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Preface

The present lecture notes contain material for a 5 credit points course in Elemen-
tary Number Theory. The formal prerequisites for the material are minimal;
in particular no previous course in abstract algebra is required. High school
mathematics, familiarity with proofs by mathematical induction and with the
basic properties of limits of sequences of real numbers (in particular the fact
that a bounded monotone sequence of real numbers is convergent) are all that
is needed. (The discussion of the prime number counting function π(x) in sec-
tion 2 requires more calculus skills, but this part could be skipped without any
loss of continuity.)
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improvements.

Uppsala, 2002
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1 Divisibility

Definition 1.1 An integer b is divisible by an integer a, written a | b, if there is
an integer x such that b = ax. We also say that b is a multiple of a, and that a
is a divisor of b.

Any integer a has ±1 and ±a as divisors. These divisors are called trivial.

The proof of the following simple properties are left to the reader.

Proposition 1.2 Let a, b and c be integers.

(i) If a | b and b 6= 0, then |a| ≤ |b|.
(ii) If a | b, then a | bc.

(iii) If a | b and b | c, then a | c.
(iv) If c | a and c | b, then c | (ax+ by) for all integers x and y.

(v) If a | b and b | a, then a = ±b.
(vi) Assume c 6= 0. Then a | b if and only if ac | bc.

Definition 1.3 Every nonzero integer a has finitely many divisors. Conse-
quently, any two integers a and b, not both = 0, have finitely many common
divisors. The greatest of these is called the greatest common divisor and it is
denoted by (a, b).

In order not to have to avoid the special case a = b = 0, we also define (0, 0)
as the number 0. (One good reason for this choice will appear in Theorem 1.9.)

By definition, if at least one of the numbers a and b is nonzero, then

d = (a, b) ⇔ d | a ∧ d | b ∧ (x | a ∧ x | b ⇒ x ≤ d).

Obviously, (b, a) = (a, b) = (−a, b) = (a,−b) = (−a,−b), so when calculat-
ing the greatest common divisor of two numbers we may replace them by their
absolute values.

Example 1 The number 102 has the positive divisors 1, 2, 3, 6, 17, 34, 51, 102,
and the number −170 has the positive divisors 1, 2, 5, 10, 17, 34, 85, and 170.
The common positive divisors are 1, 2, 17, and 34. Hence (102,−170) = 34.
To determine the greatest common divisor by finding all common divisors is
obviously not a feasible method if the given numbers are large.

Proposition 1.4 For all integers n, (a, b) = (a− nb, b).

Proof. Write r = a − nb; then a = r + nb. Assuming c | b we now see from
Proposition 1.2 (iv) that c | a if and only if c | r. Consequently, the pairs a,
b and a, r have the same common divisors. In particular, they have the same
greatest common divisor.

We can extend the definition of greatest common divisor in a straightforward
way. Given n integers a1, a2, . . . , an not all zero, we define their greatest common
divisor (a1, a2, . . . , an) to be the greatest integer which divides all the given
numbers. Finally, we define (0, 0, . . . , 0) = 0.

If (a, b) = 1 we say that a and b are relatively prime. More generally, the
integers a1, a2, . . . , an are called relatively prime if (a1, a2, . . . , an) = 1, and they
are called pairwise relatively prime if any two of them are relatively prime.
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Example 2 The numbers 4, 6, and 9 are relatively prime but not pairwise
relatively prime.

Theorem 1.5 (The Division Algorithm) Given integers a and b with a > 0 there
exist two unique integers q and r such that b = aq + r and 0 ≤ r < a.

The number q is called the quotient and r is called the (principal) remainder.
Obviously, q = [b/a] (= the greatest integer ≤ b/a).

Proof. Consider the arithmetic progression

. . . , b− 3a, b− 2a, b− a, b, b+ a, b+ 2a, b+ 3a, . . .

This sequence contains a smallest non-negative number r. By definition, r =
b− qa for some integer q, and clearly 0 ≤ r < a. This proves the existence.

To prove uniqueness, suppose we also have b = aq′ + r′ with 0 ≤ r′ < a.
Then

r − r′ = a(q′ − q) and − a < r − r′ < a.

Thus a | (r − r′), and it follows that r − r′ = 0 or |a| ≤ |r − r′|. Since the
latter case is excluded, we conclude that r − r′ = 0, that is r = r′. Therefore
a(q − q′) = 0, which implies q − q′ = 0, i.e. q = q′.

More generally, we say that r′ is a remainder when b is divided by a whenever
there is an integer q′ such that b = aq′+r′ without any further restriction on r′.
If r′ is an arbitrary remainder and r is the principal remainder then obviously
r′ − r = na for some integer n, and conversely. For the principal remainder r
we either have 0 ≤ r ≤ a/2 or a/2 < r < a, and in the latter case the remainder
r′ = r− a satisfies the inequality −a/2 < r′ < 0. Hence, there is always a uniqe
remainder r satisfying the inequality −a/2 < r ≤ a/2. This is the remainder of
least absolute value. We thus have the following division algorithm, which for
some purposes is more efficient than the ordinary one.

Theorem 1.5’ (Modified Division Algorithm) Given integers a and b with a > 0
there exist two unique integers q and r such that b = aq+r and −a/2 < r ≤ a/2.

Example 3 37 = 2 · 13 + 11 = 3 · 13− 2. 11 is the principal remainder and −2
is the remainder of least absolute value.

We now turn to an important class of subsets of Z.

Definition 1.6 A non-empty set A of integers is called an ideal if it is closed
under subtraction and under multiplication by arbitrary integers, that is if it
has the following two properties:

(i) x, y ∈ A⇒ x− y ∈ A
(ii) x ∈ A, n ∈ Z⇒ nx ∈ A.

Example 4 The sets {0}, Z, and {0,±3,±6,±9, . . . } are ideals. More gener-
ally, given any integer g, the set A = {ng | n ∈ Z} consisting of all multiples of
g is an ideal. This ideal is said to be generated by the number g, and it will be
denoted by gZ. Thus, using this notation, 3Z = {0,±3,±6,±9, . . . }.

Note that the trivial ideal {0} is generated by 0 and that the whole set Z is
generated by 1.
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To show that a subset A of Z is an ideal it suffices to verify that (i) holds,
because we have the following result.

Proposition 1.7 A non-empty subset A of Z is an ideal if x, y ∈ A⇒ x−y ∈ A.

Proof. Suppose A is a non-empty subset with property (i) of Definition 1.6, and
let x0 be an element of A. Since 0 = x0 − x0 we first note that 0 ∈ A. Then we
see that x ∈ A⇒ −x = 0− x ∈ A and that

x, y ∈ A⇒ x,−y ∈ A⇒ x+ y ∈ A,

i.e. the set A is closed under addition.
Next assume that the implication x ∈ A ⇒ nx ∈ A holds for a certain

nonnegative integer n (this is certainly true for n = 0). Then we also have
x ∈ A ⇒ (n + 1)x = nx + x ∈ A. Hence, it follows by induction that the
implication x ∈ A ⇒ nx ∈ A holds for each nonnegative integer n. Finally, if
x ∈ A and n is a negative integer, then −n is positive, so it follows first that
(−n)x ∈ A and then that nx = −(−n)x ∈ A. This shows that property (ii) of
Definition 1.6 holds for A.

Remark. The ideal concept is a ring concept. A ring is a set with two operations,

addition and multiplication, satisfying certain natural axioms. The integers Z form a

ring, and another important example is given by the set of polynomials with ordinary

polynomial addition and multiplication as operations. For ideals in general rings,

property (ii) does not follow from property (i). Thus the ring Z is special in that

respect.

The ideals that are listed in Example 4 are all generated by a single number
g. We next show that all ideals of Z have this property.

Theorem 1.8 Every ideal A is generated by a unique nonnegative number g,
that is A = gZ = {ng | n ∈ Z}. If A is not equal to the zero ideal {0}, then the
generator g is the smallest positive integer belonging to A.

Proof. The zero ideal is generated by 0, so assume that A contains some nonzero
integer x0. Since by (ii), A also contains the number −x0 (= (−1)x0), A cer-
tainly contains a positive integer. Let g be the least positive integer belonging
to A.

We will prove that A is generated by the number g. That ng belongs to A
for every integer n follows immediately from (ii), so we only have to prove that
there are no other numbers in A. Therefore, let b ∈ A and divide b by g. By
the division algorithm, there exist integers q and r with 0 ≤ r < g such that
b− qg = r. Since qg ∈ A it follows from (i) that r ∈ A, and since g is the least
positive integer in A, we conclude that r = 0. Hence b = qg as claimed.

We will now use Theorem 1.8 to characterize the greatest common divisor.
Let a and b be two integers and consider the set

A = {ax+ by | x, y ∈ Z}.

The set A is clearly closed under subtraction, i.e. A is an ideal, and by the
previous theorem, A is generated by a unique nonnegative number g. This
number has the following two properties:
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(i) There exist integers x0, y0 such that ax0 + by0 = g

(ii) For all integers x and y there exists an integer n such that ax+ by = ng.

Taking x = 1 and y = 0 in (ii) we see that a = ng for some integer n and
hence g | a. Similarly, g | b, so g is a common divisor of a and b. Using (i), we
see that every common divisor of a and b is a divisor of g. In particular, the
greatest common divisor d = (a, b) divides g and hence d ≤ g. It follows that g
is the greatest common divisor, i.e. g = (a, b).

This is also true in the trivial case a = b = 0, for then g = 0 and we have
defined (0, 0) to be the number 0.

Our discussion is summarized in the following theorem.

Theorem 1.9 The ideal {ax+by | x, y ∈ Z} is generated by the greatest common
divisor (a, b), i.e.

(i) There exist integers x0 and y0 such that ax0 + by0 = (a, b).

(ii) ax+ by is a multiple of (a, b) for all integers x and y.

The proof of Theorem 1.9 is easily extended to cover the case of n integers
a1, a2, . . . , an instead of two integers a and b. The general result reads as follows.

Theorem 1.9’ Let a1, a2, . . . , an be any integers. The ideal

{a1x1 + a2x2 + · · ·+ anxn | x1, x2, . . . , xn ∈ Z}
is generated by the greatest common divisor d = (a1, a2, . . . , an), i.e.

(i) There exist integers y1, y2, . . . , yn such that a1y1 + a2y2 + · · ·+ anyn = d.

(ii) a1x1 + a2x2 + · · ·+ anxn is a multiple of d for all integers x1, x2, . . . , xn.

Corollary 1.10 If c | a and c | b, then c | (a, b), i.e. every common divisor of a
and b is a divisor of the greatest common divisor (a, b).

Proof. By Theorem 1.9 (i) we have ax0 + by0 = (a, b), and the conclusion of the
corollary now follows from Proposition 1.2 (iv).

Corollary 1.11 (i) (ca, cb) = c(a, b) for every nonnegative integer c.

(ii) If d = (a, b) 6= 0, then

(
a

d
,
b

d

)
= 1.

Proof. (i) Write d = (a, b). By Theorem 1.9, the ideal {ax + by | x, y ∈ Z}
is generated by d. Now cax + cby = c(ax + by), so it follows that the ideal
{cax + cby | x, y ∈ Z} is generated by cd. But the latter ideal is according
to Theorem 1.9 also generated by the number (ca, cb). Since the nonnegative
generator is unique, we conclude that (ca, cb) = cd.

(ii) By (i), d

(
a

d
,
b

d

)
= (a, b) = d. The result now follows upon division

by d.

Theorem 1.12 If (a, b) = 1 and a | bc, then a | c.

Proof. Assume (a, b) = 1 and a | bc. Since clearly a | ac, it follows that a is a
common divisor of ac and bc. By Corollary 1.11, (ac, bc) = c(a, b) = c, and the
conclusion a | c now follows from Corollary 1.10.

