, hence open (in M). There-
fore Us is open in I'\M. Similarly Us is open in I'\M.) Furthermore, (22])
implies that Uy N Vo = (). Hence we have proved that T'\ M is Hausdorff.

Next we prove that I'\ M is connected; in fact we prove that I'\ M is path-
connected (this trivially implies connectedness). Consider any two points
in I\ M, say [p] and [q] with p,q € M. Since M is path-connected (cf.
Problem [II), there is a curve v : [0,1] — M with v(0) = p and (1) = ¢. But
then m o : [0,1] — I'\M is a curve from 7(p) = [p] to m(q) = [¢]. Hence
I"\M is path-connected.

Next we will prove that I'\ M is locally Euclidean. We say that a subset
U C M is injectively embedded in I'\M if the restriction m;; is injective.
Let Z be the family of open sets in M which are injectively embedded in
I"\M. Let us prove:

(24)
YU eZ: [n(U)isopen and 7y is a homeomorphism from U onto m(U)].

Take U € Z. Clearly 7y is a bijection of U onto 7(U). We have also noted
that 7 is continuous. Furthermore 7 is an open map, i.e. maps any open
subset of M to an open subset of I'\M; this is shown by the argument
below ([23)). Using these facts it follows that 7(U) is open and 7y is a
homeomorphism from U onto w(U), i.e. ([24)) is proved. Next we claim:

(25) 7 cover M; that is, U U=M.
Uel

[Proof: Let p € M. By a slight modification of the construction we used
when proving that I'\M is Hausdorff, we are going to construct an open
neighborhood of p in M which is injectively embedded in '\ M. Choose an
open set U C M containing p such that U is compact. Then the set

F:={yel : vU)NU # 0}

is finite, since I" acts properly discontinuously on M. Take any v € F'\ {Id}.
Then ~(p) # p, since I' acts freely on M. Hence there exist open sets Uy, V,
such that p € Uy, v(p) € V,, and U, NV, = 0. Set

Uy:=Un ( ﬂ o, ﬂ’y‘l(VV))>.
vEF\{Id}

Then U is an open set in M (since F' is finite) and p € U;. We claim that Uy
is injectively embedded in T'\M, i.e. U; € Z. Indeed, assume the opposite.
Then there exist two points ¢ # ¢’ € Uy with [¢] = [¢'], i.e. 7(¢) = ¢ for
some v € I'. 'We have v # Id since ¢’ # ¢. Also ¢’ € v(Uy) N Uy, thus
v(U) NU; # B and so (using Uy C U) v € F. But now by the definition
of Ui, ¢ € Uy implies g € U, and v(q) = ¢’ € U, implies ¢ € V,,. Hence
U, NV, =0, contradicting our choice of U, V,. This proves that U; € Z.]
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Now to prove that I'\M is locally Euclidean, consider an arbitrary point
in I'\M, say [p] with p € M. By (25]) there is a set U € Z with p € U. Also,
since M is a topological manifold, there is a chart (V,x) with p € V. Then
also (U NV, zyny) is a chart on M. It follows from (24)) that myqy is a
homeomorphism from U NV onto the open set m(U NV) C I'\M. Hence
z o (myny) ! is a homeomorphism from (U N V) onto an open subset of
RY. The fact that every point [p] in T'\M has such an open neighborhood
which is homeomorphic to an open subset of R? proves that I'\ M is locally
Euclidean.

It now only remains to prove that I'\M is paracompact. Since we have
proved that '\ M is Hausdorff and locally Euclidean, it actually suffices to
prove that I'\ M is second countable. (Indeed, cf. the notes to Lecture #1,
with reference to math.stackexchange.com/questions/527642.) However this
is quite trivial, using the fact that M is second countable, and the fact that
m: M — I'\M is open and continuous. Indeed, let & be a countable base of
M (as a topological space). Set

U ={rU) : UeU}.

This is a countable family of open sets in I'\M, since 7 is open. We claim
that U’ is a base for T\M. To prove this, take an arbitrary open set V C
I'\M. Then 7~1(V) is an open set in M, and since U is a base for M there
is a subfamily V C U such that 71 (V) = UyepU. Applying 7 to each point
in this set identity we obtain 7(7~1(V)) = Uyeyn(U). But n(z=1(V)) =V
(since 7 is surjective). Hence V' = Upeyn(U), and this means that V' is a
union of certain sets in &’. Hence we have proved that U’ is a (countable)
base for I'\ M, and hence I'\ M is second countable. (]


https://math.stackexchange.com/questions/527642/
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(c). Let A be the C* structure on M. Set
A = {(n(U),z 0 (W‘U)_l) : (U,x) e A, U €I},

Using (24) we see that each element in A’ is a chart on I'\M. We wish to
prove that A’ is an atlas on I'\M, i.e. that the charts in A’ cover I'\ M.
For this consider an arbitrary point in I'\M, say [p] with p € M. By (25
there is some Uy € Z with p € Uy. Take any chart (Us,x) € A with p € Us.
Then also (Ur N Uz, 2y,np,) € A, since A is a maximal C* atlas. But
Ui NUy C Uy and Uy € 7 implies that Uy NUs € Z. Hence

(ﬂ-(Ul N U2)7x‘U1ﬂU2 o (7T|U1OU2)_1) € A/a

and we have [p] € 7(U; N Us) since p € Uy N Usy. This completes the proof
that A" is an atlas on T'\ M.

Next we prove that A’ is in fact a C*° atlas. Consider any two charts in
A’ say
(26) (m(U),z o0 (7T|U)_1) and (m(V),yo (mv)_l),
for some (U, ), (V,y) € A, U,V € Z. We have to prove that the two charts
in (26]) are compatible, i.e. that the map

yo(7T|V)_107T|UO(.Z"Umv)_1 : x(UﬂV) —>y(UﬂV)

is C°°. However this map is equal to y o (x‘Um/)_l, which we know is C'*
since (U, z),(V,y) € A and A is a C™ atlas. Hence A’ is indeed a C* atlas
on I'\M, and so determines a unique C* structure on I'\M (cf. Problem

).
Finally note that for any (U, x) € A with U € Z, the map 7 is represented
by
(zo (7T|U)_1) omox~ ! : z(U) = z(U)
with respect to the charts (U,z) € A and (7(U),x o (7T|U)_1) € A’. But the

above map is simply the identity map on x(U), which of course is C*°. This
proves that the map 7 : M — I'\M is C*°. O
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Problem [0k

(a) If V is open (in M) then V NU, is open in U,, for every « by definition
of the subspace topology of U,.

Conversely, assume that V N U, is open in U, for every «. By definition
of the subspace topology of Uy, this means that for each a there exists an
open set W C M such that VNU, = WNU,, and hence V NU, is open as
a subset of M. Now V = U,(V NU,) since M = U,U,; thus V is a union
of open subsets of M and therefore V is itself an open subset of M. O

(b) Let T be the family of all “open” sets in a given “C* fold” M. We
have to prove that (i) @ € T, (ii) M € T, and that T is closed under (iii)
arbitrary unions and under (iv) finite intersections:

(i) For every a € A we have z,(0 NU,) = ) and this is an open subset of
R9. Hence () € T

(ii) For every a € A we have xo(M NU,) = 24(U,), which is an open
subset of R? by our assumptions. Hence M € T.

(ili) Let {Vg}gep be an arbitrary family of sets in 7. Then for every
a€ A,

za((UseVs) NUa) = 2a(Ugen (Ve N Ua)) = Usen 2a(Vs NTa),

and here z,, (VB N Ua) is an open subset in R? for every 3 € B, since VeeT.
Hence xa((UﬁeBVg) N Ua), being a union of open subsets of RY, is itself an
open subset of R%. This is true for every a € A; hence UgeVp € T.

(iv) Let {V3}sep be a finite family of sets in 7. Then for every a € A,
za((NseBVs) NUa) = 2a(Npen (VN Ua)) = Ngep €a(Vs NTUa).

(The last equality holds since z,, is injective.) Here x,, (Vg N Ua) is an open
subset in R? for every 8 € B, since Vs € T. Hence :Ea((ﬂgeBVB) N Ua),
being a finite intersection of open subsets of RY, is itself an open subset of
R?. This is true for every a € A; hence NgeVa € T.

This completes the proof that T is a topology. O

Next we give examples showing that 7 is not always Hausdorff: Let
U’ C U be non-empty open subsets of R? and let M be the set

M:=U'U(U\U') x {1,2}).

M can be thought of as two copies of the set U, glued together along the
set U'.

For j = 1,2 we define the subset U; C M by
Uy =U"U(U\U") x{j}),
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and let z; : U; — U be the map defined by z;(p) = p for p € U’, and
zj((p,j)) = pfor p € U\ U'. Then z; is a bijection from U; onto U, and
M = Uy UU,. Furthermore x1(U; NUs) = x2(U; NUy) = U’, an open subset
of U, and both the maps x- 0:171_1 and x1 0:172_1 are equal to the identity map
on U’, which is C*°. Hence M with the family {(Uy,x1), (U, x2)} is a C™
fold.

Now fix any point p € U \ U’ not lying in the interior of U \ U’; such a
point certainly exists. (Indeed we can find such a point on any line segment
between a point in U’ and a point in U \ U’.) Then every open subset V of
U containing p has nonempty intersection with U’. Now consider the two
points (p,1) and (p,2) in M. Let Wy, W5 be any two open subsets of M
such that (p,1) € W; and (p,2) € Ws. Then for both j = 1,2 we have
that ;(W; NUj) is an open subset of z;(U;) = U containing x;((p, j)) = p.
Hence also x1 (W71 NUp) Nxo(Wa NUs) is an open subset of U containing p,
and as we noted above this implies that this set has nonempty intersection
with U’, i.e. there exists a point

qc U’ ﬂl‘l(Wl N Ul) ﬁl‘Q(Wg N UQ).

By the definitions of x1, o it then follows that ¢ € W1 N W5. Thus we have
proved that for any two open subsets Wy, Wy of M subject to (p,1) € W
and (p,2) € Wa, it holds that W7 N W5 # (. Hence M is not Hausdorff. O

(Compare Boothby [I, p. 59, Exc. 5]; note that the above shows that the
answer to that question is NO.)

(c¢) Assume that the stated criterion holds. Let p, ¢ be two distinct points
in M. By assumption there is & € A such that p,q € U,. Now 24(p) # x4(q)
since z, is a bijection, and hence (since R? is Hausdorff) there exist two
disjoint open subsets W, W' C z,(U,) such that z,(p) € W, z,(q) € W'.
Then z;1(W) and z;1(W') are disjoint, and p € x 2 (W), q¢ € z;{(W').
Hence if we can prove that x, (W) and z,'(W’) are open in M then we
are done. By definition z3*(W) is open in M iff zg(x (W) N Ug) is open
in R? for every 8 € A. But note that

z(xy (W) NUg) = {pexg(UanUs) : zoo x;l(p) eEW} = o Y (W),

where ¢ := x40 :L"gl : 25(Us NUg) — RY. (We have that ¢ is a bijection
of xg(Uy N Up) onto x4(Uy NUg).) By assumption ¢ is C°°, in particu-
lar continuous; hence since W is open also ¢~ *(W) is open, and we have
thus completed the proof that x; (W) is open in M. Of course the same
argument shows that x,'(W’) is open in M. Done!

(Next we prove that the “partial converse”. Thus let M be a C°° manifold
and let p,q € M. If p = g then the desired statement is trivial; hence from
now on we assume p # ¢q. Then, since M is Hausdorff, there exist open sets
U,Vi C M withp e Uy, qe Vi and Uy NVy = 0. Let (U,z) and (V,y) be
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C* charts on M with p € U and ¢ € V. Then also (U N U1, zyqy,) and
(VN Vi, Yy, ) are C%° charts on M, and after replacing (U, z) and (V,y)
with these, we have:

Unv =0.

We may assume that z(p) # y(q); indeed otherwise replace y by the map
ri—= v+ y(r), V— R? where v is a fixed non-zero vector in R?. Then we
can choose open sets (e.g. open balls) U’ and V' in R? such that z(p) € U,
y(q) € V' and U'NV’ = 0. Now (z~U"), z-1y) and (5~ (V') y,-1001)
are C'*° charts on M, and after replacing (U, z) and (V,y) with these, we
have both

UNV =0 and zU)NyV)=0.
Now define the map z: U UV — R? by:

) e xz(p) if peU
@”‘{mm if pe V.

Using the fact that z(U) and y(V) are disjoint open subsets of R% (and the
fact that x : U — x(U) and y : V — y(V) are homeomorphisms) it follows
that z is a homeomorphism from UUV onto z2(UUV) = z(U)Uy(V). Hence
(UUYV, 2) is a chart on M, and one easily verifies that it is a C*° chart. This
C chart has the desired property, namely p,q € U U V) O

(d) It is immediate from the definitions that U, is open in M for every
a € A. Now the only thing that has to be verified is that for every o € A,
the map z, is a homeomorphism of U, onto x,(Uy) C R?. Recall that
2o(Uy) is open in R4 by assumption, and also x, is a bijection from U,
onto z,(Uy) C R?. First let V be an arbitrary open subset of U,; then
by the definition of the topology on M, z4(V) = z4(V N U,) is an open
subset of (U, ). This proves that z, is open. In order to prove that z, is
continuous, let W be an arbitrary open subset of z,(U,). Then we have to
prove that 21 (W) is open in M. This is done by the argument in part (c).
O
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Problem [I71

(a). By [12, Lemma 1.1.1] there exists a locally finite refinement V =
(V3)gep of U and Cg° functions ¢z : M — [0, 1] with suppg € V3 (V5 € B)
and 3 5 p¥p(x) = 1 (Vo € M). Now since V is a local refinement of U,
we can choose (using the axiom of choice, in general), for each § € B, some
a(f) € A so that V3 C U,(g). Having made such a choice, we define, for

each a € A:
Po = Z wﬁ-

BeB
(a(B)=a)

(The sum is taken over all 5 € B which satisfy a(f) = «.) We claim that
these functions ¢, satisfy all the requirements in the problem formulation!

To prove this, let p be an arbitrary point in M. Then there is an open
neighborhood 2 C M of p such that the set

Bo:={B€B : VanQ+0}

is finite. Now for p € Q we have

valp) = > tslp) ()

BEBq
(a(B)=a)
In other words:
(27) Paln = Z Yg10
BEBQ,a

where B, = {8 € Bq : a(B) = a}. This says that, for every a € A, ¢y
is a finite sum of C'™ functions; hence @, is itself a C* function. Since

every point p € M has such a neighborhood €2, we conclude that ¢, is C*°
(Va € A).

Furthermore, from the definition of ¢, and the fact that each g takes
values in [0, 1] and > _5c 5 1g = 1, it follows that . (p) € [0,1] for all p € M.
We also note that for every p € M we have

(28) > ealp) = Z( > 1[)5(19)) = ws(p) = 1.

acA acA N\ BeB BeB
(a(B)=0x)
(The second equality follows by simply changing the order of summation;
this is permitted since all the terms are nonnegative, and the total sum is
convergent. In fact the sum ) . 4 ¢o(p) has only finitely many nonvanishing
terms; indeed for 2 as above we can have ¢, (p) > 0 only if « is in the finite

set {a(B) : B € Ba}.)

Now it only remains to prove that supp @, C Uy, Ya € A. To prove this,
fix a € A, and fix an arbitrary point p € M \ U,. Take a neighborhood 2
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of p as above, i.e. so that the set Bq is finite. Recall the formula (27). For
each § € B o we have supp ¢ C Vg C Uy(g) = Un. Hence also

F .= U supp g C U,.
ﬁeBQ,a

Also supp 3 is a closed (even compact) subset of M for every j3; hence since
Bq q is finite, the set F' is also a closed subset of M. Hence

QO =Q\F

is an open subset of M. Note that p € € since p € Q, F C U, and
p ¢ Uy. Also, by [27) and our definition of F, we have ¢,(q) = 0 for all
q € V. Hence, since €' is open, ' is disjoint from supp ¢, and in particular
p & supp p,. To sum up, we have proved that every point p € M \ U, lies
outside supp ¢.. Hence supp ¢, C Uy, and we are done! O

(b). (We take the proof from [4, Lemma 9.5.2].)

Let us start from a partition of unity (¢a)aca either as in [12, Lemma
1.1.1] or as in part (a). This means in particular that each ¢, is a C*
function M — [0,1] and that ) ., ¢a(p) = 1 for all a. Also every point
p € M has an open neighborhood 2 in M such that ¢, = 0 for all except
finitely many o € A (in the case of [I12] Lemma 1.1.1] this is clear from the
statement, and in the case of part (a) it is a fact we noted in the proof; see
the text below (28])). Now set

(29) Op) =Y ¢alp)® (p€M).
acA

Note that the “local finiteness” of the sum }___, ¢o mentioned above im-
plies a similar local finiteness for the sum in (29]), and in particular ® €
C>®(M) (i.e. ® is a C* function M — R). Furthermore for every p € M
we have ®(p) > 0, since ) 4 Pa(p) = 1 implies that there is at least one
a € A with ¢4 (p) > 0. Hence also p — ®(p)~! is a C* function on M, and
so the functions

Na = ot 90<2x
are C°, for every a € A. It is also clear from the definition that each

function 7, takes values in R>q, and that suppn, = supp ¢,. Furthermore,
for every p € M:

D nap) =2m) Y palp)’ = 1.
acA acA

(Hence also 7,(p) € [0,1] for all &« € A.) Hence the functions (1,)aca sat-
isfy all the requirements which were imposed on (¢q)aca, and furthermore
Ve = ® 120, is a C* function for every o € A. (]
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Problem

(a) [We leave it to the reader to sort out certain details in the proof below,
hidden in phrases such as “passing to local coordinates”; “translation and
rotation”; etc; what we are doing there is creating a new C° chart by
composing by appropriate diffeomorphism(s)...]

Passing to local coordinates we may assume M = R". After a rotation
and a scaling we may also assume ¢(s) = e; := (1,0,...,0). Let us write
c(t) = (c1(t), .-, cn(t)); then ci(s) = 1 and cj(s) = 0 for j > 2. It follows
that there is € > 0 such that ¢; restricted to (s —e, s+¢) is a diffeomorphism
onto an open interval I C R. Let ag : I — (s —&,s + €) be the inverse
diffeomorphism. Then a;(ci(t)) =t for all t € (s — e, s 4+ €). Define

a IxR" 5 (s—¢,5+¢e) x R*L

a(xy,...,xy) = (aq(z1) — 8, T2y ..., Tp).
Then « is a diffeomorphism of I x R"~! onto (—e¢, +¢) x R"~! and a(c(t)) =
(t—s,%,...,%) forall t € (s—¢,s+¢). Hence after composing our coordinate

chart with o, we have ¢;(t) = t—sfor allt € (s—¢, s+¢). Finally we consider
the map

B (=) x R 5 (—g,e) x R"!
B(x1y...,xy) = (x1,20 — ca(s + x1),. .., Tn — cn(s + 21)).
Note that 3 is a C* diffeomorphism of (—¢,&) x R"~! onto (—¢,¢) x R*~L;
indeed B is C*° and the inverse map is
(X1, yxn) = (1,22 + ca(s+21)y ..oy Ty + cn(s + 1)),
which is also C°°. Then
Blc(t)) = (t —s,0,...,0), Vt € (—¢,¢).

Hence by composing our coordinate chart with 3, we obtain a coordinate
chart with the desired property! O

(b) Take ¢ > 0 and a chart (U, z) as in part (a). After possibly shrinking
U, we may assume that s + x1(p) € (a,b) for all p € U. Define

h:U =R, h(p) := f(s+ x1(p)).

Then h is a C*° function and h(c(t)) = f(s + z1(c(t))) = f(t) for all t €
(s —e,s +¢). Now fix any open neighborhood U; C U of ¢(s) having
compact closure U; in U. Then by Problem[7|(d), there exists a C* function
g : M — R which satisfies |7, = hyy,. By shrinking ¢, we may assume that
c(t) € Uy for all t € (s —e,s+¢). Then g(c(t)) = h(c(t)) = f(t) for all
t€(s—e,s+¢), and we are done. O



70 ANDREAS STROMBERGSSON

Problem [13k

(a). Recall that for a given C°° manifold M and a point p € M, we
consider the set
(30)
S :={(U,z,u) : (U,r)is a chart on M with p € U, and u € T, (z(U))},
(where Ty (z(U)) := R?) and define the relation ~ on S by
def _
(Uaxau) ~ (V,y,v) < u= d(x oy 1)y(p)(v)’

We now prove that ~ is an equivalence relation. For any (U, z,u) € S we
have that z o 2! equals the identity map on x(U) C R?, thus the Jacobian
d(zox~") is the identity map on Ty, (z(U)) = R%, and so d(zox™1)(u) = w.
Hence ~ is reflexive.

Next to prove that ~ is symmetric, assume (U, z,u) ~ (V,y,v), i.e. u =
d(z oy 1)y (v). Then
d(y © x_l)x(p) (u) = d(y © x_l)x(p) 0 d(l’ © y_l)y(p) (U)
1 oxo y_l)y(p) (’U)
= d(Ly)y(p) (v) = v-

(Explanation: For the second equality we used the chain rule, cf. p. 3 of
Lecture #2. In the last line, “l,,” is the identity map on the set y(V);

—d(yoa~

its differential at y(p) is of course the identity map on Ty, (y(V)) = R9.)
Hence (V,y,v) ~ (U, z,u). This proves that ~ is symmetric.

Finally we prove that ~ is transitive. Assume (U,z,u) ~ (V,y,v) and
(V,y,0) ~ (W, z,w), ie. u = d(x oy™1)y,)(v) and v = d(y o z71) () (w).
Then

u=d(xzo y‘l)y(p) od(yo z_l)z(p) (w)
1o yo Z_l)z(p) (w)
= d(a: o Z_l)z(p) (w)

(here we again used the chain rule), and thus (U,z,u) ~ (W, z,w). This
proves that ~ is transitive.

=d(xoy”

Hence ~ is an equivalence relation. O
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(b). Injectivity: Assume that u,v € R give [(U, z,u)] = [(U,z,v)]. This
means that (U, z,u) ~ (U, z,v), i.e. u = d(xozn_l)x(p) (v). But d(xozn_l)x(p)
is the identity map on R? hence v = v. This proves that the given map is
injective.

Surjectivity: Consider an arbitrary element in 7}, M; we can always rep-
resent it as [(V,y,v)] for some (V,y,v) € S (cf. (30)). Set

u=d(@oy ")y () € Tup(z(U)) =R
Then

d(y o ™)y (1) = d(y o 2™y 0 d(@oy™ )y (v) = dlyp (v) = v,
and thus (U, z,u) ~ (V,y,v), i.e. [(U,z,u)] = [(V,y,v)]. In other words, the
image of u under the given map equals [(V,y, v)]. This proves that the given
map is surjective. O
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(c). Fix p € M. Let T be a bijective linear map V' — R%. Then (M, Tinr)
is a C'*° chart on M. Consider the map

TV S T,M;  J(v) = [(M, Ty, T(v)].

It follows from part (b) that J is a bijection of V" onto T, M. We claim that
J is independent of the choice of T'. To prove this, assume that also S is a
bijective linear map V' — R%. Then we need to prove that for every v € V
we have [(M, T}y, T (v))] = [(M,Spr,S(v))] in T,M. In other words (cf.
Def. 3 in Lecture #2), we need to prove

(31) S(v) =d(So T_I)T(p) (T(v)), Yv e V.

Now we note the following very basic fact: “The differential of a linear map
is equal to the map itself”. More precisely: For any linear map L : R¢ — R,
and any x € RY, the differential dL, : R* — R™ is equal to the map L itself.
We leave it to the reader to verify this fact; it is of course just a matter of
checking that the Jacobian matrix of L, exaluated at any point x, is equal
to the matrix of L itself.

Applying the fact just mentioned, with L = S o T~ : R? — R%, we
conclude that

d(S o T )1 (T(v) = S o T HT(v)) = S(v),

i.e. we have proved (BIl)! Hence we have proved that our bijection J: V —
T,M is independent of the choice of linear bijection V' — R?, i.e. the map J
is “canonically defined”. Therefore we can use this map J to identify T, M
with V. O
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(d). Recall from Definition 4 (in Lecture #2) that we assume that f :
M — N is a C* map between C'*° manifolds, and p € M. (Set d = dim M
and d = dim N.) Then df, is defined to be the linear map from T,M to
TtpyN which wrt any chart (U,z) on M with p € U and (V,y) on N with
f(p) € V is given by

dfy = d(yo o aw) : Tuw) (@) = Ty (V).
For this to make sense, recall that once the chart (U,x) is given, we can
identify T,M with T, (z(U)) = R? via the bijection v — [(U,z,v)] from
Ty(p)(@(U)) onto Tp,M (cf. p. 4 in Lecture #2 and part b of this problem);

similarly we can identify Ty N with Ty s (y(V)) = R¥. Thus the above
definition of df,, can be reformulated as saying that

dfy([(U.z,0)]) = [(Vogsd(y o foa™ ()], Vo € Ty (2(U)) = RY.
This certainly makes df,(c) defined for every vector o € T, M since every
a € TyM can be expressed as o = [(U, z,v)] for some v € Ty,)(z(U)). The
key issue is now to verify that df,(«) does not depend on the above choice
of the charts (U, x) and (V,y)!

Thus assume that (U, 2) is also a chart on M with p € U and that (V, )
is a chart on NV with f(p) € V. Consider a fixed vector a € T,,(M); assume
that a is represented by v € R? wrt (U, z), and by d(Zoz™!),(,)(v) € R? wrt
(U, ). Now the above definition says that df,(«) is the vector in Tt(p)(N)
which is represented by
(32) d(yo for ™)y (v) € R?
wrt the chart (V,y), but also that df,() is the vector in Ty, (N) which is
represented by
(33) d(go foi™ i) 0 d(#ox agy(v) € R?

wrt the chart (V,§). Thus we have to prove that (32) and (33) represent
the same vector in T, (N), i.e. that
d(y o i girey 0 d(Go fod™ap) o d@ox™ ) (v)
=d(yo for " )yp(v).

However this is clear by the chain rule for the differential (for C°° maps
between vector spaces over R), using the fact that

(yoi o(fofoi M)o(doa™!)=yofor"
Done! O
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(e). Fix a point p € Mj; then our task is to prove

(34) d(go flp=dgsp)odfp + Ty(M1) = Ty(p(p))(Ms).

Fix charts (U, z) on Mj, (V,y) on My, and (W, z) on Ms, satisfying p € U,
f(p) € V,g(f(p)) € W. With respect to these charts, d(go f), is represented
by the map

d(zo(go f)oa )  Tup) @) = Ty (W),
and df), is represented by the map

d(yo for up)  Tup(@(U)) = Ty (V)
and dgy(p) is represented by the map

d(z090y )y Tur V) = Teorn) (ZV)).
Hence we will have proved (34) if we can prove
d(zo(gof)ox™)up =d(zogoy )ypy odyofor™ )y
However this is clear by the chain rule (for maps on R%spaces), since

zo(gof)ox t=(z0g0y t)o(yo foxh).
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(f). Fact #1: This is proved as follows:
v
. 0 0 0 0
0(f) = dfy(v) = d(1g 0 f 0 7)) (07 (2L 2y | =w il

57 =\ a1 Bl =V o

v'd
(Explanation: In the first equality we use our definition of the directional
derivative; “v(f)”. In the second equality we use the definition of differen-
tial (Def. 4 in Lecture #2). In the third equality we use the definition of
differential for maps between R%-spaces (Def. 2). The last equality is just
matrix multiplication. Note that in the last two expressions “f” in fact
stands for the function f o x™! : z(U) — R; this is in accordance with the
principle that we may identify U with x(U) so long as the notation cannot
be misunderstood. Also in the last two expressions it is understood that the
partial derivatives are evaluated at the point x = z(p).)

Fact #2: This is proved as follows:

(1)) = dfugy (€0) = dfugy(des(D)) = d(F 0 (1) = (] o)),

(In the first equality we use the definition of directional derivative; in the
second equality we use the definition of “tangent vector of a curve”; and
in the third equality we use the chain rule, cf. part (e) of this problem.
Finally the fourth equality could also be said to hold by the definition of
“tangent vector of a curve”; however since f o ¢ is a function from I C R
to R, “%( foc)(t)” has a more basic meaning as derivative of a real-valued
function on R, and of course these two interpretations are really the same
and give the same answer — as is easily verified by using the trivial “identity
map charts” on I and R.)

Fact #3: Using Fact #1 we have
.0

07 |z=x(p)

of

=v - f(p)- 5= +vj-g(p)'@‘w:m(p)

Oz |z=x(p)

= f(p) -v(g) +g(p) - v(f),

proving the first formula. Next note that by the definition of directional
derivative the same formula can be written:

d(fg)p(v) = f(p) - dgp(v) + g(p) - dfp(v).
The fact that this holds for all v € T,M means that

d(f9)p = 9(p) - dfp + f(p) - dgp
(equality of linear maps T,M — R). O
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Problem [I4k Once one has gotten used to the machinery which we
have introduced, this problem is “completely obvious”. However, as a step
towards reaching such familiarity, it may be useful to work out a solution in
pedantic detail.

We have defined ¢(t) := dci(1). Furthermore, for any ¢ € I with ¢(t) € U,
the differential dc; is, by definition, the map from T;(I) = R to T, M which
with respect to the trivial chart (I,17) on I and the chart (U,z) on M, is
represented by the linear map

d(xoco 11_1)11@) ‘R — R%

This map equals d(x o ¢);, and so we get that ¢(t) := dei(1) is the vector in
T, M which with respect to the chart (U, z) is represented by

(35) d(z o c);(1) € RY
But by the definition in the problem formulation,
zoc(t) = (cH(t),..., A1)
for all ¢t € I with ¢(t) € U, and hence d(z o ¢); is the linear map given by
the (Jacobi) matrix
o0l
ot

dc?

ot
Of course “0” can just as well be written “d” since each ¢/ depends on
only one variable; i.e. the entries of the above matrix are %oj(t) = &I(t)
for j =1,...,d. Applying the above linear map to the vector 1 € R (so as
to evaluate the expression in (35])) we find™] that with respect to the chart
(U,x), ¢(t) is represented by

(36) (eH(t),...,¢d(t)) e RY

, 0
Next we turn to the right hand side of the desired formula, i.e. “¢/ (t)m”.
-
0
Recall that by definition, at any point p € U, 927 is the tangent vector in
x
T, M which with respect to the chart (U,x) is represented by the standard
unit vector e; = (0,...,1,...,0) € R (where the “17 is in the jth position).
.0
Hence, with respect to the chart (U, z), the tangent vector ¢/ (t)@ € TopyM

is represented by

d(t)ej(t) = (E(1),0,...,0) + -+ (0,...,0,¢4(t) = (*(2), ..., ().

104150 recalling our convention that column matrices are identified with vectors
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0
This agrees with (34]), i.e. we have proved that ¢(t) and ¢ (t)m are repre-
x

sented by the same vector in R? (wrt (U,z)); hence they are equal, i.e. we
have proved the desired formula,
. PN,

Finally in order to verify that the two definitions of “tangent vector of a
curve” in Lecture #2 are consistent with each other, let us apply the above
to the special case M = an open subset of R%. In this case we have the con-
vention that T, M is identified with R? for every p € RY, namely through the
representation of tangent vectors via the identity chart, (M, 1,r). Applying
the formula which we have proved above (in the form (B6l)) we conclude that

ety =('t),...,é¢%)  in TyM =R~

Note that we have proved this formula starting from the general definition of
“tangent vector of a curve on a manifold”, and we now see that the formula
agrees with the concrete definition of “tangent vector of a curve in R?” which
we gave in Lecture #2 (p. 2). O
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Problem
(a). Cf., e.g., Boothby [I, Ch. 4.1] or Fieseler [5, Sec. 3]...
(b). Cf., e.g., Helgason, [§, Ch. 1.2.1]...

We here only give the easy part of the solution of part b: For any vector
field X € I'(TM) and any f € C°(M) we define X f € C*°(M) by

(Xf)p) =X()f, VpeM.
In other words, by definition of directional derivative:
(Xf)(p) = dfp(X(p)) € T,R =R.

By definition of the differential df : TM — TR = R x R, the above formula
can also be expressed:

Xf=prygodfoX :M—R
and this shows (via Problem [[7(a)) that we indeed have X f € C*°(M).
Let us note that for any X € I'(T'M ), the map which we have now defined,
fe X[, CF(M) = CF(M),

is a derivation. (This is immediate from “Fact #3” on p. 9 in Lecture #2;
we prove this fact in Problem [[3[(f), and this fact also plays a crucial role in
part a of the present problem.)

Now it remains to prove that every derivation of C°°(M) is obtained in
this way from some X € I'(T'M), and that any two distinct vector fields
yield distinct derivations....
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Problem As in the lecture, we define TM as a set to be the disjoint
union of all tangent spaces T,M (p € M), and we let 7 : TM — M be
the projection map; 7(w) = p for any w € T,M. Also, as a “proposed C'™
atlas” on T'M we take the set

A:={(TU, ;) : (Uz)any C*™ chart on M}
where TU = 7= 1(U) = UpeyT,M and ¢, is the map
©r: TU — R?* =R x RY,
pa(w) = (@(m(w)), g (w)).

Clearly for any C* chart (U,z) on M, ¢, is a bijection from TU onto
2(U) x R?, which is an open subset of R??; and if also (V,y) is a C°° chart
on M then ¢, (TUNTV) = z(UNV) x RY, which is also an open subset of
R24, and as we verify in the lecture the map ¢, o p;1 : 2(UNV) — R is
C*°. Hence all the conditions in Problem[I0[(b) are fulfilled, i.e. TM with the
family A is a “C° fold”. In particular T M is now provided with a structure
of a topological space, namely a subset V' C M is open iff ¢, (V NTU) is
open in R?? for every C*° chart (U, z) on M.

Now it suffices to prove that T'M is Hausdorff, connected and paracom-
pact; for then it follows from Problem [I0(d) that T'M is a well-defined C'*°
manifold with A as a C*° atlas!

In order to prove that T M is Hausdorff, take two arbitrary points v, w €
TM. Then by the “partial converse” in Problem [I0[c) (applied for our C'*
manifold M) there exists a C* chart (U, z) on M such that 7(v), 7(w) € U.
But then v,w € TU, and so (TU, ;) is a ’chart’ in A with v,w € TU. The
fact that A contains such a chart for any pair of points v, w € T'M implies,
by Problem [[0(c), that TM is Hausdorff!

Next we prove that TM is connected: Take any v,w € TM. Let p = 7(v)
and ¢ = m(w). Let ¢; : I — T,M (I = [0,1]) be any curve in the vector space
T,M starting at v € T, M and ending at 0 € T,,M. Note that the inclusion
map T,M — TM is continuous. (We leave it as an exercise to verify this
fact; note that once T'M has been proved to be a C*° manifold, the inclusion
map T,M — TM can be seen to be C*.) Hence ¢; is continuous also as
a map from I to TM, i.e. ¢; is a curve in T'M. Similarly let c3 be any
curve in T,M C TM going from 0 € T,M to w € T,M. Next, since
M is path-connected (cf. Problem [II), there is a curve ¢3 : I — M going
from p to q. Note that the map f : M — TM taking any p € M to the
vector 0 € T,M is continuous. (Again we leave this as an exercise.) Hence
¢y = focy: I —TM is a curve in TM, going from the 0-vector in T, M
to the 0-vector in T, M. Now the “product curve” of ci,cp,c3 1 is a curve

HWe will discuss this notion in Lecture #6; however it should hopefully be clear here
how the curve in question is constructed; just draw a picutre!
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in TM going from v to w. The fact that such a curve exists for any two
v,w € TM implies that T'M is path-connected, and hence connected!

Finally we prove that T'M is paracompact. Note that by what we have
already proved, T'M is locally Euclidean and Hausdorff (cf. the solution to
Problem [I0(d)), and the set A above is an atlas on T'M. By Problem
it suffices to prove that T'M has a countable atlas. Now fix any countable
atlas A’ on M (this exists by Problem [2]). Then the following subset of A is
a countable atlas on T'M:

{(TU, ;) : (Ux) e A}

This completes the proof that TM is a C'°° manifold with A as a C*®
atlas.

We now turn to the last part of the problem, i.e. to prove that the map
m:TM — M is C*°. For this it suffices to prove that for any C°° chart
(Vyy) on M and any (TU,¢,) € A (thus: (U,z) is a C* chart on M), the

map
(37) yon’ogp;1 o oe(T(UNV)) — R

is C*°. However, the definition of ¢, says that, for any p € U and w €
T,U CTU:

pz(w) = (2(p), dp(w)),
and thus
oyt (x(p),da;p(w)> = m(w) = p.
Hence
Top,t(z,0) =7 (2), Y(z,v) € 0 (TU) = z(U) x RY,
or, equivalently,
rop;t =z topr: z(U)xRY—= M,
where pr is the projection pr : z(U) x RY — x(U). Hence the map in (37)
equals y oz~ opr, and here yox™! : z(UNV) — R is C* since (U, x) and

(V,y) are C* charts on M, and pr is obviously C*°. Hence the map in (37
is C°°, and we are done. O

(Remark: Problem [36] gives a more general result.)
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Problem [I7k

(a). (When showing that df is C™ the key step is to verify that if U ¢ R?
is open and g : U — R? is a C° map, then the map (z,y) — (9(x), dg.(v)),
from U x R? to RY x R?, is )

(b). Let p=7(X) € M so that X € T,,M; then df (X) € T} N. By our
definition of directional derivative,

df (X)(p) = de(df (X)) in Typ)[R) =R

Also by the same definition,
X(po f)=d(po [)(X) in Ty p)R)=R.

But d(¢ o f) = dp o df by the chain rule, and so the two expressions are
equal. O

(c). This is immediate from Problem [[3[e). (Indeed, take v € T'M;. Set
p := m(v); then v € T, M; and now

d(g o f)(v) = d(g o [)p(v) = dgy@) © dfp(v) = dgs () (df (v)) = dg(df (v)),

where we used the formula from Problem [[3((e) in the second equality.) O

Problem I8t

(a). Using the fact that (in the right hand side) (-,-) is a scalar product
(viz., a positive definite symmetric bilinear form) on TN, and dfp is a
linear map from T, M to Ty, N, it follows that (-,-) is a symmetric bilinear
form on T}, M which is positive semidefinite (viz., (v,v) > 0 for all v € T,M).
But using also the assumption that f is an immersion, i.e. df, is injective for
each p, it follows that (-,-) is in fact positive definite, i.e. a scalar product
on T, M.

It remains to prove that (-,-) depends smoothly on M. We leave the
details of this to the reader. O

(b). By definition

b
(33) L(for) = / I(f o) ()] dt

(with the understanding that the integral has to be “splitted at each point
where 7 is not C*°). But here (f o)/ (t) = d(f o 7):(1) = df,@) o dv(1)
(where we used the def of directional derivative of a curve, and then the
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chain rule), and so
1 07 Ol = \/(dfy 0 © de(1). df o © du(1))

(39) = /(D). dn(1))
= IV @I,

where the second equality holds by our definition of (-,-) on T M. Com-

bining (B8]) and (39) we obtain L(fovy) = L(v). The proof of E(fovy) = E(v)
is completely similar. O

(¢). [Remark: In the inequality which we are going to prove,

d(p,q) > d(f(p), f(q)),

of course “d” in the left hand side denotes the metric on M induced by the
Riemannian structure on M, and “d” in the right hand side denotes the
metric on N induced by the Riemannian structure on N. In the special
case when f is an inclusion map, so that M is as a set is a subset of N,
one should give different names to these two metrics, e.g. “dp;” and “dn”,
otherwise “d(p,q)” for p,q € M is ambiguous!]

Let p,q € M. By definition,
d(p,q) =inf{L(v) : ~v:[a,b] = M is a piecewise C*> curve with

(40) v(a) = p, 7(b) = q}.
and

d(f(p), f(q)) = inf{L(c) : c:[a,b] = N is a piecewise C™ curve with
(41) c(a) = f(p), c(b) = f(q)}-

However for any curve - satisfying the conditions in the right hand side of
HEQ), ¢ := f o~ is a piecewise C* curve with ¢(a) = f(y(a)) = f(p) and
c(b) = f(v(b)) = f(q); thus c satisfies the conditions in the right hand side
of {I). Also L(¢) = L(v), by part (b). Hence every number L(v) appearing
in the set in the right hand side of (40) also appears in the set in the right
hand side of (Il); therefore the infinimum in ([@0) is > the infinimum in

@), i.e. d(p,q) > d(f(p), f(q)), ed.

Ezxample with strict inequality: Note that this is the usual situation! For
example take M = S9! N = R¢ and let f be the inclusion map. Then

dm(p,q) > dn(f(p), f(g)) for any points p # g € M. O
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Problem

(a). Let p,q € M be given. By Problem [I] there exists a (continuous)
curve v : [0,1] — M with v(0) = p and (1) = q. Let F be the family of
open subintervals I C [0, 1] 9 such that ¢(I) is contained in some C*° chart
on M. Note that F covers I. Hence since I is compact, there is a finite
subfamily F; C F which covers I. In particular some I € F; must contain 0;
among all such intervals I € F; we pick the one which has the largest right
end-point; it is either [0,1] or [0,¢1) for some ¢; € (0,1). In the latter case,
the point ¢; must be contained in some interval in /7 not yet considered;
among all intervals in F; containing t; we pick the one which has the largest
right end-point; this interval is either of the form (¢],1] or (¢|,t2), for some
t) € (0,t1) and tg € (t1,1). If it is of the form (#),¢2) then we consider all
intervals in F; which contain t9, etc. This process must eventually finish,
since F7 is finite, and this means that we have found a set of n > 1 intervals

[07t1)7 (t/lth)v (t/27t3)7 s (t;’L—171:| in Fy,

where 0 <t <ty < ...<t,_1 and 0 <t;- < tj for each j € {1,...,n —1}.
(If n =1 then [0,1] is in F; and our set consists of this single interval.) By
the construction of Fi, there exist C*° charts (Uj;,x;) on M such that

7([0’t1)) C Ul’ /7((t/17t2)) - U27 ceey /7((t/n—17 1]) C UTL'

Now for ¢ > 0 sufficiently small, if we set {y = 0, t~] =1t —¢ for j €
{1,...,n—1}, and t,, = 1, then

O=tg<t1 < -+ <tpq<tpn=1

and ¢ <tj<tjforje{l,...,n—1}, so that

v([tj-1,t]) € U; for j e {l,...,n}.
Now we can define ¢ : [0,1] — M by letting, for each j € {1,...,n}, I
be the curve from 7(t;-1) to 7(¢;) which in the chart (Uj,z;) is represented
by a straight line segment from z;((t;—1)) to z;(v(t;)) (parametrized by
a constant times arc length, say). Then c is a continuous curve, and each

restriction ClT-1.5] is C°°; thus c is a piecewise continuous curve, and it has
¢(0) = p and ¢(1) = ¢. Donel! O

12Here by “open” we mean wrt the topology of [0, 1] induced by the topology of R; in
particular [0, ) and (z,1] are open subintervals of [0, 1] for any = € (0,1), and also [0, 1]
itself is an open subinterval of [0, 1].



84 ANDREAS STROMBERGSSON

(b). Outline: With tg,...,t, and charts (Uj, x) as above, we can con-
struct ¢ : [0,1] — M by letting Cllio ] be an arbitrary C*° curve from ’y(%)
to v(t1) (e.g., the line segment used in (a)). Using “Borel’s Lemma” (cf.
wikipedia) and working in the chart (Us,x2), one can then construct a C'*

curve ¢, 7 from v(t1) to y(t2) which has the properties that “all deriva-

tives at t; match up; i.e. ¢ is in fact C'*° on all [ivo,fg]. Then just repeat.
O


https://en.wikipedia.org/wiki/Borel's_lemma
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Problem
(a). Note that we can cover the whole of H™ with one natural C* chart
(H™, %), namely by letting y(z) := (z',...,2") for x = (20,2',...,2") €

H". Then y(H™) = R™ and the inverse map is

y it . 2 = <\/1+(m1)2—|—---+(x")2,x1,...,:17">,
Ve = (z!,...,2") € R™.