Theorem 1.13 If a | c, b | c and (a, b) = 1, then ab | c.
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Proof. By assumption, c = am for some integer m. Since b | am and (b, a) = 1,
we conclude from Theorem 1.12 that b | m, that is m = bn for some integer n.
Hence, c = abn, i.e. ab | c.

Theorem 1.14 If (a, b) = (a, c) = 1, then (a, bc) = 1.

Proof. By Theorem 1.9 there are integers x, y and z, w such that ax + by = 1
and az+cw = 1. Then by ·cw = (1−ax)(1−az) = 1−an, where n = x+z−axz
is an integer. Hence, an + bcyw = 1, and we conclude from Theorem 1.9 that
(a, bc) = 1.

We now turn to the problem of efficiently calculating the greatest common
divisor of two integers a and b. We can of course assume that both are non-
negative and that a ≥ b.

If b = 0 then (a, b) = (a, 0) = a and there is nothing more to do. Otherwise,
we use Proposition 1.4 to see that (a, b) = (a − nb, b) for all integers n. In
particular, using the ordinary division algoritm a = qb + r with 0 ≤ r < b we
obtain

(1) (a, b) = (a− qb, b) = (r, b) = (b, r).

If r = 0, then we are finished, because (a, b) = (b, 0) = b. Otherwise, (1) allows
us to replace the pair (a, b) with the smaller pair (b, r), where r < b < a, and
we can repeat the whole procedure. Since at each step we get a new pair with
smaller integers, we must finally reach a stage where one of the numbers is 0.

The whole procedure may be summarized as follows.

The Euclidean Algorithm
Let a and b be integers with a ≥ b ≥ 0. Put a0 = a and b0 = b.

(i) If b0 = 0, then (a, b) = a0.

(ii) Otherwise, using the division algorithm calculate q and r such that a0 =
qb0 + r with 0 ≤ r < b0.

(iii) Put a0 = b0 and b0 = r and go to (i).

The algorithm must terminate, because the successive b0:s form a decreasing
sequence of non-negative integers.

Instead of using the principal remainder, we could also use the remainder of
least absolute value at each step. In general, this procedure will require fewer
iterations. This modified algorithm runs as follows:

The Euclidean Algorithm with least absolute remainder
Let a and b be integers with a ≥ b ≥ 0. Put a0 = a and b0 = b.

(i) If b0 = 0, then (a, b) = a0.

(ii) Otherwise, using the division algorithm calculate q and r such that a0 =
qb0 + r with |r| ≤ b0/2.

(iii) Put a0 = b0 and b0 = |r| and go to (i).

In (iii) we use the fact that (a0, b0) = (a0,−b0) so it does not matter that
we use |r| in order to get a nonnegative number b0. Again, the algorithm must
terminate because at each step the new b0 is at most half of the old one.
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Example 5 Let us calculate (247, 91). The ordinary division algorithm gives

247 = 2 · 91 + 65

91 = 1 · 65 + 26

65 = 2 · 26 + 13

26 = 2 · 13.

Hence (247, 91) = (91, 65) = (65, 26) = (26, 13) = (13, 0) = 13.
By instead using least absolute remainders, we obtain the following sequence

as a result of the division algorithm:

247 = 3 · 91− 26

91 = 3 · 26 + 13

26 = 2 · 13.

Hence (247, 91) = (91, 26) = (26, 13) = (13, 0) = 13.

By Theorem 1.9, we know that the linear equation

ax+ by = (a, b)

has at least one integer solution x0 and y0. (We will see later that there are
in fact infinitely many integer solutions.) As a by-product of the Euclidean
Algorithm we have an algorithm for finding such a solution. Denoting the
successive pairs (a0, b0) obtained during the process by (a0, b0), (a1, b1), (a2, b2),
. . . , (an, bn), with bn = 0, we have

a0 = a, b0 = b

ai = bi−1, bi = ai−1 − qibi−1 for suitable integers qi, i = 1, 2, . . . , n

an = (a, b).

It follows that each of the numbers ai and bi is a linear combination of the
previous ones ai−1 and bi−1 and hence ultimately a linear combination of a
and b, that is ai = xia + yib for suitable integers xi, yi, which can be found
by calculating “backwards”, and similarly for bi. In particular, this holds for
(a, b) = an.

Example 6 Going backwards in the calculations in Example 5, using the ab-
solute remainder variant, we find that

13 = 91− 3 · 26 = 91− 3 · (3 · 91− 247) = 3 · 247− 8 · 91.

Hence, the equation 247x + 91y = (247, 91) has x = 3, y = −8 as one of its
integer solutions.

The union I ∪ J of two ideals I = aZ and J = bZ in Z need not be an
ideal. In fact, the union is an ideal if and only if one of the two ideals I and
J is a subset of the other, i.e. if and only if one of the two generators a and
b is divisible by the other. However, there is always a smallest ideal which
contains the union I ∪ J , namely the ideal (a, b)Z = {ax+ by | x, y ∈ Z}. Thus,
the greatest common divisor (a, b) is (uniquely determined as) the non-negative
generator of the smallest ideal containing the union aZ ∪ bZ.
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On the other hand, it is completely obvious that the intersection I∩J of two
ideals I = aZ and J = bZ is an ideal. (Indeed, the intersection of any number
of ideals is an ideal.) By definition, an integer x belongs to this intersection if
and only if a|x and b|x, i.e. if and only if x is a common multiple of a and b.

Thus, the ideal aZ ∩ bZ coincides with the set of all common multiples of
the numbers a and b. This observation leads us to the following concept, which
is dual to the concept of greatest common divisor.

Definition 1.15 Let a and b be two integers. The nonnegative generator of
the ideal aZ ∩ bZ is called the least common multiple of the two numbers,
and it is denoted by [a, b]. More generally, given any sequence a1, a2, . . . , an of
integers, we define their least common multiple [a1, a2, . . . , an] to be the uniquely
determined nonnegative generator of the ideal a1Z ∩ a2Z ∩ · · · ∩ anZ.

Note that [a, b] = 0 if a = 0 or b = 0, because the intersection aZ ∩ bZ is
then equal to the trivial ideal {0}. If a and b are both nonzero, then aZ ∩ bZ
is a nontrivial ideal since it certainly contains the number ab. Thus, nontrivial
common multiples exist, and the least common multiple [a, b] is a positive integer
in that case.

Example 7 [30, 42]=210, because in the sequence 30, 60, 90, 120, 150, 180,
210, . . . of multiples of 30, the number 210 is the first one that is also a multiple
of 42.

Proposition 1.16 [ca, cb] = c[a, b] if c is a nonnegative number.

Proof. [ca, cb]Z = caZ ∩ cbZ = c(aZ ∩ bZ) = c[a, b]Z.

Proposition 1.17 Let a and b be nonnegative integers. Then [a, b] · (a, b) = ab.

Proof. If one of the two numbers equals zero, then [a, b] = ab = 0, wo we
may assume that a and b are both positive. Let d = (a, b). If d = 1, then
any common multiple of a and b must also by a multiple of ab, by Theorem
1.13, and it follows that ab must be the least common multiple of a and b, i.e.
ab = [a, b] = [a, b] · (a, b).

If d > 1, then
(a
d
,
b

d

)
= 1. According to the case just proved,

[a
d
,
b

d

]
=

a

d
· b
d

. Now multiply this equality by d2 and apply Propostion 1.16 to obtain

ab = d2
[a
d
,
b

d

]
= d · [a, b] = (a, b) · [a, b].

2 Prime Numbers

Definition 2.1 An integer > 1 is called a prime number or a prime if it has
only trivial divisors. An integer > 1 which is not a prime is called composite.

Thus, p > 1 is a prime number if and only if 1 < x < p⇒ x 6 | p.

Theorem 2.2 Let p be a prime number. If p | bc, then p | b or p | c.
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Proof. Assume that p | bc but p 6 | b. Since p has only trivial divisors, it follows
that (p, b) = 1. Hence p | c by Theorem 1.12.

Theorem 2.2 is easily extended to

Theorem 2.2’ Let p be a prime number. If p | b1b2 · · · bn, then p | bi for some
i.

Proof. By Theorem 2.2, p | b1b2 · · · bn ⇒ p | b1 ∨ p | b2 . . . bn. The result now
follows by induction.

Theorem 2.3 (The Fundamental Theorem of Arithmetic) Every integer n > 1
can be expressed as a product of primes in a unique way apart from the order of
the prime factors.

Proof. The existence of such a factorization is proved by induction. Assume
that every integer less than n can be written as a product of primes. If n is
a prime, then we have a factorization of n consisting of one prime factor. If n
is composite, than n = n1n2 with 1 < n1 < n and 1 < n2 < n, and it follows
from the induction hypothesis that each of n1 and n2 is a product of primes.
Therefore, n is also a product of primes.

Now suppose that there is an integer with to different factorizations. Then
there is a least such number n. Let n = p1p2 · · · pr = q1q2 · · · qs, where each pi
and qj is a prime and where the two factorizations are different. Since p1 divides
the product q1q2 · · · qs, it follows from Theorem 2.2′ that p1 divides one of the
prime numbers q1, . . . , qs. Renumbering these numbers, we may assume that
p1|q1, which of course means that p1 = q1. Dividing n by p1 we get a smaller
number

n

p1
= p2p3 · · · pr = q2q3 · · · qs

with two different prime factorizations, but this would contradict the assumption
that n is the smallest number with different factorizations.

If the prime factorizations of two given numbers are known, then we can
easily determine their greatest common divisor and least common multiple.

Proposition 2.4 Let a and b be two positive integers and write

a = pm1
1 pm2

2 · · · p
mk

k and b = pn1
1 pn2

2 · · · p
nk

k ,

where p1, p2, . . . , pk are different primes and m1, m2, . . . , mk and n1, n2, . . . , nk
are nonnegative integers. Put dj = min(mj , nj) and Dj = max(mj , nj); then

(a, b) = pd11 p
d2
2 · · · p

dk
k and [a, b] = pD1

1 pD2
2 · · · p

Dk

k .

Proof. Obvious.

Theorem 2.5 There exist infinitely many primes.

Proof. We will show that given any finite collection of primes p1, p2, . . . , pn there
is a prime q which does not belong to the collection. Let N = p1p2 · · · pn + 1.
By Theorem 2.3, N has a prime factor q (which could be N itself). Since
(N, pj) = (1, pj) = 1 for each j whereas (N, q) = q, it follows that q 6= pj for
each j.
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On the other hand, there are arbitrarily large gaps in the sequence of primes:

Proposition 2.6 For any natural number k there exist k consecutive composite
numbers.

Proof. Consider the numbers (k+1)!+2, (k+1)!+3, . . . , (k+1)!+(k+1); they
are composite, because they are divisible by 2, 3, . . . , k + 1, respectively.

Let π(x) denote the number of primes that are less than or equal to the real
number x. Thus

π(x) =



0 if x < 2

1 if 2 ≤ x < 3

2 if 3 ≤ x < 5
...

n if pn ≤ x < pn+1

where pn denotes the nth prime number.
We will give a crude estimate for π(x). To this end, we will need the following

inequality.

Lemma 2.7 Let x be a real number > 2. Then∑
p≤x

1

p
> ln lnx− 1.

Here, the sum is over all primes p satisfying p ≤ x.

Since ln lnx tends to ∞ with x it follows from the inequality above that the
sum

∑
1/p over all primes is infinite. This, of course, implies that there are

infinitely many primes. Thus, by proving Lemma 2.7 we will obtain a new proof
of Theorem 2.5.