Note that this map y~! gives the embedding map i : H" — R"*! expressed
wrt our selected chart on H” and the standard chart on R™*!. Hence wrt
these charts, for each p = (20,2!,... 2") € H", dip : T,H" — TP]RT”'1 is
the linear map with matrix

i\/1+($1)2+...+($n)2 i\/1+($1)2+...+(:pn)2
ozt oz™
9 1 9 1
9 n 9 n
ol /20 22 /20 2" /a0
1 0 0
— 0 1 0
0 0 1

This map takes an arbitrary vector £ = (&1,...,&,) in R™ to (zyzl g—f;gj, 1y, &n)
in R"". (In other words, di, maps > fj% in T,H™ to the vector

(Z;‘:l g—ggj)% + Z;.‘:l‘ fj% in TpR”+1.) Hence our first task is to prove
that for any £ € R", (%fj,fl, ...,&,) is orthogonal to p wrt the form (-, ),
i.e. that

n

—ZEQ-JJO—F&'x1+~~+§n'x”:O.
j=1

This is clear by inspection!

The next task is to prove that the restriction of the form I (from [12| p.
228(top)]) to T, H™ (or perhaps more accurately; to diy(T,H")) is positive
definite. (At present I do not understand Jost’s claim that this follows from
Sylvester’s theorem. Exactly which theorem is this?) Thus we have to prove
that the following expression is positive, for any p = (20, z!,...,2") € H"
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and £ € R"\ {0}:

(S50 Som (559 L)

J=1 =1
@ (N he) e
j=1 J=1

However by Cauchy-Schwarz we have

(3:50)" < 2 (5) S8 = e < 28

where we used the fact that p = (:170, AL < H", and then used & # 0.
This shows that the expression in ([42]) is positive! O

(b) By definition, O(1,n) is the set of linear maps R : R*"T! — R+l
which leave (-, -) invariant, i.e. which satisfy

(43) (Rz, Ry) = (z,y), Vz,ye€R"

In particular if R € O(1,n) and Rz = 0 for some # € R"*! then (z,y) = 0 for
all y € R"*! and this implies x = 0. Hence every R € O(1,n) is invertible.
Setting now z = R~'2’ and y = R~y (with arbitrary 2’y € R"*!) in
the relation @3] we get (z',y) = (R 12/, R=%/); hence R~ € O(1,n).
Hence O(1,n) is closed under taking inverse. The rest of the verification
that O(1,n) is a group is immediate.

Let us put

H" :={z e R""" : (z,2) = -1, 2° < 0},

so that the set
(44) {r e R"™ : (z,2) = —1}

equals the disjoint union of H™ and H". Tt follows directly from that defi-
nition of O(1,n) that every R € O(1,n) maps the set (44]) onto itself; hence
since R is linear and invertible, R must map every connected component
of the set ([@4) onto the same or another connected component, in such a
way that the connected components are permuted. In other words: Every
R € O(1,n) satisfies either

“(+):  [R(H") = H" and R(H") = H"]
“(=): [R(H")=H" and R(H") = H"].

Let O"(1,n) be the set of those R € O(1,n) satisfying “(+)”. One verifies
immediately that O"(1,n) is closed under multiplication and inverses; thus
O™ (1,n) is a subgroup of O(1,n). Next note that there exists R € O(1,n)
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which satisfies “(—)”; for example R = Ry := the diagonal matrix with
diagonal entries —1,1,1,...,1. We now see that O(1,n) is the disjoint union
of the two cosets O1(1,n) and Ry-O7(1,n) (where the latter coset consists
exactly of all R € O(1,n) satisfying “(—)”). Hence OT(1,n) is a subgroup
of O(1,n) of index 2 (and hence normal).

It now only remains to prove that each R € O (1,n) acts by an isometry
on H™. Thus fix R € O7(1,n). Since H" is an embedded submanifold of
R"*! and R is a linear (hence C*) map R"*! — R"*! preserving H", it
follows that Rzn is a C° map H" — H"™. Considering also R™" € O*(1,n)
we see that R|y» is in fact a C°° diffeomorphism of H™ onto H™, with inverse
= (R_1)|Hn. Note that for any = € R**1, if we identify T,R"T! with R"+!
in the standard way, then the bilinear form I on T,R"*! equals the form
(-,-) on R™*!, Now since R preserves the latter form, and dR = R (since R
is linear), it follows that dR preserves I, i.e.

I((dR)3(v), (dR)z(w)) = I(v,w), Vo € R v, w € T,R"M,

In particular this holds for all € H" and v,w € T,H" C T,R""!; and
this shows that Ry~ preserves the Riemannian metric on H". Hence R is
indeed an isometry of H™ onto itself! O

(c). Take p € H" and v € T,H™, v # 0. (Here we view T,H" as a linear
subspace of R™*1; cf. part (a).) As we proved in part (a), we then have

(45) (p,v) = 0.

In fact p,v are linearly independent. [Proof: p # 0 since p € H™; hence
we only need to prove that we cannot have v = tp for some t € R. But
(p,p) = —1; hence v = tp would imply (p,v) = —t, and so t = 0 by (@5,
contradicting v # 0.]

Let II ¢ R™*! be the 2-dimensional plane spanned by p,v. Because of
@3, if {-,-) were a scalar product on R"!, then

46 P : Rn+1 —)Rn"'l’ P(x) := <x7p>p+ <x’v>’U
e (@) (,p)"  (v,v)
would be the orthogonal projection from R"*! onto II, and
(47) R: Rn-ﬁ-l N Rn-ﬁ-l’ R($) — 2P(l‘) .

would be orthogonal reflection across II. Now (-, ) is NOT a scalar product
on R™! (since it is not positive definite); however we still see that P and
R, as defined in (@6) and ({@T), are well-defined linear maps on R"*! (indeed
recall that (p,p) = —1 and (v,v) > 0 by part (a)). Furthermore P(x) € II
for all x € R**! and P(x) = x for every x € II (for the last claim it suffices
to verify P(p) = p and P(v) = v). Hence also R(z) = x for all = € II, while
R(z) # x for = ¢ 1I (indeed R(x) = x = = = P(x) € II). In other words,
the set of fixed points of R equals II.
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It remains to prove R € OT(1,n). Let us first note that for any 2 € R"+!,

using (46]) and ([435)) we have

(z,p)
P(z) —x,p) = p:p) +0—(x,p) =0
(P(x) ) . p>( ) (z;p)
and similarly (P(z) — x,v); hence P(z) — x is orthogonal to p and v and
hence to all II = Spang{p,v}. In particular (P(x) — =, P(z)) = 0, since
P(z) € II. Therefore,

(Rx, Rx) = (P(x) + (P(z) — z), P(z) + (P(z) — x))
= (P(z), P(x)) + (P(z) — z, P(z) — x)
= (P(z) = (P(z) — z), P(z) — (P(z) — x))
= <l‘,l‘>

This holds for all z € R"*!; hence R € O(1,n). Finally note that R(p) = p,
since p € II, and p € H™; hence in the notation of part (¢) R cannot satisfy
“(=)” and so it must satisfy “(+)”, i.e. R € OT(1,n). O

(d). Consider arbitrary p,v as in (c), but now also assume |[v|| =1 (i.e.
(v,v) =1). Let ¢ : R — H" be the geodesic with ¢(0) = p, ¢(0) = v. (The
fact that ¢ is defined on all R follows from the Theorem of Hopf-Rinow, since
H™ is complete.) Take R € O"(1,n) as in part (c); this is an isometry of
H"™ onto H™ by part (b); hence also Roc: R — H™ is a geodesic on H".
But R preserves p and v; hence R(c¢(0)) = p and %R(C(i))‘tzo = v, and so
by [12, Thm. 1.4.2], R(c(t)) = c(t) for all t € R. Also the set of fixed points
of R is II; hence

c(t) e 11, vVt e R.

Hence there are (uniquely determined) C*° functions = : R — R and y :
R — R such that

c(t) = z(t)p + y(t)v, vVt € R.
It follows from ¢(0) = p and ¢(0) = v that
z(0) =1, #(0) = 0; y(0) =0, (0) = 1.

We also have ¢(t) € H™ and thus (c(t),c(t)) = —1, for all t € R. Using
(p,p) = —1, (p,v) =0 and (v,v) = 1, this translates into:

(48) —z(t)? +yt)2=—-1, VteR.
We also have ||¢(t)|| = 1, i.e. (¢(t),¢(t)) = 1 for all ¢t € R, by [12, Lemma
1.4.5]; and this similarly translates into:

(49) —2(t)?+gt)? =1, VteR.

Equation (8) implies |z(t)] > 1, and since a:(O) 1 and z is continu-
ous, it follows that x(¢) > 1 and z(t) = \/y 1 for all t € R. Hence
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t)y(t
z(t) = M, and inserting this in (49]) and simplifying we get
y(t)? +1

yt) =+/1+yt)?2  VteR.

Separating variables etc, this implies y(¢) = sinh(C +t), Vt € R, where C' is
a fixed real constant, and in fact C' = 0 since y(0) = 0. Hence y(¢) = sinht
and so z(t) = /y(t)2 + 1 = cosht, i.e.

¢(t) = (cosh t)p + (sinht)v, vt € R.
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Problem 27k

Remark: The results which we prove here are special cases of correspond-
ing results on (maximal) integral curves of a vector field; cf. [I, Thm. IV.4.5].
Indeed, the geodesics are simply projections of the integral curves of a cer-
tain vector field on T'M; cf. [1, Thm. 7.1] as well as [I2, Thm. 2.2.3 and Def.
2.2.3).

(a). Let p € M and v € T,M be given. Let I,J C R be any two open
intervals containing 0 and let f : I — M and g : J — M be two geodesics

both satisfying f(0) = p, f(0) = v, g(0) = p, §(0) = v. Let

I"={telInJ: f(t)=g(t) and f(t) = g(t)}.
We claim that I* = I N J. Note that this implies that f and g together
define a geodesic on the interval I U J!

[Proof of I* = I'nJ: Take any s € I*. Using I* C I N J and the
fact that I N J is open, it follows that there exists some § > 0 such that
(s —0,s+0) C INJ, and so we have two well-defined geodesics

fioon: Is — M5 f1(t) == f(s+1), g1(t) :=g(s+1).

(Here I5 := (—6,0).) These satisfy f1(0) = f(s) = g(s) = ¢1(0) and f,(0) =
f(s) = g(s) = g1(0). Hence by the local uniqueness theorem for geodesics
(Theorem 1’ on p. 2 in Lecture #4), there is some ¢’ € (0,6 such that
fi(t) = g1(t) for all t € Iy, and so f(t) = g(t) and f(t) = ¢(t) for all
te(s—0d,s+9), 1e (s—0¢,s+08) C I*. The fact that I* contains such
a neighborhood around every point s € I* implies that I* is open. But also
I* is a closed subset of I N J; this follows from the definition of I* and the
fact that f, f, g, g are continuous. Hence I* is either empty or a connected
component of I NJ, ie. I* =@ or I* = I NJ. However 0 € I*, i.e. I* is
non-empty. Therefore [* = 1N .J.]

Using the property just proved, it follows that if we let I be the union of
the domains of all geodesic curves such as f and g above, then there is a
well-defined geodesic ¢, : I — M with ¢,(0) = p, ¢,(0) = v, and it has the
desired property! O
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(b). Let v € TM and s € I,,. First note that
(50) 0(0,v) = ¢,(0) = v.
Set

w:=0(s,v) € TM.

Since ¢, : I, = M is a geodesic with ¢,(s) = ¢,(0), it follows that the curve
vy, —s— M, y(t) := cy(s+t) is a geodesic with 4(0) = ¢,(0); hence by
the defining property of the maximal geodesic ¢, we have I, — s C I, and
Y(t) = cw(t) for all t € I, — s. In other words:

(51) co(s+1) = cyul(t), Vte I, —s.

Hence also

(52) Co(s+ 1) = éu(t), Vt e I, — s,

and applying this for t = —s we get ¢,(0) = ¢é,(—s). Hence the curve

n:ly+s— M, n(t) = cy(s—t)is a geodesic with 7(0) = ¢,(0); and so
by the defining property of the maximal geodesic ¢, we have I, + s C I,
(and n(t) = ¢y(t), Vt € I, + s). Now I, + s C I, and I, — s C I, together
imply I, = I, — s. Hence we have proved all desired relations; indeed cf.
(B0) and (B2), and note that (B2) can be expressed as 0(s + t,v) = O(w,t),
Vte L, —s=1I. O

(c). For any v € TM, let ¢, : I, = M be the unique maximal geodesic
starting at v. Now define D as follows:

D:={veTM :1€l,}.
Then define the map exp : D — M by
exp(v) := ¢yp(1).
Note that exp(v) is well-defined, since v € D implies 1 € I,,.

In order to prove that D and exp have the desired properties, let us first
note a basic scaling property. As we noted in the lecture, if ¢t — ¢(¢) is any
geodesic then so is ¢ — c(\t) for any constant A € R, and Le(\t) = A\é(t)
everywhere. Using this fact one easily derives the following scaling formula
for the maximal geodesics: For any v € TM and A\ € R,

(53) Do =XM1, and ¢y, (t) = c,(At), Vt € Iy,.

(Explanation of notation: “A~'I, denotes the open interval {\~'t : t € I,};
in the special case A\ = 0 the formula should of course be interpreted to say
Iy, =R.)

Now for any v € TM and t € R, note that t € I, holds iff 1 € t~'1,,, and
by (B3) this holds iff 1 € I, i.e. iff tv € D (note that with the appropriate
interpretation this discussion is correct also when ¢ = 0; in particular note
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that D contains the zero vector from every tangent space 1,M). We have
thus proved that for every v € TM,

(54) I,={teR : tveD}.

Also by ([B3),

cy(t) = ey (1) = exp(tv), Vt € I,.
Hence it “only” remains to prove that D is open and that our map exp is
ce.

A crucial ingredient for the remaining part of the proof is to translate the
formula “6(6(s,v),t) = 6(t+s,v)” from part (b) into a composition formula
for exp. Thus take any v € TM and s € I, and write ¢ = ¢,(s) = exp(sv)
and w := 6(s,v) = é,(s) € Ty(v). By (B4), the formula I, = I, — s proved
in part (b) can be equivalently expressed as

(55) YweTM:Vsel,: VteR: [t-¢y(s) €D & (t+s)veD].
For any s,t satisfying the condition in (B3l), by part (b) we have 0(w,t) =
O(t + s,v), i.e. éy(t) = é(t + s). Applying the projection TM — M this
implies ¢, (t) = ¢, (t + s), i.e. exp(tw) = exp((t + s)v). Hence:

(56) YveTM:Vsel,: Vtel,—s: exp(t-cé(s)) =exp((t+ s)v).

Let D' be the set of all v € TM with the property that v has an open
neighborhood 2 C D and exp is C* on Q. Clearly D’ is an open subset of
the interior of D, and exp|pr is C®. Our task is to prove that D' = D! The
local existence theorem for geodesics (Theorem 1 in Lecture #4) implies
that D’ contains the zero section in TM, i.e. D' contains the zero vector
from every tangent space T,M (p € M).

Next we claim that, as a consequence of (B6]), D’ has the following prop-
erty:
YoeTM:Vsel,: Vtel,—s:
(57) [If sv € D’ and t - éy(s) € D' then (¢t + s)v € D'].

[Proof: Fix s € I, t € I, — s and assume sv € D’ and ¢ - ¢,(s) € D’. Since
exp is C* on D', the function

U Cy(s) = (% exp(tu))

is C™ on the set U := {u € TM : su € D'} (verify this claim as an exercise!),
and U is an open subset of TM; also v € U. In particular u — ¢ - é,(s) is
continuous on U, and so

U ={ueld : ¢y(s)eD'}={ueTM : sueD and t-é,(s) € D'}

[t=s

is also an open subset of TM. Note that v € Y’ by our assumptions. Now
for any v € U" we have su € D' C D, thus s € I, (cf. (54)) and also
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t-¢yu(s) € D' C D, which by (B3) implies (t + s)u € D, i.e. t € I, — s; hence
by (B6) we conclude:

Vuel :  exp((t+ s)u) = exp(t- éu(s)).

Here the right hand side is the composition of the function u + t- ¢, (s) and
exp, and both these functions are C* when u € U’ (by the discussion above
regarding u +— ¢,(s), and since t - ¢,(s) € D', and by the definition of D’).
Hence u — exp((t+ s)u) is C*° on U’, and since U’ is an open set containing
v, this proves that (t + s)v € D’/]

Assume now that there is some v € D\ D’ (we will prove that this leads to
a contradiction). Let p = 7(v), so that v € T,M. Then {t € [0,1] : tv ¢ D'}
is a closed subset of [0, 1] which contains 1 but not 0; this implies that there
is a minimal t1 € (0,1] with t;v ¢ D’. Note that ¢t; € I, since 1 € I,,. Set
q = exp(t1v), and let 0, be the zero vector in T,M. Then 0, € D', since D’
contains the zero section; also D’ is open and ¢ - ¢,(t; — ) tends to 0, in
TM as e — 0; hence there is some ¢ € (0,¢1) such that

€ éy(tl — E) S D

Now set s = t; — ¢ € (0,t1). Note that sv € D', by our choice of ¢;. Hence
(B7) applies with our s and ¢t = e, and implies that t;v € D’. This is a
contradiction, since we constructed t; so that tyv ¢ D’! The conclusion is
that the does not exist any v € D\ D’; in other words D’ = D, and we are
done! O

(d). (This is now more or less straightforward; cf., e.g., [I, Thm. 3.12].)
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Problem

Fix a chart (U, x) on M containing p; then (T'U,dx) is a C*° chart on TU
(cf. Problem [ and the end of Lecture #2); do maps TU onto x(U) x R,
Set Dy := TU ND and V = dx(Dy); this is an open subset of z(U) x R%.
Of course, (U x U, (z,x)) is a chart on M x M; cf. Problem Bl

Let us write x9 := x(p); then 0, is represented by (z9,0) € V C R? x R?
in our chart (TU, dx).

In the local coordinates described above, the function
G := (m,exp) : Dy = M x M
takes the form
(58) V — R? x RY; (z,v) = (x, F(z,v)),

where F : V — R% is the function exp composed with the appropriate chart
maps. Let us write F(z,v) = (F'(x,v),...,F%x,v)). Then the Jacobian
matrix of the map in (B8] is given by

1 0 .. 0 0 .. 0
0 1 ... 0 0 .. 0
0 0 ... 1 0 ... 0
ozl 0Ox2 ozxd Ol Ovd
ort ort  oF! oF! OF1
ozl 0z2 ozd Ol Ovd

Note that this matrix has the structure of a 2 x 2 block matrix where each
block is a d x d matrix. It follows from the basic formula (dexp,)o = 17, ()
(cf. the proof of Theorem 3 in Lecture #4 = Jost [12, Thm. 1.4.3]) that at
(0,0), the lower bottom block is the d x d identity matriz. Hence at (zg,0)
the above 2d x 2d matrix is non-singular (in fact the determinant equals 1).

Hence we have proved that the differential dGo, : Ty, (T'M) — T, M xT,M
is non-singular. Therefore, by the Inverse Function Theorem, there is a open
neigborhood €2 C D of 0, such that G restricted to € is a diffeomorphism
onto an open subset G(Q2) of M x M. After shrinking Q if necessary, we
may assume that 2 has the following form, for some r» > 0 and some open
neighborhood U of p in M:

(59) Q= UgeuBr(0g) ={veTM : n(v) €ed and ||v|| < r}.

(Here we used the facts that any set of the form (B59) is open in 7'M, and
these sets form a neighborhood basis of 0,; we leave the verification of these
as an exercise.)
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Now G~! is a C* map from G(2) onto Q2. For each ¢ € U, set
Wy ={ueM : (qgu) e G}
this is an open subset of M. Also for each ¢ € U define the map
H,: W, —TM,  H,(u)=G(qu).

Then H, is a C*° map, and using G o G~! = 1 and G = (7,exp) we have
m(Hy(u)) = q and exp(Hy(u)) = u for all u € W, i.e. H, in fact maps W,
onto T, M N Q = B,(0,), and

expoHy =1lw, and Hgoexpg (o,) = 1B,(0,)-

Hence for every ¢ € U, €Xp|p, (0,) 1S @ diffeomorphism onto an open set
(namely W;) in M, i.e. we have proved Theorem 3’ in Lecture #4! O

(b). Set

U = | | B(0p) c TM;
peU

this is an open subset of TM (as is easy to verify from the definition of the
topology of TM; cf. Problem [I6]), and by assumption we have U’ C D. As
in part (a) let us consider the C* map G := (, exp), but this time with U’
as domain of definition:

G := (mexp) : U — M x M.

Note that G(U’) = V and it follows from our assumptions that G is a
bijection from U’ to V and G™' : V — U’ is exactly the map (p,q)
exp, 1(g) which we are interested in. Hence if we can prove that G is a
diffeomorphism onto an open subset of M x M then we are done; and in
fact it suffices to prove that every point in U’ has an open neighbourhood in
U’ on which G restricts to a diffeomorphism onto an open subset of M x M.
By the Inverse Function Theorem, this will be ensured if we can prove that
dG is non-singular at every point in U’.

Thus consider an arbitrary point v € U’; set ¢ := w(v) € U so that
v € B,(0g) C T,M. Working with local coordinates of the same type as in
part (a, dG, is expressed by a 2d x 2d matrix which again is naturally
viewed as a 2 X 2 block matrix where each block is a d x d matrix: The
upper left block is the d x d identity matrix and the upper right block is the
d X d zero matrix; also the lower right block is a non-singular d x d matrix,
since (dexp,)y : TyTgM = TyM — Teyp ()M is non-singular (this holds since
v € B;(0g) and expy g, (o,) is a diffeomorphism by assumption). This implies
that dG, is non-singular, and we are done. O

13%e now leave some details to the reader...
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Problem 23t By definition of the exponential map, for any vector v €
T,M the curve

(60) x(t) =tv (for |t| < ﬁ)
represents a geodesic in M wrt the chart (U, x). Assuming now [|v|| = 1 and

v € V, the (t > 0 part of the) curve (B0) takes the following form in the
chart (U',y o x):

(61) y(t) = (te(v)) (0 <t <)

Now, wrt the chart (U’,y o x), let F;k(y) be the Christoffel symbols and
(hij(y)) be the matrix representing the Riemannian metric; then by [11],
Lemma 1.4.4] we have

(62) () + D)y (05" () =0,  Vte (0,r),ie{l,....d},

and

i L
(63) (y) = 5}1 @) (hjer(y) + hiej(y) = hjre(y))
for all y in the coordinate range. We now follow the discussion in [I1], p.
22(mid)-23(top)]. Inserting (€Il in ([G2) gives
0+ % (y(t)) 35,1661 = O,
ie.

I (y(t) =0, vt e (0,r),i€{1,...,d}.

Let us write  for the coordinate range for y, i.e. Q = (0,7) x (V) C R%
Note that the previous argument applies to any fixed v € V; this means
that y(t) = (¢,p(v)) can take any value in 2. Hence

Wy =0, VyeQie{l,...,d.
By (63)), this means that
K (y) (2h1e1 (y) — ha1e(y)) =0, VyeQie{l,...,d}.

Multiplying this by hy;(y) and adding over ¢ (using Zgzl hyei ()R (y) = Ore),
we get:

(64) 2h1k,1(y) — hll,k(y) = O, Vy c Q, ke {1, c.. ,d}
In particular for £ =1 this implies h11,1(y) =0, i.e.
0
65 —h =0 Yy € Q.
( ) ayl ll(y) 5 Yy e

However, by the transformation rule for the Riemannian metric expressed
wrt the two charts (U’,y ox) and (U, z), we have

oxk ox’
(66) hi1(y) = a—yla—ylgké(fﬂ) (Vy € Q),
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and recalling
67) @) = (e (o) )i thos o=yt e 0P,
and writing
z=p 12, ,y?) e ST Cc RY,
we get:
(68) hii(y) = 2F 24 gre() (Vy € Q).

Now for any fixed (y%,...,y5%) € @o(V), if we let y' — 0T then z — 0
in R? and thus gpe(x) — ¢ by part (a) of this problem; meanwhile z =
o (Y2, ..., y?) is fixed; hence from (B8] we get

d
: _ kL _ k\2 _
(69) lim hyi(y) = 2"z ilg%gkg(x) = kZ(z )*=1.

10+
Y 1

But (G5) implies that hi1(y) equals a constant as y' varies in (0,7) while
(2%, ...,y is kept fixed; now (6J) says that this constant must be 1, and
so we have proved

(70) hll(y) =1, Vy e Q.
Inserting this in ([64]), for kK = j > 2, we get

0 .
(71) a—ylhlj(y) = 0, Vy S Q,j S {2, c.. ,d}

Next, using (67)) and the analogue of (66) for hi;(y) (j > 2), we have

. 0o _
hij(y) = 2y'w’ - gre(e),  with w = 5 Y0P,y e RY

If we fix (v%,...,y%) € p(V) and let y' — 0T then z,w are fixed while
gre(x) — Oe; hence

Jim ) =0 Y0y € plV) (fixed). j € {2, d)

Combining this with (1] gives
(72 b)) =0, VyeQ je e dp
From (70), (72)) and the symmetry hgs = hgy, we see that

0 haa(y) - haa(y)

(hij(y)) = . Wyeq.

0 haa(y) - haaly)
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Note also that since we know that (h;;(y)) is positive definite for every y € Q,
it follows that the (d — 1) x (d — 1) matrix

hoo(y) -++ had(y)
hao(y) -+ haa(y)
is positive definite for every y € €. O

Problem Assume that v is not a geodesic. Then there is some
to € (a,b) such that either v(t) is not C* at t = t¢ or v does not satisfy
the geodesic ODE at t = ty. Then for any t1 € [a,tp) and ty € (to,b] the
restricted curve 7y, 4, fails to be a geodesic. Set

p=(to)-
By Theorem 4:3’ (viz., Theorem 3’ in Lecture #4; cf. Problem 22fa)) there
exists 7 > 0 such that for every ¢ € B,(p) we have B,(0,) C D, and
€XPy|B, (0,) 1s a diffeomorphism onto an open set in M. Then by Theorem
4:4 we have, for every q € B,(p):

(73) equ(BT(Oq)) = Bq(r),
and for every v € B;(0,), any pw C* curve in M from ¢ to exp,(v) which

is not a reparametrization of the curve c(t) = exp(tv), t € [0, 1], has length
strictly larger than |lv[| = d(g, exp,(v)).

Now choose t1 € [a, ) and ta € (to,b] so that |t; —to| < /2 and |[ta —to| <
/2. Then d(y(t1),v(t2)) < L(Vt, t,]) = t2 — t1 <7, since v is parametrized
by arc length. Similarly d(y(t1),p) < 7/2, so that v(t1) € Br(p). Set
g = 7(t1); we have just noted that d(q,v(t2)) < r; hence by (73] there is a
(unique) v € B;(0,) such that y(t2) = exp,(v). Also note that 7y, ;,) cannot
be a reparametrization of the geodesic c(t) = exp,(tv), t € [0, 1], since we
have from above that 7y, 4,] is not a geodesic (also v is parametrized by
arc length). Hence by the property mentioned just below (Z3)), L(v, 1)) >
d(y(t1),7(t2)), and so we get a shorter curve from y(a) to v(b) by forming the
product path of yj, 4] and ¢ and vy, ). This contradicts L(y) = d(v(a),y(b)).

Hence 7 is a geodesic. O
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Problem The standard Riemannian metric on R? is an example of
a complete metric.

In order to give a non-complete metric, consider e.g. any non-surjective
embedding of R? in RY, that is, an injective (C*°) immersion i : RY — RY
which is not surjective. (Such immersions certainly exist; one example is
i(x) = (1 + ||z)|?)"Y?z.) Let U = i(R%); the Inverse Function Theorem
implies that U is an open subset of R%. We provide U with its C'° manifold
structure as an open submanifold of R?; also equip U with the Riemannian
metric induced by the standard Riemannian metric on R?; we denote this
by (-,-) as usual. The Inverse Function Theorem also implies that i is a C™
diffeomorphism of R? onto U. Now equip R? with the Riemannian metric
which makes i an isometry; let us denote this metric by [-,:]. Thus for any
p € R? and v,w € R,

[U7 w] = <dip(v)7 dip(w)>'
(In other words, [+, -] is the Riemannian metric on R? coming from identifying
R with the (open) submanifold U of R?, cf. Problem[I& here the latter “R%”
is equipped with the standard Riemannian metric (-,-).) We know that U

with the Riemannian metric (-, -) is not complete; hence since i is a surjective
isometry, R? with the Riemannian metric [-,:] is not complete. Done! O

Alternative (for the non-complete example): Equip R? with any explicit,
sufficiently rapidly decaying Riemannian metric, for example (g;;(x)) with

(74)  gij(2) = 0ye 2l (with 2] = (@12 + - + (2D?).

Note that each matrix entry g;;(z) is a C* function of 2 € R? and also
the matrix (g;;(z)) is positive definite for every z € R? (since it is a posi-
tive multiple of the identity matrix); hence the formula indeed gives a Rie-
mannian metric on R%. To prove that this metric is not complete, consider

the sequence of points pi,pe,... with p; := (4,0,---,0). For any integers
1 <75 <k we have
(75) d(pj, pr) < e,

Indeed, consider the C* curve ¢ : [j,k] = M, c(t) := (¢,0,...,0). This is
a curve from p; to py and its length with respect to the Riemannian metric

) is
L(c):/jkmdt:/jk\/ﬁdt:/jke—”dt</jme‘tdt:e—j.

(Here we used the fact that 2 > ¢ for all + > j > 1.) This proves that
([@3) holds, and (73] in turn implies that p1,pa, ... is a Cauchy sequence in
R? equipped with the Riemannian metric in (@4)). On the other hand the
sequence pq,pa, . .. does not converge to any point in R (Recall here that
“convergence” is a topological notion, i.e. it depends only on the topology of
R? and not on the metric metrizing it; cf. here also Lemma 2 in Lecture #3.)
Hence R? equipped with the Riemannian metric in (7)) is not complete. O
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Problem

(a). Let us first note that this is not an immediate consequence of the fol-
lowing fact from basic point set topology: “Every closed subset of a complete
metric space is itself a complete metric space”. Namely, in that statement
it is understood that the subset is endowed with the metric which is simply
the restriction of the metric on the larger space. This is not the case in our
situation; we typically have dy/(p,q) # dn(p,q) for p,q € M; cf. Problem
IRl(c)!

However, as we’ll see, the completeness of M is still easy to prove...

Let p1,p2,... be a Cauchy sequence in (M,dys). By Problem [I8(c) we
have dn(pj,pr) < duv(pj,pr) for any j, k; hence pi,po, ... is also a Cauchy
sequence in (IV,dy). Therefore, since N is complete there exists a (unique)
limit point p := lim; . p; in N. Recall that the last limit relation by
definition means that

(76) lim dn(pj,p) = 0.
j—00

Since M is closed in N we have p € M. But since M is an embedded
submanifold of N, the topology of M equals the subspace topology of M as
a subset of IV; therefore lim;_, dn(p;,p) = 0 implies lim;_, dps(p;,p) = 0,
ie. p=Ilim; oo p; in M.

This proves that M is complete. O

(b). ((E.g. there is an appropriate “isometric immersion” of (0,00) into
R? with closed image; easy to draw a picture...))

149ome further explanation: Here we are using the fact that the relation “p =
lim; o0 p;” (& “p; — p”) only depends on the topology of the space which we are working
in, and not on the choice of metric metrizing that topology. For example, p; — p in N
holds iff for every open neighborhood U C N of p, there exists J € Z* such that p; € U for
all 7 > J (and this is equivalent to ([{6) holding for any metric metrizing N’s topology).
Now in our situation we wish to prove that lim; . dar(p;, p) = 0, or equivalently that for
every open set U in M with p € U, there exists J € Z" such that p; € U for all j > J.
Let such an open set U C M be given. Since M has the subspace topology as a subset
of N, there is an open set V in N such that U = M N'V. Next, since p; — p in N there
exists J > Z*1 such that p; € V for all j > J. But the points p1,ps,... all lie in M; hence
p; € VN M =U for all j > J. Therefore p; — p in M.
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Problem

(a). This continuity is clear from

(77 ld(p,q) —d(',¢)| < d(p,p) +d(a.d),  p,p,q,d € X.
[Proof of ({7): By the triangle inequality we have

ld(p,q) —d(p',q)] < d(p,p’) and |d(p',q) —d(p',q")| < d(q,q).
Hence
ld(p,q) — d(p',q")| < |d(p,q) —d®',q)| + |d(p’,q) — d(p',¢')| < d(p,p") + d(q,q).
Donel]

(b). Take any ¢ € X. If d(p,q) < r then setting s = r—d(p, q¢) > 0 we have
Bs(q) € By(p) (by the triangle inequality) and so ¢ ¢ 0B, (p). If d(p,q) > r
then setting s = d(p,q) —r > 0 we have Bs(q) N B.(p) = 0 (again by the
triangle inequality) and so ¢ ¢ 9B,(p). This proves the stated inclusion.
The set B, (p) is closed since the boundary of any set (in any topological
space) is closed. The fact that the set {¢ € X : d(p,q) = r} is closed is an
immediate consequence of the fact that the metric d is continuous.

Next assume that (X,d) is a Riemannian manifold. Take any ¢ € X
with d(p,q) = r. By the definition of “d”, there exists a sequence of pw
C*° curves 71,72,... on X such that each ~; starts at p and ends at g,
and £; := L(v;) < r+j~1; also ¢; > r. We may assume that each =; is
parametrized by arc length, and has domain [0, ¢;] where ¢; = L(v;). Take
J € Z7 so large that J~! < r, and for each j > J set

gj = (r—57").

Note that v;jo,-—;-1) is a curve of length r—j~! from p to g;; hence d(p, ¢;) <
r—j~1 and ¢; € B,(p). On the other hand Yj|ir—j-1,,] 18 a curve of length
<li— (=) <(r+j)—(r—j)=2""
from g; to ¢; hence d(gj,q) < 25~ Hence qj — q as j — oo. This shows
that ¢ is in the closure of the set B,(p). Also ¢ ¢ B,(p) since d(p,q) = r.

Hence ¢ € 9B, (p). We have thus proved that {¢ € X : d(p,q) =r} C B,(p),
and we are done. O

(Remark: If r is so small that there exists some 7’ > r such that B,(0,) C
D, and exp, B./(0,) is a diffeomorphism onto an open set, then the identity
0B,(p) = {¢g € X : d(p,q) = r} is a trivial consequence of Theorem 4
in Lecture #4. This is the only situation which occurs in the proof of the
Hopf-Rinow Theorem.)
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(¢). (The same argument appears on [12] p. 36].) We have

d(p,q) < d(p,po) + d(po,q)

by the triangle inequality; hence it now suffices to prove the opposite in-
equality. Let v : [a,b] — X be any pw C* curve with y(a) = p and
v(b) = q. Since t — d(p,~(t)) is a continuous function of ¢, and d(p,y(a)) =
0, d(p,v(b)) = d(p,q) > r, there must exist some ty € (a,b) such that
d(p,~(to)) = r. By part (b) we then have ~(tp) € 0B,(p), and hence be-
cause of the way pg was chosen,

d(v(to),q) = d(po, ).
Therefore,

L(v) = L(ato) + L(Vto,0) = d(p,7(t0)) + d(v(to), q) = 7 + d(po, q)-
Since this is true for every pw C* curve from p to ¢, we have

d(p7 q) >r+ d(p07 q) = d(pvp(]) + d(p(]v Q),
and the proof is complete. O

Problem The fact that every distance d(p,q) < R is realized by a
geodesic is proved by more or less exactly the same proof as the “key fact”
in the proof of the Hopf-Rinow Theorem; cf. Lecture #5, pp. 9-11. Indeed,
assume ¢ € M and r := d(p,q) < R. Now the proof in Lecture #b5, pp. 9-11
applies to our situation, word by word. The only difference is that now the
geodesic

c(t) == exp,(tV)
(introduced in the last line of p. 9) is not guaranteed to be defined for all
t € R, but it is certainly defined for all ¢ with [t| < R, since Br(p) C Dp;

in particular ¢(t) is defined for all ¢ € [0, r], and these are the only t-values
which are ever considered in the proof.

Finally, Br(p) = exp,(Br(0,)) is indeed an immediate consequence of
the above fact. Indeed, the above fact implies Br(p) C exp,(Br(0,)). On
the other hand for every v € Br(0,), the geodesic t — exp(tv), t € [0,1], is
a curve of length [|v[| from p to exp,(v), so that d(p, exp,(v)) < [lv|| < R, i.e.
exp,(v) € Br(p). Hence also the opposite inclusion, exp,(Br(0,)) C Br(p),
holds. Done! O
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Problem

(Note that Jost mentions this generalization in the beginning of his proof
of [12, Thm. 5.8.1].)

The proof in the two cases (fixed endpoints versus closed curves) is very
similar, and we treat here only the first case. Thus let ¢: I — M be a curve.
Set p = ¢(0) and ¢ = ¢(1), and let F be the family of all pw C*° curves
homotopic to ¢. Then pick a minimizing sequence (v,) for arc length in F
Thus each -, is a pw C'*° curve, and

nh_)ngo L(vyn) = Lo == c%)IéfFL(co).
Wlog, assume also

Set R:= Lg+ 2 and
K := Bg(p).
Note that by construction, all the curves 1,72, ... are contained in K. By
the Hopf-Rinow Theorem (Theorem 5:3, (1) = (2)), K is compact. Hence
the proof of Cor. 4.1 (an immediate application of Thm. 4.3’) extends to show
that there exists some 7y > 0 such that for every point p’ € K, XDy (B, (0,)
is a diffeomorphism onto an open set in M. By shrinking r( if necessary, we
may assume g < 1.

We have already remarked that all curves vq,7o, ... are contained in K;
in fact they are even contained in the smaller ball Br,11(p), and hence since
ro < 1 and R = Lo + 2, it follows that the whole neighborhood B, (p’) is
contained in K, for all p’ € 7,, any n. Hence all points ever considered in
the proof of Theorem 1 in Lecture #b5 lie in K, and so the proof carries over
to our situation! O
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Problem
(a). Consider the C*° map
f:R® >R, fz,y,2) =%+ 22 — ¥,
One verifies immediately that S = f~1(0). Furthermore

df (2,y,2) = (—2629” 2y 22),

which has rank 1 for all (z,y,2) € R3. Hence by [I2, Lemma 1.3.2] (with
the slightly more precise formulation in the notes to Lecture #2; note that
this is what Jost’s proof actually gives), every connected component of S in
R3 is a closed differentiable submanifold of R3. Hence if we prove that S is
connected then it follows that S itself is a differentiable submanifold of R3.
However the connectedness is clear from the parametrization of S given in
the statement of the problem. Indeed, set

g(z,a) := (x,e" cos a, e” sin ).

Then g is a continuous (even C*°) function from R? to S. [*] Consider two
arbitrary points in S; these can be expressed as g(z, ) and g(2’/, 8) for some
z,7',a,8 € R. Then

c:[0,1] = S, ct)=g((1 —t)z +t',(1 — )+ tB)

is a curve in S from g(z, ) to g(z’, 8). This proves that S is path-connected,
and thus connected. This completes the proof that S is a differentiable
submanifold of R3.

Note also that S is closed; for example this follows from S = f~1(0) and
the fact that f is continuous. O

151ndeed, by inspection ¢ is a continuous function from R? to R*, and g(z,a) € S for
all (z,a) € R?. Hence since S is a (disconnected) union of differentiable submanifolds of
R? and thus the topology of S agrees with the subset topology from S C R3, it follows
that g is continuous also as a function from R? to S.
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(b). Set p1 := (zg, —€™,0) € S, and let «y be the following C*° curve (half
circle) on S:
~v:[0,7] = S, ~v(t) = (2o, €™ cost,e™ sint).

This is a curve from pg to p1, and L(y) = we™ (by Problem [I8(b)). Hence
d(po,p1) < me®. By the Hopf-Rinow Theorem there exists a geodesic ¢ from
po to p1 with

L(c) = d(po, p1) < me™.
We can take ¢ to be parametrized by arc length; thus ||¢[| = 1 and the domain
of ¢ is the interval [0, L(c)]. Now let R be the reflection map (z,y,z) —
(z,y,—z). This is an isometry of R? onto itself, and R(S) = S; hence R is

also an isometry of S onto itself. Therefore R maps any geodesic in S to a
geodesic in S, and in particular the curve

c:=Roc:[0,L(c)] = S
is a geodesic in S, with ||¢]| = 1 and L(¢) = L(c). We have R(py) = po and

R(p1) = p1; hence ¢ is a geodesic from pg to pi, just like c¢. Take v,v € T},) S
so that c(t) = exp,, (tv) and ¢(t) = exp,, (tv) for t € [0, L(c)]. Note that

loll = [[o]l = 1,

since ||¢/| = ||¢]| = 1. Furthermore,
v #£ 0,
since ¢ # ¢. [Proof of ¢ # ¢ The second coordinate of ¢(t) is a continuous
function of ¢ starting at e™ and ending at e~*°; hence for some t € (0, L(c))
this coordinate must equal 0. For this ¢ we have c(t) = (2,0,2) € S for
some z,z € R, and from the definition of S it follows that z # 0 and so
R(c(t)) # c(t), i.e. ¢(t) # c(t) for this t.] Now
expy, (L(c)v) = c(L(c)) = p1 = ¢(L(c)) = exp,, (L(c)v),

and L(c)v # L(c)v, ||L(c)v]| = ||L(c)v|| = L(c) < me*. This proves that
for every r > me®™, the function exp, is non-injective on the open ball
B,(0,) C Tp(S). Hence i(pg) < me™o. O

(See also alternative solution on the next page!)
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Alternative: Set py := (xg, —€%,0) € S. Let 71,72 be the following two

curves (half circles) on S:
Y,72 1 [0,7] = S, 7 (t) = (w0, €™ cost, €™ sint);
Yo(t) = (x9, €™ cost, —e™ sint).
Both these are curves from pg to p1, and
L(m) = L(y2) = me™

(by Problem [I8(b)). (Hence d(pg,p1) < we™.)

Now by Theorem 1 in Lecture #5, generalized to complete manifolds (cf.
Problem 29]), there exist geodesics ¢; and ¢y homotopic to 1 and to 7o,
respectively, and from the proof of that theorem we see that we can take

L(c;) to be smaller than or equal to the length of any pw C* curve in the
homotopy class of v;; in particular

L(cj) < L(y;) = me™  (j=1,2).

We can take c1,co to be parametrized by arc length; then there exist two
unit vectors vy, vy € T}, S such that

cj(t) = exp,, (tv), t € [0, L(cj)].
In particular
epro(L(Cj)’Uj) =D for J = 1727
It follows that if we can only prove that v1 # vy, then
i(po) < max(L(cy), L(ca)) < me™,
and the proof will be complete.
In order to prove vy # wva, let us assume the opposite, v1 = vo. This means
that ¢y = ¢o, and so v and 7, are homotopic. However this is “obviously”

not the case! (Details: 77 ~ 9 would imply 1 - F5 =~ 2 - 75 =~ po, the
constant curve at pg. Now note that the map

F:8— 8 (z,e°cosa,e®sina) — (cosa,sin a)

is well-defined and continuous, and it maps the loop 7; - 75 to the loop
t + (cost,sint), [0,27] — S'. Hence, composing any homotopy showing
Y1 -F5 =~ po with F, we obtain that the loop ¢ — (cost,sint) in S' represents
the identity element in 71 (S'). However this is not the case, as we discussed
in Lecture #6, and as is carefully proved in Hatcher, [7, Thm. 1.7].) O



PROBLEMS; “RIEMANNIAN GEOMETRY” 107

Problem [31t
The following solution is sketchy and leaves out several details.

By [7, Prop. 1.5] we are free to choose the basepoint xy. Let us choose xg
so that it does not lie on any line between two points in {p1,...,p,}. Let
rj be the ray starting at xo and going through p;; it follows from our choice
of x¢ that the n rays ry,...,7, are distinct. After renaming the points
P1,--.,Pn We may assume that the rays ri,...,7, are ordered in positive
direction. Now choose rays ry,...,r, with startpoint xy such that r; liNes
between 7, and 71, and 7 for j € {2,...,n} lies between 7;_; and 7. Let A,
be the infinite open wedge between 7, and r; coontaining 7, \ {xo}; similarly
for je{l,...,n—1} let ,Zj be the infinite open wedge between r; and 7,41
containing 7. Take € > 0 small. (Specifically, € should be smaller than the
distance between xg and r; for each j.) Let A; be the open e-neighborhood

of ﬂj (viz., the set of points in R? which have distance < € to some point in
A;), but with the point p; removed. The reader is adviced to draw a picture
of the situation!

Now Aj,..., A, are open and path-connected subsets of

X :=R%\ {p1,...,pn}

with X = UJ_; A;, and A; N Ay, is path-connected for all j, k € {1,...,n};
hence van Kampen’s theorem can be applied with A1, ..., A,; in particular
the natural homomorphism

P (A1, 20) * -k w1 (Ap, o) = T1(X, 20)
is surjective. Note also that for any j # k € {1,...,n}, the set A; N A
is simply connected (proof?) i.e. m(A4; N Ag) = {e}. Hence van Kampen’s
theorem implies that ® is an isomorphism. Finally each A; is homotopy
equivalent with S! (proof?); hence 7 (4;) & Z, and so we conclude that

m1(X,z0) is a free group with n generators.

Generators: [y1],...,[vn], where «; is a loop that is contained in A; and
goes one time around p;. U
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Problem

(a). Let us first prove that M is Hausdorff. Let p and ¢ be two distinct
points in M. Then n(p),n(q) € M. If w(p) # 7w(q), then since M is Haus-
dorff, there exist disjoint open sets U,V C M with n(p) € U and 7w(q) € V.
Then 7~1(U) and 7=1(V) are disjoint open sets in M, and p € 7~}(U) and
q € 7~1(V). On the other hand if w(p) = 7(q), then by the definition of
“covering space” there is an open neighborhood U of 7w(p) = 7(¢) in M such
that 7=1(U) can be written as a union 7~ }(U) = U;ec;U;, where for each
J € J, Uj is an open set in M and 7y, is a homeomorphism of U; onto
U, and the sets U; (j € J) are pairwise disjoint. Now p,q € 7~ }(U) and
hence there are unique 4,j € J such that p € U; and ¢ € U;. If ¢ = j then
7(p) = 7(q) and the fact that my, is injective imply p # ¢, contrary to our
assumptlon Therefore i # j, and now U; and U; are two disjoint open sets

in M with p € U; and ¢ € U;. This proves that M is Hausdorff.

Next we prove that M is locally Euclidean (of dimension d). Let p be an
arbitrary point in M. Then m(p) € M, and since 7 : M — Misa covering
space, 7(p) has an open neighborhood U in M such that 7=(U) is a union
of disjoint open sets in M each of which is mapped homeomorphically onto
U by m. Exactly one of these open sets in M contains p; call this open set
U C M. Thus & is a homeomorphism of U onto U. Furthermore, since M
is a d-dimensional topological manifold, 7(p) has an open neighborhood V'
in M which is homeomorphic to an open subset of R%. It follows that also
W :=UnNYV is homeomorphic to an open subset of R% let ¢ : W — R? be
one such homeomorphism. Now W = (7 \U) L(W) is an open subset of U

containing p, and | is a homeomorphism of W onto W. It follows that

w
pom g is a homeomorphism of W onto an open subset of R?. The fact that

every point p € M has such an open neighborhood Win M proves that M
is locally Euclidean.

M is connected and second countable by assumption; hence also para-
compact (cf. the notes to Lecture #1).

Hence M is a topological manifold of dimension d. O

Remark: In fact the assumption that M is second countable is redundant;
any connected covering space M of a topological manifold is automatically
second countable. This is a consequence of the fact that the fundamental
group 71 (M) of any topological manifold M is countable; cf., e.g., Lee, [15,
Prop. 1.16). (Once we know that m (M) is countable, the fact that M
is second countable is proved by fairly simple arguments using the theory
developed in [7, Ch. 1.3]; cf. also Problem [2(a) above.)
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(In this connection, here’s an issue which for a moment had me confused: One might
think that the “obvious” map 7 from the Long Line L (cf. wikipedia) to the circle S* ~ R/Z
makes L a covering space of S'; but L is not second countable! The resolution to this
seeming paradox is that the map 7 : L — S' is in fact not continuous, and hence not a

covering map; this is discussed [herel)


https://en.wikipedia.org/wiki/Long\_line\_\(topology\)
https://math.stackexchange.com/questions/42844/why-is-the-long-line-not-a-covering-space-for-the-circle
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(b). By part (a), M is a topological manifold and dim M = dim M = d,
say. Let A be the C* structure on M, and set

A:={(U,zon) : (Uxz) € Aand U is an open subset of M which is
mapped homeomorphically onto U by =}

Note that for every (ﬁ ,x o) E .,1, x o7 is a homeomorphism of U onto an
open subset of R?. Furthermore for every p € M there is some (ﬁ xrom) € A
such that pE U (this is proved by the same argument which we used to prove
that M is locally Euclidean in part (a (a)). Hence .A is a topological atlas on

M. We claim that A is in fact a O atlas on M. To show this it remains
to prove C'*° compatibility between the charts in A. Thus let (U ,xom) and

(V,yom) be two arbitrary elements in A; set U := 7(U) and V := (V) so
that (U, x),(V,y) € A. We have to prove that the map

(yom)o(zom) L izon(UNV)—=yorn(UNV)
is C>. But note that 7(U N V) = U NV and the above map equals
yor ' x(UNV)—=yUNV),

which is C* since (U,x),(V,y) € A. Hence we have proved that AisaC>®
atlas on M.

By Problem[] A determines a (unique) C* structure on M. Let us prove
that M equipped with this € structure has the desired properties. First
we prove that m is C*°. Given p € M take (U rom) € A with p € U; also

set U := 7(U), so that (U, z) € A. Then wrt the charts (U, zox) and (U, z),
the map 7 is represented by

gzomo(zom) tizon(U)— x(U).

But 7(U) = U, and we see that the last map is simply the identity map on
z(U) € RY, which of course is a C*™ map. Hence 7 is C°° locally near p,
and since this is true for all p € M, the map 7 is C*°.

Next we prove that every point p € M has an open neighborhood with
the stated property. Let p € M be given. We know that p has an open
neighborhood U in M such that 7~1(U) is a union of disjoint open sets in
]\7 each of which is mapped homeomorphically onto U by 7. We will prove
that any such U is in fact ok for us. Thus let U be any one of the open sets

in M with the property that 7~ is a homeomorphism of U onto U. We claim

U
that s is in fact a dzﬁeomorl’phzsm of U onto U. We proved above that 7

8 C*°, and it remains to prove that (71"[7)_1 U = Uis
C*°. Take any point ¢ € U and set g := (ﬂ‘ﬁ)_l(q) € U. Take (V,yomr) e A
with ¢ € V, and set V := (V) so that (V,y) € A. Set W := U NV; then

is C*°; hence 7,
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(W, yjw) € A (since A is a maximal C*° atlas on M); also W= (m \U) Lw)

is mapped homeomorphically onto W by 7 and so (W yw o) € A. Now
wrt the charts (W, yj) and (W, Yjw o), the map ( ‘[7) 1'is represented by

(yom)o(mg)~to(yw) ™" y(W) = yom(W).
One verifies that this is simply the identity map on y(W) C R¢, which of

course is a C° map. Note also that ¢ € W. The fact that every point
g € U has such an open neighborhood W in which (71‘[7)_1 is C°, implies

that (7r‘ [7)_1 is C*°. This completes the proof that our C'* structure on M
has all the desired properties.

Finally we prove that the above C'*° structure on M is uniquely deter-
mined by the stated requirements. (This is more or less obvious, but it
becomes somewhat technical to write out the details — at least in the way
I've done it. I think it is the least important part of this problem...) Thus
let B be any C* structure on the topological manifold M which satisfies the stated re-
quirements; our task is then to prove that B is compatible with the C*° atlas M. Let
(U, ¢) be any chart in B and let (V,y o) be any chart in A; then our task is to prove
that the map

(yom)op ' 1pUNV) = yor(UnV)
is a diffeomorphism,

Set V := 7(V) so that (V,y) € A and ™7 is a homeomorphism of V onto V. Set

W=UNnV and W = W(W); then W is an open subset of 177 W is an open subset of V,
and 73 is a homeomorphism of W onto W. (For nontriviality, assume W # 0.) Also

(W7 @) € Band (W, yw) € A (since B and A are maximal); hence also (W7 ToYw) € A
Our task is to prove that the map

(78) (yom)ow ™ : (W) = y(W)

is a diffeomorphism, i.e. that both the map (8] and its inverse,
(79) polyom) " y(W) = (W),

are C*°.

Let p € W and set p := (W‘W)fl(p). By the requirement which we have imposed on
B, there is an n open neighborhood Q' of p in M such that 7~ *(Q) is a union of disjoint
open sets in M each of which is mapped diffeomorphically (wrt B) onto Q' by 7. Among
these open sets in M let ¥’ be the one which contains p. Then set Q= ﬂW it follows
that Q is an open subset of W which contains p and which is mapped diffeomorphically
(wrt B) by 7 onto Q := 7(Q' N W) which is an open subset of W containing p. The
last statement (together with (W74p‘w) € B and (W,yw) € A) implies that both the
maps yomow ' () = y(Q) and por toy !t 1 y(Q) = ¢(Q) are C*. Those
maps are restrictions of the maps (78) and (79)), and the fact that any point p has such a
neighborhood € in W now implies that the two maps ([Z8) and (@3] are C*°, and we are
done. U
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(c). By part (b), M has a C* manifold structure which is uniquely deter-
mined by the stated requirements (since any isometry is a diffeomorphism).
Note that 7 : M — M is an immersion (since locally it is a diffeomorphism);
hence by Problem [I§(a) there is a unique Riemannian structure on M such
that (v, w) = (dr(v),dr(w)) for any p € M and v,w € TpM. It is clear from
part (b) that this Riemannian structure has the desired properties. O

(d). This is easily deduced by inspecting the solution to Problem Q(b).
Indeed, there we saw that I'\ M is a topological manifold and 7 : M — T'\ M
is a continuous map. Now consider an arbitrary point in I'\ M, say [p] with
p € M. By (23) there is some U € Z (viz., an open set in M which is
injectively embedded in I'\M) with p € U. By (24]), #(U) is an open set in
'\M and 7y is a homeomorphism from U onto 7 (U). Now for every point
q € M, the equivalence class [q] = m~!(7(g)) consists exactly of the points
v(q) (v € T'), and these are pairwise distinct (since I' acts freely on M).
Hence 71 (7(U)) is a disjoint union of the sets y(U) (y € I'):

(80) 7 (@) = || ().
yer

Here for each v € T, v(U) is open in M, since v is a homeomorphism;
furthermore 7,y is a homeomorphism of y(U) onto w(U), since 7y =
my o (o) ', ie. a composition of two homeomorphisms. Hence (80) ex-
presses 7 (w(U)) as a union of disjoint open sets in M, each of which is
mapped homeomorphically onto 7w(U) by w. The fact that each point [p] in
I'\M has such an open neighborhood 7(U) proves that = : M — I'\M is a
covering space of I'\ M. O

Comments to part (d): Hatcher in 7, Prop. 1.40] proves a stronger re-
sult under a weaker assumption. Indeed, note that our assumption that I"
acts freely and properly discontinuously on M implies that the action is a
“covering space action” in the terminology of [7, p. 72]; this implication is
seen in the solution to Problem QI(b); indeed it is equivalent to (25]). (This
is also the content of [7, p. 81, Problem 23].) It is worth pointing out that
the condition that I' < Homeo(M) acts by a “covering space action” on M
does not guarantee I'\ M to be Hausdorff; cf. [7, p. 81, Problem 25].
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Problem [33k

WLOG we assume U = M. (To see that this is really no loss of generality,
note that if we prove (a) < (b) < (c) in the special case U = M, then
the general case follows by applying that statement to the vector bundle
(B, m,U).)

Thus our task is to prove that the following statements are equivalent:
a) F is trivial;
(b) there is some ¢ such that (M, ) is a bundle chart for E;

c) there is a basis of sections in I'E, i.e. sections sq,...,s, € I'E such that
51(p), ..., Sn(p) is a basis of E, for every p € M.

Here (a) < (b) is immediate by inspecting the definitions. Indeed, by
definition F is trivial iff there is a bundle isomorphism ¢ : E — M x R", i.e.
a C* diffeomorphism ¢ : E — M x R™ with pr; op = 7 such that ¢, = ¢/,
is a vector space isomorphism E, — {z} x R"™ for each z € M. But this is
the same as saying that (M, ) is a bundle chart for E.

(b) = (c¢): Let ¢ be such that (M,¢) is a bundle chart for E. Let
€1, ..., €y be the standard basis of R”. For each j € {1,...,n} we define the
function s; : M — E by s;(x) = ¢ (,e;); then s; is C°° and 7o s; = 1yy;
hence s; € I'(F). Now for each x € M, since e1,..., e, is a basis for R"
and ;! is a vector space isomorphism {z} x R" — E,, it follows that

s1(x),...,sn(x) is a basis of E,. Hence s1,...,s, form a basis of sections of
E.

(c) = (b): Assume that sj,...,s, is a basis of sections of E. Let us
define the map ¢ : M x R" — E by

U(z, (c1,... ) = ch -sj(x) € Ey.
j=1

Clearly v is C* and 7ot = 1. Furthermore (x,-) is a vector space
isomorphism R™ — E, for each x € M, since s1(x),...,sy(x) is a basis of
E,. It follows that 1) is a bijection of M x R™ onto E. Let

o=1¢"':E— MxR"

It follows that @, := ¢, is a vector space isomorphism E, — {z} x R" for
each x € M. It remains to prove that ¢ is a diffeomorphism. We already
know that ¢! =1 is C™, so it suffices to prove that ¢ is C*°, and for this
it suffices to prove that every point in £ has an open neighborhood in E in
which ¢ is C*°.

Thus let pg € E be given. Set xg = 7(pg). Choose a bundle chart (U, @)
for E with z¢p € U and also a chart (V, «) for M with xg € V. In fact we may
assume V' = U, since otherwise we may replace (U, ¢) with (U NV, @uny)
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and replace (V, o) with (UNV, ayny). Thus from now on (U, ¢) is a bundle
chart for E, (U, «) is a chart for M, and xg € U.

Let us write “1” for the identity map on R™; then (U x R", (e, 1)) is a
chart on M x R"['9 and (#=1(U), (o, 1) 0 @) is a chart on E. With respect
to these two charts, the map 1 is represented by the map

(,1)oorpo(a,1)™t: a(U) x R" = a(U) x R",

and we compute that this map equals
(s1) (s (ervesen)) = (1D 6 pra(@lsi™ ),
j=1

where pr, is the projection map U x R™ — R™. Now for each y € a(U), the
vectors

(82) pra(@(s1(a(®))), - Pra(@snla™ (1))

form a basis of R”, since s1(a~'(y)),...,s,(a"(y)) form a basis of Ey1(y)-
Let T'(y) be the real n x n matrix formed by the columns of the vectors in
[®2). It follows that this matrix is invertible for every y € a(U), and that
the map in (&) is given by

(Remember that we represent vectors in R” as column matrices.) It follows
that ¢, which is the inverse of ¢, with respect to the two charts above is
represented by the inverse of (83]), i.e. by the map

a(U) xR" = a(U) x R", (y,c) — (y,T(y)_1 - c).

Our task is to prove that this map is C*° (it is a map from an open subset
of R x R® = R™™ to R™"). However this is clear from the formula of
the inverse matrix T'(y)~! in terms of the adjunct of T'(y); cf. herel. (In-
deed, every entry of T'(y) is a C* function of y since it is a composition of
C* functions, and using the formula for T'(y)~! we see that each of the n
coordinates of

T(y)™"-c
equals a certain polynomial in the entries of T'(y) and the coordinates of c,
divided by det(T'(y)), and det(7T'(y)) is a nowhere vanishing, C*° function of
y € aU).)

This completes the proof that (U, ¢) is a bundle chart for E, and thus of
the implication (c¢) = (b). O

160f course, “(r, 1)” here stands for the map U x R" — a(U) x R™, (z,v) — (a(z),v).
Cf. footnote [@ above — in the (pedantic) language of that footnote, we would write “[c, 1]”
in place of “(a,1)”.


https://en.wikipedia.org/wiki/Adjugate_matrix

PROBLEMS; “RIEMANNIAN GEOMETRY” 115

Problem [34:
The fact that there exist unique functions al,...,a" € C®(U) satisfying
s = o’ s; is clear from the fact that s;(p), ..., s,(p) is a basis of E, for every
p € U. The fact that each function o’ is C* is clear from the proof of “(c)
= (b)” in Problem 33l O
Problem

(a) In fact we can achieve this for any open set V' C U whose closure in U
is compact. (This clearly suffices for us, since every point p € U is contained
in such a set V.) Indeed, take any such set V. Let K be the closure of V'
in U; thus K is compact by our assumption. Now by Problem [7l(d), there
exists a C* function f : M — [0, 1] which has compact support contained
in U, and which satisfies fjx = 1. Let us define the function s’ : M — E by

(o) = {f(p)S(p) (€B,) ifpelU
0(€ Ep) if p¢U.

Then 7o s’ = 17 by construction. Also s’ is C*°. [Proof: Let C' be the
support of f; this is a compact set contained in U. Let U’ = M\ C; this is an
open set. Now s"U = fly-sis C>°, and STU, is C°, since it is identically zero.
Also U UU’ = M. Hence every point p € M has an open neighbourhood in
which §" is C*°; this implies that s’ is C*° throughout M.] Hence s’ € I'(E).
Also for every p € V we have s'(p) = f(p)s(p) = s(p); hence STV = 5|y
Done! O

(b) Let p € M be given. Let (U,¢) be a bundle chart with p € U, and
let by,...,b, be the corresponding basis of sections of Ej; (cf. Problem [33}
thus Z](y) = ¢ Yy,ej), Yy € U). Now by part (a) there exist an open
subset Vcu with p € V and global sections b1, ... ,an € I'(F) such that
bjjy = bjjy for j = 1,...,n. In other words b;(y) = b;(y) for all y € V,
j = 1,...,n, and thus bi(y),...,by(y) is a basis of E, for each y € V.
Hence byy, ..., by form a basis of sections of Ejy . O

(c) Given p, we choose V, by, ..., b, as in part (b). Now also let v € E, be
given. Since by (p), ..., bn(p) is a basis of E,, there exist (unique) ¢!, ..., c" €
R such that v = ¢ - bj(p). Set s = ¢/b; € T'E. Then s(p) = v. O
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Problem
Cf., e.g., Lee, [15, Lemma 10.6].

If (V,z) is any chart for M and a € A is such that U, NV # (), then we
let 0, o be the map

Opa 7T_1(Ua nNv)— R? x R™,
O'x,a('u) = (2o 0PIy 094 (v), Pry opa(v))
= (Ta 0 T(V), Pry 0pa (v))
This is a bijection from 7= (U, NV) onto 2(Uy, N V) x R™, which is an open
subset of R x R™. Clearly E can be covered by sets of the form 7~} (U,NV)
as above. Hence we see from Problem [I0] (parts b and d) that the family of
all (n~1(Uy,NV),0,.4) as above generate a (unique!) C° manifold structure
on E, [l provided that we can only prove (1) C*° compatibility and (2) that

the topology generated by the family of all (7= }(U,NV), 0, 4) is Hausdorff,
connected and paracompact.

We first prove C'*° compatibility. Specifically, we have to prove that for
any charts (V,z) and (W,y) for M and any «, 5 € A subject to U, NUg N
VW #0,

(84) Ora(m N Ua NUz NV AW))

is an open subset of R? x R”, and the map Oy,3 © 0’;,,11 from the set ([84) to
R? x R™ is C*°. However by parsing the definitions we see that the set in
([B4)) equals

2o (Ua NUzgNV NAW) x R",

which is indeed an open subset of R? x R™. Also the map o, L on this set is
given by

opa(zw) = o3 (x5 (2), w),

and hence
Oy,B° J;,(lx(z, w) = <$B O pry opg o 90;1@;1(2)7 w), pry 0pg o 90;1(517;1(2)7 w))

= (w9035 (2),pra 005 0 05 (03 (2), w)),

which is C* by inspection (in particular using our assumption that ¢g op 1
is C™).

Now it is easy to prove that the induced topology on F is Hausdorff. (See
Problem [I0(b) for the definition of the topology on E.) Indeed, let p,q € E,
p # q. Note that 7=!(U) is open in E for every open set U C M; hence if
m(p) # m(q) then we can use the fact that M is Hausdorff to find disjoint

17And this choice of C*>° manifold structure is clearly forced on us, from the require-
ments that (E, 7, M) is a vector bundle of rank n, and (Ua, ¢« ) is a bundle chart for every
a € A
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open sets Uy, Uy C M with p € Uy, q € Us; then 7= (Uy) and 771 (Us) are
disjoint open sets in F, containing p resp. g, and we are done. It remains
to treat the case 7(p) = 7(q). Then choose a chart (V,z) for M and o € A
such that m(p) = w(q) € Uy NV. Now 04 o(p) # 04,a(q) and hence there are
disjoint open subsets Uy, Uy C (U, N'V) x R™ which contain o, (p) resp.
02.4(q). By the argument in the solution to Problem [I0{c), aga(Ul) and
oy L (Uy) are open subsets of E; they are clearly disjoint and contain p resp.
q. Done!

Next we verify that F is connected. Let A be any subset of E which is
both open and closed. This means that for any chart (V,z) for M and any
a €A, 0p0(ANT (U, NV)) is both open and closed in z4(Uy NV) x R™.
This implies that for every p € U, NV, the set

(85) {w e R" : (z4(p),w) € 0g.a(AN 7T_1(Ua NV))}

is both open and closed in R", and since R" is connected, the set in ()
equals either () or R"”. In view of the definition of o, , and the fact that
(¢a)|E, 18 a bijection from E, onto {p} x R", this implies that

(86) ANE,=0 or E, C A.

Since every point p € M is contained in some set of the form U, NV, the
dichotomy (B8] holds for every p € M. Set

Ay ={peM : E,CA}={pe M : 0, A}

Here 0, denotes the zero vector in E,, and the last equality holds because
of ([86). Note that for any (V,z) and « as above, the fact that o,(A N
771 (U,NV)) is both open and closed in z,(U, NV) x R™ implies that the
set

{z€x,(UsNV) : (2,0) €0 a(ANT YU, NV))}

is both open and closed in z,(U, NV). Using here the fact that z, is a
homeomorphism, and the definition of ¢, o and the fact that ¢, (0,) = (p,0)
Vp e U, NV (and ¢, is a bijection), it follows that the set

{peUy,nV :0,c A}

is both open and closed in U, NV. But that set equals Ay;NU,NV, and the
fact that this set is both open and closed in U, NV, for any (V,z) and « as
above, implies that A is both open and closed in M. But M is connected,
hence Ay =0 or Ay = M. In view of (86]) this implies that either A = M
or A = (). Hence we have proved that E is connected.

Next we verify that E is paracompact. Note that by what we have already
verified, F is connected, Hausdorff, and locally Euclidean, and hence by
Problem [2(b) it suffices to prove that E a countable (topological) atlas. Let
U be a countable base for the topology of M. Let U’ be the subset of those
Q € U for which there exists a chart (V,z) for M and some « € A such that
Q CU,NV. Then U’ covers M (by the same argument as in the second
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half of the solution to Problem [Z(a)). Now for each 2 € U’ we choose one
chart (V,z) for M and one o € A such that Q@ C U, NV, and then set
Yq = (0ra)jx-1(q)- It follows from what we have proved above, and (the
solution to) Problem [0, that o , is a homeomorphism of 7=(U, N V) onto
(U NV) x R", and hence also 1 is a homeomorphism of 771({2) onto an
open subset of R x R™. Hence

{71 (), 90) - QeU'}

is a (topological) atlas for E. This atlas is countable, since Y’ C U and U is
countable. Hence we have proved that E is paracompact!

Now we have verified all conditions necessary for Problem (parts b
and d) to apply. Hence we have now provided E with a structure of a C'*°
manifold.

Now the map 7w : E — M is immediately verified to be C°°. Indeed, for
any (V,z) and « as above, using the chart (771U, NV),0,,4) for E and
the chart (V,z) for M, the map 7 is represented by the identity map on
Ta(Us NV).

Now it only remains to verify that for every a € A, the bijection ¢, from
7~ 1(U,) onto U, x R™ is in fact a diffeomorphism. For this, it suffices to
verify that for every chart (V,x) for M (with U, NV # 0), the restriction
of o to 771U, NV) is a diffeomorphism onto (U, N V) x R™. However
this is clear since ¢, x-1,nv) equals the composition of o o with the dif-
feomorphism (z,v) + (z71(2),v) from z(U, N V) x R” onto (U, NV) x R™,
and o, o is a diffeomorphism since (71 (U NV), 0z«) is a chart in our C*
atlas for E' (by Problem [I0[(d)). Done! O
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Problem 37k

(a). Let E be the Mobius bundle over S!, defined as in Lecture #7,
p. 2. Assume that E is trivial, i.e. there is a bundle chart (F,p). (This
will lead to a contradiction.) Then by Problem [33] there is a global basis
of sections s € I'E, in other words a section s € I'E' which is everywhere
non-zero. Let us identify S' with [0,1]/~ (where ~ stands for identifying
the points 0 and 1 in [0, 1]) in the standard way, i.e. by mapping z € [0, 1]/~
to (cos(2mz),sin(27rx)). By definition s is a C*° function from [0, 1]/~ to
E =[0,1] x R/~ such that pry(s(z)) =z for all z € [0,1]/~ . In particular
there is some y € R such that

S(O) = (Ovy) = (17 _y) n E.

Note that y # 0, since s is everywhere non-zero. Now = — pry(s(x))
is a C*° function from (0,1) to R satisfying lim, ,o+ pry(s(z)) = y and
lim, ,;- pro(s(z)) = —y; hence by the intermediate value theorem there is
some x € (0,1) for which pry(s(z)) = 0, contradicting the fact that s is
everywhere non-zero.

Hence E is not trivial. O

(b). Let us write E, = S' x R", the trivial vector bundle over S of
rank n. Also let El := E be the M&bius bundle over S 1 and set for n > 2:
En =E® E,_1. We claim that the desired classification is as follows: The
vector bundles

(87) E17E17E27E27E37E37”’7

are pairwise non-isomorphic, and every vector bundle over S! is isomorphic
to one of these!

We start by proving that the vector bundles in (87) are pairwise non-
isomorphic. Since isomorphisms of vector bundles preserve the rank, we
only need to prove that for each n the two vector bundles E,, and E, are
non-isomorphic, or equivalently that E, is not trivial. We have already
proved this for n = 1 in part (a); hence we may here assume n > 2. Thus
assume that E, is trivial. (This will lead to a contradiction.)

__ It seems convenient to use a slightly different model for the Mobius bundle
E; than that used in part (a): We view E; as R%?/~ , where ~ is the
equivalence relation

def ' —x
(r,y) ~ () = [a:' —x €Zand y = (—1) y]

(For a precise description of the C'°° manifold structure, see Problem [0fc),
and note that this quotient R?/~ is the same as I'\R?, where I' is the group
of diffeomorphisms of R? of the form (x,%) — (z + n, (—1)"y), for n € Z.)

We also view S' as R/~ where z ~ z/ PN Z; then the projection



120 ANDREAS STROMBERGSSON

map T : E — S!is given simply by projection onto the first coordinate;
[(z,y)] = [z]. In a similar vein we also represent E, as the quotient space
(R x R™)/~ where

(@,y) ~ (y) €& [ —zeZandy = (J)" "y,
where
100 -~ 0
0 10 0
Joi= [ 00 0| ccL,(R)
0 0 0 1

(Note that (J,)™ = I for all even m and (J,)™ = J, for all odd m.) The
projection 7 : E,, — S! is again given by [(z,y)] — [z].

Recall that we are assuming that E, is trivial. Then by Problem B3
there is a global basis of sections s1,...,s, € I'E. Each s; is a C°° map
from $* = R/~ to E, = (R x R")/~ ; composing sj with the projection
R — R/~ we obtain a C*° map s; : R — (R x R"™)/~ such that for every
z € R we have s;(z) = [(z, fj(z))] for some (unique) f;(z) € R". One
verifies that f; is a C°° map R — R"; furthermore for each z € R we have
[z] = [z + 1] in S*; hence §5;(z) = 541 (x), ie.

(88) f](l' +1)=J,- fj(x), Vr € R.
Let F'(x) be the real n x n matrix whose columns equal f1(z),..., fu(z), in
this order. Then F(z) € GL,(R) for each x € R, since s1([z]), ..., sn([]) is

[
a basis of the fiber E, ;). Hence F'is a C*° map R — M, (R). Furthermore
(B8] implies
Fx+1)=J, - F(x), Vo € R.

However det J,, = —1; hence the above implies det F'(x 4+ 1) = —det F(z).
By continuity this implies that for any fixed x € R there is some 2’ € [z, z+1]
such that det F(z’) = 0, contradicting the fact that F(2') € GL,(R).

We have seen that the assumption that E, is trivial leads to a contradic-
tion. Hence FE,, is not trivial.

It remains to prove that every vector bundle over S! is isomorphic to one
of the vector bundles in (87]). Thus let E be an arbitrary vector bundle over
S1. Set n = rank E. By definition of vector bundle, every point in S is
contained in some bundle chart (U, ) for E, and by shrinking U if necessary
we can assume U to be an open arc on S'. Hence since S is compact, there
is a finite family of bundle charts (Uj,¢;) for E, j = 1,...,k, such that
Sl =U,U---UU; and each Uj is an open arc.

Now we have:
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Lemma 2. If (U,¢) and (V,¢) are bundle charts for E such that U and
V are open arcs on S' and also U UV is an open arc, then there exists a
bundle chart for E of the form (U UV,n).

Proof. After a rotation we may assume U = (0,u) for some 0 < u < 1. |9 If
V C U or U C V then there is nothing to prove; hence let us assume that
V ¢ U and U ¢ V. Then the assumptions imply that V' contains either [0]
or [u]; after a reflection we may assume that V' contains [u], and then we
must have V' = (v1,v3) for some 0 < v3 < u <wvg < 1. Then UNV = (vq, u).
Let T : (v1,u) — GL,(R) be the transition map between (U, ¢) and (V)
(cf. [12} p. 42]), so that

(89) po T/J_I(Pal’) = (p, T(p) - x), Vp € (vi,u), z € R™.

Note that T"is a C* curve on the manifold GL,(R). Fix any real number
u’ € (v1,u); thus we now have

O<v <u <u<wv <Ll
Using the same technique as in Problem M9(b), one shows that there exists
a C curve T : (v1,v2) = GL,(R) such that
(90) T(p)=T(p),  Ype (vi,u).
Note that
UUV =(0,v9).

Let us now define the map

n:a W (UUV)—= (UUV)xR"
as follows:

o(w) if w(w) € (0,u')

(7). T(r(w)) - pro((w)) i w(w) € (v1,v2).

Note that this map is “over-defined”, since both options apply whenever
m(w) € (vy,u’); however using (89) and (@0) one verifies that in this case
both options give the same value for n(w). It follows from this that 7 is C*°,
since ¢ is C on 71((0,v/)) and w — (7 (w), T(7(w)) - pry(p(w))) is C
on 7 1((vy,v2)). Also, by inspection, pr; o = 7, and for every p € (0, v2),
Mp = Pryo Mg, is a linear bijection from E, onto R". Furthermore one
verifies that 1 is a bijection from 7#=1(U U V) onto (U U V) x R™, with
inverse given by:

Sy gy 0¥ () if pe(0,u)
o )_{w‘l(p,T(p)‘l'x) if pe (vi,v2).

n(w) =

180f course, “(0,u)” here stands for the arc {[z] : = € (0,u)} in S = R/~ . We will
employ this type of mild abuse of notation several times in the following...
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As above one verifies that this map is well-defined although it is “over-
defined”, and that it is C°>°. Hence 7 is a C* diffeomorphism from 7= (U U
V) onto (UUV) x R™, and therefore (U UV, n) is a bundle chart for £. O

Applying the above lemma a finite number of times to our family of arcs
Ui,...,Ug, 1 we reduce to the case k = 2! Let us then write (U, ¢) =
(U1, 1) and (V,4) := (Us,¢2). Thus now U,V are open arcs which cover
St and (U, ) and (V,4) are bundle charts for £. With notation as in the
proof of Lemma 2 we may now assume U = (0,u) and V' = (v, v2) where

O<m—-1l<my<u<l<uvy<wv +1.

Thus U NV is the union of the two disjoint open arcs (v1,u) and (1,v2). As
in the proof of Lemma2 let T : U NV — GL,(R) be the transition map
between (U, ¢) and (V,1)), so that

(91)
wotp tp,x) = (p,T(p)- ), VpeUNV = (vy,u) U (1,v3), z € R™.

Note that both 7, ) and T ,,) are C> curves on the manifold GL,(R).
Note that GL,(R) has two connected components, namely

GL}(R) := {B € GL,(R) : det B > 0}
and
GL,, (R) :={B € GL,(R) : det B < 0}.

Of course each of Tj,, ) and Tjy ,,) is contained in a single connected com-
ponent.

Case It Tj(y,,4) and Tj(y,,) lie in the same connected component. Then
using the same technique as in Problem [[9(b), one shows that, given any
€ > 0 so small that

O<e<m—l<nm<u—ce<u<l<ld4e<vr<v +1,
there exists a C™ curve T : (v1,v3) — GLy(R) such that
T(p)=T(p),  Vp€ (vi,u—e)U(l+eu).
We can then define a map
n:E— S'xR"
through:
o(w) if m(w) € (e,u—e¢)
)= {(ﬂw),f(w(w)) pra((w))) i () € (01,02).

9each application reduces the number of arcs by one, and we stop whenever we find

two arcs which together cover S*



PROBLEMS; “RIEMANNIAN GEOMETRY” 123

As in the proof of Lemma [2] one verifies that this map is well-defined, and
is an isomorphism of vector bundles over S'. Hence we conclude that F is
isomorphic to the trivial vector bundle E,, = S x R™!

Case IT: T|(y, ) and T}y ,,) lie in the different connected component. Then
the curve p — J,, - T'(p) for p € (1,v9) lies in the same connected component
as Tj(y, u), and hence, using the same technique as in Problem IJ(b), one
shows that, given any € > 0 so small that

O<e<m—l<nm<u—ce<u<l<ld4e<vr<v +1,
there exists a C® curve T : (v1,v3) — GLy,(R) such that
~ T(p Vp € (vi,u —¢
7= (1) (1, u—2)

Jn-T(p) Vp € (1+¢,v2).

Then T can be used to define an isomorphism of vector bundles £ = E,.
We leave out the details.

O
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Problem [38 See Conlon, [3, Thm. 7.5.16].

Problem
(a) Recall that as a set, we defined Fy ® E3 to be

Fi® Ey = U (E17p & E27p),
peEM

with projection map 7 : Ey ® By — M defined by 7(v) = pifv € By, ® Es,,
(for any p € M). Also, if (U,¢1) is a bundle chart for E; and (U, ¢2) is a
bundle chart for Es [1 then we postulated that if we define

7 Y (U) = U x (R™ @ R")
(92) 7(v) == (p, (901,1) ® ‘:02,;0)(”))7 Vp e U, v e E1y® Ey,,

then (U, 7) is a bundle chart for £} ® E. In other words, 7, = 1, ® @2,
for each p € M.

In order to verify that the above indeed gives a vector bundle
(El ® E277T7M)7

we apply Problem [B6] with the family of proposed bundle charts taken to
be the family of all (U, 7) constructed as above, as (U, 1), (U, p2)) varies
through all pairs of bundle charts for Fy, Fs with “same U”. Most of the
conditions in Problem are immediately verified to hold. For example,
Tp = P1,p ® pap is a linear isomorphism of (Ey ® Ez), = Ei, ® Ea ), onto
{p} x (R™ ® R™) — which we identify with R™ ® R"2, since ¢, , is a linear
isomorphism for F;, onto R™ for j = 1,2. Furthermore the sets U cover
M:; cf. footnote The only condition which is not (completely) immediate
is the C*° compatibility of the proposed bundle charts.

Thus we need to verify that if both (U, ;) (j = 1,2) and (V, ;) (j = 1,2),
are bundle charts for F; and Fj respectively, and if 7 is defined as in (02)
and 7 : 771 (V) = V x (R™ ® R™) is similarly defined using (V,1) and
(V,4p2) (that is, T(v) := (p, (¥1pR2,)(v)) forallp € V and v € Ey ,&E3 ),
then (if also U NV # )) the map 7o 7! from (U NV) x (R™ ® R™) to
itself is C*°. Now for any (p,v) € (UNV) x (R™ @ R™) we have

7o (pv) = (p, 7(ry (v)));
hence (using Problem [B(c)) it suffices to verify that the map
(p,v) = Tp(r, ' (v),  (UNV)x (R™ @R™) - R™ @ R™

20_ with the same U! Note that the family of such open sets U certainly cover M, i.e.

for each p € M there exist U, 1, @2 such that p € U and (U, ¢;) is a bundle chart for E;
for j =1,2! (Proof?)
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is C*°. But
(93)
?p ° Tp_l = (wl,p X ¢2,p) 0 (‘Pl,p ® 902,p)_1 = (wl,p o 901_41;) ® (1/}2,1) o 902_41;)7

where the last equality holds since ® is a bifunctor which is covariant in
both arguments (cf. Sec. 7.2 of the lecture notes). Furthermore we know
that the two maps

(p,v) = Y1poia(v),  (UNV)xR™—R™
and
(p,v) = hapopyi(v),  (UNV)xR" —R"

are C*°. By using charts on U NV we see that we will be done if we can
prove the following: Given any open set Q C R? and maps o : Q@ — M,,(R)
and 5 : Q — M, (R) ] such that the two maps

(z,v) = a(z) - v, QxR™ —R™
and
(z,v) = B(z) - v, QxR" > R"
are C'°, then also the map
(94) (,v) = (a(z) @ B(x)) - v, OQx (R"@R") - (R"@R")

is C'°. However the assumption about « and S is easily seen to be equivalent
to the statement that each matrix entry of a(z) is a C*° function of xz € Q,
and similarly for 8. Now in ([@4]), by a (hopefully) obvious abuse of notation,
a(z) ® B(x) stands for the matrix of the linear map from R™ @ R™ = R™" to
itself which is the “tensor product” of the two linear maps v — «a(x) - v and
v~ f(x)-v. This matrix is the Kronecker product of the matrices a(x) and
B(x); cf. wikipedia, and from the explicit formula for the Kronecker product
we immediately see that each of the (nm)? matrix entries of a(z) ® 5(z) is
a O function of z € Q; hence it follows that the map in (@4]) is C*°, and
we are done!

(b) This is very similar to part (a) and we here only describe the set-up:
We define

Hom(E, E2) == UpepyHom(E7 , @ Ea ),

and if (U, 1) is a bundle chart for E; and (U, ¢2) is a bundle chart for
E5 then we postulate a corresponding bundle chart for Hom(E7, E3) to be
(U, 7), where 7 is given by (analogue of (92])):

7 i1 Y(U) = U x Hom(R™,R"2)
(95) 71(v):= (p,Hom(goi;,,gpg,p)(v)), Vp e U, v € Hom(E ;, E2 ),

2lHere M,,(R) is the space of real m X m matrices.
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Cf. ([©@0) below regarding the def of “Hom(gol_;,, ©2p)”; thus for each p € M
we get 7, = Hom(gpl_’ll), ©2p); this is an R-linear map from Hom(E, Ep), =

Hom(FE p, E2,) to Hom(R™,R™?). The reason that we have to use “cpl_ll)”
is that Hom is contravariant in its first argument; cf. the discussion below,

especially footnote 23]

Instead of giving further details, we discuss the problem from a more
general point of view. The key property that is used in parts (a), (b), (c)
is that both “®” and “Hom” and “dual” are smooth (=C*°) functors on
the category C of finite dimensional vector spaces over R. More specifically,
® is a bifunctor covariant in both arguments (cf. Sec. 7.2 of the lecture
notes); Hom is a bifunctor which is contravariant in the first argument and
covariant in the second argument, and “dual” is a contravariant functor of
one variable. It is a general fact that given any smooth functor F of k
variables on C [] then for any vector bundles E1,..., E}) over M one can
define in a natural way a vector bundle “F(Eq,..., Ey)” over M. Cf. [16,
1.34 — 1.39]. Each of (a), (b), (c) is a special case of this fact.

Let us explain in some detail what it means to say that Hom is a “smooth
bifunctor on C”. Recall that C is the category of finite dimensional vector
spaces over R; thus “A € ob(C)” means that A is a finite dimensional vector
space over R. For any two A, B € ob(C), Hom(A, B) € ob(C) is the vector
space of R-linear maps A — B. Furthermore given any A, A’, B, B’ € ob(C)
and R-linear maps h: A’ — A and f : B — B’ we define an R-linear map
“Hom(h, f)":

(96)

Hom(h, f) : Hom(A, B) — Hom(A’, B); [Hom(h, f)](g) := fogoh.
One immediately verifies that Hom(14,15) = 1xom(a,) for all A, B € ob(C),
and that for any A, A’, A” B, B’, B” € ob(C) and any R-linear maps

A g ana BL B L B
we have:
(97) Hom (K, f') o Hom(h, f) = Hom(h o I/, f' o f).

The relations which we have here pointed out, mean exactly that Hom is a
bifunctor C x C — C, contravariant in the first argumen@ and covariant in
the second argument.

Next, the smoothness of the bifunctor Hom consists in the following: Note
that for any A, A’, B, B’ € ob(C), the operation of taking any pair of lin-
ear maps h : A’ — A and f : B — B’ to the linear map Hom(f,g) :

22Thus for “®” and “Hom” we have k = 2, and for “dual” we have k = 1.
23 contravariant — because of the switch of order between A and A’ in @6)) versus in
“h: A" — A”, and the corresponding switch of order between h’ and h in the left versus

the right hand side of ([@T).
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Hom(A, B) — Hom(A’, B'), is itself a map
(98) Hom(A’, A) x Hom(B, B') — Hom(Hom(A4, B), Hom(4’, B'));
(h, f) = Hom(h, f).

Here both Hom(A’, A) xHom(B, B’) and Hom(Hom(A, B), Hom(A’, B')) are
C*° manifolds (since each “Hom” space is a finite dimensional vector space
over R), and hence it makes sense to claim that the map in (Of]) is C°.
This is exactly what we mean by saying that the bifunctor Hom is smooth.
(Exercise: Prove this smoothness!)