Proof. Let p1, p2, . . . , pn denote all primes ≤ x, and put

N = {pk11 p
k2
2 · · · pknn | k1 ≥ 0, k2 ≥ 0, . . . , kn ≥ 0},

i.e. N consists of 1 and all positive integers whose prime factorization only uses
the primes p1, p2, . . . , pn.

Since the factorization of any number ≤ x only uses primes that are ≤ x,
the set N contains all of the numbers 1, 2, 3, . . . , [x] (= the greatest integer
≤ x). Consequently,

∑
n∈N

1

n
≥

[x]∑
n=1

1

n
≥
∫ [x]+1

1

dt

t
= ln([x] + 1) > lnx.

Now observe that∏
p≤x

(
1− 1

p

)−1
=
∏
p≤x

(
1 +

1

p
+

1

p2
+ · · ·+ 1

pk
+ · · ·

)
=
∑
n∈N

1

n
.
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Combining this with the previous inequality we obtain the inequality

∏
p≤x

(
1− 1

p

)−1
> lnx,

and, by taking the logarithm of both sides, the inequality

(1)
∑
p≤x

ln

(
1− 1

p

)−1
> ln lnx.

Now use the Maclaurin expansion of ln(1 + x) to get

− ln(1− x) = x+
x2

2
+
x3

3
+ · · · ≤ x+

x2

2
(1 + x+ x2 + . . . ) = x+

x2

2

(
1

1− x

)
for 0 ≤ x < 1. Since 1/(1−x) ≤ 2 when x ≤ 1

2 , we conclude that the inequality

ln(1− x)−1 = − ln(1− x) ≤ x+ x2

holds for x ≤ 1
2 . In particular, if p is a prime, then 1

p ≤
1
2 , and consequently,

ln(1− 1

p
)−1 ≤ 1

p
+

1

p2
.

By summing these inequalities for all primes p ≤ x and comparing with (1), we
obtain

(2)
∑
p≤x

1

p
+
∑
p≤x

1

p2
> ln lnx.

Here the sum
∑

1/p2 over all primes ≤ x can be estimated as follows

∑
p≤x

1

p2
≤
∞∑
n=2

1

n2
≤
∞∑
n=2

1

n(n− 1)
=

∞∑
n=2

(
1

n− 1
− 1

n

)
= 1,

and by combining this inequality with (2) we obtain the desired result∑
p≤x

1

p
> ln lnx− 1.

Lemma 2.8 ∑
p≤x

1

p
=
π(x)

x
+

∫ x

2

π(u)

u2
du.

Proof. Let p1 < p2 < · · · < pn denote the primes ≤ x. Then∫ x

2

π(u)

u2
du =

n−1∑
k=1

∫ pk+1

pk

π(u)

u2
du+

∫ x

pn

π(u)

u2
du

=

n−1∑
k=1

∫ pk+1

pk

k

u2
du+

∫ x

pn

n

u2
du
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=

n−1∑
k=1

k

(
1

pk
− 1

pk+1

)
+ n

(
1

pn
− 1

x

)

=

n−1∑
k=1

k

pk
−

n∑
k=2

k − 1

pk
+

n

pn
− n

x

=

n∑
k=1

1

pk
− π(x)

x
.

Theorem 2.9 For any ε > 0 and any real number ω, there exists a number
x > ω such that

π(x) > (1− ε) x

lnx
.

Remark. For those who know the definition of lim sup we can state Theorem 2.9 as

follows: lim supx→∞
π(x)
x/ ln x

≥ 1.

Proof. Assume the theorem to be false. Then there is an ε > 0 and a real
number ω such that π(x) ≤ (1− ε) x

ln x for all x > ω. But then∫ x

2

π(u)

u2
du =

∫ ω

2

π(u)

u2
du+

∫ x

ω

π(u)

u2
du ≤ C + (1− ε)

∫ x

ω

1

u lnu
du

= C + (1− ε)(ln lnx− ln lnω) = D + (1− ε)(ln lnx),

where C and D are constants (depending on ω). Since obviously π(x) < x, it
now follows from Lemma 2.8, that∑

p≤x

1

p
≤ (1− ε) ln lnx+ Constant.

This contradicts Lemma 2.7.

Theorem 2.9 can be sharpened considerably. The following result was con-
jectured by Gauss and proven by J. Hadamard and Ch. de la Vallée
Poussin in 1896 using advanced methods from the theory of functions of a
complex variable.

Theorem 2.10 (The Prime Number Theorem)

lim
x→∞

π(x)

x/ lnx
= 1.

The proof is too complicated to be given here.

We will now derive heuristically some conclusions from the Prime Number
Theorem. Firstly, it follows that π(x)/x < C/ lnx for some constant C, and
hence the ratio π(x)/x approaches 0 and the ratio (x − π(x))/x approaches 1
as x tends to infinity. Since n− π(n) is the number of composite numbers less
than or equal to n, the ratio (n−π(n))/n represents the proportion of composite
numbers among the first n integers. That this ratio tends to 1 means in a certain
sense that “almost all” positive integers are composite.

On the other hand, primes are not particularly scarce, because the logarithm
function grows very slowly. By the Prime Number Theorem we can use x/ lnx
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as an approximation of π(x). If x is a large number and y is small compared to
x then ln(x+ y) ≈ lnx, and hence

π(x+ y)− π(x) ≈ x+ y

ln(x+ y)
− x

lnx
≈ y

lnx
.

This means that in a relatively small interval of length y around the large number
x there are approximately y/ lnx primes, and we can expect to find a prime in
the interval if the length is about lnx. If the primes were randomly distributed
the probability of a large number x being prime would be approximately 1/ lnx.
Taking for example x = 10100 we have lnx ≈ 230. Thus, if we choose an integer
N “at random” in the neigborhood of 10100 the probability that N is prime is
roughly 1/230. Of course, we can raise this probability to 1/115 by avoiding
the even numbers, and if we make sure that N is not divisible by 2, 3, or 5,
the probability that N is prime grows to about 1/60. Thus, provided we use an
efficient primality test, we can produce a very large prime by first choosing a
number N at random not divisible by 2, 3, or 5 (and some other small primes)
and testing it for primality. If N turns out to be a prime, then we are happy,
otherwise we consider the next integer in the sequence N + 2, N + 4, N + 6,
. . . that is not divisible by 3 and 5 (and the other selected small primes) and
test this for primality. Because of the Prime Number Theorem we feel confident
that we will find a prime after not too many tries.

3 The Linear Diophantine Equation ax+by=c

Let a, b and c be integers and consider the equation

(1) ax+ by = c.

We are interested in integer solutions x and y, only.
From section 1 we already know a lot about the equation. By Theorem 1.9,

the set {ax + by | x, y ∈ Z} coincides with the set of all multiples n(a, b) of
the greatest common divisor of a and b. It follows that equation (1) is solvable
if and only if (a, b) | c. Moreover, the Euclidean algorithm provides us with
a method for finding a solution x0, y0 of the equation ax + by = (a, b), and
by multiplying this solution by c/(a, b) we will get a solution of the original
equation (1). What remains is to find the general solution given one particular
solution. The complete story is summarized in the following theorem.

Theorem 3.1 The equation ax + by = c has integer solutions if and only if
(a, b) | c. If x0, y0 is a solution, then all integer solutions are given by

x = x0 +
b

(a, b)
n, y = y0 −

a

(a, b)
n, n ∈ Z.

Proof. The numbers x and y defined above are integers, and one immediately
verifies that they satisfy the equation. To see that these are all solutions, assume
that x, y is an arbitrary integer solution. Then ax+ by = ax0 + by0. It follows
that a(x− x0) = b(y0 − y), and that

(2)
a

d
(x− x0) =

b

d
(y0 − y),
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where we have written d = (a, b) for short. Since
(
a
d ,

b
d

)
= 1, we conclude from

Theorem 1.12 that b
d is a divisor of x − x0, i.e. there exists an integer n such

that x − x0 = b
d n. By inserting this into (2) and simplifying, we also obtain

y − y0 = −ad n.

The case (a, b) = 1 is so important that it is worth stating separately.

Corollary 3.2 Suppose that (a, b) = 1. Then the linear equation ax+ by = c has
integer solutions for all integers c. If x0, y0 is a solution, then all solutions are
given by

x = x0 + bn, y = y0 − an, n ∈ Z.

According to Theorem 3.1, the distance between two consecutive x-solutions
is b/d and the distance between two consecutive y-solutions is a/d, where d =
(a, b). It follows that, provided the equation is solvable, there is a solution (x, y)
with 0 ≤ x ≤ b/d − 1. We can find this solution by successively trying x = 0,
x = 1, . . . , solving the equation for y until an integer value for y is found. Of
course, we can also solve the equation by looking for a solution y in the interval
0 ≤ y ≤ a/d − 1. Hence, we can easily solve the equation ax + by = c by trial
and error whenever at least one of the numbers a/d and b/d is small.

Example 1 Solve the equation

247x+ 91y = 39.

Solution 1: The equation is solvable, because (247, 91) = 13 and 13 | 39. Since
91
13 = 7 the equation has an integer solution with 0 ≤ x ≤ 6. Trying x = 0, 1,
2, we find that x = 2 gives the integer value y = −5. Therefore, the general
solution of the equation is x = 2 + 7n, y = −5− 19n.

Solution 2: In Example 6, section 1, we found that x = 3, y = −8 solves
the equation 247x + 91y = 13. By multiplying this solution by 3, we get the
particular solution x0 = 9, y0 = −24 to our given equation, and the general
solution is x = 9 + 7n, y = −24 − 19n. This parametrization of the solutions
is different from that above, but the set of solutions is of course the same as in
solution no. 1.

Solution 3: The solution above uses the Euclidean algorithm. We will now give
another method, which is more or less equivalent to the Euclidean algorithm,
but the presentation is different. To solve

(3) 247x+ 91y = 39

we start by writing 247 = 2 · 91 + 65, 247x = 91 · 2x + 65x and 247x + 91y =
65x + 91(2x + y). Introducing new integer variables x1 = x, y1 = 2x + y, we
now rewrite equation (3) as

(4) 65x1 + 91y1 = 39.

This equation has smaller coefficients. Note that if x1 and y1 are integers, then
x = x1 and y = y1 − 2x are integers, too. Hence, solving (4) for integer values
is equivalent to solving (3) for integer values.
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The same procedure can now be repeated. Write 91 = 65 + 26 and 65x1 +
91y1 = 65(x1 + y1) + 26y1 in order to replace equation (4) with the equivalent
equation

(5) 65x2 + 26y2 = 39, with x2 = x1 + y1, y2 = y1.

We continue, noting that 65 = 2 · 26 + 13, and obtain

(6) 13x3 + 26y3 = 39, with x3 = x2, y3 = 2x2 + y2.

Now 26 = 2 · 13, so

(7) 13x4 + 0y4 = 39, with x4 = x3 + 2y3, y4 = y3.

From (7) we conclude that x4 = 39/13 = 3 whereas y4 is an arbitrary integer,
n say. Going backwards, we find

y3 = y4 = n, x3 = x4 − 2y3 = 3− 2n

x2 = x3 = 3− 2n, y2 = y3 − 2x2 = n− 2(3− 2n) = −6 + 5n

y1 = y2 = −6 + 5n, x1 = x2 − y1 = 3− 2n+ 6− 5n = 9− 7n

x = x1 = 9− 7n, y = y1 − 2x = −6 + 5n− 2(9− 7n) = −24 + 19n.

For linear equations with more than two variables we have the following
result, which follows immediately from Theorem 1.9′.

Theorem 3.3 The linear equation a1x1 + a2x2 + · · · + anxn = c has integer
solutions if and only if (a1, a2, . . . , an) | c.

The third solution method in Example 1 can easily be adopted to take care
of equations with more than two variables.

Example 2 Solve the equation

6x+ 10y + 15z = 5

for integer solutions.