(The corresponding smoothness of the bifunctor ® is the statement that
for any A, A', B, B’ € ob(C), the map
Hom(A, A") x Hom(B, B') — Hom(A ® B, A, ®B')
(fr9) = f®g
is C*°. This is proved by choosing bases for A, A’, B, B’; then Hom(A, A”)
and Hom(B, B") and Hom(A® B, A’, ® B') become spaces of (real) matrices,
and f®g is given by the Kronecker product of the matrices f and g, and the

smoothness is clear by inspection in the explicit formula for the Kronecker
product. Cf. the discussion at the end of the solution of part (a).)

(c) This is also covered by the general discussion above; viz., it is a special
case of [16], 1.38].

(In fact (c) can be obtained as a special case of (b); namely we have
Ef = Hom(E, E2) when FEj is the trivial vector bundle Ey = M x R. But
alternatively one could also deduce (b) as a consequence of (a) and (c),
namley for any vector bundles Fy and Es we can identify Hom(Ey, Fy) =
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Problem 40 Let us write n; = rank E; (j = 1,2) and let m be the
projection map 7 : Hom(Eq, Ey) — M.

Let s € I'(Hom(E, Ep)). Then for each p € M, s(p) € Hom(E, Ez), =
Hom(E} p, E2,), and so s gives rise to a map

fiEr—= By f(x) = s(m(x)(z) (zcEr).

By construction this map f satisfies mo o f = 71, and furthermore for each
peM,

fp = f\El,p =s(p) € Hom(E1 p, B2 p).

Hence if we can only prove that f is C'° then f is a bundle homomorphism
E1 — EQ.

To prove that f is C°° is a local problem: Thus we may pass to bundle
charts for Ey, Es and a chart for M (suitably adapted), after which the

problem becomes(*): Given any open set Q C R? and any C'* function
(99) T :Q — Hom(R™,R"?),

show that the map

(100) QxR™ — Q x R", (x,v) = (z,T(z)(v))

is C*°. This, however, is trivial: Recall that Hom(R™, R"2) can be identified
with the space of real no X n1 matrices, and to say that 7" is C* means that
each matrix entry of T'(z) is a smooth function of z € §2; then the smoothness
of the map (I00) is clear from the explicit formula for the matrix product
T(z)-v. This completes the proof that f is C°°, and hence that f is a bundle
homomorphism Fq — FEs.

[(*) Let us give a few more details on the reduction to the Euclidean version of the
problem stated in ([@9), (I00). It is remarkable how much more complicated this is to
actually spell out than it is to just “think it through in ones head” 4

Given x € FE; it suffices to prove that there exists some open set V' C E; containing
x such that fjy is C™. Let us choose V = m; '(U) where U is an open set in M with
m1(z) € U for which there exist o1, 2 such that (U, 1) is a bundle chart for E; and
(U, 2) is a bundle chart for E2; thus our task is to prove that f‘ﬂ_l—l(U) is C*°. Recall from
Problem [39(b) that (U, ¢1) and (U, p2) give rise to a bundle chart (U, 7) for Hom(E1, E-)
such that

Tp = Hom(apf’;7 w2,p) : Hom(E1 p, E2,) — Hom(R",R™?),
for all p € U, and that, by the definition of the bifunctor “Hom”, this means that

p(@) = 2,5 0 a0 i, € Hom(R™ R"?), Vo € Hom(E1 p, B2 p).

21y many situations in mathematics, such a phenomenon is a clear warning sign that
one does not really have a complete proof — and so there is good reason to carefully work
out the details. But for the task at hands it seems that there is not so much to worry
about...
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Of course, T itself is the map
7 :Hom(E1, E2)jy — U x Hom(R"*,R"?);
7(a) = (p, 7p(ax)), Vp € U, a € Hom(En p, Bz p).

We have f(n7'(U)) C ;3 '(U) (since m2 o f = 71) and hence, since @1 and @2 are

diffeomorphisms, in order to prove that f‘ﬂ_—l(U) is C*° it suffices to prove that the map
1

w20 fop;t:UxR™ — U x R"™ is C*°. However at each p € U we have
(Pry 002 0 f 001 1) (pyxrm = P2 © fo 091, = Tp(fp) = Pra(1(s(p))),
and hence for all (p,v) € U x R™:

(20 f oo )(p,v) = (b [Pra(r ()] (v) )
Here pryor o s is a C° map from M to Hom(R™ ,R"?). Therefore, after passing to C*
charts on U, ] we are reduced to the task stated in ([@9)), (I00)!]

We now continue with the solution. Let H be the set of bundle homo-
morphisms Fqy — FE5. Then above we have constructed a map

(101) I'(Hom(Ey, E2)) —» H, “s— f7.

We next construct the inverse map. Thus let f be a bundle homomorphism
E1 — Es. Then by definition, for each p € M, f, = fg, , is an R-linear map
from E; , to Ea p, i.e. f, € Hom(E, ,, Es ) = Hom(E, E3), C Hom(E;, E»).
Let us define the map s : M — Hom(E, E3) by s(p) := fp. Clearly mos =
157, and one verifies that s is C° using bundle charts in a manner very
similar to what we did above. Hence s € I'(Hom(E1, F5)), and so we have
constructed a map

(102) H — I'(Hom(E, Eq)), “f+—s".

It is immediate from our definitions (in particular using “s(p) = f,”) that
the two maps (I0I) and (I02]) are inverses to each other. Hence we the two
maps are in fact bijections. O

25Here one could expand and give many more details! :-)
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Problem [41k

(a) If (U, ) is any bundle chart for E such that p(7~'(U)NE") = U xR™,
then E,NE’ is an m-dimensional subspace of E, for every p € U. [Proof: for
any p € U the restriction of ¢ to E, = 7~ ({p}) is a linear isomorphism from
E, onto {p} x R", and o(7~1(U)NE’) = U x R™ implies that ¢(E, N E’) =
{p} x R™; hence E, N E’ is indeed an m-dimensional subspace of E,.|

By assumption the bundle charts for F with the special property above
cover M hence for every p € M the intersection E,NE’ is a linear subspace
of E,. Set pu(p) := dim(E,NE"); then y is a function from M to {0,1,...,n}.
It is clear from the previous discussion that p is locally constant. (Indeed,
given p € M, let (U,¢) be a bundle chart for E such that p € U and
o(r Y (U)NE") = U x R™ for some m < n; then we saw in the previous dis-
cussion that p(q) = m for all ¢ € U.) Hence p~'({m}) is an open subset of M
for each m € {0,1,...,n}. But the sets u=1({0}),..., " ({n}) form a par-
tition of M; furthermore M is connected (since M is a manifold), and thus
M cannot be represented as a union of two or more disjoint nonempty open
subsets. It follows that all except one of the sets = 1({0}),...,u~ ({n}) are
empty. In other words there is m € {0,...,n} such that p=*({m}) = M,
i.e. dim(E, N E’) = m for all p € M. Done! O

(b) Let F be the family of all bundle charts for E satisfying (dJ), i.e.
o(E'Nn7~Y(U)) = U x R™. (By part (a) we know that m is a fized integer,
0 <m < mn, independent of (U, ) € F.) For each (U, p) € F we set

P = PEnr-1(U)-
We wish to prove that (E', 7 g/, M) together with the family

{U@) : (Uyp) e F}

satisfy all the conditions required in Problem For each p € M we set
E, = E' N Ep; we noted in part (a) that E, is an m-dimensional subspace
of E,. Also for each (U,¢) € F, it holds by our assumptions that ¢ is
a bijection from E’ N 7~1(U) onto U x R™, and for each p € U we have
@ B, = ¥|E, and this is a linear isomorphism of Ej, onto {p} x R™. Also
the sets U cover M as (U, ) runs through F, by assumption. Hence it only
remains to prove that if both (U, ¢), (V,) € F, then the map Jo ¢! from
(UNV) xR™ onto itself is C*°. However that map is equal to the restriction
of the map

Yop ! (UNV)XxR® = (UNV) xR
to the set (UNV) x R™, and from this the desired smoothness is clear.

[Let us discuss the very last step in some detail: By Problem B(c) it

suffices to prove that both the maps pr; OTZ o @~ ! and pryotp o 7 1; however

the first of these equals pr; : (UNV) x R™ — UNV which we know is C';
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hence it suffices to prove that the map
pryopo @t (UNV) x R — R™
is C'*°. That map is the restriction of the map
proopop t : (UNV) xR" = R"

to (UNV) x R™. Hence after passing to charts on (UNV) x R™, we see that
it suffices to prove the following general fact: Given an open set Q C RF
(some k € Z1) and a C*° map f : Q — R", if it happens that f(z) € R™ for
all x € Q then f is C"° also as a map €2 — R". This is of course completely
trivial from the definition of what it means for a map between R%spaces to

be ¢ P

We have proved above that all the conditions of Problem [3¢] are fulfilled
and so by that problem, (£’ g M ) is a vector bundle of rank m, and
(U, ) is a bundle chart for E’ for every (U, ¢) € F. O

(¢) This is more or less immediate from our assumptions about existence
of bundle charts satisfying (), together with the following criterion for being
a differentiable submanifold which we pointed out in the notes to lecture #2
(here formulated with notation adapted to our setting): If E is any d +n
dimensional C*>° manifold and E' is an arbitrary subset of E, then E' has
a (uniquely determined) structure of a differentiable submanifold of E of
dimension d + m if and only if for every x € E' there is a C* chart (V, 1))
of E such that x € V, ¥(z) = 0, ¥(V) is an open cube (—e,e)4™, and

(103) Y(VNE) = (—e,e)dt™ x {0} ™.
(Cf., e.g., [I, Sec. I11.5, esp. Lemma 5.2].)

Details: Let © € E’ be given. Set p = w(x) € M. Then by assumption
there is a bundle chart (U,p) for E such that p € U and (I]) holds, i.e.
o(E' N7 1 (U)) = U x R™. Now choose also any C* chart (W, 7) for M
with p € W. Of course we may assume W C U (otherwise just replace W by
W NU) and 7(p) = 0 (otherwise just compose 7 with a translation of R?).
Then 7(W) is an open set in R? containing 0; hence there is some ¢ > 0
such that (—¢,e)? € 7(W). Now we may replace W by the smaller open set
771((—¢,¢)?); after doing this we have 7(W) = (—¢,¢)?. Now the map

Y= (7,1rn) © Q-1 (W)

26The conclusion here has the following generalization: Let S, N be C°° manifolds, let
f:S — N be a C*™ map, and let M C N be a differentiable submanifold of N. Assume
that f(S) C M. Then f is C* also as amap S — M. Cf., e.g., [I5} Cor. 5.30]. The proof
of this fact basically reduces to what we have already done, if one uses charts as in [12]
Lemma 1.3.1]. Note that if we merely assume that M is an émmersed submanifold of N,
then the corresponding statement is false in general! (Can you give an example?)
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is a diffeomorphism of 771 (W) onto (—&,¢)? x R® € R™™ (since it is a com-
position of a diffeomorphism of 7=*(W) onto W x R” and a diffeomorphism
of W x R™ onto (—¢,¢)? x R"), and so

(mH (W), 9)

is a C* chart for E'. It follows from o(E' N7 Y(U)) = U x R™ (where
“R™” really stands for R x {0}"~™) that we have

Y(E Na Y (W)) = (—g,e)? x R™ x {0}"™.
Hence if we set V := ¢~ ((—¢,£)%™™) (an open subset of 1»~ (1)) then also
(V7 1/)|V)

is a C° chart for E’, and this chart satisfies z € V, ¥(z) = 0, (V) =
(—e,e)%™, and

Y(E'NV) = (—e,e)™™ x {0},
i.e. the condition (I03). Done! O
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Problem
(a). Recall that as a set, f*E is defined to be
(104) [fE={(p,v) :peEM,veE Ly} CMxE,

and we define the projection map 7 : f*E — M to be simply 7 := pry,
ie. m(p,v) := p for all (p,v) € f*E. Also for any bundle chart (U, ) for
(E,m, N) we have specified that if ¢ is the map

(105) g 7 () = fHU) xR (n :=rank F);
&(p,v) = (p, prae(v)))
then (f~1(U), §) is a bundle chart for f*FE.

In order to prove that (f*E,7, M) is a vector bundle, we now verify
that 7 : f*F — M with the above proposed bundle charts satisfy all the
conditions required in Problem B8l Firstly, 7 is obviously surjective, and for
every p € M, the set (f*E), := 7 1(p) is seen to be

(f*E)p ==7""p) = {p} x Epp) “=Ejp)”

(the last equality is our usual identification), and this set carries the struc-
ture of an n-dimensional real vector space since (E, m, N) is a vector bundle.
Next let (U, ) be any bundle chart for (E,m, N). Then f~(U) of course is
an open subset of M. Also

FHFHU) ={(p.v) : pe fFTHU), v E By},

and for any fixed p € f~1(U), we know that pr, P\ B, is a linear isomor-
phism of F(, onto R"; hence from the definition of ¢, (I05), it follows that
the restriction of ¢ to the set (f*E), = {p} x Ey(,) is a linear isomorphism
onto {p} x R™. In particular ¢ restricts to a bijection of {p} x Ey,) onto
{p} x R", and using this fact for every p € f~1(U) it follows that ¢ is a
bijection of 7= (f~1(U)) onto f~1(U) x R"™. Furthermore, M = |J f~1(U)
when the union is taken over all bundle charts (U, ¢) for (E, m, N), since the
family of such sets U cover N.

Now the only condition from Problem which remains to be verified
is that if (U, ¢) and (V,v) are any two bundle charts for (E,m, N), then
Yo@lisa C® map from (f~HU) N f~1(V)) x R™ to itself. To prove this,
first note that f~2(U) N f~4(V) = f~1(U NV). Next, by parsing the maps
one finds that

(106) Yo @ ' (p,w) = (p,pro(¥(e  (f(p), w)))),
Y(p,w) € fFHUNV) x R™.

[Details: Let (p,w) € f~3(U NV) x R". Then f(p) € UNV and so
¢ (f(p), w) is defined and lies in Ey(,y C 7~ 1(UNV'). Hence (p, o~ (f(p),w)) €
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(f*E)p, and using (I05) we have @(p, ¢~ (f(p),w)) = (p,w); hence

(P, (f(p),w)) = &~ (p,w);
and applying J to this relation and again using (I05]), we obtain (I06])!]

Clearly (06) implies that ¢ o 1 is a C° map from f~1(U NV) x R"
to itself (using the fact that the maps 1, ¢!, f are C*, and also using
Problem [[(b),(c)).

Hence all the conditions from Problem [36] are satisfied, and so Problem [36]
implies that (f*E,m, M) is a vector bundle, and that for any bundle chart
(U, p) for (E,7,N), (f~1(U),$) is a bundle chart for f*FE. O

(b) Passing to local coordinates (viz., choosing appropriate charts and
bundle charts) one reduces to the case when M is an open subset of R, N
is an open subset of R, and E = N x R™. Then the definition of f*,

(I04)), becomes:
ffE=A{(p,f(p),v) :peM,veR"}C M xE=MxN xR"
Now note that the map
©: M x NxR" = R?x RY x R,
¢(p,q,v) = (p,q = f(p),v)

is a diffeomorphism of M x N x R" onto
Q={(p,q,v) € M xR xR" : ¢+ f(p) € N},

which is an open subset of R? x RY x R™ (inverse map: ¢ '(p,¢’,v) =
(p,q" + f(p),v)). Hence (M x N x R" ¢) is a C* chart on M x N x R™,
and we note that

o(f*E) = M x {0} x R" C Q.

The existence of such a chart immediately implies that for every p € f*FE
there is a C*° chart (V,4) on M x N x R™ such that p € V, 9(p) = 0,
P(V) = (—e,e) 7 and (VN f*E) = (—e,e) x {0}, (Indeed, simply
compose ¢ with a translation and a suitable permutation of the coordinates;
then restrict the domain appropriately — cf. the solution to Problem AIl(c)).
Hence (by a result stated in the notes to Lecture #2; cf., e.g., [I, Sec. IIL1.5]),
f*FE is a differentiable submanifold of M x E = M x N x R".

(One should also verify that the C'°* manifold structure of f*E as a differ-
entiable submanifold of M x £ = M x N x R™ agrees with the C*° manifold
structure on f*FE defined in part (a) via Problem This is “immediate”

2"Here we are sweeping a lot of details under the carpet; however we have discussed
similar things many times previously...
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by comparing the C'*° charts provided in each case. — but would take some
effort to write out.) O

Problem 43t

(a). This is very direct: We map any (s1,s2) € I'(Ey) @ I'(E2) to the
section s € I'(Ey @ E») defined by

s(p) == (S1,p,S2p) € E1p @ Eapy = (E1 @ Ea)p.

One verifies that this map (s1, s2) — s is an isomorphism of C°°M-modules.
We leave out the details...

(b). This is a special case of (c). (Namely, take F5 = M x R in (c); then
Hom(E1, E2) = EY and I'(Ey) = C*°(M), so that (c) gives the result that
we want.)

(Cf. also [3, Prop. 6.2.11 and Prop. 7.5.4].)

(c). (Ct., e.g., [16, Prop. 1.53].)
Given h € I'(Hom(E1, E3)) and s € T'Eq, let us define the map
(107) Oy M = By, Pp(p) == h(p)(s(p))-

Clearly mp o @ s = 1p,; also @), is a € map since h and s are C*
maps (passing to local coordinates this reduces to the basic fact pointed out
around (@9), (I00))). Hence @y, s € T'Es.

Next, given h € I'(Hom(E1, E3)), we consider the map s — ®j, ;. Actually
let us change notation by setting

Pp(s) == Dps (s e TEy).
Our previous paragraph shows that &5 is a map
oy, TEy —» TE,.
It is immediate from (I07)) that ®j is C°°(M)-linear. Hence
®;, € Hom(I'Eq,T'Es).

We have thus defined a map
(108) F(HOIH(El, Eg)) — HOHl(FEl, FEQ), h q)h-

It is again immediate from (I07) that this map is C°°(M)-linear, i.e. a
homomorphism of C°°(M)-modules. We are going to prove that the map
(I08) is a bijection. This will imply that it is an isomorphism of C*°(M)-
modules, as desired!

The proof of injectivity is easy: It suffices to prove that the kernel of
the map (I08)) is {0}. Thus let h € I'(Hom(E1, E3)) be given and assume
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®j, = 0. Then ¢ , = 0 for all s € I'Ey, and so h(p)(s(p)) = 0 for all s € I'E,
and p € M. Hence by Problem B5l(c), for every p € M we have h(p)(v) =0,
Vv € Eyp, ie. h(p) = 0 in Hom(E, p, Es ) = Hom(E, E2),. Since this is
true for every p € M, we conclude that h = 0, as desired. This completes
the proof that the map in (I08)) is injective.

It remains to prove surjectivity. Thus take an arbitrary element ® €
Hom(T'E1,TE»), i.e. a C°°(M)-linear map ® : 'Ey} — I'Esy. Let us start by
proving that ® is “local” in the following sense:

Lemma 3. For any open set U C M and any s1,s2 € UEy, if sy = squ
then @(Sl)w = @(32)|U-

Proof. Assume sy = syy. Now our task is to prove that ®(s1)(p) =
®(s9)(p) for every p € U. Thus fix a point p € U. By Problem [1[c) there is
a function f € C°°(M) which has compact support contained in U and which
satisfy f(p) = 1. Using sy = sy and f(p) = 0 for all p € M \ U it follows
that fs; = fso in I'Eyq; thus ®(fs1) = ®(fs2). But @ is C°>°(M)-linear and
thus f®(s1) = f®(s2), and in particular f(p)®(s1)(p) = f(p)®(s2)(p), and
since f(p) # 0 this implies ®(s1)(p) = ®(s2)(p). Done! O

Let V be the family of open sets V' C M such that there exist sections
bi,...,bp €TEy and ¢y, ..., ¢ € 'Ey, such that byjy, ..., b, form a basis
of sections of Eyy and ¢y, ..., cpy form a basis of sections of Eyyy. By
Problem B5(b), V covers M. Now take any V € V, and choose sections
bi,...,bp, € TE] and ¢y, ...,¢, € I'Es with the property just mentioned.
For each j € {1,...,n}, ®(bj)y € ['(Eyy); hence (by Problem [34]) there are
unique g;-“ € C>®(V) (k=1,...,m) such that

(109) ®(bj) v = gfcrv-

For each ¢ € V, let h(q) be the linear map E; , — E3, which has matrix
(gf(q)) with respect to the bases b1(q),...,b,(q) and ¢1(q), ..., cn(q); that
is,

(110) @) ('bi(9)) = g5 (@)exla), Vo= (a)jm1,.n € R
Note that h(q) € Hom(E, Es)4, and since all g;? € C®(V), we have
(111) h e F(HOH](El, E2)|V)'

Lemma 4. For every s € T'Ey and every g € V., ®(s)(q) = h(q)(s(q)).

Proof. Let s € 'Ey and g € V be given, and take fL.. . fr e C®(V) so
that sy, = f’b;,. By Problem [f(e) there exist an open set U C V with

g € U and functions fl,...,f" € C°°(M) such that J?|]U = f|]U Hence
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su = (fjbj)‘U, and so by Lemma 3] ®(s);y = @(fjbj)w, and in particular

®(s)(q) = B(fb;)(q) = F(9)2(b;)(a) = (@)} (@)ex(a) = h(g) (f7(0)b;(q))

= h(q)(s(q))-
(In the second equality we used the assumption that ® is C'°°(M)-linear; in
the third equality we used (I09); in the fourth equality we used (I10), and
in the last equality we used sy = f]bj‘v.) O
Lemma 5. h(q) depends only on ® and q, and not on V or by,..., b, or
Cly.+-,Cm-

Proof. This is clear from Lemma [] and Problem B5l(c). O

It follows from Lemma[Blthat h(q) € Hom(E, E3)4 can be unambiguously
defined for any point ¢ € M which lies in some V € V. But as we have
pointed out, V covers M; hence we have in fact defined a map

h: M — HOIH(El,EQ)
which satisfies mo h = 17 and

(112) ®(s)(q) = hlq)(s(q))

for all s € TEy; and ¢ € M (cf. Lemma H). But we also have h, €
['(Hom(Ey, Ez)y) for every V € V; hence h is C°°, and so h € I'(Hom(E1, Ez)).
Now by (II2]), ® = ®5. This completes the proof that h — @, is surjective.
U
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(d). (Cf. [3, Thm. 7.5.5] and stackexchange!)

Incomplete solution: Given any f € I'(E;) and g € ['(E»), let us write
f ® g for the map

(113) f®g: M— B ® B,
(f@g)(p) =flp)@gp) € E1p,@E,  (peM).

Then clearly mo (f ® g) = 17, where 7 is the projection map Ej x Ey — M.
Let us verify that the map f®gis C°°. Assume that (U, ¢;) is a bundle chart
for B, for j = 1,2. Then by the definition of F ® Ey — cf. Problem 39— if we
define 7 : 7= HU) — U x R™ by 7(p,v) = (p, 7p(v)) where 7, = ¢1, @ 2,
(and we have fixed an identification R™@R"™ = R™"), then (U, 7) is a bundle
chart for By ® Fs, i.e. 7 is a diffeomorphism from 7=1(U) onto U x R™".
Hence it suffices to verify that the map 7o (f®g) : U — U x R™ is
C*, for any (U, ¢;) (j = 1,2) as above. As usual it suffices to verify that
pryoro(f ®g) and pryor o (f ® g) are C; the first of these is the identity
map on U which is trivially C°°; and the second map is seen to equal

(114) P 1(f(p) ® paplg(p) : U— R™.

Here we know that the maps p — ¢1,(f(p)) and p — @2,(g(p)) are C*°.
But also the map (v, w) —v®@w : R™ x R™ — R™" is C*°; hence the map
(1)) is C*°, as desired. Hence we have proved:

f®gel(E® E,).

We have thus constructed a map
[(E1) x T(E2) — T'(E1 @ E»), (f.9) = fog.

Note that this map is C'°°(M)-bilinear; hence there is a unique C*°(M)-
linear map

J:T(E) @T(Ey) = TI'(E; ® Fy)
such that
J(f@g) =f®@g,  Vfel(E), gel(E).
We claim that J is an isomorphism of C'°° (M )-modules.

Proof that J is surjective: By Problem B3P there exists a finite open cover
Ui,..., Uy of M such that Eyy, and Eyy, are trivial for £ =1,...,r. Then
for each fixed £ € {1,...,7} there is a basis of sections by,...,b, € T'Eyy,
and a basis of sections b}, ..., b, € T'Ey, (here we are writing m = rank F;
and n = rank Fy). Now for each p € Uy, the vectors b;(p) @ bj.(p) (j €

28Apply Problem to both F1 and Fs; then consider the common refinement of the
two open covers, i.e. the family of pair-wise intersections of the open sets.
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{1,...,m}, k€ {1,...,n}}), form a basis of the R-linear space E, ® E3 .
Hence

{bjab, : je{l,....m} ke{l,...,n}}

is a basis of sections in I'(E; ® Fy)|y,. (Here the notation “b; ® " is the
one introduced above in (II3]), but applied for the vector bundles Eyy, and
Esy7,-) This means that for every section s € I'(E1 ® E»)|y, there exists a

unique choice of functions g/* € C*°(U,) such that

S:Z gjk'bj@)b, ZZZ(ijbj)@’b;«

j=1k=1 j=1k=1

n

Now let a global section s € I'(Ey ® E») be given. From the above
discussion (and passing to a slightly different notation) we conclude that
for each ¢ € {1,...,r} there exist sections J](-Z) € I'Eyy,, TJ@ € I'Eyy,,
7 =1,...,mn, such that

mn y y
S|y, = ZO'](- ) ®T]( ).
Jj=1

By Problem[IIla),(b) (partition of unity), there exist C*° functions ¢1, ..., ¢y :
M — [0, 1] satisfying supp ¢y C Uy for each ¢ and

Y wup)? =1, VpeM.
/=1

Define the function 5](-6) : M — E; by 5](.6)(]9) = (’Dg(p)dj(-g)(p) for p € Uy

and 59 = 0 ¢ E,, for p € M\ U;. Then 50 5 oo by the argument in

J J
0

the solution to Problem [f(a) (indeed the restriction of 5 to the two open

sets Up and M \ supp(py) is C*°, and these two open sets cover M). Also
(0

m o Ej = 1. Hence

5\ eTEy.
Similarly define

7Y e IE

~(0)

by 7,7 (p) = (’Dg(p)’r](z) (p) for p € Uy and zero elsewhere. Now

mn T
SN 6007 eTE @ TE,,
j=1¢=1
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and for every p € M we have

mn T w N mn r u w
J(ZZUJ(»)@T;))@): 5 (n) 27 )

Jj=l4=1 j=1¢=1
=33 (@@’ ) @ (eep)” ()
Jj=1 (=1
(peUy)
T mn Z Z
=Y w@?Y oV o)
(=1 j=1
(pely)
= Y wulp)’s(p)
/=1
(pely)
= s(p).-
Hence

(a0 en) =

j=1¢=1
and we have proved that J is surjective.

Proof that J is injective: This seems somewhat more complicated to
carry out in the direct approach fashion used above, and we skip it for
now... However see [3, Thm. 7.5.5] for an elegant (but slightly less direct)
proof. O
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Problem [44:
(a). (Cf. Poor, [16, Prop. 1.60].)

We start by proving that there is a natural bijection between I' f*E and
I'yE. Remeber from Problem 2] that f*E is a differentiable submanifold of
M x E, and we know from Problem B that pry: M x E — FE is a C° map.
Now if s € I'f*E then pryos is a C* map from M to E. Also mopr,os = f,
since pry(s(p)) € Eyp) for all p € M. Hence pryos € I'yE. Thus we have
constructed a map

(115) I'f*E —-TfE; s pryos.

We next construct the inverse map. Given o € I'yE, we define the map
o:M— f'E;  o(p):= (p,a(p))

Note that for any p € M we have o(p) € Ey(,) and hence

a(p) € {p} X Esp) = (f"Ep-

This relation implies in particular o(p) € f*E, i.e. 7 is indeed a well-defined
map from M to f*E, and it also implies that 7(c(p)) = p; thus Tog = 1),.
In order to prove that & is C*°, it suffices to prove that ¢ o &|p-1(¢) is C*°
for every bundle chart (U, ¢) for (E,m, N). 2 Now for every p € f~1(U),

~p~

o(a(p)) = ¢(p,a(p)) = (p, pra(w(c(p)))),

and the last expression is clearly a C* function of p € f~1(U) (using Prob-
lem [B(d) and the fact that any composition of C*° maps is a C°° map).
Hence ¢ € T'f*E. Thus we have constructed a map

(116) ItE—TfE; o3

Next we prove that the two maps (II5) and (II6) are inverses to each
other. For every o € I'yE we have, for every p € M,

pry 00 (p) = pra(p,o(p)) = o(p).
Hence pry oo = 0. Next, for every s € I' f*E we have, for every p € M,

bry 95(p) = (p, pra(s(p))) = (F(s(p)), pra(s(p))) = (pr1(s(p)), Pra(s(p)))
= s(p)-
Hence pry 05 = s. Done!
Hence we have proved that the map (II5) is a bijection of I f*E onto I' t E/,

with inverse given by (II6]). Hence there is a unique C'*° M-module structure
on I'yE which such that (II3]) is an isomorphism of C'*°M-modules!

29Here we use the notation from the solution of Problem E2(a); thus @ is the C'*
diffeomorphism of 77 (f~*(U)) onto f~1(U) x R™ given by &(p,v) := (p, pry(p(v))); then
(f~'(U), @) is a bundle chart for (f*E,7, M).
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It should here also be pointed out that the C'°°M-module operations in
I'yE are completely natural, namely they are just pointwise addition and
pointwise multiplication by scalar(s). Indeed, let « € C*°M and 01,09 €
I'yE. Then o1 + 02 € 'y E' is just the pointwise sum, i.e.

(o1 +02)(p) = 01(p) + 02(p) € Ep(p)s Vp € M;
and aoy € I'yE is the pointwise product, i.e.
(ao1)(p) = a(p)oi(p) € Eyp),  Vpe M.

To prove the formula for o1 + o2, note that since we require that (II6) is
a C°°M-module isomorphism, we should have O1l+02=014+0,inT *E,
and by definition of the C°°M-module structure of I'f*E, o1 + 0 is just
pointwise sum, i.e. (61 + d2)(p) = d1(p) + o2(p) for all p € M. Hence

(p, (01 + 02)(p)) = 01 + 02(p) = G1(p) + 52(p) = (p,01(P)) + (P, 02(P))

= (p,01(p) + 02(p));

and therefore (o1 + 02)(p) = 01(p) + 02(p). Done! The proof of the formula
for aoy is completely similar. O

(b) (Recall that “basis of sections” is defined in Problem B3|(c).)
Our task is to prove that for every p € U,

(117) s1(f(p)),-..,sn(f(p)) form a basis for (f*E),.
However (f*E), = Ey(, and f(p) € V, and therefore (I17)) follows from our
assumption that sq,...,sp is a basis of sections in I'Ejy . O

(¢) By Problem B8] there is a finite open cover {Uy,...,U,} of N such
that Ejy, is trivial for each j. For each j € {L,...,r}, let s51,...,8n
be a basis of sections in I'Ejy, (here n = rank E). Also let ¢1,...,¢;
be a subordinate partition of unity as in Problem [I}(a), i.e. each ¢; is a
C* function N — [0, 1] with suppy; C U; (but supp ¢; is not necessarily
compact) and 2;21 ¢;j(y) = 1 for all y € N. By Problem [IIb), we may
furthermore assume that each function p; := ,/p; is C™°. Note that these
functions satisfy supp p; = supp ¢; C U; and

> pi)?=1,  VyeN.
j=1

For each j € {1,...,7} and k € {1,...,n} we define a function 5 : N —
E by
- (v)sjely) it yeU;
3]714;(3/) _ pJ( ) ]k‘( ) . J
0 (in Ey) if y¢Uj.

Then supp(s; ) C supp(p;) C U; and hence by mimicking the solution to
Problem [7(a) one shows that s; 5, is C*°. Also mos;;, = 1n; hence 55, € T'E.
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Now let s € I't E be given. We then define o, : M — Rfor j € {1,...,r}
and k € {1,...,n} by the requirement

s(x) =Y k(@) - si(f(2)) if z € f7HU;);

aji(z)=--=ajn(x) =0 if z¢ f~YU;).
By part (b) together with Problem [34] this makes the functions o ; uniquely
determined, and o r-1v;) € C>®(f~1(U;)) for all j, k. Next define the
function a;y : M — R by

aj k() = p;i(f(2)) - k().

Then ok r-1v;) € Coo(f_l(Uj)), and also supp(a; ) C supp(p;j o f) C
[~ (supp(p;)) € f~1(U;), P4 and hence by Problem [(a), a;j € C™(M).

Now for each x € M,

ZZ% )31 (f () = Z Zpy V2o k()i k(f ()

(118)

7j=1k=1 j=1 k=1
(f(2)eU;)
{use (II8) } = Z pi(f(z))?s(z) = s(x).
(v,

(The sum over j is taken over all j € {1,...,r} for which f(z) € U;.) The
last equality holds since > 7_, pi(f(z))? =1 and p;(f(z)) = 0 for all j with
f(z) ¢ U;. Hence we have expressed s as a finite sum of the desired form.

30Here the inclusion supp(p;o f) C f~ ' (supp(p;)) holds since f~*(supp(p;)) is a closed
subset of M which contains every x € M satisfying p;(f(x)) # 0.
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Problem

(a). The solution to Problem [4{] is generalized to the present situation
without any new difficulties arising (apart from a little extra amount of
book-keeping):

Let us write n; = rank E; (j = 1,2) and let 7 be the projection map
T Hom(El,f*Eg) — M.

Let s € I'(Hom(E4, f*E3)). Then for each p € M,
s(p) € Hom(Ey, f*Ez), = Hom(E1 y, Es 4()),
and so s gives rise to a map
h: E; — Es, h(z) := s(mi(x))(z) (z € Ey).
By construction this map h satisfies mo o h = f o 71, and furthermore for
each p € M,
hp = g, , = s(p) € Hom(E1 p, B 7)),

L.e. hy is a linear map from F j to Ey f(,). Hence if we can only prove that

h is C* then h is a bundle homomorphism F; — F» along f.

To prove that h is C'"° is a local problem, and by passing to appropriate
charts and bundle charts it is seen to follow from the basic fact pointed

out around ([@9]), (I00) in the solution of Problem [0l (We leave out the
details...)

Hence, writing H for the set of bundle homomorphisms E; — Fs along
f, then above we have constructed a map

(119) I'(Hom(Ey, f*Es)) — H, “s—> h".
We next construct the inverse map. Thus let h be a bundle homomorphism

Ey — Ej along f. Then by definition, for each p € M, h, = hg, , is an
R-linear map from E p to sy, i-e.

hp S HOIIl(ELp, Ez’f(p)) = HOII](El, f*Eg)p.

Let us define the map s : M — Hom(Ei, f*Es) by s(p) := hy. Clearly
mos = 1y, and one verifies that s is C'*° by passing to local coordinates
(we again leave out the details). Hence s € T'(Hom(E1, f*E5)), and so we
have constructed a map

(120) H — I'(Hom(E1, f*E2)), “hw s".
It is immediate from our definitions (in particular using “s(p) = h,”) that

the two maps ([19) and (I20]) are inverses to each other. Hence we the two
maps are in fact bijections. O
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(b). Consider the special case N = M and f = 1j;. Then h: By — Es is
a “bundle homomorphism along f” iff A is a bundle homomorphism. Also
f*FEy = E5. Hence in this special case, part (a) of the present problem says
the same as Problem (0] (and one verifies that the bijection is really the
same as there).

Next consider the special case where Fj is the trivial vector bundle of
rank 1 over M, ie. By = M xR (but f: M — N is again a general C* map
between C'* manifolds; also (E2, 2, N) is an arbitrary vector bundle). Then
there is an “obvious” bijection between the family of bundle homomorphism
h: Ey — E5 along f and the family I'y E5 of sections s of E along f: This
bijection is given by s(p) := h(p,1) (Vp € M); inverse: h(p,r) = r - s(p)
(V(p,r) € By = M x R). Furthermore we have an “obvious” identification
Hom(FE1, f*Ey) = f*Es, via the identifications

Hom(Ey, f*E3)p = Hom(Eyp, (f*E2)p) = Hom(R, (f*E2)p) = (f*E2)p
(Vp € M). In the light of these identifications, part (a) of the present
problem now says that there is a natural bijection between I'f*Fs and the

set 'y Fy. This is exactly the statement of Problem A4{(a) (and one verifies
that the bijection is really the same as there). O
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Problem

Let (U, ) be a bundle chart for F with ¢(tg) € U. Take £ > 0 so small
that ¢(t) € U for all t € (tg — e,tg + €). Then via (U, ), the section
8|(to—e,to+e) 18 identified with a C'°° map from (tg — €,%p + ¢) to R", where
n:=rank E. Let s’ be the j:th coordinate of this function; thus s/ is a C™
map from (ty — e,t9 +¢) to R, for j = 1,...,n. By Problem [I2|(b), for each
Jj there exists some ¢; € (0,¢) and a C™ function ¢ : U — R such that
¢’ (c(t)) = s/(t) for all t € (tg —j,to + ;). Let g: U — R™ be the function
whose jth coordinate is ¢7; this is a C°° function from U to R", and via our
bundle chart (U, ¢), g defines a section s € I'Ejy; satisfying s(c(t)) = s(t) for
all t € (to —&’,to +¢'), where ¢ := min(ey,...,&,). Now by Problem [35)(a),
there exists some s; € I'E and an open set V' C U containing c(t() satisfying
s1)v = S|y Now take €” € (0,€'] so that c(t) € V for all t € (to —&",to +¢").
Then we have s1(c(t)) = s(t) for all ¢t € (tg — &”,to + £”). Done! O

[Some pedantic details: In more precise notation, we have in the previous
discussion:

s == pr;oprgopos: (tg—¢,tg+e¢) = R,

where pr, is the projection from U x R™ onto the second factor R", and
pr; : R" — R is projection onto the jth coordinate. Also s is defined by

5p) = ¢ ' p9(),  WPET,
which by inspection is indeed a C*° map from U to F with mos = 1y;
thus s € I'Eyy. Our choice of g, g',...,¢g" and ¢ implies that for every
t € (to—¢€',to+ £’) we have
g’ (e(t)) = 87 (t) = pr; o pry op 0 5(t);
hence

g(c

(t
and since also pryop o s(t) =7

p(s(t))

)) = pryop o s(t),
s(t) = c(t), it follows that:

(e(t), g(c(1))),

and thus
s(t) = oM (c(t),g(c(t)) = 5(c(t), Ve (to—e to+e),

just as we claimed in the above discussion.]
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Problem (47t
(a). The map
(121) [ XY()-Y(X(f),  CF(M)—C™(M),

is clearly R-linear, since X and Y are (or give) R-linear maps on C'*°(M)
(cf. Problem [I5l(b)). Furthermore for any f,g € C*°(M), using the fact that
X and Y are derivations we have

X(Y(f9)=X((Yf)-g+f-(Yg)
= X)) -9+ f) (Xg)+(Xf)-(Yg)+ [ (X(Yg)).
Similarly,
Y(X(fg)) =Y (Xf) g+ (Xf)-Yg)+ X [f) (Xg)+ [ (Y (Xg)),
and subtracting the two we get
X(Y(f9) = Y(X(f9)) = (X(V(£) = Y(X(N)) -9+ /- (X(V(9)) — Y(X(9))).

Hence the map in (I2]]) is a derivation of C*°(M). Hence by Problem [I5[(b)
there is a unique vector field Z on M such that

Z(f) =X (f) -Y(X(f), VfeC™M).
Done. U

(b). ..

(¢c). For any f € C°°(M) we have, by definition of the Lie product,
(X, Y], ZI(f) = (X, Y)(Zf) — Z([X,Y][)
= X(Y(Z(f)) - Y(X(Z(}))) = Z(X(Y(f))) + Z(Y (X(])))-
Adding this to the corresponding formulas for [[Y, Z], X](f) and [[Z, X], Y](f)

we obtain
(I6.¥). 20+ (1v.20. X1 + [[2.X).¥]) (£) = 0.

This is true for all f € C°°(M); hence we obtain (via Problem [I5(b)):
(X, Y], Z] +[[Y, 2], X] + [[Z2, X],Y] = 0.
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Problem [48k

(a). The task is to prove that if (V,y) is any other C'*° chart on M, with
respect to which

wy =Y @rdy’
I
(with wy € C*°(U)), then we have

(122) > dwynda' =) dipndy' in UNV.
I 1

We start by noticing that the fact that

(123) Z&I dy' = Zwl dx! in UnNnV
I I
(since both these are = wjyny in U N'V) means that
(124) Z&I dyt = f* (Zwl da:1> in y(UNV)cR
I I

where f is the coordinate transformation

f::Eoy_l:y(UﬂV)—HE(UﬂV).

[Pedantic explanation: In (I24]) we are stating an equality between two
r-forms living on an open subset of R?, and so we are no longer viewing da!
or dy’ as r-forms on U NV, but rather as r-forms on z(U) € R? and on
y(V) € RY, respectively. This is the reason why we can both have (I23]) and
([I24]) although on first look they seem to contradict each other! Namely, in
([I23)) we are viewing dx! and dy’ as r-forms on (subsets of) M, but in (24
we are viewing them more concretely as r-forms on (subsets of) R%. Note
that also wy and wy stand for different things in (I24]) versus (I123)): in (I23))
wr and wy are functions on U and V respectively, whereas in (I24]) they are
functions on z(U) and y(V'), respectively (and a more pedantically correct
notation for these would be wyox~! and &y oy~1). The situation is exactly
the same regarding the relationship between ([[22)) and the computation
below. Note that we saw a similar example of such?] abuse}c of notation

8 _ 0y® 0o

already when we introduced tangent spaces: We have 575 = BT By in T,M

for any p € U NV, but the corresponding relation certainly does not hold

(in general) when we view % as vectors in Tx(p)Rd = R? and % as vectors

oxJ
in Ty(p)]Rd = Rd.]

31very convenient!
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Now in y(U N V') we have:
> dip ndy' = d(Z or dyf>
I I
(5
I
50
I

- f*(Zde/\da:I>.
1

[Details: The first equality holds by the definition of d; the second by ([[24]);
the third by Jost, [12, Lemma 2.1.3]; and finally the fourth equality again
holds by the definition of d.]

The equality proved in the above computation says exactly that (122])
holds! This completes the proof that the map d : Q" (M) — Q" H(M) is
well-defined. It is now immediate to verify that this map is R-linear. O
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(b). Strictly speaking, we need to prove this formula first in the special
case when M and N are open subsets of R? and R? | since we make use of this
fact in the proof that the general exterior derivative d : Q" (M) — Q" T1(M)
is well-defined; cf. part (a) above!

Thus assume that M is an open subset of R? and N is an open subset
of R (and f: M — N is a C*™ map). Let us write z = (z',...,z2%) for
a variable point in N and y = (y!,... ,yd) for a variable point in M. Let
w € Q"(N), and take functions w; € C*°(N) so that w = Y, wydz!. Then
f*(w) € Q"(M) is given by (recall that I = (41,...,4,) runs through all
r-tuples with 1 <1y < -+ <4, < d):

Zf (wr) f*(dx™ A - A da'r)
—Zwmf (da) A A fF(da)
:Zwlof (o fYA---Ad(z' o f)
:E;(w,of)dfiw--wd“.

(In this computation we used some basic properties of f* which we pointed
out in Lecture #8.) Hence (making use of [12, Lemma 2.1.2] for r-forms on
RY):

d(f*(w)) = Zd((wj of) dfP A A dfir)
I

—Z< (wro f) Ndf™t A-e- Ndf'

+ (wr o F)((df™)) Adf2 A~ AdfP
(125) ~ (wro F)(dF) A (ddF) A df A A

o (1) o DA A ) A ) ).

But note that for any g € C*°(M) we have

) ) 82g
(126)  d(dg) = d<agjd3>—d<agj)/\dy]—a kajdy Ady = 0.

(The last equality holds since we are adding over k, j € {1,...,d}, and since
dy* A dy? = —dy’ A dy*.) Hence all inner terms in (I25]) except the first
vanish, i.e. we obtain:

(127) A(f* W) =Y d(wro f) Ndf™* A--- Ndf'r.
I
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(Of course, (I26]) is a special case of the general relation dod = 0 [12]
Theorem 2.1.5], and once we know this the proof of (I27]) is much shorter.)

On the other hand,
F(dw) = f° (Z dog A dxf) = (dwor) A F(da)
1 I
(128) = d(wro f)yAdf A--- Adf
I

Comparing with (I27), we conclude that indeed d(f*(w)) = f*(dw). O

Later, when we have defined the exterior derivative for general manifolds
M (cf. part (a) of this problem), the above proof carries over, with very
small changes, to the case of a C* map f: M — N between C'°° manifolds.
Indeed, one fixes a chart (U,z) on N and assumes w);y = Y., wrda! with
wr € C®°(U). Then the computation up to and including (I25)) is still valid,
in the open subset f~1(U) of M. (Note that each f7 is a C* function
f~1(U) = R, defined by f/ := 27 o f.) Also for any open set W C M and
any g € C°(W), the computation in (I26]) shows that d(dg) = 0; namely
if we work locally wrt any chart (V,y) on W. Hence we obtain ([I27]), as
an equality of (r + 1)-forms restricted to the set f~1(U). Similarly the
computation (I28) is valid in f~1(U), and so we conclude that

d(f* (W) g1y = [ (dw) | g1
But this is true for (U,z) being an arbitrary C* chart on N; hence we
actually have d(f*(w)) = f*(dw) on all M. O
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(c). Let (U,x) be a C* chart on M. We first prove the stated formula
on U, and in the special case when

(129) Xj: e I(TU), (j=0,...,7),

© Ol
for some ly,..., 0 € {1,...,d} (d = dim M). In this case [X;, X}] = 0 for
all j,k € {0,...,r}, and hence the formula that we wish to prove states that
for any w € Q"(U),
T

(130) [dw](Xo, ..., X)) =Y (1) X (w(Xo,..., Xj,..., Xp)).

j=0
Let us first note that both sides of (I30]) are alternating in Xy, ..., X,, i.e. if
we replace Xo, ..., X, by Xy, Xo() for some o € &, (the group of
permutations of {0, 1,...,7}) then the effect is that the expressions on both
sides of (I30) get multiplied by sgn o. [Detailed proof: For the left hand side
this holds since dw is alternating by definition. Now consider the right hand
side. It suffices to study what happens when X; and X, are switched for
some i € {0,1,...,r — 1}, since &,41 is generated by such transpositions.
Then for each j ¢ {i,i + 1} the corresponding term in the sum is negated,
since w(Xo, . .. ,X s, X;) gets negated by the transposition. Furthermore
the contribution from j € {i,7 + 1} to the sum after the transposition is

(_1)iXi+l (w(X07 o 7Xi+17 o 7XT’)) + (_1)Z+1XZ (O.)(XQ, s 7Xi7 s 7X7“))7

and this is again equal to —1 times the contribution from j € {i,i+1} in the
original sum. Hence we conclude that the whole expression in the right hand
side of (I30) gets negated when switching X; <> X;;1, and this completes
the proof of the claim.]

It follows that it suffices to prove (I30) in the special case
(131) b <l <--- < ¥,

(Note in particular that if any two of the ¢;’s are equal then the alternating
property proved above implies that both sides of (I30) equal zero and so
the equality holds.)

Now take w; € C*(U) so that w = Y_;wrdz! (notation as before). Then
dw = > dw; Ndz!, and recalling I = (iy,...,i,) and the definition of wedge
product, we get:

[dw](Xo, ..., Xp) =Y (dwy Ada’)(Xo, ..., X,)

1
(132) =Y Y (samo) - dwr(Xe() - [ 42" (Xoi)-
I 0'66r+1 ]:1

Recalling (I29]), we see that the last product equals one if I = (i1,...,4,) =
(lo(1)s- > Lo(r)), otherwise zero. Recalling now (I3I) and the fact that I
runs through all r-tuples with 1 < i1 < 49 < --- < 4, < d, it follows
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that o € &,41 contributes to the last sum iff o(1) < 0(2) < -+ < o(r).
There exist exactly r+ 1 such permutations o, namely one for each choice of
a:=o0(0) € {0,1,...,7 4+ 1}; explicitly the unique admissible permutation
o = o4 with 0,(0) = a is given by o,(j) = j— 1 for 1 < j < a and
0a(j) = j for a < j < r. Note also that this permutation o can be obtained
as a product of a transpositions i <» ¢ 4+ 1; hence sgn(o,) = (—1)*. Given
0 = 04, We get contribution from I = ({5, (1), - -, {s,(r)) and no other I, and
using w = >, wrdx! we get for I = Coys - lo@r)):

wr = w(Xoa(l)v s 7Xoa(7‘)) = W(X()) cee 7Xa7 s 7X7‘) € COO(U)
and thus
de(Xcra(O)) = Xa (w(XQ, v ,Xa, ‘e ,XT»)).

Using these facts in (I32) we get:

T

[dw](Xo, ..., X)) = Y (1) Xo(w(Xo, -, Xa, .-, X;)),
a=0

i.e. (I30) is proved! Recall that this was under the assumption that X; =
0 ; .
pe for j=0,...,r; cf. (129).

Next, let us call the right hand side of the general formula which we wish
to prove “F(Xo,...,X,)”. That is:

T

F(Xo,...,X,):= Z(—l)ij (W(Xo, .- Xjy o, X1))

7=0
(133) + Y (X, X Xos - X Xk X)),
0<j<k<r

Thus F isamap F :T(TM) x --- x T'(TM) — C°°(M). Let us prove that
F is C°°(M)-multilinear! It is clear by inspection that F' is R-multilinear.
Let us also note that F' is alternating. (Proof: The argument we gave just
below (I30) applies to show that the first sum is alternating. For the second
sum a similar argument works; we leave out the details.) Hence to show the
C°°(M)-multilinearity, it now suffices to prove that for any f € C°°(M),

F(fXo, X1,...,X,)=f - F(Xo,X1,...,X,).

But when we replace Xy by fXo, the j = 0 term in the first sum of (I33)
clearly gets multiplied by f, whereas each j > 0 term becomes (—1)7 times

Xj(w(fXos s Xy, X0)) = X5 (f - w(Xoy -+ Xy, X))
= (X f) w(Xoyo s Xjyoo o, Xo) + f - X (0(X0s -, Xy, X))
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In the second sum, each term with 0 < j < k < r gets multiplied by f,
whereas each term with 0 = j < k < 7 becomes (—1)%** times

w([fXo, Xi], X1,..., Xp, ..., X)
= w(f[Xo, Xi] — (Xpf) X0, X1y oy Xpy oo, Xo)
= f-w(Xo, X, X1, s Xpr oo, X)) — (X f) - w(Xos ooy Xy, X)),
(Cf. Problem [A7(d).) Hence in total we get:
F(fXo,X1,...,X,)=f-F(Xo,X1,...,X,)

+ Y (VX f)  w(Xos - XL X
7j=1

+ (EDF (= (X0 f)  w(Xos o K, X
k=1

=f -F(Xo,Xq,...,X,).
Hence the C*°(M )-multilinearity is proved.

Now the proof of the formula in the general case is easily completed:
Again let (U, x) be an arbitrary C'*° chart on M; it suffices to prove that the
desired formula holds in U. Hence from now on we may just as well assume
M = U. We keep the notation “F” from ([I33]) (but now with M = U). We
have proved above that F' is C°°(U)-multilinear, and also that

(134) [dw](Xo, ..., X;) = F(Xo,...,X})

when each X is of the form X; = % (indeed, cf. (I30) and again recall that
for such Xy, ..., X,, all Lie brackets [ X, Xj] vanish). But every X € I'(TU)
can be expressed as X = f; % for some (unique) f1,..., fqg € C*°(U); hence

it follows that (I34]) holds for arbitrary Xi,...,X, € I'(TU). This is the
desired formula! O



PROBLEMS; “RIEMANNIAN GEOMETRY” 155

Problem

(a). By the definition of tensor product (of C°°(M)-modules), every ele-
ment in I'(E7)QT (A" M) can be written as a finite sum of pure tensors p; @w;
(where p; € TEy, w; € T(A"M) = Q"(M)). Hence by Problem [43(d), the
same is true for any section in I'(Ey @ A"M) = Q"(E;). The analogous fact
of course also holds for I'(Es @ A*M) = Q°(E,). Hence the stated formula,

(135) (u1 @ wi) A (p2 @ws) = (p1 © p2) ® (w1 Awa),

V/Ll S F(El), w1 € QT(M), Mo € F(Eg), Wy € QS(M),
together with the requirement that A should be a C°°(M)-bilinear map
O"(Ey) x Q5(Ey) — Q"T5(Ey ® Ey), certainly makes sy A so uniquely deter-

mined for any s; € Q"(E7), s2 € Q°(E2). Hence it remains to prove that
such a C°°(M)-bilinear map exists.

For the existence proof, we start by considering the map
F:T(E) x Q" (M) x T'(Ey) x Q5 (M) — Q"(E, ® By),
F(M17w17/$27w2) = (,Ul ® p2) ® (Wi A wa).

This map is immediately verified to be C°°(M)-multilinear. Hence by the
definition of tensor product, there exists a unique C°°(M)-linear map

F:T(E)®@Q (M) ®T(Ey) ®Q(M) = Q5B @ E)
satisfying

F(p @ w1 @ po2 @ ws) = (11 @ p2) @ (w1 Awa),
(136) V,ul € F(El), w1 € QT(M), M2 € F(EQ), wo € QS(M)

Using Problem E3(d) and Q" (M) = I'(A"M), F becomes identified with a
C°°(M)-linear map

F Q' (BE) ® Q% (Ey) — Q (B @ Ey).

Composing F' with the canonical map (s1, s2) — s1®sz from Q7 (Ey)x Q% (Es)
to Q"(E;) @ Q°(Ey) (which is C°°(M)-bilinear by the definition of tensor
product), we obtain a C°°(M)-bilinear map

QT(El) X QS(EQ) — QT+S(E1 &® EQ)

which maps (Nl w1, U2 ®w2) to (1 ® p2) ® (w1 Aws) for all py, wi, pa,ws as
in (I36). This map satisfies all requirements imposed on “A”, i.e. we have
proved the (unique) existence of such a map “A”! O

As an addendum, let us note that the wedge product s; A sy € Q" T5(E) ®

E5) of any two sections s; € Q"(E;) and sp € Q°(E2) can be computed
“fiber by fiber”:

(51 A s2)(p) = s1(p) A s2(p),  Vp e M,
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where in the right hand side, the “A” [’ denotes the unique R-bilinear map
(Erp @ (T (M))) % (B2 @ N (T (M))) = (Erp @ Eap) @ N"(T, (M)
satisfying

(v1 @ 1) A (v2 @ p2) = (v1 ® v2) @ (1 A 2),
(137) Vo1 € Evp, o1 € N'(T;(M)), va € Eap, 02 € N*(T;(M)).

Indeed, this is clear by parsing through the identifications in the above proof
(in particular see equation (II3]) in the solution to Problem[3|(d)). Note also
that the fact that there indeed exists a unique R-bilinear map “A” satisfying
(I37) is proved by an argument completely similar to what we did above. O

(b). This is quite immediate from the corresponding formulas for the
“standard” wedge product on Q(M). Indeed, for the associativity relation,
by C*°(M )-multilinearity and the argument at the beginning of our solution
to part (a), it suffices to prove the identity s1, s2, s3 of the form s; = p; @ w;
(7 =1,2,3), where pj € I'(E;) and wy € Q" (M), we € Q¥(M), w3 € Q' (M).
But in that case we have

1A (2 A sg) = (1 @ wn) A (2 @) A (113 9 )

= (1 ®wi) A ((M2 ® p3) ® (wo A wg))
= (11 @ p2 ® p3) ® (w1 A (w2 Aws))
= (11 ® p2 ® p3) ® (w1 Aw2) Aws)

= (81 VAN 82) N S3.
In the fourth equality we used the fact that the wedge product on Q(M) is
associative.
Similarly for any s1, so as above we have
(=1)" - J(s2 As1) = (=1)" - J((p2 @ p1) ® (w2 Awr))
= (=)™ (11 ® p2) ® (w2 Awr)
= (11 ® p2) ® (w1 A ws)
= 51 A S82.

In the third equality we used the fact that wq Awy = (—1)" 5wy A wy. O

(c). This is immediate from the second relation in part (b); indeed note
that m' =mo J: Q"5(Ey ® Ey) — Q"T5(E).

32Note that we are now using “A” in quite a few different ways; however it will always
be clear from the type of the two arguments which “A” is used in each instance.
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(d). Similarly, this is fairly immediate from the first relation in part (b);
we leave out a detailed discussion. (One has to change order between certain
operations and this becomes somewhat tedious to spell out.) Instead we give
a direct proof by mimicking the proof of the first relation in part (b): For
any si, s2,s3 of the form s; = p; @ w; (j = 1,2,3), where u; € I'(E;) and
w) € Q"(M), we € Q5(M), wz € QY(M), we have (note carefully that now
certain “A” have a different meaning than in part (b)...):

1A (2 A sg) = (1 @ wi) A (2 @) A 113 9 )
= (11 ®w1) A <u2 ps) @ (wz/\wz’»))

(
= (p1 - (p2 - p13)) ® (w1 A (w2 Aws))
= ((p1 - p2) - p3) @ (w1 A wa) Aws)

= (81 VAN 82) N 83.
Done! O
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Problem We have
(momy = <ﬂj* ® Y ® u?) o <ai* ® B ® nf)-
and by the definitions in Problem [49(a),(c), this is
= (" 2m) o (@™ @) @ (u Arf)-
But using the definitions of composition of homomorphisms and of the iden-
tifications Hom(FEs, F3) = E5 ® E3 and Hom(E1, Ey) = E} ® Eq, we find
that
(67 @) o (™ @ By) = 600" @ .
(Here 9,4 is the standard Kronecker symbol; §;, = 1 if j = £ otherwise = 0.
Note that in terms of matrices the last formula is simply a formula for the
product of a matrix with “1” in position &, j and all other entries zero, and
a matrix with “1” in position ¢,7 and all other entries zero.) Using the last
formula in the previous one, we obtain:

(onu = (800 @ k) @ (1§ A7)
= (o™ @) ® (u¥ A ),
qed. O
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Problem [51k

(a). To start, by the definition of tensor product, there is a natural
bijection between the C°°(M)-multilinear maps T'(T'M)") — T'E and the
C°°(M)-linear maps from

NTM)®- - @T'(TM)=T(ITM®---TM) =T(Ty M)

r times r times

to I'E (here we used Problem [43|(d)). But the space of such maps is
Hom(D(I}M),TE) = THom(T] M, E) = [(E ® (I} M)*) = [(E @ T°M).

(For the first equality see Problem E3J(c); for the next equality cf. p. 9 in
Lecture #7.) Working through the identifications used above, we see that
viewing a given s € N(E®T?M) as a C°>°(M)-multilinear map T'(T'M)") —
I'E, means that for any vector fields Xy,..., X, € I'(T'M), the section

s(Xi,...,X,) €TE
is explicitly given by
(138)
(s(X1,.... X)) (p) = Cp(s(p) ® (X1(p) @ -+ @ X:(p)))  (¥p € M),

where C), is the unique R-linear map (“contraction at p”)
Cp: (Ep@qu(M)p) ® Ty (M)p — Ep
which maps

(139) Cp(w ® n ® Oé) = 77(04) T w, Vw e Epv ne TE(M)IM Qac TS(M)P

Next, note that "M by definition is a subset of T°(M), and one verifies
immediately that it is in fact a subbundle of T2(M). B Hence E ® A\"M is
a subbundle of E ® T?(M).

In order to complete the solution, we have to prove that for any s €
TN(E®T?(M)), we have s € T(E® \"M) iff s as a C°°(M)-multilinear map
D(TM)™) — TE is alternating. Now s € I'(E ® \"M) is equivalent with
s(p) € E, @ N"(T;y M), Vp € M, and on the other hand s : T(TM)") - TE
is alternating iff

$(Xo(1)s -+ Xo@))(p) = (sgno) - s(X1,..., X;)(p),
Vo e &, Xp,...,X, €e(TM), pe M.

331ndeed, using standard bundle charts, this boils down to the local fact that U x
A"((R™)*) is a subbundle of U x (R" ® --- @ R™)* (for U open C M).

34General fact (complement to ProblemsB%(a) and@I): If Ey, B, F are vector bundles
over M and F1 is a subbundle of Fs, then F1 ® F' is a subbundle of F2 ® F'.
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Hence, by also using (I38]) and Problem B5(c¢) (applied to the vector bundle
TM) we see that it suffices to prove the following: For every p € M and
every z € E, @ T)(M),, we have z € E, @ \' (T M) iff

Cp(2 @ (Vp(1) @+ @ V() = (5g00) - Cp(2 @ (11 ® -+ B vy)),
(140) Vo € &,, v1,...,v, € T,M.
Proof of the last claim: Let bq,...,b, be a basis of F,. Then every z €
E,®T?(M), can be expressed as z = E?:l b; ®n; with uniquely determined
M-y € TY(M),, and we have z € E, @ \"(T; M) iff n; € A"(Ty M) for
all j. It now follows from the definition of C), (I39), that

Cp(z ® a) :an(oz)-bj, Vo € 15 (M)p.
=1

Hence since by, ..., b, is a basis of E,, we see that (I40) holds iff
15 (Ve() @ -+ @ Up(p) = M3 (01 @ -+ @ 0,),
Vie{l,...,n}, c €&, vy,...,v, € T,M.

In other words, (I40)) is equivalent with n; € A"(T,; M) for all j, and as we
have already pointed out this is equivalent with z € £, ® A"(T;M). Done!

O

Addendum: Note that for any s € Q"(E) of the form s = p ® w with
p € T(E) and w € Q"(M) (and more generally for any s € I'(E ® T°M) of
the form s = p ® w with p € T'(E) and w € T(T°M)), the corresponding
multilinear map satisfies
(141) (Lw)(Xi,....,X,) =w(X1,...,Xy) -1 (inTE),
VX1,..., X, € D(TM).

Indeed, this is clear from (I38) and (I39). O
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(b). The expressions on both sides in the given formula clearly depends
C°°(M)-linearly on s; and C°°(M)-linearly on s,. Hence, by the argument
at the beginning of the solution to Problem [9(a), it suffices to prove the
stated formula when s; = p; @ w; (j = 1,2), with p; € I'(E;) and wy €
Q" (M), wg € Q°(M). In this case we get by ([I41)):

1
@ Z Sgn(O') S1 (Xo'(l)7 - ,XU(T)) & SQ(XJ(T,_H), - ,XU(H_S))
o 0€6T+S
1
- W Z Sgn(a) (wl(XJ(l)’ T ’XJ(T’)) ’ lu’1> ® <w2(XO'(T’+1)7 s 7XO'(T+S)) ’ :u2>7

1
= W < Z sgn(a) w1 (Xcr(l)7 s 7Xcr(7‘)) ’ w?(Xo(r—i-l)a s 7Xcr(7‘+s))> T H1 & p2.

O’GGT-Jrs
By the definition of exterior product on Q(M), this is
= (w1 Aw2)(X1,..., Xoys) - (111 @ p2).

But we have s1 A se = (1 ® p2) ® (w1 Aws), and so by one more application
of (41, the above is

= (81 A 82)(X1, o 7X7“+s)-
Done! O

Finally, the analogous formula for sy - s is:
(81 . Sg)(Xl, PN 7Xr+s)

VX1,..., Xpes € T(TM),
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Problem
(a). This was proved in the lecture.

(b). We first prove that the connection Dy, if it exists, is unique. Let
s € I'(Ey) be given. We claim that if V' is any open subset of U and
s’ € T'(F) is such that s"v = 5|y, then

(142) (Dyys)yy = (Ds")y.

By Problem[35l(a), U can be covered by open sets V' for which such a section
s' € I'(E) exists; hence (IZ42]) implies that the whole section Dy s is uniquely
determined.

Proof of : It follows from the requirement on Dy that
\U

(143) Dis(sly) = (Ds')

Furthermore, applying part (a) to D)y, and using (STU)H/ = STV = 5|y, we
have

(144) (D) = (Ds)v-

Combining (I43]) and (I44]) we get (142]).]
Next let us verify that there indeed exists a well-defined section “D7s” in

['(Ejy ® T*U) such that (I22) holds whenever V' is open in U and s’ € I'(E)
is such that STV = s|y. For this, it suffices to verify that for any two open

subset V1,Vo C U and any sp,s, € I'(E), if s;.|
(DsV)vinve = (Dsy) i, However this is clear from (s7) v, v, = Sjvinv, =
(53)[vinvs, and part (a) of the lemma (i.e. the fact that D is local).

v, = 8y for j = 1,2 then

Hence we have shown that our requirements on Dy imply that D)y is
a uniquely defined map from I'(Ejy) to I'(Ejy ® T*U). Note that it is
immediate from our construction that this map has the desired property,
i.e. that (Ds)y = Djy(sy) for all s € I'(E). (Indeed, let s € I'(E) be given.
Then for the section s|;; € T'(Ejy), (I42) applies with s’ = s and V = U,
and then says that (D (sjy))jr = (Ds)y, as desired.)

It remains to prove that D)y is a connection on Ej;. Clearly Dy is
R-linear, and so it remains to prove that

(145) Dy (fs) =s@df + fDys, VfeC®(U), sel(Ey).

For this let f € C*°(U) and s € I'(E)y) be given. It suffices to prove that
for any given point p € U, there is an open subset V' C U with p € V such
that

(Dip(fs))v = (s@df + fDys)y-

However, given p € U, we know by Problem [35(a) (applied to the two vector
bundles E and M x R) that there exist f' € C°°(M) and s’ € T'(E) such



PROBLEMS; “RIEMANNIAN GEOMETRY” 163

that f\,v = fjv and STV = s|y for some open set V' C U containing p. Then
also (f's")jy = (fs)v, and now

(D|U(f3))|v = (D(f/s/))‘v = (3/ ® df' + f/DS/)\V = 5\/\/ ® d(f\/v) + f\/v(Ds/)\V
= sy @d(fiy) + fiy(Dws)y = (s@df + fDys)v,

as desired! Hence we have proved (I43]), and so Dy is a connection on E.
(]

(c¢) The requirement on D is that
(146) (D). = Dals|v.); Vs e I'(E), a € A.

Let s € I'(E) be given. Since UpeaU, = M, the condition (I46]) determines
Ds uniquely (if it exists at all). To prove that there really exists a section
Ds € T'(E ® T*M) which satisfies (I40]), it suffices to verify that for any
two a, 8 € A with V := U, NUps # 0, we have (Da(sjp,))v = (Dp(sju,))v-
However this is immediate from our assumption that (Do )y = (Dg)v-

Hence we have shown that our requirement on D implies that D is a
uniquely defined map from I'(E) to I'(E ® T*M). Clearly this map is R-
linear. In order to prove that D is a connection, it remains to verify that
D(fs)=s®df + fDs for all f € C>*°(M), s € I'(E). Thus let f € C*>(M)
and s € T'(F) be given. Since U,caU, = M, it suffices to prove that
(D(fs) v, = (s ®@df + fDs)y, for every a € A. Thus let a € A be given.
Then

(D(fs)va = Dal(f$)v.) = sju. @ dfju, + fluvaDa(siv,)
= (s@df + fDs)y,,
as desired! O

Remark 1. The following (apriori) stronger version of part (b) is actually technically
slightly more direct to prove:

Let (Ua)aca be an open covering of M, and for each o € A let Do be a connection
on Eyy,. Assume that (Da(sjv,))jvanv; = (Da(sjus))vanu, for all s € TE and all
a,B € A. Then there exists a unique connection D on E such that (Ds)y, = Da(sju,)
for alls e TE and o € A.

Proof. Given any s € I'E, the section Ds € I'(T*M ® E) is clearly uniquely determined
(if it exists) by the given requirement, since M = UacaUs. On the other hand the given
compatibility assumption easily implies that Ds is indeed as well-defined (C°!) section
of T*M ® E! Hence we obtain a well-defined map from I'(E) to I'(T*M ® E). The rest
is as above! |
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Problem [53t Let p € M be the base point of v, so that v € T,M.
Take an open neighborhood U C M of p such that both TM; = TU

and Ej;; are trivial, and choose bases of sections Xj,..., Xy € T'(TU) and
o1,.--,0n € I'(Ey). Let Ffj € C*®(U) be the corresponding Christoffel
symbols, so that Dx,o; = Ffjak for all i € {1,...,d} and j € {1,...,n}.
Take a',...,a" € C®(U) and b',...,b" € C®(U) so that
S1Uu = ajaj and Soju = bjaj
(cf. Problem B4]). Also take v!,...,7™ € R so that
v=1"X;(p) € T,M.

Then as shown in Lecture #9, we have

(147) Dy(s1) = v(a¥) - ox(p) + 77 - " (p) - T4i(p) - ou(p).
and
(148) Dy(s2) = v(b*) - op(p) + 47 - b*(p) - T1(p) - ou(p).

[Details: In Lecture #9 we noted a formula saying that if X = 7' X; € ['(TU)
then Dx(s1) = X (a*)-oy, +’7jakF§k0g in I'(E7), and evaluating this section
at p we get (I47). But of course we don’t need to refer to Lecture #9; the
proof of (I47) is immediate using Leibniz’ rule: We have

Dy(s1) = Dy(a*ar) = v(a") - o(p) + a"(p) - Do(on),

and here D,(0%) = ’yiDXi(p)(ak) = ’yi(DXi(ak))(p) = ’yiffk(p)ag(p), and
combining these two we get (I47). The proof of (I48]) is the same.]

Now we are assuming v = ¢(0); hence (by “fact” on p. 9 in Lecture #2;
cf. Problem [I3(f)):

v(a?) = (a’ oc)'(0) and () = (¥ oc)(0).

We are also assuming that for every ¢ € (—¢,¢) we have s1(c(t)) = s2(c(t)),
ie.

a(e(t)) - a;(c(t)) =V (c(t) - o(c(t))  in Ey,
and thus
a?(c(t)) = b (c(t)), Vje{l,...,n}, t € (—¢,e).
Combining the above facts, we conclude that
v(a?) = v(V), Vje{l,...,n}.
Also of course a’ (p) = a’(c(0))

tion in (I47) and (I48) that D,(s

b (c(0)) = b (p). Hence we see by inspec-
1) = DU(SQ). D
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Problem The map d is clearly R-linear. Furthermore, for any f €
C>U,

d(fa¥sy) = sp @ d(fa¥) = s, @ (a - df + f - da")
= (aksk) Qdf + f - s ® da®
= (a¥sp) @ df + f - d(aFsy).

Hence d is indeed a connection. O

Problem The first statement is an immediate verification; indeed
the restricted map is, by assumption, a map D : TE’ — I'(E' ® T*M), and
it satisfies D(fs) = f- Ds+s®df for all f € C*°(M), s € T'E’, since this
holds more generally when s € T'E.

Here’s a simple example showing that the condition is not always satisfied:
Let E be the trivial vector bundle E = M x R? over M = R, equipped
with the corresponding ’trivial’ connection D (i.e. the connection which Jost
would call “d” with respect to the bundle chart ¢ = 15 : £ — M x R?). Set

E' ={(z,v) € E : v € R(cosx,sinz)}.

This is easily verified to be a vector subbundle of £. Now consider the
section s € T'E', s(z) := (cosz,sinz). Then Ds(z) = (—sinz,cosz) in
INE®T*M) =TE. (Note: For our M = R we have T*"M = M x R and
thus £ ® T*M = E under obvious identifications.) Hence Ds is not in
I'E' @ T*M) =T(E'); indeed Ds(z) ¢ E’' for every x € M. O

Problem The requirement on f*D is:
(149) (f*D)(so f) = Dgs((s) € P(Hom(TM, f*E)),  Vs€TlE

Let us first verify that this formula makes sense! For any s € I'E' we have
sofel'yE =Tf*E (cf. Problem [4]); hence if f*D is a connection on f*FE
then we should indeed have

(f*D)(so f) eT(ffE®T*M) =T(Hom(TM, f*E)).

Next let us prove that Dg.)(s), i.e. the map v — Dy (s), is indeed a
bundle homomorphism T'M — FE along f, so that it can be viewed as an el-
ement of I'(Hom(T'M, f*E)) by Problem @5l First of all, df is a C*° function
TM — TN (cf. Problem [[T(a)); also D(s) € I'(Hom(T'N, E)) and so D(s)
can be viewed as a bundle homomorphism TN — E (cf. Problem (). Now
Dgg((s) is the composition of these two C'°° maps, hence itself C°°. Also
Dyg((s) clearly restricts to an R-linear map T,M — Ey,) for all p € M.
Hence Dg(.y(s) is indeed a bundle homomorphism 7'M — E along f. Done!

By Problem [d4)c), every section in I' f*E be written as a finite C°°(M)-
linear combination of sections of the form s o f with s € I'E. Hence the
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connection f*D, if it exists at all, is uniquely determined by the relation
([149).

It remains to prove that there exists such a connection f*D. Let us first
prove the existence of f*D in the special case when (F,m, N) is a trivial
vector bundle. Then fix a basis of sections sy, ..., s, € I'E (cf. Problem [33]).

Then for any o € I' f*E there exist unique ’coefficient functions’ ay, ..., a, €
C*°(M) such that

o= a;(sjof)
=1

(cf. Problem @4{(b) and Problem [34)), and we now define the map
D:Tf*E > T(f*E®T"M)
by setting

(150) D(o) = Z<aj - Dyg(y(s5) + (s50 ) @ daj).

j=1
(Here Dgp((s;) € T(Hom(TM, f*E)) = T'(f*E @ T*M) as in (I49).) This
map D is clearly well-defined and R-linear. Furthermore, for any g €
C>(M) and 0 = >77_; a; - (sj o f) as above, we have

n

g-0=5(g-a5) (3,0 1),

j=1
and hence by definition:

n

Dig-0) = > (905 Dapy(s5) + (50 f) @ d(gay) )

j=1
{Use d(gaj) =g - daj + a; -dg.}

:g-Z(aj 'Ddf(.)(Sj)—i-(SjOf)@dOéj) +Zaj(sjof)®dg

j=1 j=1
:g'ﬁ(a)—i-a@dg,

This proves that D is a connection! Finally we prove that D satisfies (@9).
Thus let s € T'E be given. Then there exist unique fy, ..., 3, € C*°(N) such

that s = > 1, Bjs; (cf. Problem B4); hence so f = > ", (80 f) - (sj o f);
and so by our definition of l~?,

n

(151)  D(so )= ((80f): Darcy(s) + (550 F) @ d(B; 0 ).

j=1
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On the other hand for any p € M and v € T, M we have

Dy v)(8) = Dyf(v) (Z 5)’3)')
j=1
= > (Bi(F®) - Dy (55) + dfy (0)](B) - 5(F () ).
j=1

Here

[dfp(0)](B5) = (dB}) sy (dfp(v)) = [d(Bj o f)l(v) € R

(by the chain rule), and hence by comparing the last two formulas we see
that D(s o f) = Dgg(y(s). Hence we have proved that the connection D
satisfies the relation required for f*D, (I49). This proves that f*D exists,
namely f*D = D!

We have thus proved that the pullback of any connection on a trivial
vector bundle exists; and it is unique since we have noted that the pullback
of any connection is unique if it exists.

Finally we will prove that the pullback connection f*D exists for an arbi-
trary vector bundle (E, 7, N). Fix an open covering (V4 )aca of N such that
By, is trivial for each v € A. Let Uy = f~!(Va); then (Uy)aea is an open
covering of M. Now f;, is a C° map of manifolds U, — V,, and D)y, is a
connection on the trivial vector bundle Ejy, (cf. Problem[52]); hence by what
we have proved above, there exists a uniquely defined pullback connection
D, = f";]a(DWa) on f";]a(EWa) = (f"E)u,- Let us prove that these
connections D, (a € A) are compatible in the appropriate sense. Thus let
a,B € A and set U’ := U, N Ug; assume U’ # (. Note that U' = f~1(V")
where V' := V, N V3. We claim that

(152) Dojur(s'o fir) = Dap () (s)), Vs € TEp.

(Here in the right hand side, “D” really stands for “Dyyr”; we will use this
type of mild abuse of notation several times in the discussion below.) To
prove (I52), let s" € T'Ejys be given, and take p € U’. By Problem [33](a),
there is a section s € I'Ejy,, such that sj,» = STV,, for some open set V" C V'

containing f(p). Then so fjy, and s’ o fiyr have the same restrictions to
U" = f~1(V"), ie. (so fiu ) = (s o fly)wr. Note also that p € U”.

35Prove this identification, “f7;, (E}v,) = (f*E)v,”, as a complement to Problem [421
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Now we get:

ﬁaw'(sl o fiu )

_(5 since (s o fi, )jur = (8" o fiy)jns cf. the
=(Dals fiy ) { solution to Problem [(2(b).

:(Ddf‘Ua(~)(S))|U” { by the defining condition for D,,. }

indeed for every v € T'(U") we have df (v) €
B , T (V") and thus Dy, (s) = Dgg(v(s'), since
_(Ddf\U’(')(S Do D(s)jyn = D(s")yn (cf. the solution to Prob-
lem (2(b)).

Since every p € U’ has such a neighborhood U”, it follows that (I52]) holds!

But (I52) says exactly that l~)a|U/ is the fiyr-pullback of Dy (which we
know is unique if it exists). Changing the roles of a and (3, it also follows
that Dgy is the fjy-pullback of Dyy. Hence by the uniqueness of “the
Jipr-pullback of D)y»”, we conclude:

(153) Doy = Dy

The fact that (I53]) holds for all o, 5 € A with U, N UB # () implies by
Problem [52|(c) that there exists a unique connection D on f*E satisfying
D‘Ua = D, for all & € A. One easily proves that

(154) D(so f) = Dgyy(s), VseTlE.

(Indeed, let s € I'E be given. Then for every o € A we have (E(Sof))wa =
Da((s © fliv,) = Dalsyv, © flu.) = Dagy, () (Sv.) = Dag)(s)jv,,, where
each step is justiﬁed by arguments similar to those in the proof of (I52]).
The fact that (D(s o f))jy, = Dar()(s)y, for each a € A implies that
D(sof) = Dgg((s). Donel!)

The relation ([54) says exactly that the connection D satisfies the re-
quirements on the pullback bundle f*D; hence we have proved that f*D
exists! 0

(b). Let us first prove that the connection f*D defined in part (a) indeed
satisfies the stated condition. Thuslet s e I'f*E =T'yF andlet ¢ : (—¢,¢) —
M be a C* curve; also let s; € I'E, and assume that s;(f(c(t))) = s(c(t))
for all t € (—¢,¢). The assumption means that the two sections s; o f and
s in I'f*E are equal along the curve ¢. Hence by Problem (3]

(f*D)eqoy(s) = (f*D)e(oy(s1 0 f)-
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But also, by the defining property of f*D,

(f*D)ecoy (51 0 f) = Dgg(e(oy) (51)-

Hence (f*D)s0)(s) = Dag(e(0))(51), and so we have proved that f*D satisfies
the desired condition.

Next let us prove that f*D is the only connection on f*FE which satisfies
the stated condition. Thus let V be any connection on f*E such that for
any s € I'f*E = TI'yFE, any s; € I'E, and any curve ¢ : (—¢,e) — M, if
s1(f(e(t))) = s(c(t)) (Vt € (—¢,¢)), then Vi) (s) = Dypa(oy) (51)-

Consider an arbitrary section s; € I'E and an arbitrary v € T'M. Then
there is a C*° curve ¢ : (—e,e) — M such that v = ¢(0). Note that sj o f €
I'f*E and obviously si(f(c(t))) = (s10f)(c(t)) for all t € (—e,e). Hence by
our assumption, Vs)(s1 0 f) = Dgge(oy) (51), i-e.

V(510 f) = Dagr)(s1).
The fact that this holds for all s; € I'F and all v € TM means exactly that

V satisfies the defining condition for “f*D”; hence by the uniqueness proved
in part (a) we must have V = f*D. O
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(c). Let V' .C N be an open set containing ¢ such that there exists a basis
of sections s1,...,s, € [Epy. Set U = f~Y(V) € M. Then, given s € T'f*E,
there exist unique aq, ..., a, € C*°(U) such that

sy = Z@j (850 fiv)
=

(cf. Problem [4[b) and Problem [34)). Now by the definition of f*D (cf. part

a),
n

(DY =D ((s1 0 fiv) @ da + ;- Dy (s7)) i T((fE@ T M)p).
j=1

In particular,

(f*D)eoy(s) = Y ((aj 0¢)'(0) - 5j(q) + @;(c(0)) - Dag(e(0)) (Sa‘)>-

j=1
Here df (¢(0)) = 0 since f o ¢ is constant; thus we are left with:
(155) (f*D)eoy(s) =D (e 0)(0) - 5(q)-

j=1
On the other hand we have s(c(t)) = a;(c(t)) - sj(q) for all t € (—¢,¢€), and

hence the right hand side of (I55]) equals the tangent vector (%(S oc)(t))ji=o
in Ty(c(0)) (Eq) = Ey4. Done! O
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Problem The general structure of the following proof is very similar
to the solution to Problem [b7a).

The requirement on D is
(156)  D(p®v)=(Dip) @v+p® (D),  VpelE), velE,.

By the definition of tensor product (of C*°(M)-modules), every element in
['(E;) @ T'(E2) can be written as a finite sum of pure tensors 1 ® po (11 €
I'E4, pe € T'Es); hence by Problem [43)(d), the same is true for any section in
I'(E1 ® E2). (Note that a main portion of the solution to Problem [A3|(d) was
spent on proving exactly this fact.) Hence the formula (I56]), together with
the requirement that D should be R-linear (or merely additive) certainly
makes the connection D uniquely defined, if it exists at all.

Thus it remains to prove that there exists such a connection D. Let us
first prove the existence of D in the special case when both E; and FEs are
trivial vector bundles. Then fix a basis of sections puq,...,u, € 'E; and a
basis of sections vy, ...,v, € ['Ey (cf. Problem B3} we set n = rank F; and
m = rank Fy). Then {y; ® v;} (with i € {1,...,n}, j € {1,...,m}) is a
basis of sections in I'(E;] ® F3), and so for any s € I'(Ey ® Es) there exist
unique ’coefficient functions’ «; ; € C°°(M) such that

(157) s=Y_> aijmi@v;,

i=1 j=1
and we now define the map

by settingj@
n m

D(s) := Z Z(,uz QU ® dozm' + OZZ'J(DLLLZ') QVj + i ® (Dgl/j)).
=1 j—=1

(Here we use the natural isomorphism between I'(Ey ® T*M ® Es) and
I'(E) @ Ey ® T*M) to identify (Dip;) ® v; € I'(E1 @ T*M ® E») with an
element in I'(E} ® Eo ® T*M).) This map D is clearly well-defined and
R-linear. Furthermore, for any f € C*°(M) and s as in (I57), we have

n m
fs= Z Z foijp; @vj,

i=1 j=1

36Note that this definition of D apriori depends on the choice of the bases of sections

Uiy.-oypbn and vi,...,V,; however we will soon prove that D is a connection satisfying
([I586), and then it follows that our D is in fact independent of the choices of u1, ..., g, and
Vi,...,Vn, since we noted from start that there exists at most one connection satisfying

(I0)!
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and hence by our definition,

D(fs)=>_)" (uz’ ®v; @d(fouz) + fou (D) @ vy + faijp @ (Dsz))
i=1 j=1

{use d(foi ;) = oy jdf + fdo, ; and our formula for D(s)}

n m
5) + Z Zai,jm ® vj @ df
i1 j=1

= f-D(s) + s ® df.

This proves that D is a connection! We next prove that D satisfies (I50]).
Thuslet u € I'Fy and v € I'E5 be given. Then there exist unique oy, ..., a, €
C>°(M) such that g = Y I, a;u;, and there exist unique fi,...,0n €
C°°(M) such that v = }>0", B;jv;. Then

n m
M®szzai/8jﬂi®%’a

i=1 j=1

and hence by our definition,

Dpov)=Y_ > <ﬂz‘ ®v; @ d(aif) + uiffj(Dips) ® vy + s ® (D2Vj))
i=1 j=1

_ZZ@Z (Bjv;) @ dov; + (i D) @ (Bjv5)

i=1 j=1

+ (i) ® vj @ dBj + aip; @ (ﬁijj))

= ZZ D1 Oéz,uz 5JVJ +ZZ Olz,uz D2 BJV]))

i=1 j=1 i=1 j=1
= (D1p) ® v+ p ® (Dav).

Hence we have proved that D satisfies (I56]). This completes the proof in
the special case when both E7 and F» are trivial vector bundles.

Finally we will prove that the connection D on I'(E; ® Es) exists when
Eq, E5 are arbitrary vector bundles over M. Fix an open covering (Uy)aca
of M such that both Eyy, and Eyy, are trivial for all @ € A. Then by
what we have proved above, for each o € A there exists a unique connection
D, on (E1 ® Ez) |y, = By, ® Eyp, satistying

(158) Da(,U ® V) = (Dl,d) QU+ (DQV), Yu € FEl\U(u IS FE2\UQ’

(Here “Dy” really stands for Dy)y, and similarly for Da; cf. Problem [521)
Now one proves that these connections D, are compatible in the sense that
(Doc)\UaﬁUB = (Dﬁ)\UanUB for all a, 8 € A. (We leave out the details for
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this; but cf. the solution to Problem 57l where we give a detailed proof of the
same kind of compatibility in a different situation.) Hence by Problem[52)(c),
there exists a unique connection D on I'(Ey ® Fp) satisfying Dy, = Dy, for
all @« € A. One easily proves that this connection D satisfies (I56]). This
completes the proof. O
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Problem (a). By the now familiar argument (cf., e.g., the beginning
of the solution to Problem [58]), any section in I'(F; ® Fs) can be written as
a finite sum of pure tensor sections s1 ® so with s; € I'Eq and sy € ['Es.
The analogous fact holds for I'(E} ® Es3). Hence, by R-linearity, it suffices
to prove the desired formula when a = s1 ® s and = u ® s3 for some
s1 € 'Eq, sp € 'Ey, u € 'EY, s3 € I'Es. In this case,

(04,5) = (51 @ 52, u ® 83) = (Sl,U) - 89 & 83,
and hence
D(a, B) = 52 ® 53 @ d(s1,u) + (s1,u) - D(s2 @ 83)
=52 ®S3® ((Dsl,u) + (31,Du)> + (s1,u) - ((Dsz) ® 83+ 59 ® (Dsg))
= <(D81) ® 82+ 51 ® (Dsa), u® 33)

+ (31 ® s2, (Du) @ s3+u® (D33))

= (Do, ) + (o, D).
Done! O

(b). We have standard identifications I'(Hom(Es, E3)) = I'(E5 ® Es)
and I'(Hom(E, E2)) = I'(E] ® E3), and under these identifications, the
composition « o f is the section in I'(E} ® E3) obtained by contracting the
E3-part of a against the Es-part of 5. (Cf. the solution to Problem 50l where
this is discussed in matrix notation.) Hence the stated formula is equivalent
to the formula proved in part a. (Of course the formula in part a remains

true regardless of the exact ordering of the factors in the tensor products.)
O

(c). We have the standard identification I'(Hom(E1, E2)) = I'(Ef ® Es),
and under this identification the composition « o 3 is the section in I'(Es)
obtained by contracting the Ej-part of a against 3. Hence the stated for-
mula is a special case of the formula in part a (namely: take E3 = M x R
and replace E; by Ef in the formula in part a). O
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Problem

(a). The general structure of the following proof is again similar to the
solutions of Problems [57|(a) and

The requirement on D : QP(E) — QPTL(E) is R-linearity and
(159) D(p®w)=(Dp) ANw+ p® dw, VueTE, we QP(M).
We call such a map an exterior covariant derivative with respect to the
connection D. It follows from QP(E) = T'(E® APM) = T'(E) @coeepr P (M)
(cf. Problem E3(d)) that every s € QP(E) can be written as a finite sum
of pure tensors s @ w (s € I'(E), w € QP(M)). Hence, since D is required

to be R-linear (in particular additive), the condition (I59]) certainly makes
D : QP(E) — QPHY(E) uniquely determined, if it exists at all.