Solution: The equation is solvable, because (6, 10, 15) = 1. Consider the least
coefficient 6 and write 10 = 6 + 4 and 15 = 2 · 6 + 3. Introducing new variables
x1 = x+ y + 2z, y1 = y, and z1 = z we can rewrite our linear equation as

6x1 + 4y1 + 3z1 = 5.

Since 6 = 2 · 3 and 4 = 3 + 1, we put x2 = x1, y2 = y1, and z2 = 2x1 + y1 + z1.
This change of variables transforms our equation into

0x2 + y2 + 3z2 = 5.

Now 1 is the least non-zero coefficient, and we put x3 = x2, y3 = y2 + 3z2, and
z3 = z2. Our equation now reads

0x3 + y3 + 0z3 = 5

with the obvious solution x3 = m, y3 = 5, z3 = n, m and n being arbitrary
integers. Going backwards we get after some easy calculations:

x = 5 + 5m− 5n, y = 5− 3n, z = −5− 2m+ 4n, m, n ∈ Z.
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4 Congruences

Definition 4.1 Let m be a positive integer. If m | (a− b) then we say that a is
congruent to b modulo m and write a ≡ b (mod m). If m 6 | (a− b) then we say
that a is not congruent to b modulo m and write a 6≡ b (mod m).

Obviously, a ≡ b (mod m) is equivalent to a = b+mq for some integer q.
We now list some useful properties, which follow easily from the definition.

Proposition 4.2 Congruence modulo m is an equivalence relation, i.e.

(i) a ≡ a (mod m) for all a.

(ii) If a ≡ b (mod m), then b ≡ a (mod m).

(iii) If a ≡ b (mod m) and b ≡ c (mod m), then a ≡ c (mod m).

Proof. We leave the simple proof to the reader.

Our next proposition shows that congruences can be added, multiplied and
raised to powers.

Proposition 4.3 Let a, b, c and d be integers.

(i) If a ≡ b (mod m) and c ≡ d (mod m), then a+ c ≡ b+ d (mod m).

(ii) If a ≡ b (mod m) and c ≡ d (mod m), then ac ≡ bd (mod m).

(iii) If a ≡ b (mod m), then ak ≡ bk (mod m) for all non-negative integers k.

(iv) Let f(x) be a polynomial with integral coefficients. If a ≡ b (mod m) then
f(a) ≡ f(b) (mod m).

Proof. (i) is left to the reader.
(ii) If a ≡ b (mod m) and c ≡ d (mod m), then a = b+mq and c = d+mr

for suitable integers q and r. It follows that ac = bd+m(br+ dq+mqr). Hence
ac ≡ bd (mod m).

(iii) Taking c = a and d = b in (ii) we see that a ≡ b (mod m) implies a2 ≡ b2
(mod m). Applying (ii) again, we get a3 ≡ b3 (mod m), and the general case
follows by induction.

(iv) Suppose f(x) =
∑n
j=0 cjx

j . Using (iii) we first obtain aj ≡ bj (mod m)

for each j, and then cja
j ≡ cjbj (mod m) by (ii). Finally, repeated application

of (i) gives f(a) =
∑n
j=0 cja

j ≡
∑n
j=0 cjb

j = f(b) (mod m).

Remark on the computation of powers. In many applications we need
to compute powers ak modulo m. The naive approach would invoke k − 1
multiplications. This is fine if k is small, but for large numbers k such as
in the RSA-algorithm, to be discussed in section 7, this is prohibitively time
consuming. Instead, one should compute ak recursively using the formula

ak =

{
(ak/2)2 = (a[k/2])2 if k is even,

a · (a(k−1)/2)2 = a · (a[k/2])2 if k is odd.

Thus, ak is obtained from a[k/2] by using one multiplication (squaring) if k is
even, and two multiplications (squaring followed by multiplication by a) if k is
odd. Depending on the value of k, the innermost computation of the recursion
will be a2 or a3 = a · a2.
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The total number of multiplications required to compute ak from a using
recursion is of the order of magnitude log k, which is small compared to k.
Indeed, if k has the binary expansion k = αrαr−1 . . . α1α0 =

∑r
j=0 αj2

j , (with
αr = 1), then [k/2] = αrαr−1 . . . α1, and k is odd if α0 = 1 and even if α = 0.
It now easily follows that the number of squarings needed equals r, and that
the number of extra multiplications by a equals the number of nonzero digits
αj minus 1. Thus, at most 2r multiplications are needed.

Example 1 The computation of 31304 (mod 121) by recursion can be summa-
rized in the following table:

k 1304 652 326 163 162 81 80 40 20 10 5 4 2 1

3k (mod 121) 81 9 3 27 9 3 1 1 1 1 1 81 9 3

The numbers in the top row are computed from left to right. If a number
is even, the next number is obtained by dividing it by 2, and if a number is
odd the next one is obtained by subtracting 1. The numbers in the bottom
row are computed from right to left. For instance, 34 = (32)2 ≡ 92 ≡ 81,
35 = 3 · 34 ≡ 3 · 81 ≡ 243 ≡ 1, 3326 = (3163)2 ≡ 272 ≡ 3.

We next investigate what happens when the modulus is multiplied or divided
by a number. The simple proof of the following proposition is left to the reader.

Proposition 4.4 Let c be an arbitrary positive integer, and let d be a positive
divisor of m.

(i) If a ≡ b (mod m), then ac ≡ bc (mod mc).

(ii) If a ≡ b (mod m), then a ≡ b (mod d).

In general, congruences may not be divided without changing the modulus.
We have the following result.

Proposition 4.5 Let c be a non-zero integer.

(i) If ca ≡ cb (mod m), then a ≡ b (mod m/(c,m))

(ii) If ca ≡ cb (mod m) and (c,m) = 1, then a ≡ b (mod m).

Proof. (i) Let d = (c,m). If ca ≡ cb (mod m), thenm | c(a−b) and
m

d

∣∣∣ c
d

(a−b).

Since
(m
d
,
c

d

)
= 1, it follows that

m

d

∣∣∣ (a− b), i.e. a ≡ b (mod m/d).

(ii) is a special case of (i).

A system of congruences can be replaced by one congruence in the following
way:

Proposition 4.6 Let m1,m2, . . . ,mr be positive integers. The following two
statements are then equivalent:

(i) a ≡ b (mod mi) for i = 1, 2, . . . , r.

(ii) a ≡ b (mod [m1,m2, . . . ,mp]).

Proof. Suppose a ≡ b (mod mi) for all i. Then (a − b) is a common multiple
of all the mis, and therefore [m1,m2, . . . ,mp] | (a − b). This means that a ≡ b
(mod [m1,m2, . . . ,mr]).
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Conversely, if a ≡ b (mod [m1,m2, . . . ,mr]), then a ≡ b (mod mi) for each
i, since mi | [m1,m2, . . . ,mr].

For the rest of this section, we fix a positive integer m which we will use as
modulus.

Definition 4.7 Let a be an integer. The set a = {x ∈ Z | x ≡ a (mod m)}
of all integers that are congruent modulo m to a is called a residue class, or
congruence class, modulo m.

Since the congruence relation is an equivalence relation, it follows that all
numbers belonging to the same residue class are mutually congruent, that num-
bers belonging to different residue classes are incongruent, that given two in-
tegers a and b either a = b or a ∩ b = ∅, and that a = b if and only if a ≡ b
(mod m).

Proposition 4.8 There are exactly m distinct residue classes modulo m, viz. 0,
1, 2, . . . , m− 1.

Proof. According to the division algorithm, there is for each integer a a unique
integer r belonging to the interval [0,m − 1] such that a ≡ r (mod m). Thus,
each residue class a is identical with one of the residue classes 0, 1, 2, . . . , m− 1,
and these are different since i 6≡ j (mod m) if 0 ≤ i < j ≤ m− 1.

Definition 4.9 Chose a number xi from each residue class modulo m. The re-
sulting set of numbers x1, x2, . . . , xm is called a complete residue system modulo
m.

The set {0, 1, 2, . . . ,m−1} is an example of a complete residue system modulo
m.

Example 2 {4,−7, 14, 7} is a complete residue system modulo 4.

Lemma 4.10 If x and y belong to the same residue class modulo m, then
(x,m) = (y,m).

Proof. If x ≡ y (mod m), then x = y + qm for some integer q, and it follows
from Proposition 1.4 that (x,m) = (y,m).

Two numbers a and b give rise to the same residue class modulo m, i.e. a = b,
if and only if a ≡ b (mod m). The following definition is therefore consistent
by virtue of Lemma 4.10.

Definition 4.11 A residue class a modulo m is said to be relatively prime to m
if (a,m) = 1.

Definition 4.12 Let φ(m) denote the number of residue classes modulo m that
are relatively prime to m. The function φ is called Euler’s φ-function. Any set
{r1, r2, . . . , rφ(m)} of integers obtained by choosing one integer from each of the
residue classes that are relatively prime to m, is called a reduced residue system
modulo m.
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The following two observations are immediate consequences of the defini-
tions: The number φ(m) equals the number of integers in the interval [0,m− 1]
that are relatively prime to m. {y1, y2, . . . , yφ(m)} is a reduced residue system
modulo m if and only if the numbers are pairwise incongruent modulo m and
(yi,m) = 1 for all i.

Example 3 The positive integers less than 8 that are relatively prime to 8 are
1, 3, 5, and 7. It follows that φ(8) = 4 and that {1, 3, 5, 7} is a reduced residue
system modulo 8.

Example 4 If p is a prime, then the numbers 1, 2, . . . , p− 1 are all relatively
prime to p. It follows that φ(p) = p − 1 and that {1, 2, . . . , p − 1} is a reduced
residue system modulo p.

Example 5 Let pk be a prime power. An integer is relatively prime to pk if and
only if it is not divisible by p. Hence, in the interval [0, pk − 1] there are pk−1

integers that are not relatively prime to p, viz. the integers np, where n = 0, 1,
2, . . . , pk−1 − 1, whereas the remaining pk − pk−1 integers in the interval are
relatively prime to p. Consequently,

φ(pk) = pk − pk−1 = pk
(

1− 1

p

)
.

Theorem 4.13 Let (a,m) = 1. Let {r1, r2, . . . , rm} be a complete residue sys-
tem, and let {s1, s2, . . . , sφ(m)} be a reduced residue system modulo m. Then
{ar1, ar2, . . . , arm} is a complete and {as1, as2, . . . , asφ(m)} is a reduced residue
system modulo m.

Proof. In order to show that the set {ar1, ar2, . . . , arm} is a complete residue
system, we just have to check that the elements are chosen from distinct residue
classes, i.e. that i 6= j ⇒ ari 6≡ arj (mod m). But by Proposition 4.5 (ii),
ari ≡ arj (mod m) implies ri ≡ rj (mod m) and hence i = j.

Since (si,m) = 1 and (a,m) = 1, we have (asi,m) = 1 for i = 1, 2, . . . , φ(m)
by Theorem 1.14. Hence as1, as2, . . . , asφ(m) are φ(m) numbers belonging to
residue classes that are relatively prime to m, and by the same argument as
above they are chosen from distinct residue classes. It follows that they form a
reduced residue system.

Theorem 4.14 (Euler’s theorem) If (a,m) = 1, then

aφ(m) ≡ 1 (mod m).

Proof. Let {s1, s2, . . . , sφ(m)} be a reduced residue system modulo m. By The-
orem 4.13, the set {as1, as2, . . . , asφ(m)} is also a reduced residue system. Con-
sequently, to each si there corresponds one and only one asj such that si ≡ asj
(mod m). By multiplying together and using Proposition 4.3 (ii), we thus get

φ(m)∏
j=1

(asj) ≡
φ(m)∏
i=1

si (mod m),

and hence
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aφ(m)

φ(m)∏
j=1

sj ≡
φ(m)∏
i=1

si (mod m).