Thus it remains to prove that there exists such an exterior covariant
derivative. We start by proving three lemmata:

Lemma 6. Let (Uy)aca be an open covering of M, and for each o € A let
Dy : P(Ey,) — Qp+1(E|Ua) be an exterior covariant derivative wrt the con-
nection Dy, on Ey,. Assume that (Do(s|u,))|vanvs = (D(8|U5))|Uants
forall s € QP(E) and all a, f € A. Then there exists a unique R-linear map
D : QF(E) — QPTY(E) satisfying (Ds)y, = Da(syu,,) for all s € QF(E) and
a € A, and this map is an exterior covariant derivative wrt D.

This lemma is proved by the same type of arguments as in the solution
to Problem [52] (cf. in particular Remark [I]).

Lemma 7. Let Uy C U; be open subsets of M, and for j = 1,2 let
D; : WP (Ey,) — QPH(EW],) be an exterior covariant derivative wrt the
connection Dy,. Then

(160) (D), = Da(sr,), Vs € Q(Eyy, ).

Proof. Since every s € QP(Ejy,) can be written as a finite sum of pure
tensors y1 ® w, where p € I'(Ey,) and w € QP(Uy), it suffices to prove (160)
when s is such a pure tensor; s = u ® w. But then

(D1s)jv, = (D1(p @ w))jw, = (Djp, p) Aw + p @ dw)y,
D|U1“)\U2 AWy, + My, ® d(w\UQ)
= (D, u,) A wiv, + i, @ d(wio,)
= Da(pju, ® wy,) = Da(s)0,)-

(In the above computation we used the fact that (Dy, ), = Dy, — this
fact is immediate from the solution of Problem O

= (
= (

Lemma 8. Let U be any open subset of M such that both the vector bundles
TU and Ey are trivializable. Then there erists a unique exterior covariant

derivative D : OP(Ey) — QPH(E‘U) wrt Dy
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Proof. The assumptions imply that there exists a basis of sections w1, ..., w,
for QP(U) (r = (Z)) and a basis of sections py, ..., u, for T'(E)y). Then
(1j @ wy) form a basis of sections of QP(E);;) and hence every s € QP(Ey)
can be uniquely expressed as s = ajk,uj ® wy, with a’* € C®°U. We now
define the map D : QP (Ejy) = QPTHEy) by

(161) ﬁ(ajkuj @wy) = (D(a* ;) Awg + a?*puj @ dwy,.
(In the right hand side, “D” of course stands for Dj;.) This map D is

clearly R-linear. Let us verify that D is an exterior covariant derivative wrt
Dyy. Thus let p € T'(Ejy) and w € QP(U) be given. Then there exist unique
bl el oo ¢ e C°(U) such that p = b, and w = cFwy,, and thus
pRw = bjckuj ® wg. Hence by our definition,

D(p®@w) = (D)) Awy, + by © dwy,
and this can be manipulated as follows:
= ("D(V 1)) + V p; @ de) Awy, + (b)) @ (¥ - dwy)
= (D 1)) A (Fwp) 4+ (7 11j) @ (dcF A wy + & - duwy)
= (Dp) Aw + p @ d(cFwy)
=(Dp) Nw~+ 1 ® dw.
Hence D is indeed an exterior covariant derivative wrt Dy.

The uniqueness follows by the argument immediately below (I59). (In
particular this shows that D is independent of the choice of bases of sections
Wiy eeywp and fq, ...y fin.) O

We now complete the proof of existence: Let {U,} be a family of open
subsets satisfying the assumption of Lemma [B covering M. Let D, :
QP(BEyy,) — QPTYY(E)y,) be the exterior covariant derivative provided by
Lemma 8 For any «,3 € A the set V := U, N Ug also satisfies the as-
sumption of Lemma [§ (assume V' # () for nontriviality), and so there exists
a unique exterior covariant derivative D : QP (Ejy) = QPTH(Ey) wrt Dy
Then Lemma [7] (applied twice) implies that for every s € QP(E) we have

(Da(sjp, )y = 5(5\\/) = (Da(sjy,))v-
Hence all assumptions of Lemma [0l are fulfilled and now that lemma proves

the existence of an exterior covariant derivative QP(E) — QPTY(E) wrt D.
Done! ogd
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(b). In order to simplify the notation let us replace M by U; thus from
now on we can write “E” in place of “Ej;”.

Note that both sides of the stated formula are R-linear in u; hence by
the argument below (I59) it suffices to prove the formula for p of the form
w=s®w, with s € T'(E) and w € QP(M). For such p we have by the
definition in part (a):

Du=D(s®w)=(Ds) Nw+p®dw = (ds + As) Nw + s ® dw
=(dsAw+s®@dw) + As Aw
=d(s®@w)+ As Aw.

(In the last equality we again used the definition in part (a), this time for
the naive connection d.) Note also that the “A” in “AsAw” can be viewed as
the combined vector-wedge-product (cf. Problem E9(c)) QY (E) x QP(M) —
QOPT1(E) coming from the standard “scalar product map” I'(E) x O (M) —

I'(E). As in the problem formulation, let us also write “A” for the vector-
wedge-product

(162) QYEnd E) x Q"(E) — Q"TY(E)

coming from the standard contraction (“evaluation”) I'(End E)xT'E — T'E.
(Thus “As” appearing above is the same as AA s, namely the image of A and
s under the map in (I62]) with » = 0.) Noticing that the given multiplication

rules '(End E) x TE — T'E and TE x C*°(M) — T'E satisfy the obvious
associativity relationP 1, it follows by Problem E3(d) that

AshNw=(ANsS)ANw=AAN(s\w).
Using this in the previous computation gives
Du=d(s@w)+AN (s \w)=du+ AN p.
Done! O

37This merely captures the fact that the map I'(End E) x TE — T'E is C*(M)-lincar
in its second argument (in fact it is also C°°(M)-linear in its first argument).
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(¢). Again by R-(bi-)linearity it suffices to prove the stated formula for
fu1, p2 of the form p11 = s1®wi and po = so@wo, with p; € T'Ej, wy € Q"(M)
and we € Q°(M). In this case we have

D(p1 A p2) = D((s1 - 52) ® (w1 Aws))
= (D(Sl . 82)) A (wl VAN WQ) + (81 . 82) &® d(w1 VAN UJQ),

where we used the definition of A (Problem [9(c)) and then the definition
of D (part (a) of this problem). Using now the assumption that the given

connections respect our “”, we get
= ((Ds1) A s2) A (w1 Awa) + (s1 A Dsa) A (w1 Aws)
(163) —1—(81 : 82) & (dw1 N (,UQ) + (—1)T(81 . 82) (9 (w1 N dw2).

Now note that the multiplication rule from FE4, Ey to E satisfy the asso-
ciativity relation (s1 - s3) - f = s1-(sa- f) for all s; € TEy, sy € T'Ey,
feC®M)=T(M x R) (namely since the multiplication rule is C*°(M)-
linear in s9). By Problem [A9(d), this implies that

(1 Ap2) Nps = 01 A (92 A ps),
Vo1 € Q7 (Er), ¢z € Q7(E2), 3 € Q7(M).
Similarly we also have
(1 Apa) Nz = 1 A (92 A ps),
Vi1 € Q" (Ea), 2 € Q™ (M), 3 € Q*(M),
and other similar associativity relations. Furthermore by Problem [49(c),
©1 N\ pg = (—1)“”(,02 N Y1, Yo € er(Eg), Y2 € QTZ(M).

Using these facts (and Dss € Q'(FE»), and, again, the definition of A), the
expression in (I63]) is seen to be

= (Dsl) ANwi N\ sg A\wo + (—1)T81 AN wi A (DSQ) N wo
+ (51 @ dwi) A (s2 @ wa) + (—1)"(s1 @ w1) A (52 ® dwa)
= ((Dsl) ANwi + 81 ® dwl) N o + (—1)T,ul A ((DSQ) ANwa + 82 & dwg)

= (D) A pz + (=1)"pa A (Dpz).
Done! O
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(d). The statement that the given connections respect the multiplication
rule can be expressed as:

164
(D(gz(sl ® $2)) = m(Ds1 @ s2) + m(s1 ® Dso) (Vsy € T'Ey, so € I'Ey),
where in the right hand side, “m(a)” for o € Q' (E; ® F») is the output of
the vector-wedge-product
T'Hom(E) @ By, E) x QY(E; @ Ey) — QY(E)
which extends the standard evaluation map
THom(E, ® Es, E) x T(Ey ® Ey) — T'(E).
However by Problem [59)(c) and Problem (8 we have:
D(m(s1 ® s2)) = (Dm)(s1 ® s2) + m(Ds1 ® s2) + m(s; ® Dsy),
for any s; € T'Ey, s9 € I'E,. Hence (I64) is equivalent with:
(165) (Dm)(s1 ®s2) =0 (Vs1 € TEq, s9 € T'Ey).

But every section in I'(E} ® E2) can be written as a finite sum of sections
of the form s; ® sg9; hence ([I65]) is equivalent with (Dm)(s) = 0 for all
s € I(E; ® E,). This is equivalent with Dm = 0 in Q'(Hom(E; ® Es, E))
(via Problem B5lc)). O
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Problem

It suffices to prove the stated formula when s = p @ w (u € T'(EF), w €
Q7(M)), since an arbitrary section in "(E) can be expressed as a finite sum
of such “pure tensor” sections. Now when s = 4 ® w, we find that the right
hand side of the stated formula equals

T

Z(_l)jDXj (W(X0= e ’Xj”"’X’") ' M)

7=0

+ Z ]+k X],Xk] X(),...,X',...,Xk,...,Xr)'/L.
0<]<k<r

_Z Xo, ..,Xj,...,XT))-,u

+Z JWXO,...,X]‘,...,XT)'DXJ./L

+ Z j+k Xk],Xo,...,Xj,...,Xk,...,XT)',u.
0<j<k<r

On the other hand we have by definition Ds = (Du) A w + p ® dw (cf.
Problem [60(a)), and thus
[Ds](Xo,..., X)) = ((Dp) Aw)(Xo, - .., Xp) + [dw](Xo, ..., X;) - .

For the first term we now use the definition of wedge produd@, and for the
second term we apply Problem A8(c); this gives:

T

[Ds](Xo,..., X)) =Y (1) - w(Xo,..., X, ..., Xp) - (Dp)(X;)

j=0
+Z X07 "7X]7"'7XT))'M
+ Z ]+k Xk],Xo,...,Xj,...,Xk,...,XT)',u.

0<j<k<r

Here “(Dp)(X;)” stands for the contraction of the form part of Dy € Q(E)
against Xj; thus (Du)(X;) = Dx,u. Hence the last expression equals our
previous expression for the right hand side of the stated formula. Hence the
stated formula is proved! O

38together with a computation reducing the “A-sum” over &,41 to a sum over only
r + 1 distinct permutations; we leave this step to the reader.
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Problem
By Problem (9] for each j € {0,...,r} we have

(181, %) oo Xy X

j—1
— Dy, (S(X(],...,Xj,...,XT)> - s(XO,...,VXij,...,Xj,...,Xr)
k=0
- s(XO,...,Xj,...,vXij,...,Xr>
k=j+1
j—1
= Dy, (s(Xo,...,Xj,...,Xr)> - (—1)ks<VXij,X0,...,Xk,...,Xj,...,Xr>
k=0

where in the last step we used the fact that the form part of s is alternating.
Using the above it follows that

7=0

= (1Y Dy, (s(X0, - K5, X))
7=0

- Z ( 1)]+k8<vXij7X07 7Xk7 7XJ7 7X7")
0<k<j<r

Y (VX Ko K K X )
0<j<k<r

In the middle sum we change names between j and k; this gives:

_Z JDX( XO,...,X,...,XT)>

Y (Vg Xe - Ve X Ko Xy K X)),
0<]<k<7’

_Z JDXJ( XO,...,X,..-,Xr)>

+ Y (it (X Xk],XO,...,Xj,...,Xk,...,Xr>,
0<j<k<r
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where in the last step we used the assumption that V is torsion free. By
Problem [61], the above equals [Ds](Xp,...,X,). Hence we have proved the
desired formula. O
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Problem

(a). Let (U,¢) be any bundle chart for £, and let s1,...,s, € T'Ejy be
the corresponding basis of sections. Then we get a corresponding bundle
chart (U, ) for End E by mapping any B € End E, (p € U) to the matrix
for B with respect to the basis s1(p), ..., sn(p) of Ej.

(Then ¢ is a C*° diffeomorphism from End Ej;; onto U x M, (R); pedan-
tically for this to be a bundle chart we also need to fix an identification
of M,(R) with R"*. Furthermore: The bundle chart described here is the

same as the one which we give in the solution to Problem[39 after identifying
Hom(R™,R™) with M, (R) in the obvious way.)

Now if (U, ¢) is a metric bundle chart then the image of AdE;; under ¢ is
exactly U x o(n) where o(n) is the set of skew-symmetric matrices in M, (R).
Hence since o(n) is a linear subspace of M, (R) P9, and since (E,7m, M) can
be covered with metric bundle charts [12] Thm. 2.1.3], it follows that AdE
is a vector subbundle of End E. O

Remark: Recall that we write gl(F) for the vector bundle End E equipped
with its standard Lie algebra bundle structure. Similarly we write gl,(R)
for M, (R) equipped with its standard Lie algebra structure; and o(n) is in
fact a Lie subalgebra of gl,(R). Also for each p € U, ¢, is in fact a Lie
algebra isomorphism gl(E,) = gl,(R) which maps AdE, onto o(n). Hence
AdE is a Lie algebra subbundle of gl(E).

39%and so we can fix a linear isomorphism M, (R) = R™ under which o(n) becomes

identified with R* = {(x,--- ,%,0,--- ,0)} C R™ for some k. (In fact k =n(n —1)/2.)
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(b). Assume s € T'(AdFE). Let (U,¢) be any metric bundle chart for
E, and let p1,. .., uyn be the corresponding basis of sections in I'Ej;;. With

respect to (U, ¢) we write Djy = d + A with A = (A;f) € QY(End E); thus
each Af is in QY(U) and D('uj) = A(uj) = i ®A;? forall j € {1,...,n}; cf.
#9, p. 6. Then Aé‘? = —Aj forall j,k € {1,...,n}, by Lemma 2 in #11.

Let p'*, ..., 4™ be the basis of sections in FE‘*U which is dual to p1, ..., tin;
then {/* ® ug = j,k € {1,...,n}} is a basis of sections in I'End E. Take
a? € C>*(U) for j,k € {1,...,n} so that sy = a? w* @ pg. This means that
for any p € U, (aé‘?(p)) is the matrix for s(p) € End E,, with respect to the
basis for £, which comes from (U, ¢); hence by the definition of AdE (CH.
#11, Def. 2) we have a? = —ai throughout U, for all j, k € {1,... ,n}

Now we have

(Ds)jy = ds +[A, s].
(This was seen in the proof of the second Bianchi identity; cf. #11, p. 6.)

Here since A and s have the matrices (Aé“) and (a?), respectively, we find
that [A, s] has the matrix (A?ag — afAf)i,k. Hence:

(Ds)jy = ds+ [A,s] = 1 @ py @ (dai-c + a{Af - afA{).

Using now the fact that a;? = —ai and A;? = —Ai throughout U (Vj, k) it
follows that da¥ = —dal and ag Af - afAf = —(aiAz- - a;'-Ai) throughout
U (Vi k). Hence (Ds)y is represented by a skew-symmetric matrix wrt
the basis coming from (U, ¢), and therefore (Ds)|; € I'(AdE|y). Since this
holds for any metric bundle chart (U, ¢) for E, it follows that s € I'(AdE).
Done! O

See also alternative solution on the next page.

40Here’s a more explicit version of exactly the same argument: By the definition of
AdE we have (s(u:),pe) = —(pi, s(pe)) throughout U, for all 4,¢ € {1,...,n}. But
(s(pi), pe) = (a¥up, pe) = af and similarly (u:, s(pe)) = ab. Hence af = —a} throughout
U.
HDetails: We have [A,s] = Aos—so Asince A € Q' (End Eyy) and s € Q°(End E);
cf. #11, p. 7. Now
[A,s] =Aos—s0A
= (0" @ e @ AF) o (ai 1 @ pe) — (a5 p’* @ i) o (1 @ pe ® Aj)
= 1" @ px ® (a] A — aj A]).
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Alternative (not using local coordinates): For any s € I'(End E)
and X,Y € 'E we have

(Ds)(X) = D(s(X)) — s(DX)
by Problem (9(c), and hence
(166) ((Ds)(X),Y) = (D(s(X)),Y) = (s(DX),Y).
(Here of course (-,-) stands for the vector-wedge-product Q(E) x T'(E) —

QY(M) which comes from the given bundle metric I'(E) x T'(E) — T'(M).)
Using also the fact that D is metric, we can write the above relation as:

(167) (Ds)(X),Y)=d(s(X),Y) — (s(X),DY) — (s(DX),Y).
Switching X and Y we also have:
(168) (X,(Ds)(Y)) =d(X,s(Y)) — (DX, s(Y)) — (X, s(DY)).

Now assume s € I'(AdE). Then (s(Z1), Z2) = —(Z1,5(Z2)) for any two
sections Z1, Zo € I'E. This implies that more generally
(169) (s(p1), p2) = —(ua,s(p2)), Y € Q°(E), p2 € QUE).
[Indeed, if 1 = 71 ® wy and py = Zy ® wy with Zy,Zs € TE, wy € QP(M),
wo € QI(M), then
(8(p1), p2) = (s(Z1) @ w1, Za @ wa) = (s(Z1), Z2) - w1 Awa
= —(Z1,5(Z2)) - w1 Nwy = —(p1, 5(p2)),

i.e. (I69) holds. The general case follows by R-(bi)-linearity.] Applying (I69)
it follows that the right hand side of (I67) equals the negative of the right
hand side of (IG8). Hence:

(170) (Ds)(X),Y)=—(X,(Ds)(Y)) in QY(M).

The fact that this holds for all X,Y € I'E implies that

(171) Ds € QY (AdE).

Done! O
[Detailed proof that (I70) implies (IT7I): Let (U,x) be any C* chart

for M; then dz',...,dz? is a basis of sections in I'T*U. Hence there exist

unique Si,...,8q € 'End Ejyy such that Dsjy = 5; ® dz’, and now the
above relation says that

(B;(X),Y) -da? = —(X,B;(Y)) -de/  in QYU),
and therefore
(Bi(X),Y) =—(X,5;(Y)) in C*(U), V.

Using Problem B5l(c) and the definition of AdE, this implies that §;(p) €
AdE,, Vp € U, ie. B; € T(AdEyy), for all j. Therefore Ds);; € Q' (AdE)).
Since M can be covered by C* charts, it follows that Ds € Q'(AdE).]



186 ANDREAS STROMBERGSSON

Problem

(a). First assume that the statement in A" (V') holds. Note that vy A---A
v, # 0 implies that vq,...,v, are linearly independent. (Proof: exercise!)
Hence r < n :=dimV and we can choose v41,...,v, € V so that vy,...,v,

is a basis for V. Then we know (cf., e.g., “Prop. 3” in Sec. 7.2 in the lecture
notes) that (vr)sez is a basis for A\"(V'), where Z is the family of all r-tuples
I=(i1,...,ip) €{1,...,n}" with iy <--- <4, and

U1 = Uy N AN,
(Thus dim A\"(V) = #Z = (7).) Also since v1,..., vy is a basis for V, there

exist unique constants c;? eR (j €{l,...,r}, k € {1,...,n}) such that

w :cffuk for j=1,...,r. Then

WA ANw, = (c]flvkl) A (cgzvkz) Ao A (c,]f*vkr)

:c'flc;”---c,]f* Uy AN Vky Ao AUk,
Note that the last expression is a sum over all (ki,...,k.) € {1,...,n}",
and for each such (kp,...,k,) there exist a unique I € Z and a unique

permutation o € G, such that

(klw : '7k7‘) = (ia(l)v s 7ia(7“))'

Hence:
iU iO’ iO’ ™
I ARERAN T/ Z Z ¢ (1)02 @ ceeCp (r) Wiy /\Uiv(2) /\”’/\”ia(r-)
I€T 0€6,
(3 o)
IeT 0€6,
7:.
= Zdet(czj) - g
IeT
(In the second equality we made repeated use of the rule u; Aug = —ug Auy,
Yui,up € V. In the last line (¢;) is an 7 x r-matrix; £,j € {1,...,7}.) Now

from our assumption v1 A---Av, = c-wy A--- Aw, and the fact that (v)rer
is a basis for A"(V), it follows that ¢ # 0, det(czj) =clfor I =(1,...,r)
(in other words: det(cg) = ¢~ 1), while det(czj) =0forall I € Z\{(1,...,r)}.
In other words, in the r X n matrix

1 2 n
Cl Cl o« e Cl
s N
el 2 c?

the r x r minor which is furthest to the left equals ¢! # 0, while all
other r X r minors vanish! This implies that the first r columns of the
above matrix (viewed as vectors in R") form a basis for R". Furthermore,
it follows that every other column wvanishes, i.e. c@ = 0 for all ¢ > r and
¢ e {1,...,r}. (Proof: Suppose that there is some ¢ > r such that the
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ith column is not 0. Then there exists a subset of » — 1 among the first
r columns which together with the ith column form a basis for R". This
implies that the corresponding r X r minor is non-zero, a contradiction.)

Therefore wy = c’gvk € Span{v,...,v,} for each £ € {1,...,r}; furthermore
since the matrix (C?)Z,ke{l,...,r} is invertible we get vy € Span{wy,...,w,}
for each ¢ € {1,...,7}; hence Span{vy,...,v,} = Span{ws,...,w,}, as we
wanted to prove!

Conversely, now assume that vy, ..., v, are linearly independent and v, ..., v,
and wi,...,w, span the same r-dimensional linear subspace of V. This
means that wy = cfvy for some constants cf € R (¢,k € {1,...,r}) such

that the 7 x r matrix (c§) is non-singular. Then vy A -+ A v, # 0 in A”(V),
since v1 A -+ A v, can be part of a basis for A\"(V) by “Prop. 3” in Sec. 7.2
in the lecture notes. Let (7)) := (c§)~! € M,(R); then vy = yfw, and so

vi A A= () A A we,) = det(y) - wi A Ay,
and det(v%) # 0. Done! O

(b).

(¢). If vy,...,v, are not linearly independent then the parallelotope in
question is contained in some r — 1 dimensional subspace and so has r-
dimensional volume 0; also v1 A -+ Av, = 0 and so |Jvy A -+ Av,|| =0, ie.

the formula holds.

Now assume that vq,...,v, are linearly independent. Pick an ON-basis
e1,...,e, for the r-dimensional subspace spanned by v1,...,v,, and choose
€rt1s---,€n such that ey, ..., e, is an ON-basis for V. Take c;? € R so that

v; = cé‘?ek. Then the volume of the r-dimensional parallelotope spanned by
V1,...,0, equals \det(cf)] (basic fact about volumes). On the other hand
V1A AUy = det(c?) -e1 A -+ Ae, (by a computation similar to a step in
the solution to part a) and hence
(VU A ANV v Ae s Aup) = (det(cf))2'(el/\'--/\er,el/\"'/\er>
= (det(c}))?,
where the last equality holds by property (i) in part b. Hence

lor A=~ Avpll = y/(det(ch))? = | det(ch)].
Done! -
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Problem

(a). (i) = (ii): Let A be an oriented atlas for M. By a simple modifi-
cation of the standard C*° charts for TM (cf. Lecture #2, pp. 10-11, and
Problem [I0), one proves that for any C* chart (U,z) for M, (U,n,) is a
bundle chart for ("M, 7, M), where 7, is the map

ne : TU — U x RY,

Ne(w) = (7(w), d () (W))-
In particular the following is an atlas of bundle charts for (T'M, 7, M):

A ={(U,n,) : (Uzx)e A}
We claim that A’ makes (T'M, 7, M) an oriented vector bundle. To prove
this consider any two charts (U, z),(V,y) € A, and any point p € UN V.
Our task is to prove that the linear map

ny’pon;; :R? 5 R

is in GL](R). However 7,, = dz, and 7, = dy, (both are linear maps
from T,(M) to R%); hence 1, ,, o 77;}) =dy,o d:z:;l =d(yo x_l)x(p). However
yox ' :2(UNV) = y(UNV) is the chart transition map between (U, )
and (V,y); hence by our assumption on A, det d(y o x_l)m(p) >0, i.e.

Ny.p © 7];;) =d(yo x_l)m(p) € GLI(R).
Hence A’ indeed makes (T'M, w, M) an oriented vector bundle.
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(ii) = (i): Let A’ be an atlas of bundle charts for (T'M, w, M) with respect
to which (T'M,m, M) is an oriented vector bundle. We will prove that M
possesses an oriented atlas. Let A1 be an arbitrary C° atlas for M. Set

Ag = {(VV, zw) : (U,z) € Ay, (V,9) € A, and W is a path-connected

component of U N V}.

Then A, is also a C'*° atlas for M, and it has the convenient property that
whenever (U, z) is a chart in Asg, U is path-connected and there is a bundle
chart (V,¢) in A’ such that U C V.

Now consider any (U, z) € Ay and (V,¢) € A’ subject to U C V. (More
generally, the following argument applies to any C*° chart (U, z) on M such
that U is path-connected and U C V for some (V,¢) € A’.) Then for any
p € U both dx, and ¢, are linear isomorphisms from 7,,U onto R?; hence
dzyp o, 'is a linear isomorphism of R? onto itself, and so the determinant
det(dx), o o, 1) is well-defined and non-zero. Hence by continuity (crucially
using the fact that U is path—connected) we either have det(dzpop, ') > 0
for all p € U or det(dzy o cp;l) < 0 for all p € U. Let us define the “sign
of (U,z) wrt (V,¢)” to be s = +1 in the first case and s = —1 in the
second case. In this situation, we note that: for every (W,n) € A’ and every
p € UNW, we have det(dz, on,') = s. (Proof: For each p € U we have
dxp o np_l = dz, 0 gp;l o (pp o 17;1) and det(y, o np_l) > 0 since A" makes
(TM, m, M) oriented; hence det(dayon, ') and det(dz, o, ) have the same
sign.)

From the previous discussion we conclude: Every (U, z) € Az (and more
generally every C* chart (U,z) on M such that U is path-connected and
U C V for some (V,¢) € A’) has a well-defined sign s € {—1,1} wrt A/,
with the property that

(172) V(W,n) e A, VpeUNW : det(dz, o 77;1) = s.

Now let us fiz a non-singular linear map R € GL4(R) with det R < 0 (e.g.
a reflection). For any (U, z) € Ay we define

~_ ) if (U, x) has sign +1 wrt A’
" |Rox if (U x) has sign —1 wrt A’.

4250me more details: we have to prove that det(dzp o ;') is a continuous function

of p € U. But we know that a := dx o galeU is a C°° diffeomorphism from U x R? onto
T(z(U)) = z(U) x R% and for any m,n € {1,...,d}, the (m,n)-entry of the matrix
representing the linear map dzp o np;l equals e, - pro(a(p, en)), where e, is the mth
standard unit vector in R?, - is the standard scalar product on R?, and pry : z(U) % R? —
R? is the projection onto the second factor. From this we see that each matrix entry of
(the matrix representing) dz, o<p;1 depends continuously on p; hence also the determinant
of dxp o ¢, ! depends continuously on p.
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Note that then also (U,Z) is a C* chart on M, and (U,Z) has sign +1 wrt
A’ We set:
As:={(U,2) : (U,z) € As}.

Then As is also a C* atlas for M, and it has the property that for any chart
(U,z) € As, U is path-connected, there is some (V, ¢) € A’ with U C V, and
(U, z) has sign +1 wrt A’. We claim that A3 is an oriented atlas. To prove
this, consider any two charts (U, x), (V,y) € As, and any point p € U N W.
We have to prove that det(dz,ody, ') > 0. Take a bundle chart (W,7) € A’
with p € W. Since both (U, z) and (V,y) have sign +1 wrt A", we have both
det(dz, oy ') = 41 and det(dy, o n, ') = 41 (cf. (IZ2). Hence

det(dzy o dy, ') = det((dzp omy ') o (dypom, ') ™1)
= det(dz, o 77;1) - det(dyp o np_l)_l =1
Done! O
(i) & (iii): Cf, e.g., [1l Def. V.7.5, Thm. V.7.6].

(b). Let A be any C*° atlas for M; then we know from Lecture #2, pp.
10-11 (cf. also Problem [I6)) that the family

A = {(TU,dz) : (U,z) € A}

is a C° atlas for TM. Let us prove that A’ is an oriented atlas! Thus
fix any two charts (U, x),(V,y) € A. Set W := UNV and n := yox;
then 7 is a C*° diffeomorphism from z(W) onto y(WW). We have to prove
that the diffeomorphism dy o (dz)~! = dn from T'(z(W)) = (W) x R? onto
T(y(W)) = y(W) x R? has everywhere positive Jacobian determinant. For
any (p,v) € (W) x R? we have

dn(p,v) = (n(p), dny(v)).

Hence the Jacobian matrix of dn at (p,v) has a block decomposition

dn, 0
x dny)’

where “dn,”, “0” and “x” are d x d matrices (here x stands for a matrix
which we don’t care exactly what it is; note also that the bottom right d x d
matrix equals dn, since the differential of a linear map at any point equals
the map itself). The determinant of the above 2d x 2d-matrix is (det(dn,))?,
which is everywhere positive. Done! U
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Problem
(a). Let us use the short-hand notation
3}
0; 1= — TU).
50 € L(TU)

By definition we have
Al = (Vo A)(0; ® da?),

where the right hand side stands for the contraction of Vs, A € I'(T{U)
against 0; @ da’ € TllU . This gives, via Problem

Al =0, (A(&- ® d:z:j)> - A((vakai) ® d:z:j) - A<8Z- ® (Vo (dz’ )))
= O Al — A((Fiiaz) ® dxj> - A(@i ® (—T, da;f)>
= Al —TL, - A8y @ da?) + T, - A(9; @ dab)
= OpA] —Tf; - A +TY, - Al
(In the second equality we used [12} (4.1.22)] for the last term.) Done! [J

(b). (Cf. [14, Lemma 4.8].) Suppose that

) 0 0
.7 .77“ s
A=Al da" @ @ da™ ® 90 @ ® 5
and write
o . ) 0
— AJL I 11 s
VazkA =4 il de"t ®-- @de ® pe Q- ® pIwE

in U. Then by the same type of computation as in part a we find:

r
Jigr .71 ]r g1 ]r Jp Gl
All “dsik T 8$k z1 “is Z Fk ip A ...... ‘|‘ Z F A“ de -
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Problem

We first make some computations useful for all parts of the problem: As
in [12 p. 3, Ex. 1]), we also introduce the chart (V, z) on S¢, with

V =58\ {(0,...,0,1)}; z(x):( - : - )

) MR
1 —xg41 =244

Note that both y and z are diffeomorphism onto all of R?. We compute that
the inverse map of y is given by

(2 1oy
T g T [yl 1 [yl
2

Here [|y|| is the standard Euclidean norm; thus ||y||?> = y3 +- - - y3. Similarly,
the inverse map of z is given by

N ( 221 2Zd HZ||2 — 1>
IR E e E N S A

Note also that U NV = S%\ {(0,...,0,£1)} and
y(Ui N o) = 2(U1 N Us) = R%\ {0},

vy € R

Vz € RY.

and so y o 27! is a diffeomorphism from R?\ {0} onto itself. We compute

that y o 2 1is explicitly given by
(Fsr) -
zZ|“+ ] d ]
T = R =1,...,d).
=R T GERROh =L d)
212 +1
Note also that
ol = 2 = L
2% l2]?

and hence
o 2 Y5 RI\ {0V, 7 —1 d
zj = ||2[|"y; = Tl (y e R*\ {0}, j=1,...,d).

(Note that yo 27! and zoy~! are in fact the same map from R\ {0} onto

R4\ {0}. Geometrically this map is inversion in the sphere STt C R9.)
Next we compute, for all y € R?\ {0}:

Oz, 0 Sinllyl® — i - 2y :
K (yk >: ikllyl” — i Y Sllel? = 2202 Gk €{1,....d}).

dy; oy \yl”? ly[|*
Hence
0 Oz, O 5 0 0 )
(173) dy; 0y, 0z Il 0z;j Z]Zkazk Geil...d))

(The last relation is an equality between vector fields on U NV C S%.)
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(a). Assume the opposite, i.e. that there exists a vector field X € I'(T'S?)

0
such that X = Y1 (wrt the chart (U,y)). Then there exist unique
U1

functions a1, ay € C*°(V) such that

0 3}
Xy = 01— + ag—
v a 621 T 622
(wrt the chart (V, z)). However by (73] we have on U N V:

3} 5 0 5 0 0 9 9y O 3}
L 22 0 L = (- I P
6y1 HZ” 8Z1 A 8Z1 122 622 ( A * 22) 621 122 8Z2 ’

and y; = z1/||2]|?>. Hence we must have
z1(—27 + 23) 222 29
ar(z) = ———m—=, ) = -7,
12> 12

for all z € R?\ {0}. We will now prove that the above formula implies
that oo cannot be extended to a smooth function on all of R?; this gives
a contradiction against ap € C°(V') and so the solution to part a will be
complete.

The above formula implies

Oas 42123 42123 9
= = 5, Vz € R*\ {0},
0z l|z]|4 22+ 22 ‘ \ 0}

and the limit of this function as z — 0 in R? does not exist! (Indeed, for
4ab?

—m, and for any fixed

z = t(a,b) # 0 the above expression equals

3

(CL, b) S R2 \ {O} this tends to —m

as t — 0. Now one immediately

4ab3

verifies that L can take different values for different choices of
(a? 4+ b%)?

2 . 50@

(a,b) € R*\ {0}. This shows that —=

621

the origin along different lines in R2, and therefore the ’full 2-dim limit’

has different limits as z approaches

«
of =—2 as z — (0,0) does not exist.) This proves that we cannot have

821

as € C1(R?), and hence, afortiori, we cannot have ap € C°°(R?). (In fact

0

and in particular we cannot have a; € C*(IR?) either.) O

s
the same argument applies to any of the partial derivatives —Z, j, k € {1,2},
2k
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(b). In U NV we have

(174)

(y1ys — y2)8iy1 + (Y203 +y1)8%2 Lot —2y§ + 93 aiyg

- m?)\TZ—ﬁiHZ'P ' <HZH25%1 B 2zlzk8izk) * %\T&HW ' <HZ||23%2 - 2z2z1c8%k>
n (Bl Qzﬁznfz +2 <Hz”28izg _223%%>

- HZ1||2 <(2123 - 22”2“2)% + (2923 + zlﬂsz)aizz + 211 — 2%2_ 2z + 23 %)

! 0
+ ”Z'H4 (—22’1(2123 — 2’2“2”2) — 222(2223 + 21H2”2) _ 23(“2”4 . Z% _ Z% I Z%))Zk 8_2]{
(%)

7 equals:

Here the expression called “(*)
22723 — 22523 — 23(||2||t — 27 — 25 + 23) = —23 <zf + 25 + 23 + Hz|]4>
= —zsll2]*(1 + [12]1?).

Hence we can continue; the vector field in (I74)) equals

1 0 0
Tl (( — el — 22 (4 ) g + (o + 2l = 2221+ [20) 5
[2]* —2f =23 +23 2y) 9
~ 30+ a) L
+( 5 B+11%) 5

Here
1 <|’ZH4_Z%—Z§+Z32, 2 2 Lorlzlt =12 a2
— A0+ 1:0%) = —( — #1211
ER 2 ERE

CJlzlP—1-223  22+25-23-1

B 2 B 2 ’
and hence we finally conclude that the above vector field equals

2., .2 .2

(175) —(22 + leg)aizl + (21 — 2223)% + At 5 %1 8%3
Recall that this computation was performed in the set U N V'; however the
expression in (I75]) clearly defines a (C°°) vector field on all of V. Hence we
can define the (C°°) vector field X € I'(T'S®) to be given by the expression
in (the first line of) (I74) in U, and by the expression in (I75) in V; the
above computation shows that this vector field is well-defined, i.e. the two
formulas really give the same vector field in the region of overlap, U NV. [
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(¢). In UNV we have

0y; Sinllz]|? — 222k
d ;] = —jd == J J d 9
A TR
ie.
2 .2
25— 2 22129
dyy = 2——+ dz) — d
S PTT PE
and
22129 23— 22
dys = ————= dz1 + ———= dzs.
2] 2114
Hence:
1
dy1 ® dy, = p <(z§ — 21) dz1 — 22129 dzg) ® <(z§ — 21) dz — 22129 ng)

— 77_14 <(z§ - z%)2 dz1 ® dz1 — 22120 (25 — 23) (dz1 @ dzog + dze ® d21)

+ 4(Z122)2 dZ2 (9 dZ2> .

The formula for dys ® dys is exactly the same except that all z1’s and 25’s
are swapped. Hence, noticing also

(23 —2D)° +4(z122)? = (3 +20)° = ||2*

and
1 1 1 1 1

(T+yi+yd)* D218 A+ lylHlE — @+1=72)4=18 @+ =12
we obtain:

1
T (@ e )
4
z
(176) = %(dzl ® dz1 + dzo ® dzs).

Recall that this computation was performed in the set U N V; however the
last expression clearly defines a (C*°) section of all of T9 (V). Hence we can
define the (C*) section

m e D(TY(S?))
to be given by the expression in the left hand side of (I76]) in U, and by the

expression in the right hand side of (I76]) in V; the above equality (which
is valid in U N' V') shows that this section in m is well-defined.

For each p € 5%, m(p) is a vector in T9(S?), = T;(S%) ® T;;(5?) and
can thus be viewed as a bilinear form on T,(S5?). We see by inspection in
(78] that this bilinear form is symmetric at every p € S%. Furthermore it
is positive definite at every p € U, since its matrix with respect to the basis

aiyl, 8%2 equals the positive number (1 + [|y[|?)™* times the 2 x 2 identity
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matrix. Hence myy indeed defines a Riemannian metric on U. However at
the point (0,0, —1) € S2, which corresponds to z = (0,0) € V, m(p) is the
zero form, thus not positive definite. Hence m does not define a Riemannian
metric on S2. O
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(d). Such a vector bundle can in fact be constructed for any given C'*
function p : UNV — GLa(R); and similarly a rank n vector bundle over 52
can be constructed having any given C*° function p: U NV — GL,(R) as
transition function; there is simply no obstruction present!

The easiest solution is to simply refer to Jost’s [12, Thm. 2.1.1]. How-
ever that theorem is not very clearly formulated; let us attempt to give an
alternative, more precise statement here:

Theorem. Let M be a C*° manifold, let (Uy)aca be a covering of M by
open sets, and for any «, B € A let pgo be a C*° function from U, NUg to
GL(n,R). Assume that for all o, B,y € A, the following holds:

Paa(r) = idrn, Ve € Uy;
@aﬁ(l‘)@Ba(iﬂ) = idgn, Vo € Uy, NUpg;
Par () 08(2)ppa () = idrn, Yz € Uy N Uz NU,.

Then there exists a vector bundle E over M (unique up to isomorphism of
vector bundles over M) which has a bundle atlas {(Uy, ¥a)}aca for which
the transition functions are given by the above g, ’s.

Using the above theorem, the existence of the desired vector bundle F
over S? is immediate; simply take A = {1,2}; Uy = U, Uy =V, 012 =
and o1 = =1 in UNV, @11 = idge in U and @9y = idge in V. One verifies
that these ¢,3’s satisfy all conditions in the above theorem; and the vector
bundle which the theorem gives has the desired property! O

Exercise: Prove the above theorem, e.g. using Problem (Cf. also [15,
Exc. 10-6].)

Alternative: We will construct the desired vector bundle E over S2
using Problem As a set we define

E = 8% x R%.

We also set 7 := pry : E — 52, i.e. projection onto the first coordinate. Note,
though, that (unless m = 0) E will not become equipped with the standard
product C* manifold structure of S% x R?! Note that 7=(U) = U x R? and
7Y V) =V xR2 Also E, = 77 1(p) = {p} x R? for every p € S%, and we
equip each such fiber with the standard vector space structure of R%. Let ¢
be the identity map on U x R?, and let ¥ be the map

¥V xRV xR?,
_ Jpp)v) EpelnV
Y(p,v) = {(p,v) if p=(0,0,—1).

(This map is well-defined since V' is the disjoint union of UNV and {(0,0, —1)}.
Note that “u(p) - v” denotes the product of the matrix p(p) € GL2(R) and
the vector v € R? viewed as a 2 x 1 column matrix.)
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Now 7 : E — M toghether with the family {(U, ¢), (V,4)} is easily seen
to satisfy all the assumptions of Problem (In particular 1 o ¢~ (p,v) =
(p, u(p) - v) and ¢ 0~ (p,v) = (p, u(p)~" - v) for all (p,v) € (UNV) x R?,
from which we sed™ that both the maps 1 o ¢! and ¢ o~ are C* maps
from (U N V) x R? onto itself.)

Hence by Problem BBl E possesses a unique C'°° manifold structure such
that (E,m, M) is a vector bundle of rank 2 and (U, ¢) and (V, 1) are bundle
charts. Note that the transition function from (U, ¢) to (V,4) equals p by
construction!

Remark: From a conceptual point of view the “discontinuity” of the
above map ¥ at p = (0,0,—1) is confusing and ugly! The way to think
about this is that our initial definition of E as a set, “S? x R?” is only a
technical device used to fit the construction into the result from Problem [B6]
where we need from start F to be a given (well-defined) set! Note that this
“S2xR?” carries no topology from start, so it is actually meaningless to speak
about continuity/discontinuity of the maps 1) and ¢! The only topology and
differential structure which we endow “S? x R?” with, is the one imposed
by requiring that the two bundle charts should be diffeomorphisms! Hence
conceptually it is much better to think of E as the result of gluing the two
vector bundles V xR? and U x R? together in line with the above description
— and forget about the set “S? x R?” used in the construction.

430f course here it is crucial to note that wis a C° map from U NV to GL2(R). This
is clear from the formula defining p, if we view a(y) = arg(y' + iy?) as a C™ function
from R?\ {0} to the circle R/27Z and then use the fact that both cos(ma) and sin(me)
are well-defined C°° functions on R/27Z.
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Problem

(a). By the definition of ff] we have
(ko f)=(f"D) o (sj0f)  mT(fE)y,
yl
forall i € {1,...,d'} and j € {1,...,n}. Let us evaluate the above at an
arbitrary point p € V, using the identity from Problem [57|(a); this gives:

(177) L5 (1) - sk(£(p)) = Du(s;),
where v := dfp(a%i) € Tty N. We have
_off 0

V=5 (p) - W(f(p))-

(Here we write f¢:= xfo f, as usual.) Hence the right hand side of (I77)
can be evaluated as

Dy(sj) = 55 (p) - L5 (f () - s6(f(p))-

Comparing with (IT77), and using the fact that s1(f(p)),...,sn(f(p)) is a
basis of Ef(,), we conclude:

_ ¢
S0 = 0 ) Th ().