Since (si,m) = 1, we can use Proposition 4.5 (ii) repeatedly to cancel the si,
and we obtain aφ(m) ≡ 1 (mod m).

The following theorem is an immediate corollary.

Theorem 4.15 (Fermat’s theorem) If p is a prime and p 6 | a, then

ap−1 ≡ 1 (mod p).

For every integer a, ap ≡ a (mod p).

Proof. If p6 | a, then (a, p)=1. Since φ(p) = p − 1 by Example 4, the first part
now follows immediately from Euler’s theorem. By multiplying the congruence
by a, we note that ap ≡ a (mod p), and this obvioulsy holds also in the case
a ≡ 0 (mod p).

Example 6 Modulo 7 we get 31 ≡ 3, 32 ≡ 2, 33 ≡ 6, 34 ≡ 4, 35 ≡ 5, and
finally 36 ≡ 1 in accordance with Fermat’s theorem. Similarly, 21 ≡ 2, 22 ≡ 4,
23 ≡ 1, and hence 26 ≡ 1.

5 Linear Congruences

The congruence

(1) ax ≡ b (mod m)

is equivalent to the equation

(2) ax−my = b

where we of course only consider integral solutions x and y. We know from
Theorem 3.1 that this equation is solvable if and only if d = (a,m) divides b,
and if x0, y0 is a solution then the complete set of solution is given by

x = x0 +
m

d
n, y = y0 +

a

d
n.

We get d pairwise incongruent x-values modulo m by taking n = 0, 1, . . . ,
d−1, and any solution x is congruent to one of these. This proves the following
theorem.

Theorem 5.1 The congruence

ax ≡ b (mod m)

is solvable if and only if (a,m) | b. If the congruence is solvable, then it has
exactly (a,m) pairwise incongruent solutions modulo m.

We have the following immediate corollaries.
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Corollary 5.2 The congruene ax ≡ 1 (mod m) is solvable if and only if (a,m) =
1, and in this case any two solutions are congruent modulo m.

Corollary 5.3 If (a,m) = 1, then the congruence ax ≡ b (mod m) is solvable
for any b and any two solutions are congruent modulo m.

Note that the existence of a solution in Corollories 5.2 and 5.3 can also be
deduced from Euler’s theorem. By taking x0 = aφ(m)−1 and x1 = bx0 we obtain
ax0 = aφ(m) ≡ 1 (mod m) and ax1 = bax0 ≡ b (mod m).

However, in order to solve the congruence (1) it is usually more efficient to
solve the equivalent equation (2) using the methods from section 3. Another
possibility is to replace the congruence (1) by a congruence with a smaller
modulus and then reduce the coefficients in the following way:

In (1) we can replace the numbers a and b with congruent numbers in the
interval [0,m − 1], or still better in the interval [−m/2,m/2]. Assuming this
done, we can now write equation (2) as

(3) my ≡ −b (mod a)

with a module a that is less than the module m in (1). If y = y0 solves (3), then

x =
my0 + b

a

is a solution to (1). Of course, the whole procedure can be iterated again and
again until finally a congruence of the form z ≡ c (mod n) is obtained.

Example 1 Solve the congruence

(4) 296x ≡ 176 (mod 114).

Solution: Since 2 divides the numbers 296, 176, and 114, we start by replacing
(4) with the following equivalent congruence:

(5) 148x ≡ 88 (mod 57).

Now, reduce 148 and 88 modulo 57. Since 148 ≡ −23 and 88 ≡ −26, we can
replace (5) with

(6) 23x ≡ 26 (mod 57).

Now we consider instead the congruence

57y ≡ −26 (mod 23),

which of course is quivalent to

(7) 11y ≡ −3 (mod 23).

Again, replace this with the congruence

23z ≡ 3 (mod 11)

which is at once reduced to

z ≡ 3 (mod 11).
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Using this solution, we see that

y =
23 · 3− 3

11
= 6

is a solution to (7) and that all solutions have the form y ≡ 6 (mod 23). It now
follows that

x =
57 · 6 + 26

23
= 16

solves (6) and the equivalent congruence (4), and that all solutions are of the
form x ≡ 16 (mod 57), which can of course also be written as x ≡ 16, 73 (mod
114).

Concluding remarks. These remarks are intended for readers who are familiar with
elementary group theory.

Let Z∗m denote the set of all residue classes modulo m that are relatively prime
to the module m. We can equip Z∗m with a multiplication operation by defining the
product of two residue classes as follows:

a · b = ab.

For this definition to be well behaved it is of course necessary that the residue class ab
be dependent on the residue classes a and b only, and not on the particular numbers
a and b chosen to represent them, and that ab belong to Z∗m. However, this follows
from Proposition 4.3 (ii) and Theorem 1.14.

The multiplication on Z∗m is obviously associative and commutative, and there is
an identity element, namely the class 1. Moreover, it follows from Corollary 5.2 that
the equation a · x = 1 has a unique solution x ∈ Z∗m for each a ∈ Z∗m. Thus, each
element in Z∗m has a unique multiplicative inverse.

This shows that Z∗m is a finite abelian (commutative) group. The order of the
group (i.e. the number of elements in the group) equals φ(m), by definition of the
Euler φ-function.

One of the first theorems encountered when studying groups reads: If n is the
order of a finite group with identity element e, then an = e for every element a in the
group. Applying this result to the group Z∗m, we recover Euler’s theorem, since the
statement

aφ(m) = 1

is just another way of saying that

aφ(m) ≡ 1 (mod m)

holds for every number a that is relatively prime to m.

6 The Chinese Remainder Theorem

Let us start by considering a system of two congruences{
x ≡ a1 (mod m1)

x ≡ a2 (mod m2)

where (m1,m2) = 1. The first congruence has the solutions x = a1+m1y, y ∈ Z,
and by substituting this into the second congruence, we obtain a1 + m1y ≡ a2
(mod m2), that is m1y ≡ a2 − a1 (mod m2). Now, since (m1,m2) = 1, this
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congruence has solutions of the form y = y0 +m2n and hence x = a1 +m1y0 +
m1m2n. This shows that the system has a unique solution x ≡ x0 (mod m1m2).

Consider now a system of three congruences

(1)


x ≡ a1 (mod m1)

x ≡ a2 (mod m2)

x ≡ a3 (mod m3)

where the moduli m1, m2 and m3 are pairwise relatively prime. As shown above,
we can replace the first two congruences with an equivalent congruence of the
form x ≡ x0 (mod m1m2), and hence the whole system (1) is equivalent to a
system of the form

(2)

{
x ≡ x0 (mod m1m2)

x ≡ a3 (mod m3).

Now, by assumption (m1m2,m3) = 1, and hence (2) has a unique solution
x ≡ x1 (mod m1m2m3).

By induction, it is now very easy to prove the following general result.

Theorem 6.1 (The Chinese Remainder Theorem) The system

(3)


x ≡ a1 (mod m1)

x ≡ a2 (mod m2)

...

x ≡ ar (mod mr)

where m1,m2, . . . ,mr are pairwise relatively prime, has a unique solution mod-
ulo m1m2 · · ·mr.

Proof. We will give a second proof of the theorem and also derive a formula for
the solution.

Let for each j = 1, 2, . . . , r, δj be an integer satisfying

δj ≡

{
1 (mod mj)

0 (mod mi), if i 6= j.

Then obviously

(4) x =

r∑
j=1

δjaj

satisfies the system (3).
It remains to prove that the numbers δj exist. Put m = m1m2 · · ·mr. By

assumption

(
m

mj
,mj

)
= 1 and hence, by Corollary 5.2, there is a number bj

such that
m

mj
bj ≡ 1 (mod mj).
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The numbers δj =
m

mj
bj will now clearly have the desired properties.

This proves the existence of a solution x to (3). To prove that the solution
is unique modulo m, suppose x′ is another solution. Then x ≡ x′ (mod mj)
holds for j = 1, 2, . . . , r, and it follows from Proposition 4.6 that x ≡ x′

(mod m1m2 · · ·mr).

Formula (4) is particularly useful when we are to solve several systems (3)
with the same moduli but with different right hand members a1, a2, . . . , ar.

Example 1 Let us solve the system
x ≡ 1 (mod 3)

x ≡ 2 (mod 4)

x ≡ 3 (mod 5).

Solution 1: Using the method in our first proof of the Chinese Remainder
Theorem, we replace the first congruence by x = 1 + 3y. Substituting this
into the second congruence we obtain 3y + 1 ≡ 2 (mod 4) or 3y ≡ 1 (mod 4).
This congruence has the solutions y ≡ −1 (mod 4), i.e. y = −1 + 4z. Hence,
x = −2 + 12z, and substituting this into the last congruence we end up in the
congruence 12z − 2 ≡ 3 (mod 5) or 12z ≡ 5 ≡ 0 (mod 5). This congruence has
the unique solution z ≡ 0 (mod 5), that is z = 5t and x = −2 + 60t. Hence, the
system has the unique solution x ≡ −2 (mod 60).

Solution 2: Let us instead use the method of the second proof. Then we have
first to find numbers b1, b2, and b3 such that

20b1 ≡ 1 (mod 3), 15b2 ≡ 1 (mod 4), 12b3 ≡ 1 (mod 5).

One easily obtains b1 = 2, b2 = 3, and b3 = 3. Next, we compute δ1 = 20b1 = 40,
δ2 = 15b2 = 45, and δ3 = 12b3 = 36. Finally,

x = δ1 + 2δ2 + 3δ3 = 40 + 90 + 108 = 238 ≡ 58 (mod 60).

The condition that the moduli m1,m2, . . . ,mr be pairwise relatively prime is
absolutely essential for the conclusion of Theorem 6.1. Without that condition
the system (3) is either unsolvable or there are more than one incongruent
solution modulo m1m2 · · ·mr. Necessary and sufficient for the system to be
solvable is that (mi,mj) | (ai − aj) for all i 6= j. A given system can be solved
or proved unsolvable by reasoning as in the first solution of Example 1.

We will now derive some important consequences of Theorem 6.1. Given a
positive integer n we let C(n) denote a fixed complete residue system modulo
n. The subset of all numbers in C(n) that are relatively prime to n forms a
reduced residue system which we denote by R(n). The set R(n) contains φ(n)
numbers. To be concrete, we could choose C(n) = {0, 1, 2, . . . , n − 1}; then
R(n) = {j | 0 ≤ j ≤ n− 1 and (j, n) = 1}.

Let now m1 and m2 be two relatively prime numbers and put m = m1m2.
Then C(m) and the Cartesian product C(m1)×C(m2) contain the same number
of elements, viz. m. We will construct a bijection τ between these two sets.

Given x ∈ C(m) and j = 1 or 2, we denote by xj the unique number in
C(mj) that satisfies xj ≡ x (mod mj). We then define τ(x) = (x1, x2).



6 THE CHINESE REMAINDER THEOREM 24

A map between two sets with the same number of elements is a bijection if
and only if it is surjective. But surjectivity of the map τ follows immediately
from the Chinese Remainder Theorem, because given (x1, x2) ∈ C(m1)×C(m2),
there is a (unique) x ∈ C(m) such that x ≡ x1 (mod m1) and x ≡ x2 (mod m2),
which amounts to saying that τ(x) = (x1, x2).

We will next identify the image τ(R(m)) of the reduced residue systemR(m)
under the map τ . Since

(x,m) = 1⇔ (x,m1) = (x,m2) = 1

and
x ≡ xj (mod mj)⇒ ((x,mj) = 1⇔ (xj ,mj) = 1)

it follows that x ∈ R(m) ⇔ τ(x) ∈ R(m1) × R(m2). Thus, τ maps the set
R(m) bijectively onto the Cartesian product R(m1) ×R(m2). The former set
has φ(m) elements and the latter has φ(m1)φ(m2) elements. Since the two sets
must have the same number of elements, we have proved the following important
theorem about Euler’s φ-function.

Theorem 6.2 If m = m1m2, where the integers m1 and m2 are relatively prime,
then

φ(m) = φ(m1)φ(m2).

Corollary 6.3 If n = pk11 p
k2
2 · · · pkrr , where p1, p2, . . . , pr are different primes,

then

φ(n) = n

(
1− 1

p1

)(
1− 1

p2

)
· · ·
(

1− 1

pr

)
.

Proof. By repeated application of Theorem 6.2, we obtain

φ(m1m2 · · ·mr) = φ(m1)φ(m2) · · ·φ(mr)

if the integers m1,m2, . . . ,mr are pairwise relatively prime. In particular, this
holds when the numbers mi are powers of distinct primes. By Example 5 in
section 4, φ(pk) = pk−1(p− 1) = pk(1− 1/p) if p is prime.

A polynomial f(x) =
∑n
i=0 aix

i with coefficients ai ∈ Z is called an integral
polynomial, and the congruence

f(x) ≡ 0 (mod m),

is called a polynomial congruence. An integer a is called a solution or a root of
the polynomial congruence if f(a) ≡ 0 (mod m).

If a is a root of the polynomial congruence and if b ≡ a (mod m), then b is
also a root. Therefore, in order to solve the polynomial cogruence it is enough
to find all roots that belong to a given complete residue system C(m) modulo
m, e.g. to find all solutions among the numbers 0, 1, 2, . . . , m − 1. By the
number of roots of a polynomial congruence we will mean the number of such
incongruent roots.
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Next, consider a system
f1(x) ≡ 0 (mod m1)

f2(x) ≡ 0 (mod m2)

...

fr(x) ≡ 0 (mod mr)

of polynomial congruences, where the moduli m1,m2, . . . ,mr are assumed to be
pairwise relatively prime. By a solution of such a system we mean, of course,
an integer which solves simultaneously all the congruences of the system. If a
is a solution of the system, and if b ≡ a (mod m1m2 · · ·mr), then b is also a
solution of the system, since for each j we have b ≡ a (mod mj). Hence, to
find all solutions of the system it suffices to consider solutions belonging to a
complete residue system modulo m1m2 · · ·mr; by the number of solutions of the
system we will mean the number of such incongruent solutions.

Theorem 6.4 Let

(5)


f1(x) ≡ 0 (mod m1)

f2(x) ≡ 0 (mod m2)

...

fr(x) ≡ 0 (mod mr)

be a system of polynomial congruences, and assume that the the moduli m1, m2,
. . . , mr are pairwise relatively prime. Let Xj be a complete set of incongruent
solutions modulo mj of the jth congruence, and let nj denote the number of
solutions. The number of solutions of the system then equals n1n2 · · ·nr, and
each solution of the system is obtained as the solution of the system

x ≡ a1 (mod m1)

x ≡ a2 (mod m2)

...

x ≡ ar (mod mr)

with (a1, a2, . . . , ar) ranging over the set X1 ×X2 × · · · ×Xr.

Of course, a set Xj might be empty in which case nj = 0

Proof. Write m = m1m2 · · ·mr, let C(mj) be a complete residue system modulo
mj containing the solution set Xj (j = 1, 2, . . . , r), and let C(m) be a complete
residue system modulo m containing the solution set X of the system (5) of
congruences. By the Chinese Remainder Theorem we obtain a bijection

τ : C(m)→ C(m1)× C(m2)× · · · × C(mr)

by defining
τ(x) = (x1, x2, . . . , xr),

where each xj ∈ C(mj) is a number satisfying the congruence xj ≡ x (mod mj).
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If a ∈ X, then a is a solution of each individual congruence in the system (5).
Consequently, if aj ∈ C(mj) and aj ≡ a (mod mj), then aj is a solution of the
jth congruence of the system, i.e. aj belongs to the solution set Xj . We conclude
that τ(a) = (a1, a2, . . . , ar) belongs to the set X1×X2×· · ·×Xr for each a ∈ X,
and the image τ(X) of X under τ is thus a subset of X1 ×X2 × · · · ×Xr.

Conversely, if τ(a) = (a1, a2, . . . , ar) ∈ X1×X2×· · ·×Xr, then a solves each
individual congruence and thus belongs to X. This follows from Proposition
4.3, because a ≡ aj (mod mj) and fj(aj) ≡ 0 (mod mj) for each j. Hence,
the bijection τ maps the subset X onto the subset X1 ×X2 × · · · ×Xr, and we
conclude that the number of elements in X equals n1n2 · · ·nr.

Example 2 Consider the system{
x2 + x+ 1 ≡ 0 (mod 7)

2x− 4 ≡ 0 (mod 6).

By trying x = 0, ±1, ±2, ±3, we find that x ≡ 2 (mod 7) and x ≡ −3 (mod 7)
are the solutions of the first congruence. Similarly, we find that x ≡ −1 (mod 6)
and x ≡ 2 (mod 6) solve the second congruence. We conclude that the system
has 4 incongruent solutions modulo 42. To find these, we have to solve each of
the following four systems:{

x ≡ 2 (mod 7)

x ≡ −1 (mod 6)

{
x ≡ 2 (mod 7)

x ≡ 2 (mod 6){
x ≡ −3 (mod 7)

x ≡ −1 (mod 6)

{
x ≡ −3 (mod 7)

x ≡ 2 (mod 6).

We use the solution formula (4) obtained in the proof of the Chinese Remainder
Theorem. Thus, we determine b1 and b2 such that

42

7
b1 ≡ 1 (mod 7) and

42

6
b2 ≡ 1 (mod 6).

We easily find that b1 = −1 and b2 = 1 solve these congruences, and hence we
can take δ1 = −6 and δ2 = 7. We conclude that four different solutions modulo
42 of our original system are

x1 = −6 · 2 + 7 · (−1) = −19 ≡ 23

x2 = −6 · 2 + 7 · 2 = 2

x3 = −6 · (−3) + 7 · (−1) = 11

x4 = −6 · (−3) + 7 · 2 = 32.

We now turn to an important special case of Theorem 6.4.

Theorem 6.5 Let f(x) be an integral polynomial. For each positive integer m,
let X(m) denote a complete set of roots modulo m of the polynomial congruence

f(x) ≡ 0 (mod m),

and let N(m) denote the number of roots.
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Assume m = m1m2 · · ·mr, where the numbers m1,m2, . . . ,mr are pairwise
relatively prime; then

N(m) = N(m1)N(m2) · · ·N(mr).

Moreover, to each r-tuple (a1, a2, . . . , ar) ∈ X(m1)×X(m2)×· · ·×X(mr) there
corresponds a unique solution a ∈ X(m) such that a ≡ aj (mod mj) for each j.

Proof. By Proposition 4.6, the congruence f(x) ≡ 0 (mod m) is equivalent to
the system 

f(x) ≡ 0 (mod m1)

f(x) ≡ 0 (mod m2)

...

f(x) ≡ 0 (mod mr).

Hence, Theorem 6.4 applies.

It follows that in order to solve a polynomial congruence modulo m it is
sufficient to know how to solve congruences with prime power moduli.

Example 3 Let f(x) = x2 + x + 1. Prove that the congruence f(x) ≡ 0
(mod 15) has no solutions.

Solution: By trying the values x = 0, ±1, ±2 we find that the congruence
f(x) ≡ 0 (mod 5) has no solutions. Therefore, the given congruence modulo 15
(= 5 · 3) has no solutions.

Example 4 Let f(x) = x2 + x+ 9. Find the roots of the congruence

f(x) ≡ 0 (mod 63).

Solution: Since 63 = 7 · 9, we start by solving the two congruences

f(x) ≡ 0 (mod 7) and f(x) ≡ 0 (mod 9).

The first congruence has the sole root 3 (mod 7), and the second congruence
has the roots 0 and −1 (mod 9). It follows that the given congruence has two
roots modulo 63, and they are obtained by solving the congruences{

x ≡ 3 (mod 7)

x ≡ 0 (mod 9)
and

{
x ≡ 3 (mod 7)

x ≡ −1 (mod 9).

Using the Chinese remainder theorem, we find that the roots are 45 and 17
modulo 63.

7 Public-Key Cryptography

In 1977 R.L. Rivest, A. Shamir and L.M. Adleman invented an asymmetric
encryption scheme which has been called the RSA algorithm and which uses
congruence arithmetic. The method uses two keys, one public encryption key
and one secret private decryption key. The security of the algorithm depends
on the hardness of factoring a large composite number and computing eth roots
modulo a composite number for a specified integer e.

The RSA algorithm is based on the following theorem.
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Theorem 7.1 Suppose that m is a positive square-free integer, i.e. that the
canonical prime factorization m = p1p2 · · · pr consists of distinct primes, and
let e and d be positive integers such that ed ≡ 1 (mod φ(m)). Then aed ≡ a
(mod m) holds for each integer a.

Proof. By Proposition 4.6 it suffices to prove that aed ≡ a (mod p) holds for
each prime p = pi dividing the modulus m. This is trivially true if a ≡ 0
(mod p), because then aed ≡ a ≡ 0 (mod p). Hence, we may assume that a 6≡ 0
(mod p).

By assumption, ed = 1 + nφ(m) for some nonnegative integer n, and

φ(m) = φ(p ·m/p) = φ(p)φ(m/p) = (p− 1)φ(m/p).

Hence, ed = 1 + n(p− 1)φ(m/p) = 1 + (p− 1)N , where N is a nonnegative
integer. Therefore, by Fermat’s theorem

aed = a1+(p−1)N = a · (ap−1)N ≡ a · 1N = a (mod p).

An RSA public key consists of a pair (m, e) of integers. The number m will
be used as the modulus, and e is the public exponent. The modulus m is the
product of two distinct large primes p and q (the current recommendation is
that each prime should have a size of at least 2512). The exponent e must be
relatively prime to φ(m), that is to p− 1 and q− 1, and it is normally chosen to
be a small prime such as 3 (= 2 + 1), 17 (= 24 + 1), or 65537 (= 216 + 1), since
powers ae (mod m) can be computed very fast for these particular choices of e.

In actual implementations of the RSA algorithm, the exponent e is first fixed.
Then the primes p and q satisfying (p − 1, e) = (q − 1, e) = 1 are generated at
random in such a way that each prime of the desired size (say 2512) has the
same probability of being chosen. Finally, m = pq.

The private key consists of the pair (m, d), where d is the unique positive
number less than φ(m) satisfying ed ≡ 1 (mod φ(m)). The number d, as well
as the primes p and q, and the number φ(m), are kept secrete by the owner of
the private key.

Suppose now that somebody, say Alice, wants to send a secret message to
Bob, the owner of the private key. The first thing to do is to convert the message
into an integer a in the range [0,m − 1] in some standard way. (We could for
example use the standard ASCII code. Since the ASCII code encodes “H” as
072, “e” as 101, “l” as 108, “o” as 111, and “!’ as 033’, the message “Hello!”
would by concatenation become the number a = 072101108108111033.) If the
message is too long, the message representative a will be out of range, but the
message could then be divided into a number of blocks which could be encoded
separately.

The sender Alice now uses the public encryption key to compute the unique
number b satisfying b ≡ ae (mod m) and 0 ≤ b ≤ m − 1. This number b, the
ciphertext representative of a, is transmitted to Bob.

When b is received, Bob uses his private exponent d to find the unique
number c satisfying 0 ≤ c < m and c ≡ bd (mod m). By Theorem 7.1, c = a
and hence the secret number a is recovered.