This can also be expressed as:

oft

=L .
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(b). Proof of existence of f*: Q"(F) — Q"(f*E), first alternative:
We wish to prove that there exists a unique R-linear map f* : Q"(F) —
Q" (f*E) satisfying
(178)  ff(p@w)=(uo f)® f*(w) for all u € TE and w € Q"(N).

It follows from Q" (E) = T(EQA"(T*N)) = T'(E)QT' (A" (T*N)) (cf. Problem
[43|(d)) that every section in Q"(E) can be expressed as a finite sum of sections
of the form py ® w with p € I'E and w € Q"(N). Hence the formula (I78)
together with the R-linearity certainly makes the map f* uniquely defined,
if it exists at all. The problem is that different decompositions of a given
section s € Q"(E) as a sum of “pure” sections p ® w might apriori lead to
different answers for what “f*(s)” should be. To resolve this we will give
an alternative, “pointwise”, definition for f*(s).

For each p € M, let A, : /\’"(TJZ‘(p)N) — N\'(T; M) be the map given by

Ap(a)(vi, ..., vp) = aldfp(vr), ..., dfp(vr)), Vo€ N'(T5,)N), v1,...,vp € TM.
This map A, is clearly R-linear. (Note that this map A, in principle appears

in Definition 5 in Lecture #8; namely we have f*(w), = Ap(wy(y)) for any

w € Q(N) and any p € M.) Hence for each p € M there is a unique
R-linear map

By =1g,, ®Ap: Eppy @ N (Tf,)N) = Eppy @ N'(T; M)
satisfying B,(v®a) = v® A,(« ) for all v € Ey(,) and v € A\"(TF,, N). Note
that under standard identifications, B, can equivalently be viewed as a map

By: (E@N'T*N) s — (f'E© N'T*M),.

Now let us define f*(s), for any s € Q"(E), b

(179) (f*(s))(p) := Bp(s(f(p))),  Vpe M.

Then for every s € Q"(E), f*(s) is a function from M to f*E ® A" (T*M),
mapping each p € M into the fiber (f*E® A" (T*M)),. It is also clear from
([I79) that f*(s) is C*° 1 and hence f*(s) € Q"(f*E). Therefore f* is a
map from Q"(F) to Q"(f*E), and it is immediate from (I79]) that this map
is R-linear. Finally, for any s = p ® w with p € I'E and w € Q"(N), we
have, for all p € M:

(")) = By(s(F () = Bp<u(f ) = Ayl ()

(180) (f( ) ® f*(w )( ) fr (M®W)(p),
and hence our map f* satisfies (IT8]). Done! O

44The way one initially finds out that this formula (I79) should/must hold, is by a
computation similar to (I80), but “in the other direction”.

45The fact that f*(s) is C*° can also be seen as follows: Decompose s in some way as
a finite sum s = p1 Qw1 + -+ + fhm @ Wm with pa1, ..., pm € TE and wy, ..., wm € Q" (N).
Then similarly as in the computation (I80) we have f*(s) = >, (1 o f) ® f*(w;), and
the right hand side is C*° by inspection.
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Proof of existence of f*: Q"(E) — Q"(f*E), second alternative:
Using Q"(F) =TE® Q"(N) and Q"(f*E) =T'f*E® Q" (M), it is tempting
to simply say that, by the machinery from Problem @3] etc., “it suffices to
show that the corresponding map from I'E x Q"(N) to I'f*E @ Q" (M) is
bilinear” (cf. (I82])). However there are complications due to the fact that
we here have a mix of C°°(NN)-modules and C*°(M)-modules, and one has
to be careful about what “bilinear” really means... One can fill in the details
as follows.

On C°°(N) = Q°(N) the map f* is
(181) [T C®(N) = C®(M); [ (g)=gof (Vg€ C(N)),
and one verifies that f* is a ring homomorphism from C*°(N) to C*°(M).

Using this ring homomorphism, any C°°(M )-module gets an induced struc-
ture of a C°°(N)-module.

Now consider the map
(182) J:TEx Q' (N) 5> TfEQQ (M) J(uw) = (uof) & f(w).

Note that J is a map from a Cartesian product of two C°°(N)-modules to
the C*°(M)-module I' f*E® Q" (M ); L however by what we have said above,
I'f*E ® Q" (M) also has an induced structure of a C°°(N)-module, via the
homomorphism f* in (I8I). Now one verifies that the map J is C°°(N)-
bilinear. [Details: One immediately verifies that J(u1 + p2,w) = J(p1,w) +
J(p2,w) and J(p,wi +wa) = J(p,wi) + J(p, we) for all py, po, p € TE and
w1, w2, w € Q" (M). Next for arbitrary p € I'E, w € Q"(M) and g € C*(N)
we have (g-p)o f=(go f)-(uo f), and therefore

J(g-mw)=(gof)-J(mw) = f(9)- J(u,w).
Also f*(g-w) = f*(g) - f*(w) and therefore
J(p,g-w) = f*(9) - I (1, w).
Hence J is C°°(N)-bilinear.]

The fact that the map (I82)) is C°°(N)-bilinear now implies, via the
defining property of tensor product (of C°°(N)-modules) that there exists a
unique C*°(N)-linear map

fF TEQQ(N) =T EQQ (M)
such that

P @w) = J(uw) = (1o f) @ £(w)

This is the desired map! (Indeed recall TE @ Q"(N) = Q"(F) and I'f*E ®
Q" (M) = Q"(f*E). The fact that f* is C°°(N)-linear implies in particular
that f* is R-linear, as desired.) O

46Recall that the tensor product in “I'f*E ® Q" (M)” always stands for tensor product
of C°°(M)-modules. A more precise notation is “I'f*E ®coo () Q7 (M)”.
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Proof of the formula involving df"”. We now turn to the second task
of the problem, i.e. to prove that for any s € Q"(FE) we have

(183) (@ P)(f*(s) = *(d"s).

We first prove the auxiliary result that the map f* : Q"(E) — Q"(f*E)
respects wedge product, i.e.

(184)
frlonn)=f (o)A f(n) in QF(E),  VoeQ'(E), neQ'(N).
By R-linearity in o it suffices to prove ([I84) for 0 = o3 ® m; with o3 € T'E
and n; € Q"(N). In this case,
frloAn) = f(or®(mAn)) = (o1of)@f (mAn)
=(o1o /)@ fHm) A [ (n) = f(o) A f(n),

where in the third equality we used the fact that f* : Q(IN) — Q(M) respects
wedge product (cf. #8, p. 9). Hence (84 is proved.

Now we prove (I83). In the case r = 0 (i.e., s € T'E and d” = D and
d"P = f*D) we see that (I83) is equivalent with the identity in Prob-
lem 57)(a) if we can only prove that

(185) Dy (s) = f*(Ds),
and assuming Ds = Z;n:l i @ wj with pg, ...t € I'E and wy, ... ,wy €
QL (N) we have, for every p € M and X € T,M:

m

(f*(Ds)(X) =D ((pjo f)® f*(wy)) ij (df (X)) - i (f(p)

j=1
= (DS)(df( ) = Dag(x)(s)-
Hence ([I85)) holds, and so we have proved that (I83]) holds when r = 0.

Finally we prove ([I83]) for » > 1. By R-linearity, it is enough to check
that (I83) holds when s = u ® w for some p € T'E, w € Q"(N). Then:

FH(dPs) = (" (p @ w))

ff(DpAhw+ p® dw)

FX D) A f(w) + (o f) @ f*(dw)
(f*D (o ) A FH(w)+ (o f) @ d f*(w)
= (d"P)((no f)® fw)

= (@ P)(f*(p @ w))

= (d"P)(f*(s)).

(Here equality [1] holds by R-linearity and (I84]), and equality [2] holds by
[([@83) for » = 0].) Hence we have proved that (I83)) holds for any » > 0. O
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Problem Let V be the Levi-Civita connection for (M, (-,-)). Then
V is metric also wrt [, -], since for any vector fields X,Y € I'(T'M) we have

d[X,Y] = d(c(X,Y)) = c- d(X,Y) = c- (VX,Y) + ¢ (X, VY)
= [VX,Y] +[X,VY]

in QY(M). Also V is torsion free (recall that this notion is independent of
the Riemannian metric). Hence, by the uniqueness in Theorem 1 in #13, V
is the Levi-Civita connection also for (M, [-,]).

Hence (M, (-,-)) and (M, [-,-]) also have the same curvature tensor, R =
VoV € Q(EndTM). (However the tensor field “Rm” — cf. p. 1 in Lecture
#14 —is not the same for (M, (-,-)) and (M, |-, -]), since its definition involves
the inner product.) Now from Definition 1 in #15 it follows that, if K and
K denote sectional curvature on (M,(-,-)) and on (M,[,]), respectively,
then for any p € M and any linearly independent X,Y € T),M,

~ [R(X, Y)Y, X] c(R(X, Y)Y, X)

KXY ) = ey X AY] - EXAY.XAYY) =KX AY).

O

Example: Let (M, (-,-)) be the standard unit sphere S in R and
let [+, -] be the Riemannian metric obtained by instead using the embedding
r — Rz of S% into R, for some fixed R > 0 (still using the standard

Riemannian metric on R%1). In other words (M,[-,-]) is the sphere of
radius R in R!. Then [-,-] = R?(-,-) and thus

K(XAY)=RZ2K(XAY)

for any X,Y as above. This agrees with the fact that the sphere of radius
R has constant sectional curvature R~2.
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Problem [71k Let p € M and X € T,M with ||X|| = 1. Choose an ON
basis X1,...,Xgq of T,M with X3 = X. Then the uniform average of the
sectional curvatures of all planes in 7, M containing X equals:

1
A= ————— K(XgN(an Xy +--- _1Xg-1)) d
where S92 = {a € R4-1 . oz% 4+t oz?l_l = 1} is the standard d — 2
dimensional unit sphere and w is the is its standard volume measure (cf.,
e.g., [6, Thm. 2.49]). Using the fact that for any o € S92, the two vectors
Xgand a1 Xy +---+ag—1X4—1 in T, M are orthogonal and have unit length,
we get
d—1 d—1

A= @ /S“ <R(Xd, > ax;) Y anj,Xd> dw(a)

Jj=1 J=1

— @ - /SdZ <R<Xd,oszj>Oéka,Xd> dw(a).

= <R(Xdan)XkaXd>m/gd2 ajay dw(a).

Here we note that for any j # k € {1,...,d—1} we have [¢4_» ajoy, dw(a) =
0, since the measure w is preserved by the reflection in the hyperplane
a; = 0. On the other hand for each j € {1,...,d — 1}, the integral
w(SA) T [oas a? dw(ax) equals a constant which is independent of j, since
w is invariant under any permutation of the coordinates aq,...,aq_1. Let
us define Cy by

1
-1._ 2
Cd = m /Sd2 Oéj dW(a)
(any j € {1,...,d — 1}); this is a positive number which only depends on

the dimension d.

(For d = 2 we immediately compute Co = 1; indeed note that in this case
S4-2 = {1,—-1} C R and w({1}) = w({—1}) = 3. Furthermore for d = 3 we
have O3 ' = (27) 7! fo%(cos ©)2dp =3, ie C3=2)

We get:

U

—1 d
A=Cy"> (R(Xq, X5)X;, Xa) = C71 ) (R(Xg, X)X, Xg)
1 =1

<.
Il

=C; ' Ric(X, X),

where in the second equality we used the fact that (R(Xg4, Xq)X4, X4q) =0,
and in the last equality we used the definition of the Ricci tensor, Def.
2 in Lecture #15. (Details for the last step: Fix any chart (U,z) on
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equals the identity matrix at p, agfij hence also the inverse matrix, (g
equals the identity matrix. Hence Ric(X,X) = ¢//(R(X, %)%,X> =
SIURX, 55) 55, X) = Y0 (R(X4, X)X, Xa), as claimed.)
Summing up, we have proved
Ric(X,X)=Cy- A,

and this is the desired formula. It only remains to compute C,. Since
Cy only depends on the dimension d, it can be conveniently computed by
considering any manifold of constant sectional curvature (# 0). For example
let M be the unit sphere S% with its standard Riemannian metric. Then the
sectional curvature is everywhere equal to 1, and so A = 1 for any p € M
and any unit vector X € T, M. On the other hand by again choosing an ON-
basis X1,..., X4 € T,M with X; = X then as above we have Ric(X, X) =
S (R(X4, X)X, Xg) = Y 0=} 1 =d — 1. Hence:

Cy=d—1.

M with p € U, such that X; = O at p, for j = 1,...,d. Then (9i5)
g97)

O

Remark: It is also somewhat satisfactory to compute Cy directly from its
definition. Using basic properties of w, in particular w(S%?) = %,

we get:
1 (d—2)/2
2 d—4
2 2\ d-4
=< aj  ——— (1 —a7) 2 dog
I v

(454) ! e dx
) )-2/0 r(1-2)F 5
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Problem First note that, for any X,Y,Z € V:
QR(X,Z,Z,Y)=K(X+Y,2)- K(X,Z) - K(Y, Z).
Next, for any X, Y, Z, W € V:

R(X, ZW,Y)+R(X,W,Z,Y)
=R(X,Z+W,Z+W,)Y)-R(X,Z,Z,Y) — R(X,W,W,Y)
=L(KX+Y,Z+W)-K(X,Z+W)-K(Y,Z+W))
- HK(X+Y,2)-K(X,2)-K(Y,Z2))
—HEX+Y,W)-KX,W)-K(Y,W)).

Using also R(X,W,Z,Y) = —R(W,X,Z,Y), the above identity can be

rewritten as

2R(X, Z,W,Y) =2R(W, X, Z,Y)

(186) + (KX +Y,Z4+W)-K(X,Z+W)-K(Y,Z+W))
—(K(X+Y,Z)-K(X,Z)- K(Y,2))
— (K(X+Y,W) - K(X,W) - K(Y,W)).

Here is the same identity with X, Z, W cyclically permuted:

2R(W, X, Z,Y) =2R(Z,W,X,Y)
(187) +(KW+Y,X+2Z)-KW,X+Z)-K(Y,X + 2))
—(K(W+Y,X) - K(W,X) - K(Y,X))
—(KW+Y,2)-KW,Z) - K(Y,Z)).

We rewrite (I86) by solving for R(W, X, Z,Y):

2R(W, X, Z,Y) =2R(X, Z,W,Y)

(188) —(K(X+Y,Z+W)-KX,Z+W)-K(Y,Z+W))
+(K(X+Y,Z)-K(X,Z)- K(Y,Z))
+ (KX +Y, W) - K(X,W) - K(Y,W)).
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Now add (I87) and (I88]) and add an extra 2R(W, X, Z,Y") on both sides,
and then use the first Bianchi identity in the right hand side. This gives:
6RW,X,2,Y)=(KW+Y,X+2)-KW,X +2)-K(Y,X +Z))
—(K(W+Y,X) - KW,X) - K(Y,X))
—(KW+Y,2)-KW,Z) - K(Y,Z))
—(K(X+Y,Z4+W)-K(X,Z4+W)-K(Y,Z+W))
+(K(X+Y,2)- K(X,Z)- K(Y,2))
+ (K(X+Y, W) - K(X,W) - K(Y,W))
(189) =KW+Y,X+2Z)-KW,X+2)-K(Y,X+Z)
- KW+Y,X)+ K(Y,X)
- KW+Y,Z2)+ K(W,Z)
K(
K(

/\/‘\/‘\/‘\

X+Y,Z4+W)+ KX, Z+ W)+ K(Y,Z+W)
X+Y,2)- K(X,2)
+K(X+Y,W)—K(Y,W).
This is an explicit formula for R in terms of K! Changing letters (W — X,
X —=Y,Y — W) the formula reads:
6-RX,Y.ZW)=KX+WY+2)-K(X,Y+Z)-KW,Y + Z)
- KX+WY)+KW)Y)
- KX+W,Z2)+ K(X,Z)
—KY+W,Z4+X)+KY,Z+X)+ KW, Z+ X)
+KY+W,Z)-K(Y,Z)
+KY+W,X)—- K(W,X),

which is exactly the formula which Jost states in his [I12, Lemma 4.3.3],
except for the factor “6” in the left hand side. O
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Problem [73t Cf., e.g., [13 p. 292, Thm. 1] or [14], Prop. 7.8].

Assume that there is a function ¢ : M — R such that (wrt any C*° chart
(U,z) on M):

(190) Rk, = ¢ gik.
(Cf. the note on p. 5 in Lecture #15.)

Fix a point p € M and assume that (U, x) are normal coordinates around
p. Then by the second Bianchi identity,

OnRijke + OxRijen, + OeRijhr, = 0 at p.
(Here 0, := 0 ) Multiply the above relation with ¢g**¢7¢ and add over all

— 9zh”

i,k, 7, 0; this gives:

9% g7 O Rijre + 9% g7 - O Rijon + 9% g7 - Oy Rijn = 0 at p.
However we have dyg** = 0 at p, for all h,i, k; hence the above relation is
equivalent with:

(191) 0 (9™ 9" Rijie) + Ok (9" g7 Rijen) + 0e (9™ ¢" Rijn) =0 at p.
Recall now that gﬂRijM = Rjx, by definition. Hence using also (I90]) we get
gikngRz’jké = gikRik = gik cC Qi =C- 52 =d-c,

where d := dim M. Also

gikgngith — _glkgngZth — _glkRZh — _gzk C- gip = _55 .c.
and

9% Rijnr. = —9"* ¢ Rjine, = —¢" Rjn = —¢’* - ¢ - gjn. = —6, - ¢
Substituting these relations in (I9I]) we obtain, at p:

0=d- 8hc — 8hc — ahc = (d — 2)8hc.

Hence since we are assuming d > 3, we conclude that dpc = 0 at p. This is
true for all h; hence dc, = 0. This is true for all p € M; hence c is constant,
qed. O
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Problem

(a) By Problem [33](c), every vector in Ej(, can be obtained as s(f(p))
for some s € I'F; hence it suffices to prove that for any s € I'E:

R(so f)(X1,X2) = (Rs)(df (X1),df (X2))  in (f*E)p = By,
Vpe M, X,)Y € T,(M).

Using (for r = 2) the map f*: Q"(E) — Q" (f*FE) defined in Problem G8(b),
the above relation can be expressed:

R(so f)=f"(Rs) i Q*(f"E).

By the definition of f* : QO(E) — QO(f*E), this can also be expressed
(slightly more nicely?) as

(192) R(f*(s)) = f*(Rs)  in Q*(f*E).
Recall that, by definition,
R=d"Pof*D and R=d"oD.

(Here, as in Problem BG8(b), we write d/"P and d” for the exterior covari-
ant derivatives, and not just “f*D” and “D” as we usually do.) Now we
compute, for any s € I'E:

R(f*(s)) = d"P((f*D)(f*5))
[Apply Problem [57(a); cf. also Problem B8(b).]
= d/"P(f*(Ds))
[Apply Problem B8(b).]
— 1 (d(Ds))
= f*(R(s)).
Hence ([[92) is proved! O
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(b). Here we are considering a C*° map ¢ = F : H — M, where
H = [CL, b] X (_575)7

and where M is a Riemannian manifold with V being the Levi-Civita con-
nection on T'M. (Actually, in order not to have to consider a manifold with
boundary, we should instead take H = (a — &’,b+ ¢’) x (—¢,¢); cf. section
3.1 in the lecture notes.) Also (¢, s) are the standard coordinates on H; thus
% and % are well-defined vector fields in I'(T'H). Finally recall that in
“V 2 7 and “V o7, the “V” is really a short-hand notation for the pullback

Js
connection F*V on ['(F*(TM)). Hence our task is to prove:
0, 0 0
R(5E 5:) (5F)
(193) = (F'V) 2 (F'V) o (gF) ~(F*V)a (F V)%(%F)
(Here %F = dF o % and %F = dF o % are sections in I'p(TM) =
[(F*(T'M)), so that the expression in the right-hand side makes sense.

Note also that the expressions on both sides of the equality are sections
inTp(TM)=T(F*(TM)).)

From now on let us use the short-hand notation 9; := %, g := %.

Note that for every p € H we have (0.F)(p) = dF(9¢(p)) and (0sF)(p) =
dF(0s(p)) in Tp(p)(M). Hence by part a,

R(O,F,0,F)(0;sF) = R(0y,0)(0sF)  in I'p(TM),

where R is the curvature of the connection F*V on F* (TM). However by
Theorem 1 in Lecture #11, using [0}, d5] = 0, we have

R(01,05) (0 F) = (F*V)a, (F*V)a, (0:F)) — (F*V)a, ((F*V)a, (0sF)).
This proves (I93))! O
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Problem [78: (Cf. [14, Prop. 10.9].) Recall that the fact that the chart
(U, x) gives normal coordinates means that there is some r > 0 such that
eXpy|, (o) is a diffeomorphism onto U, where B,.(0) is the open ball of radius
r about the origin in 7,(M) (wrt the Riemannian metric (-,-)); also we fix
an identification Tj,(M) = R? which carries (-,-) on T,(M) to the standard
scalar product on R%; thus B,(0) is now the open ball of radius r about
the origin in R?; and finally z := (expp|BT(0))_1 : U — R4, with image
z(U) = B,(0).

Now fix a point z € B,.(0) \ {0}. Set T := ||z|| € (0,r) and consider the
geodesic

c:[0,T] - M, c(t) = expp(t||x\|_1x).
Note that ¢ is parametrized by arc length, i.e. ||¢(t)]] = 1 for all t € [0,T].
Using the chart (U,z) to identify U and B,.(0), the map exp, : B,(0) — U
becomes simply the identity map on B,.(0); the geodesic ¢ becomes c(t) = tx,
and also for any w € B,.(0) the differential of exp,, : T,(M) — M at w,

(194) (dexp,)w : Tuw(Tp(M)) =R = T, (0)(M) =R,

xp, (w
get identified with the identity map on R?. Hence by Cor. 1 in Lec-
ture #17, for any v € R? the formula

(195) X@t):=t-veTuM) =R (te0,T))

defines a Jacobi field along c.

The Riemannian metric (-,-) on U carries over to a Riemannian metric
(-,y on B,(0), which is given by

(v, w) = gij(x)v'w?
for any = € B,(0) and v,w € R%.

Let us first assume that the vector v in (I95]) satisfies v - & = 0. Since
9ij(0) = 6;; (by Lemma 1 in #4), this implies that v and ||z|| "'z are orthog-
onal when viewed as tangent vectors in T,(M). Note also ¢(0) = ||z~ a;
hence by “Gauss’ Lemma” (Cor. 2 in Lecture #17), (X (¢),¢(t)) = 0 for all

t € [0,T], i.e. X is a normal Jacobi field along c. Hence by the discussion
on pp. 56 in Lecture #17 we have

(196) X(t) = s,()- Xa(t), Ve [0,T],
where X (¢) is a parallel vector field along ¢, and

p~ /% sin(p'/%t) if p>0

sp(t) =<t if p=0

|p| =2 sinh(|p|'/?t) if p < 0.

4Ty (I94), the last identification “Tox;, (w) (M) = R% of course comes from using the
basis of sections -2+ =2 € I(TU), at the point exp,(w) € U.

ozl ggd
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Using X (t) = t-v and g;;(0) = &;; we see that (t71X(¢),t71X(t)) — |v|?
as t — 07. Combining this with ([I36]) and ¢ 's,(t) — 1 as t — 0" we
conclude that (Xi(t), X1(t)) — ||v||* as t — 0F. However (X;(t), X1(t)) is
independent of t since X7 is parallel along c; hence

(X1(8), X1(0)) = |lo?, vt e[0,T].

In particular, since T-v = X(T') = s5,(T)- X1(T), it follows that for v viewed
as a vector in T (M) = Tyry (M) (recall T' = ||z|):

< 20 1/2
Pl
plla]
(v,0) = T~ 2s,(T)[ol]* = { 1 it p=0 -l
inh2(1p[1/2
sl (ol 2el)
L Tl )

On the other hand if v is proportional to x then we know (by Gauss’
Lemma or by Problem 23] = [12]) that for v viewed as a vector in T, (M)
for any t € [0, 71,

(v, v) = [|v]|*.

In particular this holds at x = ¢(7T).

Finally let v be an arbitrary vector in R?. We can then write v = az 4+ w
where a = ||z||72(v- 2) and w = v — ax; then ax is proportional to  while
v-w = 0. It follows from Gauss’ Lemma (or Problem 23] = [12]) that
(az,w) = 0 when az and w are viewed as vectors in 7, (M ). Hence

s02¢1/2 )
w2 el)

wap | P

v-T

<v,v>=(a$,a$>+(w,w>:W+ 1 if p=0 Al
c 1201 11/2
ol 2el)
oz

Note here that

v-x)?
[

(
lw]|* = JJv]* ~
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By polarization (i.e. using (v,v') = $((v + v/, v+ ') — (v,v) — (v, 0'))), the
above formula leads to

(sin?(p'/?||z)) if p>0
R (- 2)' - 2)
v-z)(v -z T
<’U7’U/>:7+ 1 .f = : 'U'/U/_i
||33‘|2 2 / i p 0 ( ||3§‘H2 >
inh 1/2
sinh?(|p| 2H$H) it p<O0.
ol |||l

for any v,v’ € R? viewed as vectors in T, (M). Inserting here v = ¢;, v/ = ej
we conclude:

@iz, Sinz(pl/Qlel)(

XT; 5
5 — —J> if p>0
[l p ]2 N

[Edls

9ij () = (i €5) = < 6, if p=0

iy | st ) (5
]2 o] =2 Yo )2
which is the desired formula.
(Using the fact that the Taylor series for (322)2 and for (Wﬁ has the
form 1+ ¢172 + cor* 4 - - -, which converges for all » € R, one immediately

verifies that the last expression is C'*° also at x = 0, if extended by continuity
to this point.) O

if p <0,
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Problem

For symmetry reasons we may assume ¢ = 1, j = 2. Since (U,x) gives
normal coordinates, we know that x(U) is an open ball in R? centered at
the origin; take R > 0 so that x(U) = Bg(0). As usual we identify U and
Bgr(0) via x. Let us furthermore introduce the short-hand notation “(x,y)”
for (z,y,0,...,0) € R%

Given a point (z,y) with 0 < ||(z,y)]| < R, we consider the two tangent

vectors x and nrr +x— in T, (M). We note that for an
x

N _|_ N

ox y@y dy

arbitrary choice of polar coordinates (r,61,...,04_1) on R? , these two
vectors are given by

0 0 0 0 0 0
197 r—+y—=r—, and —y—+zr— = oj—
(197) oz y@y or & Y Z 7100,
for some ay, ..., aq—1 € R (which depend on (z,y) and on the choice of polar
coordinates). The first formula in (I97]) follows from the fact that xa% —I—ya%
is the tangent vector of the curve c(t) := (tz,ty,0,...,0) at t = 1, and in
polar coordinates this curve is given by ¢(t) = (¢r,01,...,604_1) for some fized
01,...,04_1. Similarly the second formula in (I97]) follows from the fact that
—ya% + xa% is the tangent vector of the curve 7(t) = (rcost,rsint) at a
certain t = tg, where r := ||(z,y)|| = /2% + y2, and in polar coordinates

this curve takes the form ~(t) = (r,61(t),...,04-1(t)) where r = ||(z,y)|| is
fixed and 6;(t),...,04—1(t) are some smooth real-valued functions of t.

It follows from (I97) and Problem 23 that, for any point (z,y) in the
punctured disc 0 < ||(z,y)]] < R,

0 o 0 O\ o 9, o
(198) <xax+yay,xax+yay>—r =z"4y
and
0 0 0 d
(199) <x% i xa—y> —0,

as stated in the hint to the problem. Note that (I98]) and (I99) are also
valid at (z,y) = (0,0), by inspection (or by continuity). [Remark on no-
tation: In (I98) and ([I99), “(-,-)” denotes the Riemannian scalar product
on T, ) (M), whereas we use “||(z,y)||” to denote the standard Euclidean

norm, /x? + y2.]

48by this we mean: We have fixed a chart (V, ) on S~ ! and we then consider the
corresponding chart (R*V, (r,61,...,604-1)) on R?, where r(z) = ||z|| (standard Euclidean
length of the vector z) and (61(2),...,0a—1(2)) = @(||z||"*2) for all z in the open cone
RTV. This is just as in Problem 23] but with different variable names. Of course, we
assume that the given point (z,y) = (x,%,0,...,0) lies in the cone RTV.
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Expanding the left hand sides of (I98]) and (I99) we get

(200) 22g11 + 20yg1a + v g2 = 2 + ¢

and

(201) —zygin + (¢* = y*)g12 + zygas = 0,

where g;; of course stands for g;;(x,y) = gij(z,y,0,...,0). The relations

([200) and (201)) are valid for all (x,y) with [|(z,y)| < R.

Taking y = 0 in (200) we obtain gi1(z,0) = 1 for all z € (=R, R) \ {0};
and by continuity this is also valid for x = 0. This implies that all iterated
derivatives ¢11,1(2,0), g11,11(x,0), g11,111(2,0), ..., vanish identically for all
x € (=R, R). In particular

911,11(0) =0,
as desired. Note that a symmetric argument (exchanging the roles of x and
y) also gives g22(0,y) = 1 and g222(0,y) = g22,22(0,y) = ... = 0 for all

y € (—R,R).
Differentiating (201]) with respect to x we get
—yg11 — xygiia + 22012 + (2 — y*)g12,1 + yge2 + 2ygaz1 =0,
and differentiating this three times with respect to y give@

Yy ' + x| "] —3911,22 — 6912,12 + 392222 = 0,

where each “” stands for a sum where each term is a polynomial in z
and y times a partial derivative of g1 or gi2 or goo. The above is valid for
all (z,y) in the disc ||(x,y)| < R. Setting now (x,y) = (0,0), and using
922,22(0,0) = 0, we conclude that

911,22(0,0) = —2g12,12(0).
By the symmetric argumment (z <> y) we also have
922,11(0,0) = —2g1212(0).

49 using the general Leibniz rule; specifically

(32) (@w)b(m) = o s) + 36" WV () + 30 ') + aw” ().
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Problem [80k
(See wikipedia; Bertrand-Diquet-Puiseux Theorem.)

Let the chart (U, z) on M be normal coordinates centered at p such that
X = ( )and Y := 57 -9 (p) form an ON-basis of II. (Such a chart is easily
obtained by choosing the identification between T),M and R? appropriately
in the construction of normal coordinates.) As usual, we will identify U with
the open ball z(U) € R? (via z). In particular the submanifold exp,(D;)
gets identified with

Dy ={(,4,0,...,0) : &* +y* <r?}.

From now on we will write “(x,y)” as a short-hand for “(z,y,0,...,0)”
(denoting either a point in R = T),M or a point in M).

Let the Riemannian metric be represented by (g;;(z)) with respect to
(U, z). Then the induced Riemannian metric on the submanifold exp,, (D, )
is represented by the 2 x 2 matrix function

g11(z,y) g12(z,y)
(921(%@/) gzz(w,y)) ’ V(z,y) € Dy.

(this is immediate from the definition of the induced Riemannian metric; cf.

Problem [I8]). Hence by the definition of the volume measure on a Riemann-

ian manifold (cf. #12, p. 1), we have

(202) Ay = / Vo (@, y)ge(2,y) — gi2(x, y)? da dy.
D

Recall that g;;(0) = d;; and ¢;;%(0) = 0 for all 4,5,k € {1,...,d} (cf. Lemma
1 in Lecture #4). Hence we have the Taylor expansion

ij,22(0
:E2 + gij,lg(O)JEy + Mzﬂ + O((l‘2 + y2)3/2)

9ij11(0)
gz‘j(x,y) = 0;; + UT 5

for all (z,y) near (0,0). This gives

g11(z,9)g22 (2, y) — gr12(z,y)?

gi11,11 911,22 922,11 922,22
= (1+ 5 == r? o iy oy + 5 y2) (1+ 5 T 4 gog 10y + 5 y2)

4 O((a:z 4 y2)3/2>7
where all the g;;1;’s in the right hand side are evaluated at 0. Multiplying
out and using g11,11(0) = ¢22,22(0) = 0 (cf. Problem [79), we get

g11(2,9)g22(2,y) — gra(w,y)?

922,11 911,22
=1+ 2222+ (gi1,12 + g22,12) 7y + 5 y2+0<(a:2+y2)3/2).


https://en.wikipedia.org/wiki/Bertrand-Diquet-Puiseux_theorem
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Hence, using the fact that /1 + «a = 1—|—%o¢+0(0z2) for a near 0, we conclude
that for all (z,y) sufficiently near 0:

Vo (x,y)g22(2,y) — g12(w,y)?

92111 2, g11,12 —;922,12 oy + 91122 W2+ O<($2 + y2)3/2)‘
Inserting this in ([202)), we note that the zy-term gives a 0-contribution, since
the function zy is odd wrt z. Passing to polar coordinates we now get, for
r > 0 sufficiently small

2 922 11 g11,22
A, —/ / 1—|— cos? p + == 2 sin 90) —|—O(r1)> r1dpdr

=mr? 4+ —(922 11+ gi1,22) +O(°).

=1+

16
Hence
wre — A, 3 3
lim 12— =2 =_=
TE& - 1 (922,11 + 911,22) 911,22,
where the last equality holds by Problem On the other hand we have
o 0
K(I) = K(X AY) = K(X,Y) = (R(X,Y)Y. X) = (RS iy, == )
T
1 3
= R%m = 5(912,12 + 912,12 — 922,11 — 911,22) = —5911,22,

where at the end we used Lemma 3 of Lecture #14 and then the relations
from Problem Hence

lim 1277~ — k1),

r—0+ r

as desired! O
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Problem BIt Let I : S — R3 be the inclusion map, ie. I(z,a) =
(z, f(x) cos o, f(z)sin ). Then

Al <Z%) = (1, f'(z) cos a, f' () sin @)

and

dl, a)<aa > (0, —f(x)sina, f(z) cos ).

Hence on S we have (cf. Problem [I8)):

<a% a% ) =12+ (/@) cosa)? + (f'(@)sina)? =1+ f'(2)*
<%7 %> = f'(z)f(x)(—cosasina + cos asina) = 0;

o 0
(5 a) = 1@

In other words, the matrix representing the Riemannian metric on S wrt
the (z, ) coordinates is:

wo=(T ).

We also note that the inverse matrix is:
o (A D)t 0 >
T, = o .
g( ) < 0 f(a:) 2

From this, using the formula for the Christoffel symbols of the Levi-Civita
connection,

b= 29" (gjik + Gk — Gik),

we compute:

rhoa) = L. ) =i = £,
rhea) - - L,

while all other functions F;'- , are identically zero. Suppose now that c(t) =
(z(t),a(t)) is a C*° curve on S and s(t) is a vector field along ¢; we write

(203) s(t) = al(t)% - a%)%.
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Then by the formula for $(¢) in local coordinates (cf. Lecture #9, p. 8):

0 0 ; 0 0
2(t) 5 + & (H)a" (1) (D (e(t) 5= + Drle(t)) 5 )
0 5,0 .0  fy. . 0 ff .50
1a—x+a28a+1+f/2xala—x+7<xa2+aal)— 2=

oa 14 2% oz

= (dl + 1if;,2x'a1 1 _{f}lzdaz) % + <d2 + f7/<'a2 + o'zal))%.

(a). The equation for ¢ being a geodesic is V¢ = 0. But the vector field
s(t) = ¢(t) is given by ([203) with a' = & and a? = ¢. Hence the equation

becomes (cf. (204))):

L S@) =) o @) f () o
Tt T e

@),

f(z)

(205)

a+2

To prove that f(x(t))?&(t) remains constant along any geodesic, we simply
note that

& (1) = 24 (wyia + (@)% = 0,

where the last equality holds by the second equation in (205]).

Remark: The fact that f(z)?d& remains constant around any geodesic is
called Clairaut’s relation. Note that f(z(t))a(t) = ||¢(t)| sine(t), where
1 (t) is the angle between ¢(t) and the meridians of S. Hence (since ||¢(t)||
is constant along any geodesic) an equivalent formulation of the relation is
to say that f(x)sin remains constant along any geodesic.

From (200 we see that the geodesics with x = constant are exactly the
curves c(t) = (k1, ko + kst) with k1, ke, ks € R, and [ks = 0 or f'(k1) = 0].
Any curve c(t) = (k1, ko + kst) with ks # 0 is called a parallel of S, and
what we have just shown is that a parallel of S is a geodesic iff its z-value
satisfies f'(z) = 0.

Finally, let us consider a curve with o = constant, i.e. c¢(t) = (z(t), «).
By (205)), this is a geodesic iff

@) f"(@) .

2 T+ ————22° = 0.

(206) Z+ 1+f’(m)2x 0

We may note that the function z(t) satisfies (200]) iff

(207) x(t) = ¢ for some constant C € R.

1+ f'(x(t)
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[Proof: Note that for every real-valued C*° function z(t) we have

dy. S L / . f'(z) " ;
= (FOVIFFEO?) = iV1+ F@P +i o @
(s 4@ (=)

This implies that the function (t)\/1 + f/(x(t))? is constant iff (206]) holds.
This is the desired equivalence.]

The equation (207]) is seen to be equivalent with the statement that ¢(t) =
(x(t), a) viewed as a curve in R? (that is, c(t) = (x(t), f(z(t)) cos a, f(z(t)) sin a)),
is parametrized proportionally to arc length. In particular, up to rescaling
the parametrization and changing direction, there exists a unique geodesic
a = constant for every choice of the constant a! Such a curve is called a
meridian of S. O

(b). The equation for parallel transport along a given curve c(t) =

(z(t), a(t)) is 5(t) = 0, i.e., by (20d):
@) f (). 1 fl)f(z) .

.1 2 _
T e T et =
o, F@ 0 )

a +m<$a —|—Oéa)—0.

We should consider this for the curve ¢(t) = (z,t), t € [0,27]. Then the
above equation becomes:

g f@)f(x) o

e e =Y
209 f'(x)

52 —xalz .

a” + ) 0

If f/(z) = 0 then the equation implies that both a! and a? are constant.

Now assume f’(z) # 0. Then differentiating the first equation and sub-
stituting the second into the result gives:

/ T 2
il(t) = —%al(t).

/ T 2
(z) 5 < 0; hence the general solution is

1+ f'(z)
a'(t) = Cy sin <Cg + % t>

Here —
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with C1,Cy € R. Then from the first equation in (208]) we get
2y _ Lt (@) f'(@) ( f'(=) >
" For@ i e\ U e

_ 01M608<02 + &t)

7(2) T+ /)
It is nicer to express s(t) in terms of the following ON basis for T(, 5"
1 0 1 0
209 b = ——, by i = ———.
(209) T VT f@Ros T f(@)oa
We get:
(210) s(t) = o (sin(Cé + 0y t) b1 + cos (C’2 + 0y t) bg)
where o, = _ L@ and C, = C1/1 + f’(x)2. Thus in these ON co-

V1S (z)?
ordinates the vector is simply rotating at constant speed along the curve.
O

Alternative; a more geometrical solution (outline) (cf., e.g., stackexchange):
Let S’ be the cone (or cylinder, if f/(z) = 0) in R3 which is tangent to S
along c. It follows from [I2, Thm. 4.7.1] that the Levi-Civita connections
for S and S’ are equal at every point along c; hence also parallel trans-
port along ¢ is the same in S and S’. But we can imagine the cone S’
being constructed by rolling a paper; unrolling the paper then gives a (lo-
cal) isometry between S’ and R? with its standard Riemannian metric; and
in R? parallel transport of any vector along any curve means simply keeping
the vector constant in the standard coordinates on Tc(t)}Rz = R2. Our curve

¢ is mapped by the isometry to an arc of angle %277 along a circle
x
/£ 2
with radius f(x) - W Parallel transport of any vector v € R? along

this circle means that the angle between v and ¢ increases/decreases with
\/%ZW as t goes from 0
to 2m. Hence in the basis by,by (209) The general form of such a motion
is indeed given by (2I0), with o, := i%. Further inspection of the
xr
cone unfolding argument shows that in the (z,«) coordinates, v rotates in
positive direction if f'(x) < 0, and negative direction if f/(x) > 0; thus in
fact in (2I0) we have o, := \/%W O

a constant rate, with the total change being


https://math.stackexchange.com/questions/80270/how-does-parallel-transport-work-on-the-sphere
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(c). Since dim7,S = dim S = 2 we can indeed speak of the sectional
curvature of S at a point p € S, and this sectional curvature equals K(XAY)
where X,Y is any basis for 7,,5; cf. Problem We compute this with

X=2y= 8% at the point p = (z,«). First note:

(5 0) = (R 3 ) = (R + P 37)
= (1+ f'(2)*) - Rypp(z, ).

Now use the formula from Lecture #11, p. 3:
oy, Oy

Ryp = o da I'y;T%, — Iy,
_ _Q(f(@f’(@) @) f@)f ()
Oz \1+ f'(x)? 1+ f(x)?2 1+ f/(x)?
@@ f@)
I+ f0)? f()
_ PO ) 28 R
(1+772)2 S
@)@
(14 f1(x)?)*
Hence
0 0 f(@)f" (=)
K(g5a) =1 (@)
Also, since (6%, %> =0,
‘QAQ T ‘ R Y
Ox Oa Ox Oa
Hence
(2 L) - L), i o
Oz Oa L+ () 4+ ()2 f(@)? flo)+ f(x)?)?
Answer: The sectional curvature at (z,«a) is — /() .
’ f@) L+ f1(2)%)?

In particular we note that the sectional curvature at (x, «) is positive iff
1"(z) < 0 and negative iff f”(z) > 0.

Finally for f(z) = v/r? — 22 we compute that

f(=) 1
@A+ )22 2 for all = € (—nr,7).

This is indeed the scalar curvature at any point of a sphere of radius . [
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Problem

(Cf. [14] p. 128, Problem 7-3].)

We have
(V2)(X,Y, Z) = (Vz(V)(X,Y)

(V)(X,Y)) = (V) (VzX,Y) = (Vn)(X,VzY)
(Vyn)(X)) = (Vyn)(VzX) = (Vv,y(n)(X)
Y (1(X)) = n(Vy X)) = ¥ (1(V2X)) +0(Vy V5 X)
— (VzY)(n(X)) + n(Vv, v X).

(In the above computation, in the first and the third equalities we used the
definition of V : I'T (M) — I'T] (M) given in the problem formulation,
while in the second and the fourth equalities we used the formula from Prob-
lem B9(a).) Subtracting the corresponding expression for (V?n)(X,Z,Y)
from the above expression, and using

Z(Y (X)) = Y (Z(n(X))) = (V2Y) (0(X) + (V¥ 2) (n(X)
= (12,Y]= V2V + Yy Z) (1(X)) =0,

VA
A
VA

we obtain:
(Vzn)(X7 Y7 Z) - (v27])(X7 27 Y)

=n(VyVzX - VVyX + Ve, v X — VVYZX)

n(VyVZX VzVy X — V[YZ})
(7. 2)%).