Suppose that some third party gains access to the number b. In order to
recover the number a he has to extract the eth root of b. There seems to
be no other feasible method for this than to find the number d, and for that
he need to know φ(m), and for that he has to factor the number m. But
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factorization of integers with 1000 binary digits seems to be beyond the reach
of today’s algorithms and fastest computers. Therefore, it is believed that the
RSA method is very secure.

It is important that the message number a is not too small relative to m,
because if ae < m then we can find a from the ciphertext representative b = ae

by just extracting the ordinary eth root of the integer b. Therefore, one has
to use padding techniques which extend numbers with few non-zero digits in
order to obtain a secure algorithm. A detailed description of how this is done
is beyond the scope of this presentation.

8 Pseudoprimes

If a number n is composite, then it has a prime factor p which is less than or
equal to

√
n. Hence, if n is not divisible by any (prime) number less than or

equal to
√
n, then n is a prime. In the worst case, this means that we have

to perform about
√
n divisions in order to determine whether the number n is

composite.
However, in most cases Fermat’s theorem 4.15 can be used to show that

a given number n is composite without having to find any factors, because if
(a, n) = 1 and an−1 6≡ 1 (mod n), then necessarily n is composite. Our ability
to evaluate powers ak (mod n) quickly makes this to a very efficient method.
(The number of multiplications and divisions needed is proportional to log n
which is considerably less than

√
n.)

Example 1 To show that the number 221 is composite withour having to
factor it, we compute 2220 (mod 221). The computation is summarized in the
following table

k 220 110 55 54 27 26 13 12 6 3 2 1

2k (mod 221) 16 30 128 64 8 4 15 118 64 8 4 2

i.e. 2220 ≡ 16 (mod 221). It follows that 221 must be composite. Indeed,
221 = 13 · 17.

The converse of Fermat’s theorem is not true, that is am−1 ≡ 1 (mod m)
does not imply that m is a prime, so the above procedure is inconclusive in
certain cases.

Example 2 The number 341 is composite (= 11 · 31), but still 2340 ≡ 1
(mod 341) as follows from the table

k 340 170 85 84 42 21 20 10 5 4 2 1

2k (mod 341) 1 1 32 16 4 2 1 1 32 16 4 2

Thus, the test does not detect that 341 is composite. But we can of course try
another base than 2. Using 3 instead, we obtain

k 340 170 85 84 42 21 20 10 5 4 2 1

3k (mod 341) 56 67 254 312 163 201 67 56 243 81 9 3



8 PSEUDOPRIMES 30

Since 3340 ≡ 56 6≡ 1 (mod 341), we conclude that the number 341 is composite.

There is another, easier way to see that 341 is composite that relies on the
following lemma.

Lemma 8.1 Let p be a prime. Then x2 ≡ 1 (mod p) if and only if x ≡ ±1
(mod p).

Proof. The lemma is a special case of the more general Theorem 9.7, but since
the proof is very simple we give a separate proof here. The congruence x2 ≡ 1
(mod p) may be expressed as (x−1)(x+1) ≡ 0 (mod p), that is p | (x−1)(x+1).
Since p is prime, this is equivalent to p | (x− 1) or p | (x+ 1), and we conclude
that x ≡ ±1 (mod p).

Example 2 (revisited) Looking back to Example 2, we see that (285)2 = 2170 ≡
1 (mod 341). Since 285 ≡ 32 6≡ ±1 (mod 341), we conclude from Lemma 8.1
that 341 must be a composite number.

Definition 8.2 Let a and n be positive integers. If (a, n) = 1 and an−1 ≡ 1
(mod n), then n is called a probable prime to the base a. A composite probable
prime is called a pseudoprime.

Of course, all primes are probable primes to every base, but there are prob-
able primes that are composite, i.e. there are pseudoprimes. Example 2 shows
that 341 is a pseudoprime to the base 2, but that it is not a probable prime to
the base 3.

A natural question is whether there exists any number n that is a pseudo-
prime to every base a such that (a, n) = 1. In other words, is there a composite
number n such that an−1 ≡ 1 (mod n) holds for all a with (a, n) = 1? The
answer is yes. Such numbers n are called Carmichael numbers, and it is now
known that there exist infinitely many Carmichael numbers, the smallest being
561.

Example 3 The number 561 is composite, because 561 = 3 · 11 · 17. Apply
Fermat’s theorem for the primes 3, 11, and 17; for any number a which is
relatively prime to 561, we obtain a2 ≡ 1 (mod 3), a10 ≡ 1 (mod 11), and
a16 ≡ 1 (mod 17). We next note that 560 = 2 · 280 = 10 · 56 = 16 · 35. Hence,
by raising the first congruence to the power 280, the second to the power 56 and
the third to the power 35, we get a560 ≡ 1 (mod m) for m = 3, 11, and 17, and
hence a560 ≡ 1 (mod 3 · 11 · 17). This shows that 561 is a probable prime for all
bases that are relatively prime to 561, that is 561 is a Carmichael number.

Example 2, revisited, indicates that there is a stronger way of testing whether
a number is composite than just trying to show that it is not a probable prime
to some base. This is the so called strong pseudoprime test, which will now be
described.

Suppose we wish to show that an odd number n is composite. We start by
dividing the even number n− 1 by 2 repeatedly, in order to write n− 1 = 2kd,
with d odd. We then form the numbers

ad, a2d, a4d, . . . , a2
kd (mod n)
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by repeatedly squaring and reducing. If the last number is 6≡ 1 (mod n), then
n is composite. If this last number is ≡ 1 (mod n), then n is a probable prime

to the base a. Assuming this is the case, let a2
jd be the first number in the

above sequence that is ≡ 1 (mod n). If j ≥ 1 and the immediately preceding

entry a2
j−1d is 6≡ −1 (mod n), then we may still conclude (Lemma 8.1) that

n is composite. When this test is inconclusive, that is when either ad ≡ ±1
(mod n), or j ≥ 1 is the least integer such that a2

jd ≡ 1 (mod n) and a2
j−1d ≡

−1 (mod n), then n is called a strong probable prime to the base a. An odd,
composite, strong probable prime is called a strong pseudoprime.

It can be shown that there are no numbers that are strong pseudoprimes to
every base.

The strong pseudoprimes are rare. In the interval 1 ≤ n ≤ 25 ·109, there are
1 091 987 405 primes, 2 163 Carmichael numbers, 4 842 strong pseudoprimes to
the base 2, 184 numbers that are strong pseudoprimes to both the base 2 and
the base 3, 13 that are strong pseudoprimes to the bases 2, 3, and 5, and only
one number that is a strong pseudoprime to the bases 2, 3, 5, and 7.

The smallest strong pseudoprime to the base 2 is the number 2047.

Example 4 To show that 2047 is a strong pseudoprime to the base 2, we write
2046 = 2 · 1023. Since 1023 = 210 − 1 =

∑9
j=0 2j , the binary expansion of 1023

will consist of ten 1s. By repeatedly squaring and reducing, we compute the
powers 22

j

modulo 2047 for 0 ≤ j ≤ 9, and by multiplying them together we
find that 21023 ≡ 1 (mod 2047). Hence, 2047 is a strong probable prime. Since
2047 = 23 · 89, it is a strong pseudoprime.

Instead of finding the factors, we can of course also try another base. Using
base 3, we obtain 31023 ≡ 1565 (mod 2047) and 32046 ≡ 1013 (mod 2047). This
proves that 2047 is not a probable prime to the base 3, that is 2047 is composite.

9 Polynomial Congruences with Prime Moduli

In this and the following three sections we will study polynomial congruences.
Theorem 6.5 reduces the study of congruences f(x) ≡ 0 (mod m) with a general
modulus m to the case when m is a prime power pk. The case k = 1, that is
congruences with prime moduli, is treated in this sections, while congruences
with prime power moduli pk and k ≥ 2 will be discussed in section 10. Sections
11 and 12 are devoted to quadratic congruences. Finally, some additional results
on the congruence xn ≡ a (mod m) appear in section 15.

First, however, we recall some general notions for polynomials and the divi-
sion algorithm.

Let f(x) =
∑n
i=0 aix

i be an integral polynomial. The largest integer k such
that ak 6= 0 is called the degree of the polynomial, abbreviated deg f(x), and
the corresponding coefficient ak is called the leading term of the polynomial.
This leaves the degree of f(x) undefined when f(x) is the zero polynomial, i.e.
when all coefficients ai are zero. To have the degree defined in that case, too,
we define the degree of the zero polynomial to be the symbol −∞, which we
consider to be less than all integers.

Thus, a phrase like “f(x) is a polynomial of degree < n” means that f(x) is
a non-zero polynomial of (ordinary) degree < n or the zero polynomial.
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If f(x) =
∑n
i=0 aix

i, ai ≡ bi (mod m) and g(x) =
∑n
i=0 bix

i, then clearly
f(x) ≡ g(x) (mod m) for all x. Hence, in a congruence f(x) ≡ 0 (mod m) we
may reduce the coefficients modulo m, and in particular we may delete terms
aix

i with ai ≡ 0 (mod m) without changing the solution set.

Example 1 The congruence

20x5 + 17x4 + 12x2 + 11 ≡ 0 (mod 4)

is equivalent to the congruence

x4 + 3 ≡ 0 (mod 4),

and by trying −1, 0, 1, 2 we find the solutions x ≡ ±1 (mod 4).

Since coefficients that are divisible by the modulus m can be treated as
zero, it is sometimes very useful to consider the degree modulo m or m-degree of
f(x) =

∑n
i=0 aix

i which is defined to be the largest integer i such that m6 | ai.
(If all coefficients are divisible by m, then the m-degree is defined to be −∞.)
Thus, the polynomial in Example 1 has 4-degree equal to 4. However, we will
not need the notion of m-degree, and henceforth, degree will mean the ordinary
degree of a polynomial.

When an integral polynomial f(x) is divided by an integral polynomial g(x),
the quotient and remainder need not be integral polynomials. However, if the
leading coefficient of g(x) is 1, then the quotient and the remainder are integral.

Theorem 9.1 (The Division Algorithm for Integral Polynomials) Let f(x) and
g(x) be two integral polynomials, and assume the leading coefficient of g(x) is
equal to 1. Then there exist two unique integral polynomials q(x) and r(x) such
that f(x) = q(x)g(x) + r(x) and deg r(x) < deg g(x).

Proof. Let n be the degree of the polynomial f(x), let axn be the leading term
of f(x), and let k be the degree of g(x). If k = 0, then g(x) is the constant 1 and
there is nothing to prove, so assume k ≥ 1. The proof of existence is by induction
on n. If n < k, we take q(x) to be the zero polynomial and r(x) = f(x).
Assume now that n ≥ k and that we have proved the existence of q(x) and
r(x) for all polynomials f(x) of degree less than n. Consider the polynomial
polynomial f(x) − axn−kg(x); it is a polynomial of degree n1 < n, since the
leading term of f(x) is cancelled out, and by our induction hypothesis there
exist polynomials q1(x) and r(x), such that f(x)−axn−kg(x) = q1(x)g(x)+r(x)
and deg r(x) < k. Obviously, the polynomials q(x) = axn−k + q1(x) and r(x)
fulfill the requirements, and this completes the induction step. We leave to the
reader to prove uniqueness.

The following modulus version of the ordinary factor theorem for polynomi-
als is an immediate consequence of the division algorithm.

Theorem 9.2 Assume f(x) is an integral polynomial. Then, the integer a is a
root of the congruence f(x) ≡ 0 (mod m) if and only if there exist an integral
polynomial q(x) and an integer b such that

f(x) = (x− a)q(x) +mb.
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Proof. Use the division algorithm to write f(x) = (x − a)q(x) + c, where the
quotient q(x) is an integral polynomial and the remainder c is a constant poly-
nomial, i.e. an integer. Now, f(a) = c and hence a is a root of the congruence
if and only if c ≡ 0 (mod m), i.e. if and only if c = mb for some integer b.