Done! O
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Alternative: It suffices to prove that the two functions (V?n)(X,Y, Z) —
(V) (X, Z,Y) and n(R(Y,Z)X) have the identical restrictions to the set
U for any chart (U,z). Given such a chart, by expanding each of X,Y,Z
in the basis of sections 577, ..., % € I'(TU), and using the fact that both
(V20)(X,Y, Z2)—(V?*n)(X, Z,Y) and n(R(Y, Z) X) are C*°(M)-linear in each
of X,Y, Z, we see that it suffices to prove that, for any i, j, k,

(211)

0 (537508 ~ 7o 38 ) = (o5 50) )

From now on let us use the short-hand notation 0; := %. Take n1,...,nq €
C>°(U) so that

o = m da’.
Then in U we have
Vn = V(nda') = da' @ dy +n V(da') = da' @ ((Ommy)dz™) —mi Ity dzb @ dz®
= (Oamp — mI,) da® ® da,
where we used [12], (4.1.22)]. Tt follows that, for any k,
Vs, (Vn) = Vo, <(8a77b —qlt) da® ® d:z:a>
= (O0(@um — mTLy) ) da® @ da® + (B, — Ty Vi, (da”) & da”
+ (Bamp — miT'hy) da® @ Vg, (dz®)
- (akaanb (&)L, — (akrgb)m) dz’ ® da®
— (Bamy — T ) T8 da @ dz® — (8ampy — miTy) T%, da’ @ dz®
= (C%C%ﬂb — (Okm)Thy, — kT i) — (Bane) Tip + T oLy

— (Do) Ty + mTLyTE, ) da @ da.
This means that
v20)(0:.0;,04) = (Va,0m)) (9:,9;)
= Oh0jn; — (aknl)ré'i - (8kré‘i)771 = (0jne) T + Ulré'c ki — (Ocni) ij + nlrlci ij'
Subtracting the corresponding expression with j and k swapped (and using

I =T which holds since the Levi-Civita connection is torsion free; cf.
Lemma 2 in #13), we obtain

(V%) (9. 05 0% ) = (V2m) (90,0003 ) = (=0Tl + Tl + 9T = Thel5: )
Comparing with the formula for R on p. 3 in Lecture #11, we get
= Réjk m = n(R(9;,0k)0;).

(The last equality holds since R(0;,0y)0; = Rﬁjk@ and n = n;dz'.) Hence
we have proved (2I1))! O
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Problem [83k

(a). One simple construction is as follows: Equip M with an arbitrary
Riemannian metric. This is possible by [12, Thm. 1.4.1]. Let exp : D — M
be the corresponding exponential map with its maximal domain D (an open
subset of T'M). By a simple compactness argument (using the fact that
0, € D for all p € M), there exists some ¢ > 0 such that s- Y (t) € D for all
t €[0,1] and all s € (—¢,¢). Now define

(212) c(t,s) :==exp(s - Y(t)), (t €10,1], s € (—e¢,¢)).
This is easily verified to be a smooth variation of the given curve ¢ with
¢ =Y, which is furthermore proper if Y/(0) =0 =Y (1). O

(b). (Outline.) First assume ¢(0) # ¢(1). Then it is possible to choose
the Riemannian metric on M so that for each j € {0,1}, either Y (j) = 0
or else ; is a geodesic. [Indeed, inspecting the construction in [I2, Thm.
1.4.1] we see that it suffices to prove that if 4;(0) = Y (j) # 0 then there
exist € > 0 and an open neighborhood U of ~;(0) which can be equipped
with a Riemannian metric such that v;_c . is a geodesic in U. And this
can be constructed by letting U be the domain of a chart (U, z) such that
z(7;(t)) = (¢,0,...,0) for all ¢ near 0 (as is possible by Problem [I2)), and
then equipping U with the Riemannian metric inherited from the standard
Riemannian metric on R? via z : U — R%.] With this choice, the variation
in (212]) again has all the desired properties.

If ¢(0) = ¢(1) then the above construction can be modified e.g. as follows:
For j = 0,1, choose a Riemannian metric m; on M such that if Y (j) # 0
then ~; is a geodesic wrt m;. Then also umg + (1 — u)m; is a Riemannian
metric on M for each u € [0,1], and we denote by exp(-;u) : D, — M the
corresponding exponential map. Now one can prove that there is some € > 0
such that s- Y (t) € D, for all t € [0,1] and s € (—&,¢). Then define

c(t,s) :==exp(s-Y(t);t).
This is a variation having the required properties. O

Remark: Note that when we apply the result of this Problem B3]in prac-
tice, M often comes already equipped with a Riemannian metric; however
the Riemannian metric which is chosen in the above construction may well
be another (“completely unrelated”) Riemannian metric!
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Problem [B4:k Lemma 1 in Lecture #16 implies that, in our situation,
E'(s) = L'(s) = 0 for all s. Hence E(s) and L(s) are indeed constant

functions. U
Problem

(a). Identify T,M with R? by some fixed linear map respecting the inner
product. Let v and 2 be the following C* curves in T,M = R:

7 (t) = teq, t € [0,7],
where e; = (1,0,...,0), and
v2(t) = (wcost, wsint,0,0,...,0), t €0,al,
where a is any fixed positive constant. Then set:
Y=0720 V2
In order to fit into the problem formulation, this product path should be

understood to be reparametrized in some way so that the domain of ~ is
[0, 1].
Note then that
(1) = n(m) = mer.
Also [|y2(t)|| = 7 and thus exp,(y2(t)) = —p for all ¢ € [0,a]! Hence
L(exp, 0y) = L(expy, om) = [y (m)] = v (D],

where the second equality holds since ¢ + exp,oyi(t) = exp,(te;) is a
geodesic. However ~ is certainly not a reparametrization of the curve t —

t-y(1) = t-mey (t € [0,1]), since the image of  in R? contains points outside
the line Re;. O
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(b). Writing e1, ..., eq for the standard basis vectors in R, our task is to
prove that
(213) <d(expp oy_l)g(el), d(epr oy_l)g(el)> =1
and

(214)  (d(exp, oy ")g(e1),d(exp, oy~ )z(e;)) =0  for j=2,...,d.
Now for any v € R? we have
d(exp, oy~ 1);(v) = (dexpy)y-1(5) © (dy™)5(v).

Furthermore, the “polar coordinates” assumption implies that, for any g €
y(W), if w =y~ 1(§) € W then

(215) Jw| =g">0;  (dy~")z(er) = [Jw]| " w;
and
(216) {(dy 1)j(e;),w)y =0, for j=2,...,d.

[Proof: We have y!(w') = ||w'|| > 0 for all w’ € W, and y(W) is open; hence
yt(w') > 0 for all w' € W, and in particular the first relation in (ZI5]) holds.
Next consider the curve ¢(t) = (1+t)w (—¢ < t < ¢) in T, M; for € sufficiently
small this curve is contained in W, and the polar coordinates assumption
implies that y(c(t)) = (1 +t)§*, 7%, ...,9%) for all t € (—¢,¢). Considering
the tangent vector of this curve at t = 0 we find dy,(w) = y'e;, and this
implies the second relation in (21I5]). Finally for given j € {2,...,d} consider
the curve ¥(t) = § + te; (—e < t < ¢) in R% for ¢ sufficiently small this
curve is contained in y(W), and the polar coordinates assumption implies
that the curve y~!o~ is contained in the sphere {w' € W : ||w'|| = |jw| > 0}.
Note also y~1(7(0)) = w. Hence the tangent vector of y~1(y(t)) at t = 0 is
orthogonal to w, and since 4(0) = e; this implies (216]).]

In view of the above, ([ZI3) is equivalent withP]
(217) <(dexpp)w(HwH_1w), (dexpp)w(HwH_lw)> =1, Yw e W
and in order to prove ([2I4) it suffices to prove that
(218)  ((dexpy)u(ll] " w), (dexp,)u(v)) =0,
whenever w € W, v € T,M, (w,v) =0.

However these two statements are clearly implied by “Gauss Lemma”! [

50Recall that we saw in @I5) that ||w]| > 0 for all w € W; thus the statements (ZI7)
and (2IR)) make sense.
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(¢). Outline: We follow the argument on pp. 8-9 in Lecture #4 (mutatis
mutandis) using the fact proved in part b (where of course the bottom right
(d—1) x (d—1) submatrix must be everywhere positive semidefinite). Note
that in that argument, in

1 1
— / I (exp, o)’ (1)l dt > / #(6)] dt > r(1) — r(0)] = |lo],
0 0

we now cannot claim that equality in the first inequality holds iff ¢(¢) = 0
vVt € (0,1), namely since (d expp)y(t) may be singular. However equality
in the second equality holds iff #(¢t) > 0 V¢t € (0,1). Thus, since we are
assuming L(7y) = ||v]|, the function r(¢) = ||y(¢)|| must be increasing, and so
r(t) < [v(D = [v]| for all ¢ € [0, 1].

Now assume that there is some ¢t € (0,1) with y(¢) ¢ [0, 1]-]|v]|, and let g €
(0,1] be the supremum of the set of such t. By continuity, v(to) € [0,1]-||v]|,
say v(to) = t1]jv|| (t1 € [0,1]). Now since the point c(t1) = exp(t1v) is
not conjugate to c(0) along c, we have that (dexp,),,) is non-singular, and
hence (dexp, )., is non-singular for all w in some open neighborhood €2 C D,
of y(tp). On the other hand it follows from the definition of ¢y that there
exist t-values < to arbitrarily near ¢, where v(t) ¢ [0,1] - ||v||. Hence there
also exist t-values < ¢ arbitrarily near ¢y where ¢(t) # 0. Since such a ¢ can
be found arbitrarily near ¢y, we can ensure that v(t) € Q. Both ¢(t) # 0
and y(t) € Q are “open” conditions; hence there must in fact exist a whole
open interval (t2,t2 + 1) C (0,%t9) (n > 0) such that $(t) # 0 and (t) € Q2
for all t € (t2,t2 +n). Now we can conclude

to+n ) to+n )
/t (exp, o7)" (1) dt > / i (0)] dt,

2 t2
since [|(exp, oy) (t)|| > [|7(¢)| for all t € (t2,t2 + ), and so in total we must
have a strict inequality L(vy) > ||v||, contradicting our assumption.
) €

Hence we must have ~(¢ [0,1] - ||v|| for all ¢; and since also r(t) is
increasing, it follows that v is a reparametrization of the curve t — tv. [
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Problem As stated in the lecture notes, this is clear from Cor. 1
in Lecture #17. Indeed, after possibly shrinking and reparametrizing the
geodesic, and possibly changing its direction, we may assume t5 = a = 0,
t1=b=T > 0. Set also p = ¢(0) and ¢ = ¢(T). Then our task is to prove
that ¢(0) and ¢(T) are conjugate along c iff

(depr)T~é(0) (T (M) — Ty(M)
is singular. By Cor. 11in #17, for every v € T,(M) we have that (d exp,)7.¢(0)(v)
equals X (7) when X is the unique Jacobi field along ¢ with X (0) = 0,
X(0) = v. Pl Hence, since also T,,(M) and T, (M) have the same dimension,
(dexpy,)7.4(0) is singular iff there is some v # 0 in T),(M) with such that the

unique Jacobi field along ¢ with X (0) = 0 and X (0) = v satisfies X (T') = 0.
In other words, (dexp,)r.4(0) is singular iff there is some Jacobi field X # 0
along ¢ with X(0) = 0 and X(7T") = 0, i.e. iff ¢(0) and ¢(T") are conjugate
along c. O

51The fact that there indeed exists a unique such Jacobi field is provided by Lemma 1
in #17.
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Problem 88t As in the proof of Lemma 1 in #17, let X1,..., X4 € V. be
parallel vector fields along ¢ such that X;(¢),...,X;(¢) forms an ON-basis
T, (M) for each t € [a,b], and define pF € C>([a,b]) by R(X;,¢é)é = pF X
Then any pw C* vector field Y along ¢ can be (uniquely) expressed as

Y = ngla

where &1, ..., &g are pw C* functions [a,b] — R. We then also have

(219)  I(V,Y)= /;(HV%YHQ — (R(Y, )6, Y) ) dt

b, d d d
- [(Séer - X dwswan ) .
@ Nj=1 i=1 k=1
Hence the problem is reduced to a problem in real analysis: We see that it
now suffices to prove that if f is any pw C* function f : [a,b] — R, then
there exists a sequence fi, fa,... of functions in C*°([a, b]) such that

(220) Ifi = fllee = 0 and  |[f = f'llzs = 0,
and || fr.|lz= stays bounded as k — oo,

and that we may furthermore choose this sequence so that fx(t) = f(t) for
all k and all ¢ € [a, b] \U;’”L:_l1 (tj —e,tj+¢€), where € > 0 is any fixed constant
and t; < ty < -+ < t;,—1 are any given numbers in (a,b) including all
'break-points’ of f (viz., fiit;—1t5] € C>®([tj—1,t5]) for j = 1,...,m, where
to = a and t,, = b).

(Indeed, if we can prove the statement of the last sentence, then we apply
it to each of the functions &1, . .., &y describing the given pw C°° vector field
Y, with fixed ¢ > 0 and with ¢; < --- < t;,—1 being all the 'break-points’
of Y in (a,b). This gives a sequence of C'™ vector fields Z;, Zs, ... along ¢
each satisfying Z(t) = Y (t) for all ¢ € [a,b] \ U;”:_ll (tj —e,tj +¢€), and, as
one verifies using (219): I(Zx, Zx) — I(Y,Y) as k — o0.)

Outline of real analysis argument: Thus assume that f : [a,b] — R is
pw C and let a =ty < t1 < -++ <ty = b be such that fi;,_, 4 €
C>®([tj—1,t;]) for j = 1,...,m. In fact we may extend f to a pw C™
function (@ —&,b +¢) — R so that f|4—cs) and fiy,,_, p4e) are C. (Cf.
the lecture notes, Sec. 3.1.) Fix a C* function ¢ : R — R>( with support
contained in (—1,1) and [, ¢ = 1. For every n > 0 set ¢,(t) :==n ' (n~'t);
then ¢, has support contained in (—n,7n) and fR ¢y, = 1. Now choose any
sequence € > 1y > 1m2 > --- > 0 with np — 0, and set fi = ¢, * f
(convolution), i.e.

£t = [ 4 =)0y, (@) da

It follows from supp(¢y, ) C (—¢,¢) that f; is well-defined and C'* for t €
[a,b]. One now verifies that (220)) holds (in fact |f} | < || f’||ze for all k).
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Finally one can use a partition of unity argument, creating f;'*” weighting

appropriately between f; and f, to also ensure fi(t) = f(t) for all k and all
t € [a,b] \U;-nz_l1 (tj —e,tj +¢) (while (220) remains true). O

Problem We are assuming that exp,, is defined and injective on the
open ball B,.(0) in T),(M). We claim that (dexp,), is non-singular for every
v € B.(0). Assume the opposite, i.e. assume that v € B,(0) is such that
(dexp,), is singular. Take b > 1 so that bv € B,(0), and let c be the geodesic

c:[0,b] - M; c(t) := exp,(tv).

Our assumption that (dexp,), is singular implies that the point c(1) is
conjugate to ¢(0) along ¢ (by Problem B@]). Hence by Theorem 1 in Lecture
#18, ¢ is not a local minimum for L among pw C*° curves from p to ¢ :=
c(b). This implies in particular that d(p,q) < L(c). Now by Problem
there is a geodesic from p to ¢ realizing the distance d(p,q), i.e. there is
some w € Tp(M) such that ¢ = exp,(w) and [Jw| = d(p,q). Of course
w € Br(0) and w # bv, since ||w| = d(p,q) < L(c) = ||bv|| < r. Now
we have exp,(bv) = ¢ = exp,(w), contradicting the fact that exp,p (o is
injective. This completes the proof that (dexp,), is non-singular for every
v € B,(0).

From the non-singularity just proved it follows, via the Inverse Func-
tion Theorem, that exp,p (o) is a local diffeomorphism and that U :=
exp,(Br(0)) is an open subset of M. Since exp, p, (o) is injective, this map
is a bijection of B, (0) onto U. Let f: U — B,(0) be the inverse map. The
fact that expy| g, (0) is a local diffeomorphism implies that f is C°° in all U.
Hence eXPy|B,(0) IS a diffeomorphism onto the open set U. O
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Problem Let (U, z) and (V,y) be two charts with p € U, p € V, and
assume that

0 0
(221) E T E?xjf'f =0 at p,
for any 1 <r <k and any j1,...,7, € {1,...,d}. We know that
0 ; 0
=y Vi€ (l )
(equality of vector fields in I'T'(U N'V)), where
. ox?
J = —cC®UnNV).
7= G ( )

Now take any r € {1,...,k} and i1,...,i, € {1,...,d}. Thenin UNV we

have
0 a , i 0 . 0
I (9” axﬁ) <“” ascjr)'f ’

and this can be expanded as a sum where each term is of the form “A - B”
where each “A” is a product of partial derivatives of some of the functions
v TR fforsomel <I[(1) <I(2)<--- <
I(s) <r (with 1 < s <r). Evaluating this sum at p, each B-factor vanishes,
because of ([221I]) (and since s < r < k). Hence
0 0
TR

cpgll, and each “B” equals

f=0 at p.
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Problem

(a). Let (U,x) be any chart on S¢ and let (g;;(z)) give the standard
Riemannian metric (-, -) with respect to (U, x). Then the Riemannian metric
[-,+] is given by (hi;(x)) wherd™?

hz](x) :f(x)'gij(x)7 Vi,j € {17”’7d}7 ‘Tex(U)

Now for any j,[, k, and for all x € z(U):

o i(e) = o (F@)g()) = (5 @) - g0) + 10 5—g(o).

If = lies on the curve ¢ then f(z) =1 and %f(x) =0 (since f € F1), and
hence

(222) 0 0

a—%hﬂ(l’) = a—mgjl(x)'

Also of course hji(xz) = f(x)gj(x) = gji(x) for all x along c. Let V and \Y
be the Levi-Civita connections on T'(S%) corresponding to the Riemannian

metrics (-,-) and [-, -], respectively, and let F;k and F;k be the Christoffel
symbols for V and 6, respectively, with respect to the basis of sections
221, 52 € T(TU). Then

i 1 4 0 0 0
@) Tk = 39" (5me) + 5000 - 59(0))
and

T

u(0) = 54(0) (meha(e) + s h(o) — ggha(a))
(for all x € z(U)). It follows from the observations made above that
N;k(m) = F;k(m) for all = along c.
Since ¢ is a geodesic on S we have
& () + Ti(e() & () (t) = 0,
for all i € {1,...,d} and all ¢ € [0, 7] with c(t) € z(U). (Here ¢! := 2z’ oc.)
It follows that also
E(t) + Tl (e(t) @ (1) (1) = 0

for all ¢ € [0, 7] with ¢(¢t) € (U). The fact that this holds for every chart
(U,z) on S% implies that c is a geodesic in S?. O

5275 usual, “z” denotes two things, namely a map from U to R? and also a general
point in z(U); also “f(x)” really stands for “f(z~'(z))”.
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(b). Let f € F5. Then c is a geodesic in S%, by part (a). We also know
that in S?, ¢(0) and c(7) are conjugate along ¢, and there is no point before
¢(m) conjugate to ¢(0) along c. (This can for example be easily verified from
the explicit formula for a general Jacobi field along a geodesic in constant
curvature; cf. pp. 5-6 in #17. Alternatively, the statement can be proved
using Theorem 1 in #18 combined with the known facts that any arc of
length < 7 of a great circle on S? is a strict local minimum for L, while any
arc of length > 7 of a great circle on S is not a local minimum for L.)

Hence it now suffices to prove that an arbitrary vector field along c is a
Jacobi field in S}l iff it is a Jacobi field in Sy.

Thus consider an arbitrary vector field X along c¢. Note that apriori
“X (t)” stands for different things in S and Sd since it is defined in terms of
the Levi-Civita connection. However in local coordlnates the expression for
X(t (t) only involves the Christoffel symbols evaluated at points along c. and
we know from part (a) that these agree for S¢ and Sf (since f € Fo C Fy).

Hence “X(t)” means the same thing in S¢ and S?, for any vector field X

along c. Repeated use of this fact implies that also X (¢) means the same
thing in S¢ and S%, for any vector field X along c.

Recall that by definition, X is a Jacobi field iff “X + R(X,¢)e = 07
hence it now only remains to prove that “R(X,¢)¢” stands for the same
thing in S and S?. However, if (U,x) is an arbitrary chart on M, and

= {t € [0,7] : ¢(t) € U}, and if X is represented by the functions
al,...,a% € C®(J) (viz., X (t) = a/ (t) - (%)C(t), Vt € J), then

ROEO.E0)6(0) = B (elt) -0 00 0) () o e s

8:Ek c
Hence it suffices to prove that “R;“Zm( (t))” is the same for S¢ and S}l, for
all t € J. In view of the formula
ory.  ory
szm = a;j % :n + I Fl — anlféj (valid in all U),

oz’
at every point c(t), t € J (and for all m,j,k‘,z € {1,...,d}). For anj this

it suffices to prove that ‘Tk 7 and “2; Fk ” are the same for S and S?,

53ndeed, let (U,z) be an arbitrary chart on M and set J := {t € [0,7] : ¢(t) € U};
then there exist unique functions a’,...,a? € C°°(J) such that

: 8
X(t) = d’ (1) - (%)Cm, vt e .

Then if I'}, € C*(z(U)) are the Christoffel symbols for the Levi-Civita connection, we
have

X() = Ve X0 = (4'0) + YO O Tue®) () 0 WEES

Cf. Lecture # 9, p. 8.
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was proved in the solution to part (a). In order to prove it also for the
derivative a(zi anj”, we see from the formula (223]) that it suffices to prove
that g;;(z) and all its first and second derivatives “are the same” for S¢ and
S?, at every point ¢(t) (¢ € J), and also that the corresponding thing holds

for g (z) and all its first derivatives. We already know this fact for g;;(z)
and g% (z) themselves, and also for all the first derivatives of g;;(); cf. part
(a). Thus, in the notation from the solution to part (a), what remains to
prove is that, for any k,4,1,7 € {1,...,d},

O gy _ 9 u
(224) 9k () = axkh (z)
and also
0? 0?
(225) SrigaR (@) = 5oa g hi()

for all x along c. Note that hi(z) = f(x)~! - ¢g'(z) throughout z(U), and
also that for every z along ¢ we have f(z)~! = 1 and 2 (f(x)™!) =

Ok
—f (x)_Q% () = 0; with these observations, (224]) follows in the same
way as (222). On the other hand, (225]) follows from
0? 0? 0 0
Wﬂjl(fﬂ) = (Wf(fﬂ)) - g5u(@) + (gf(fﬂ)) : 8—%9jl(517)

2
+<% (117)) : aigjl(x) + f(z) - %gjl(ﬂj)a

XLy
and the fact that if x lies on ¢ then f(z) =1 and _ax?;zkf(x) _ 8?% (z) =
a%kf(l’) =0 (since f € F3). Done! 0

(c). Take t; € [0, 7] so that g := ¢(t1) lies in U. Then also ¢(t) € U for
all ¢ in some neighborhood of ¢; in [0, 7]. Hence we may assume from start
that ¢; € (0,7). Now take r > 0 so small that B,(r) C U, where By(r) is
the open ball in ij of radius r about the point ¢. Let ¢; : [0, 7] — S? be any
pw C™ curve with ¢1(0) = ¢(0) and ¢;(7) = c(n) and df(ci(t),c(t)) < r,
Vt € [0,7]. We then claim that Lf(c1) > Ly(c) with equality only if ¢; is
a reparametrization of c¢. Here and in the following we write dy and Ly for
the metric and length of curves in ij, and we will write d and L for the

corresponding things in S%.

Note that [v,w] > (v,w) for all p € S, v,w € T,S% since f > 1 every-
where. Hence

220) Lyter) = [ Vel [ Vaw.am) i - i)

> L(c) = Ly(c),
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where L(c;) > L(c) holds since we know that ¢ is a distance minimizing
geodesic in S¢, and L(c) = Ly(c) holds since f = 1 along c. Hence we have
proved the desired inequality, Lf(c1) > L¢(c), and it only remains to prove
the statement about when equality holds.

Thus assume Ly(c1) = Ly(c). Then equality must hold in both “>” in
[@26). The fact that equality holds in the second “>” in (220) implies that
c1 is a geodesic in S?, up to reparametrization (cf. Problem 24)). However we
know that the geodesics in S¢ are exactly the (pieces of) great circles in S%;
hence we conclude that ¢; is an arc of a great circle between the antipodal
points ¢(0) and c(m). If this great circle is not equal to (the image of) ¢
itself then c1(t) ¢ c([0,]) for all ¢t € (0,7). In particular ¢i(t1) ¢ ¢([0, 7]).
But we have ds(ci(t1),c(t1)) < r by assumption, i.e. ¢1(t1) € By(r). Hence
c1(t1) € U\ ¢([0,7]), and therefore f(ci(t1)) < 1. This implies that

[€1(2), é1(B)] > (er(t), éa(t))
for all ¢ in some neighborhood of ¢;, and therefore the first “>" in (220))
must be a strict inequality, contradicting L¢(c1) = Lf(c)! Hence the great
circle ¢1 ([0, w]) must be equal to ¢([0, 7]), i.e. ¢1 is a reparametrization of ¢,
qed. O

(d). Take t; € (0,7) and 7 as in part (c). Let ¢; : [0, 7] — S? be any great
circle from ¢(0) to ¢(m), parametrized by arc length, not equal to c itself and
satisfying ds(ci(t1),c(t1)) < r. We will then prove that L¢(ci) < L¢(c).
Since such curves c; can be chosen with supe(o » df(c1(t), c(t)) arbitrarily
smallP] this will complete the proof that ¢ is not a local minimum for L in
S? among pw C* curves with fixed endpoints (in fact it even follows that
there exists a proper variation ¢(t, s) of ¢ such that L(cs) < L(c) for all s # 0
near 0).

We have:
Lite) = [ VE@a@ld < [ Vamamd- L) ==

= L(c) = Ly(c).
The “<” in the above computation holds since f < 1 throughout S¢ and
since by an argument as in part (c) we have

[e1(2), &1 (0)] < (e (8), e (D))
for all ¢ in some neighborhood of t;. Hence we have proved L¢(c1) < Ly(c),
as desired!

54Indeed, note that ds(p,q) < (supge vf) - d(p,q), Vp,q € S%, and we can make
SUP;e(0,-1 d(c1(t), c(t)) arbitrarily small.
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Problem (Cf. Cheeger & Ebin [2, Cor. 1.30].)

In view of the definition of the length of a curve in a Riemannian manifold,
and the fact that %(expp(c(t))) = d(exp, ) (¢(t)) (and similarly for exp,, ),
it suffices to prove that

|’d(epr)c(t)(é(t))|’ > “d(eprg)c(t)(é(t))|’7 vt e [a7 b]
(Here in the left hand side || - || is the norm on Texpp(c(t))(M) coming from
the Riemannian metric on M, while in the right hand side || - || is the norm

on Toxppo(c(t))(MO) coming from the Riemannian metric on Mjy.) We will
prove the stronger statement that

(227)  ||d(exp,)s(v)]| > lld(exp,y)z(v)[l,  Vx € B,(0), v € T,R? = R%
If v = 0 then (227) is trivial. If z = 0 then d(exp,), is the identity
map on T,(M) = R? = Ty(R%), and similarly for d(exp,, )z, and there-

fore (227) holds with equality for all v € RY. From now on we assume both
v # 0 and z # 0. Let us decompose v as v = u + w where u € Rz and

w-z =0. (Thus u = % -x.) Then by Gauss’ Lemma (= Cor. 2 in Lec-
ture #17), d(exp, ) (u) and d(exp,)z(w) are orthogonal in Ty, (o) (M), and
|d(exp,)z(u)]| = |lull (the standard length of u as a vector in R?); hence

(228) [[d(expy)z(v)]| = \/HUH2 + [[d(exp)a (w)]*.

The analogous formula holds for ||d(exp,, ).(v)||, and hence, in order to prove
[227), it suffices to prove the corresponding inequality with w in place of v.
In other words, it suffices to prove (227]) under the extra assumption that
v-x = 0. We impose this assumption from now on.

Set

&= |z||tz and b = ||z o.

Let v : [0,[|z]]] = M be the geodesic y(t) = exp,(tZ); note that v is
parametrized by arc length, i.e. ||¥(t)|| = 1 for all ¢, since ||z|| = 1. Set
J(t) := (dexp,) (t0) for t € [0, ||z|].

Then by Corollary 1 (and Lemma 1) in Lecture #17, J is a Jacobi field
along ~ with J(0) = 0, J(0) = . Note that J*"(0) = 0, and J*"(0) = 0
since -2 =0, ie. (0,2) =01in T,M. Also J*" is a Jacobi field along ~ by
Lemma 3 in Lecture #17; hence J*" = 0 by Lemma 1 in Lecture #17.

Similarly if we also set yo(t) = exp,, (t&) and
Jo(t) := (dexpyy )iz (t0)  for t € [0, [|]]

then o is a geodesic in My and Jp is a Jacobi field along 7o with Jy(0) = 0,
Jo(0) = 9 and J§" = 0.
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Now let X1i,..., X4 be parallel vector fields along ~y which form an ON-
basis in T, )(Mop) (and hence in each tangent space T’ (Mp)), and which
are chosen so that X;(0) = 49(0) (thus X;(t) = 4o(t) for all ¢ € [0,1]) and

0=k - X5(0) for some k>0
(recall that we assume v # 0; thus © # 0). Then by pp. 5-6 in Lecture #17,
Jo(t) = k- su(t) - Xo(t), Vi e[0,]lx]l],
where
2 sin (/%) (n>0)
su(t) =t (n=0)
|| 72 sinh(|u['28) (> 0).
Recall that we are assuming that exp,,, restricted to B,(0) is a diffeomor-
phism. This implies that (dexp,, ):z is a linear bijection for each ¢ € [0, |z|[],
and in particular Jy(t) # 0 for all ¢ € [0, ||z||]. This implies that s,(t) > 0

for all t € (0,||z||]. Now the Rauch Comparison Theorem (Theorem 1 in
Lecture #19) applies to our situation, with

Su=1T110) - sp = k- 5,
(indeed we have ||.J]|'(0) = ||J(0)|| = ||9]| since J(0) = 0), and that theorem
implies
IO = fu®) = [[Jo@®I, vt € [0, [|z]]].
Taking t = ||z|| in the last inequality, we conclude that ([227]) holds! O
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Problem

Assume that 7 € (a,b) and that ¢(7) is a focal point of v along c. Let X
be a nontrivial Jacobi field along ¢ satisfying X (7) = 0 and

(229) X(a) € Span(%(0)) and (X (a),5(0)) =0 in Tiq) (M).

It follows that X' (a) = 0 (since (¢(a),¥(0)) = 0) and X*¥1(7) = 0; hence
by Lemmata 2,3 in Lecture #17 we must have X' = 0. Define the pw C'™
vector field Y along ¢ by

X(t) if t
Y(t) = () if t€la,7]
0 if t € [r,b].
(Note in particular that Y is a well-defined and continuous function, since

X(7) =0.) We have:

INAET S :/ <<X,X> —(R(¢, X)X, c>> dt
T/d . .
:/ (dt(X X) — (X + R(X, c)c,X>> dt
= (X(7), X(1)) — {X(a), X(a)) = 0,
where the last equality holds since X (7) = 0 and because of (229).
Consider any Z € 1020 (viz., Z € To(TM) with Z(a) =0 = Z(b)). Write
Z! for the restriction of Z to [a,7]. Then
I+ ZY+2)=IY,Y)+2- I(X", Z") + I(Z,Z)
=2 I(X17ZI) +I(Z7Z)7

and here

I(xt, 74 = /GT<<X, Z) — (R(¢, X)Z, c>> dt
_ / <%<X, 2) — (X + R(X, é)é, Z>> it

As in the proof of Theorem 1 in #18 we now fiz a vector field Z € V. which
is normal and which satisfies Z(7) = —X (1) Applying the above formulas
with nZ (n € R) in place of Z gives

IY +02,Y +0Z) = =2 | X(0)|* -0+ [(Z,Z) -
55T see that this can be done, note that — ( ) is normal against ¢(7); hence we can

simply set Z equal to the parallel transport of -X (T) along ¢, multiplied by some smooth
function f : [a,b] = R with f(7) =1 and f(a) = f(b) =



240 ANDREAS STROMBERGSSON

Here || X (7)|| > 0 since X is nontrivial and X (7) = 0 (cf. Lemma 1 in #17).
Hence for > 0 small enough we have

I(Y +0Z,)Y +1Z) < 0.

Fix such an 7. Note that Y 4+ nZ is a normal pw C* vector field along c,
and by Problem 8] there is a C*° vector field U along ¢ which also satisfies
I(U,U) < 0,as well as U(t) = Y () +nZ(t) for all ¢t near a or b; in particular
U(a) = X(a) € Span(%(0)) and U(b) = 0. Using the fact that Y + nZ is
normal along ¢ and inspecting the solution to Problem B8 we see that we
can also take U to be normal along c.

Take k € R so that U(a) = k- 4(0). Now by Problem B3|(b) there exists
a C° variation ¢ : [a,b] x (—&,e) — M of ¢ satisfying ¢ = U as well as
c(a,s) = vy(ks) and c(b,s) = ¢(b) for all s € (—¢,¢). Set L(s) := L(cs). By
Lemma 1 in #16 (and a remark on p. 3 of #16, and using (U(a), ¢(0)) =0
and U(b) = 0) we have L'(0) = 0. Next we apply Theorem 1 in #16. Note

that ¢* = ¢ since U is normal along ¢. Note also that V 2 d=0att=a

and at t = b, since c(a,s) = y(ks) (a geodesic) and c¢(b,s) = ¢(b) for all
s € (—e,e). Hence Theorem 1 in #16 says:

£(0) = ﬁI(U, 0.

Hence by what we proved above, L”(0) < 0. This means that after shrinking
e if necessary, we have L(s) < L(0) for all s € (—¢,¢) \ {0}. Done! O

(Remark: An alternative solution, which is perhaps a bit simpler and
even closer to the proof of Theorem 1 in #18, is to construct the vector field
U without insisting that U is normal — but with all the other properties
required above. Then we use Theorem 1 in #16 to deduce E”(0) < 0
in place of L”(0) = 0. We also have E’(0) = 0; and then the argument
in the notes for #18 applies and lets us conclude what we want, i.e. that
L(s) < L(0) for all s # 0 sufficiently near 0.)
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Problem See Lee, [14) Lemma 11.6].
Problem (We follow the proof of [14, Theorem 11.12].)
Let the constant sectional curvature of M be p € R.

Let us first assume p < 0. If p = 0 then set H := R™; if p < 0 then
set H = H™(|p|), i.e. hyperbolic n-space scaled to have constant curvature
pY Fix any point p € M. By the Cartan-Hadamard Theorem (=Theorem
2 in Lecture #19), exp,, : T,M — M is a surjective diffeomorphism. Hence
if we fix any identification of T),M with R™ respecting the inner product,
then the C* chart (M, exp, 1) give normal coordinates on all M with center
p. Similarly, for any fixed point ¢ € H, (H, exp;l) give normal coordinates
on all H with center ¢. (Here exp, is the exponential map from R" =
T,H to H.) Now by Problem [(8] since M and H have the same constant
curvature p everywhere, the two C* functions R"™ — M,,(R) which give the
Riemannian metric of M wrt. (M, exp, 1) and the Riemannian metric of H
wrt. (H, equ_l), respectively, are equal; indeed this function R™ — M, (R) is
given explicitly in Problem [78l Hence the map exp, oequ_1 is an isometry
of H onto M, and we are done!

Next assume p > 0. Let S c R"*! be the n-dimensional sphere with
radius r := p~'/2 about the origin, with its standard Riemannian metric.
S has constant sectional curvature p. For any q € S we know that exp, :
T,S — S restricted to B, (0) C TS is a diffeomorphism onto S\ {—g¢};
hence the chart (S\ {—¢},exp, ') give normal coordinates on S with center
q. Also for any p € M it follows from Cor. 1 in #19 that exp, restricted
to Brr(0) C T,M has everywhere non-singular differential, and hence is a
local diffeomorphism (by the Inverse Function Theorem). Hence the ball
Br(0) C T,M can be endowed with a unique Riemannian metric M such
that exp, : Br-(0) — M is a local isometry (cf. Problem [I8). Note that
Br(0) with the Riemannian metric M has constant sectional curvature = p,
since M has so. We fix identifications 7,5 = R" and T, M = R" respecting
the inner products. Note that then (Bg.(0),I) (where I is the identity
map) form normal coordinates on Bg-(0) wrt the metric M, since for any
unit vector v € R™ the curve ¢ : (—7nr, mr) — By (0), c(t) = tv, is a geodesic.
Hence the metric M is explicitly given in by the formula in Problem [78 On
the other hand the expression for the metric on S wrt (S \ {—g¢},exp,?)
must be given by the same formula. Hence the map

o -1
P := exp, oexp,
from S\ {—q} to M is a local isometry.
56We obtain H™(|p|) by replacing the Riemannian metric (-,-) on the standard hyper-

bolic n-space, H", by the Riemannian metric [-,-] := |p|~'(-,-). Cf. Problem [f0l Note
that there’s a misprint in Jost, [12} p. 228 (line -1)]; his “p” should be “p~*”.
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Next fix any ¢ € S\ {¢, —¢} and set p’ := ®(¢') € M. Then by repeating
the above discussion we obtain a local isometry

,_ -1
(230) ® := exp, oexp,,

from S\ {—¢'} to M with ®(¢’) = p. Note that this ® depends on which
identifications TS = R"™ and T,y M = R" we choose; more to the point
what matters is how TS gets identified with T}y M, since this is what is
needed to make unique sense of (230). Any identification respecting the
respective Riemannian scalar products on TiS and T,y M is ok. Let us
choose the identification of T;yS and T,y M to be given by d®, : Ty/S —
T,y M; this is indeed a linear bijection respecting the respective Riemannian
scalar_products, since @ is a local isometry. Having made this choice, our
map P satisfies

ddy = dd,,

since (dexp,)o : TyM = Ty(TyM) — TyM is the identity map, and
similarly for (dexp, )o. Hence by the following lemma, we actually have

(231) Pis\(—g,—¢'} = Pis\{~q—¢'}-

Lemma 9. Let N and N be Riemannian manifolds and let ¢, : N — N
be local isometries. Suppose that for some point p € N we have ¢(p) = ¢ (p)
and dyp, = dip,. Then ¢ = 1.

Proof. First assume that ¢ € N is such that there exists a geodesic from p to
q, say c(t) = exp,(tv), t € [0, 77, for some v € T,(M). (Thus exp,(Tv) = q.)
Then since ¢ and 1 are local isometries, both ¢ o ¢ and ¢ o ¢ are geodesics
in N. These two geodesics have ¢ o ¢(0) = p(p) = 1(p) = ¥ o ¢(0) and

(9 0¢)(0) = (dipp)(¢(0)) = (dipp)(¢(0)) = (Y 0 ¢) (0);
hence by uniqueness of geodesics, p o c(t) = ¢ oc(t) for all t € [0,T], and in
particular

o(q) = poc(T) =1 oc(T)=1v(q)

It follows from the above that if U is any open subset of N such that
every point ¢ € U can be reached by a geodesic from p, then ¢y = ¢y

Now let ¢ be an arbitrary point in N. By Problem [ there is a curve
¢:[0,1] = M with ¢(0) = p, ¢(1) = ¢. Consider the set

Fi={te0.1] : ple(t) = w(e(t) and deyg) = diy).

This is a closed subset of [0, 1], since ¢, v, dp, dy) are all continuous. Also
0 € F, since ¢(p) = ¢(p) and dy, = dip, by assumption. Let us prove that F'
is also an open subset of [0, 1]. Thus take any ¢t € F'. Then ¢(c(t)) = ¥(c(t))
and dy.(y) = dip.(;). By Theorem 3 in #4 there exists an open neighborhood
U of ¢(t) in N such that every point in U can be reached by a geodesic from
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¢(t). Now by the above argument applied to the point ¢(t) in place of p,
¢ = Yy, and hence (q) = ¥(q) and dp, = dip, for all ¢ € U. Hence F
contains the set {t’ € [0,1] : ¢(t') € U}, and this is an open neighborhood
of t in [0,1]. Since every point ¢ € F has such an open neighborhood, it
follows that F is open in [0,1]. Hence F' is connected, being both open and
closed. This together with 0 € F' implies F' = [0,1]. In particular 1 € F,
and thus ¢(q) = 1(q). Since ¢ was arbitrary, this completes the proof that

=Y. (]

Continuing with our proof of the Killing-Hopf Theorem, we have now
proved (231]) and this means that ® and ® together define a C°*° map ¥
from the whole of S to M, and this map ¥ is a local isometry since ¢ and
P are.

Lemma 10. Suppose that f is a local diffeomorphism from a C'°° manifold
N1 to a C°° manifold No. Assume that Ny is compact. Then f is a covering
map.

Proof. Since Ny is compact and f is continuous, f(N7) is a compact subset
of Ny. In particular f(Ni) is a closed subset of No. But f(V) is also an
open subset of Ny since f, being a local diffeomorphism, is an open map.
Hence f(N1) (which is of course non-empty) is a connected component of
Ny, i.e. f(IN1) = No. Hence we have proved that f is surjective (and also
that Ny is compact).

Now let p be an arbitrary point in No. Then f~1(p) is a closed subset
of N1, and hence compact, since Ny is compact. Furthermore f~!(p) is a
discrete subset of Ny, since f is a local diffeomorphism. (Indeed, for any
q € f~Y(p) there is an open set U C N; with ¢ € U such that Jiv is a
diffeomorphism; then U N f~1(p) = f|_Ul (p) = {q}, and this says that {q} is
an open subset of f~!(p) when f~!(p) is endowed with the relative topology
as a subset of Ni. Hence f~!(p) with this topology is discrete.) Hence
f~1(p), being both compact and discrete, is finite. Note that f~!(p) # 0
since f is surjective. Let us write f~1(p) = {q1,...,qm} (With q1,...,qm
pairwise distinct).

Now since f is a local diffeomorphism, there exist open subsets U, ..., U,, C
Ny such that ¢; € U; and f‘Uj is a diffeomorphism onto an open subset
of Ny, for each j. Also, since Ny is Hausdorff, there exist open subsets
Ui,..., Uy, C Ny such that ¢; € U] for all j and U/ N U} = 0 for all i # j.
Set Uj := U; NUj for j = 1,...,m. Then for each j, U/ is open, ¢; € U/
and f|U]// is a diffeomorphism onto an open subset of Ny, and furthermore
the sets U7, ..., Uy, are pairwise disjoint. Set V := N1, f(U]'). This is an
open subset of Ny containing p. Let V. =Vy D V3 D Vo D -+ be a sequence
of open subsets of V' which form a neighborhood basis for the point p. (Viz.,
p € V, for all k, and for every open set V' containing p there is some k
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such that Vj, C V’. For example we can take Vi, Vs,... to be a decreasing
sequence of open balls around p with radius tending to zero, with respect
to any fixed chart containing p.) Assume that f~1(V}) ¢ UL, Uy for every
k > 1. This means that for every k > 1 there exists some point pj € Ny,
pj, & UJL, U, such that f(p,) € Vi. Since Ny is compact, after passing to a
subsequence we may assume that p) tends to a limit point p’ € Ny as k — oo.
Then f(p}) = f(p) in No, and f(p}) € Vi, and by our choice of Vi, V5, ...
this implies that f(p’) = p. On the other hand p' ¢ {q1,...,qmn}, since for
each j we have ¢; € U with U} open, and p; ¢ U;. This is a contradiction
against f~'(p) = {q1,-..,¢m}. Hence we must have f~1(V;) C UL, U/
for some k& > 1. For this k, f~'(V}4) equals the disjoint union of the sets
W; = U]’-’ﬂf_l(Vk) = f‘z]},(Vk), j=1,...,m, and fiy, is a diffeomorphism
of W; onto V}, (since f‘UJ/_/ is a diffeomorphism and Vi C f(U}')). The fact

that every point p € Ns has such an open neighborhood Vi, proves that f is
a covering map. O

The lemma applies to our situation, and gives that ¥ : § — M is a
covering map. Hence since we are assuming that M is simply connected, ¥
must be a homeomorphism, hence an isometry of S onto M. OO
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