We now turn to polynomial congruences

f(x) ≡ 0 (mod p)

where the modulus p is a prime number. If the degree of f(x) is greater than or
equal to p, we can reduce the degree in the following way: Divide the polynomial
f(x) by xp − x; according to the division algorithm there are two integral poly-
nomials q(x) and r(x) such that f(x) = (xp − x)q(x) + r(x) and deg r(x) < p.
By Fermat’s theorem, ap − a ≡ 0 (mod p), and hence f(a) ≡ r(a) (mod p) for
all integers a. This proves the following result.

Theorem 9.3 If p is a prime, then every polynomial congruence f(x) ≡ 0
(mod p) is equivalent to a polynomial congruence r(x) ≡ 0 (mod p), where r(x)
is a polynomial with degree less than p.

Another way to obtain the polynomial r(x) in Theorem 9.3 is to use the
following lemma.

Lemma 9.4 Assume n ≥ p and n ≡ r (mod (p − 1)), where 1 ≤ r ≤ p − 1.
Then xn ≡ xr (mod p) for all x.

Proof. Write n = q(p−1)+r. By Fermat’s theorem, xp−1 ≡ 1 (mod p) if x 6≡ 0
(mod p), and hence xn = (xp−1)q ·xr ≡ 1q ·xr = xr (mod p) holds for all x 6≡ 0
(mod p), and for x ≡ 0 (mod p) the congruence is trivially true.

Using Lemma 9.4 we can replace all terms of degree ≥ p in an integral
polynomial f(x) by equivalent terms of degree less than p, and this will lead to
an integral polynomial r(x) of degree less than p having the same roots modulo
p as f(x).

Example 2 Consider the congruence x11+2x8+x5+3x4+4x3+1 ≡ 0 (mod 5).
Division by x5 − x yields

x11 + 2x8 +x5 + 3x4 + 4x3 + 1 = (x6 + 2x3 +x2 + 1)(x5−x) + 5x4 + 5x3 +x+ 1.

Hence, the given congruence is equivalent to the congruence 5x4+5x3+x+1 ≡ 0
(mod 5), that is to x+1 ≡ 0 (mod 5), which has the sole solution x ≡ 4 (mod 5).

Instead, we could have used Lemma 9.4. Since 11 ≡ 3, 8 ≡ 4, and 5 ≡ 1
modulo 4, we replace the terms x11, 2x8, and x5 by x3, 2x4, and x, respectively.
This results in the polynomial x3+2x4+x+3x4+4x3+1 = 5x4+5x3+x+1 ≡ x+1
(mod 5).

Theorem 9.5 Let p be a prime. The non-congruent numbers a1, a2, . . . , ak are
roots of the polynomial congruence f(x) ≡ 0 (mod p) if and only if there exist
two integral polynomials q(x) and r(x) such that

f(x) = (x− a1)(x− a2) · · · (x− ak)q(x) + pr(x)

and deg r(x) < k.
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Proof. If such polynomials exist, then f(aj) = pr(aj) ≡ 0 (mod p). The con-
verse is proved by induction on the number k of roots. For k = 1, the existence
of q(x) and r(x) was proved in Theorem 9.2. Assume the theorem is true for k−1
roots. Then there are two polynomials q1(x) and r1(x), with deg r1(x) < k− 1,
such that

(1) f(x) = (x− a1)(x− a2) · · · (x− ak−1)q1(x) + pr1(x).

From this, since f(ak) ≡ 0 (mod p), we obtain

(ak − a1)(ak − a2) · · · (ak − ak−1)q1(ak) ≡ 0 (mod p).

Since (ak−aj , p) = 1 for j = 1, 2, . . . , k−1, we can cancel the factors (ak−aj)
in the above congruence to obtain q1(ak) ≡ 0 (mod p). Hence by Theorem 9.2,
there is a polynomial q(x) and an integer b such that q1(x) = (x− ak)q(x) + pb,
and by substituting this into (1) we find that the polynomials q(x) and r(x) =
b(x− a1)(x− a2) · · · (x− ak−1) + r1(x) satisfy all the requirements.

As a corollary of the above theorem we get the following result.

Theorem 9.6 (Wilson’s theorem) If p is a prime, then (p− 1)! ≡ −1 (mod p).

Proof. By Fermat’s theorem, the polynomial xp−1 − 1 has the roots 1,2, . . . ,
p− 1 modulo p. Hence,

xp−1 − 1 = (x− 1)(x− 2) · · · (x− (p− 1))q(x) + pr(x)

for suitable integral polynomials q(x) and r(x) with deg r(x) < p − 1. By
comparing degrees and leading coefficients, we see that q(x) = 1. Now inserting
x = 0 we obtain −1 ≡ (−1)p−1(p − 1)! (mod p). If p is an odd prime, we
conclude that (p−1)! ≡ −1 (mod p), and for p = 2 we get the same result since
1 ≡ −1 (mod 2).

A polynomial congruence with a general modulus may have more roots than
the degree of the polynomial. For example, the congruence x2 − 1 ≡ 0 (mod 8)
has the four roots 1, 3, 5, and 7. If however the modulus is prime, then the num-
ber of roots can not exceed the degree unless all coefficients of the polynomial
are divisible by p. This follows as a corollary of Theorem 9.5.

Theorem 9.7 Let p be a prime and let f(x) be an integral polynomial of degree
n not all of whose coefficients are divisible by p. Then the congruence f(x) ≡ 0
(mod p) has at most n roots.

Proof. Assume the congruence has k roots a1, a2, . . . , ak, and use Theorem 9.5
to write f(x) = (x − a1)(x − a2) · · · (x − ak)q1(x) + pr1(x). Here, the quotient
q1(x) must be nonzero, because we have assumed that not all coefficients of f(x)
are divisible by p. Consequently, n = deg f(x) = k + deg q1(x) ≥ k.

On the other hand, a polynomial congruence may well be without roots. The
congruence x2−2 ≡ 0 (mod 3) has no roots, and the congruence xp−x+ 1 ≡ 0
(mod p) has no roots if p is prime, because of Fermat’s theorem.

Here follows a criterion which guarantees that the number of roots equals
the degree.
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Theorem 9.8 Let p be a prime, and suppose that the polynomial f(x) has degree
n ≤ p and leading coefficient 1. Use the division algorithm to write xp − x =
q(x)f(x)+r(x), where deg r(x) < deg f(x). Then f(x) ≡ 0 (mod p) has exactly
n roots if and only if every coefficient of r(x) is divisible by p.

Remark. The assumption that the leading coefficient of f(x) be 1 is really no restric-

tion. If the leading coefficient is a, we may assume that (a, p) = 1. By choosing a′

such that a′a ≡ 1 (mod p) and replacing f(x) by the polynomial a′f(x)− (a′a− 1)xn

we obtain a new polynomial with leading coefficient 1 and with the same roots modulo

p as the original one.

Proof. Let m denote the degree of q(x); then obviously m + n = p, and the
leading coefficient of q(x) is 1, too. If every coefficient of r(x) is divisible by p,
then by Fermats’s theorem q(a)f(a) ≡ ap − a ≡ 0 (mod p) for each integer a.
Since p is a prime, it follows that q(a) ≡ 0 (mod p) or f(a) ≡ 0 (mod p), i.e.
every integer is a root of either q(x) ≡ 0 (mod p) or f(x) ≡ 0 (mod p). Now,
by Theorem 9.7, the first congruence has at most m roots and the second has
at most n roots, so together there are at most m+ n = p roots. Since there are
p roots, we conclude that the congruence f(x) ≡ 0 (mod p) must have precisely
n roots.

Conversely, since r(x) = xp− x− q(x)f(x) it follows from Fermat’s theorem
that every root of f(x) modulo p is a root of r(x) modulo p. Hence, if f(x) has
n roots, then r(x) has at least n roots. Since the degree of r(x) is less than n,
this is, however, impossible unless every coefficient of r(x) is divisible by p.

Corollary 9.9 Assume p is a prime and that d | (p − 1). Then the congruence
xd − 1 ≡ 0 (mod p) has exactly d roots.

Proof. Write p−1 = nd. Use the identity yn−1 = (y−1)(yn−1+yn−2+· · ·+y+1)
and replace y by xd. We obtain xp − x = (xp−1 − 1)x = (xd − 1)q(x), where

q(x) = x
∑n−1
j=0 x

jd. Theorem 9.8 now applies.

10 Polynomial Congruences with Prime Power
Moduli

The general procedure for solving the polynomial congruence f(x) ≡ 0 (mod m)
when m is a prime power pk, is to start with a root for the modulus p and use it
to generate a root (or in some cases several roots) modulo p2. Using the same
technique, we produce roots modulo p3, p4, and so on, until we finally obtain
roots for the original modulus pk. The details will be given below.

Let us start by noting that if f(x) is an integral polynomial and a is an
integer, then there is an integral polynomial g(t) such that

(1) f(a+ t) = f(a) + f ′(a)t+ t2g(t).

This is a special case of Taylor’s formula. To prove it, we note that f(a + t)
is obviously a polynomial in t with integral coefficients, and hence f(a + t) =
A + Bt + t2g(t), where g(t) is an integral polynomial. The coefficient A is
obtained by putting t = 0, and to determine B we first differentiate and then
take t = 0.
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Let us now consider the congruence

(2) f(x) ≡ 0 (mod p2),

where p is prime. Any solution a of this congruence must also be a solution of
the congruence

(3) f(x) ≡ 0 (mod p).

Conversely, assume a is a solution of (3), and let us look for solutions b of (2)
such that b ≡ a (mod p), that is such that b = a+pt for some integer t. By (1),

f(a+ pt) = f(a) + f ′(a)pt+ p2t2g(pt) ≡ f(a) + pf ′(a)t (mod p2),

and hence a + pt solves the congruence (2) if and only if f(a) + pf ′(a)t ≡ 0
(mod p2), that is if and only if

(4) f ′(a)t ≡ −f(a)

p
(mod p).

If (f ′(a), p) = 1, then (4) has a unique solution t ≡ t0 (mod p), and it follows
that x ≡ a+ pt0 (mod p2) is a solution of the congruence (2) and that it is the
only solution satisfying x ≡ a (mod p).

If p | f ′(a), then (4) is solvable if and only if p2 | f(a), and in this case
any number t solves (4). Hence x ≡ a + pj (mod p2) solves (2) for j = 0, 1,
. . . , p− 1. In this case, the congruence (2) has p roots that are congruent to a
modulo p.

If p | f ′(a) and p2 6 | f(a), then (2) has no solution that is congruent to a.

The step leading from pk to pk+1 is analogous. Thus we have the following
theorem.

Theorem 10.1 Let p be a prime and let k be an arbitrary positive integer, and
suppose that a is a solution of f(x) ≡ 0 (mod pk).

(i) If p6 | f ′(a), then there is precisely one solution b of f(x) ≡ 0 (mod pk+1)
such that b ≡ a (mod pk). The solution is given by b = a+ pkt, where t is
the unique solution of f ′(a)t ≡ −f(a)/pk (mod p).

(ii) If p | f ′(a) and pk+1 | f(a), then there are p solutions of the congruence
f(x) ≡ 0 (mod pk+1) that are congruent to a modulo pk; these solutions
are a+ pkj for j = 0, 1, . . . , p− 1.

(iii) If p | f ′(a) and pk+1 6 | f(a), then there are no solutions of the congruence
f(x) ≡ 0 (mod pk+1) that are congruent to a modulo pk.

Proof. Let b be a solution of f(x) ≡ 0 (mod pk+1) that is congruent to a modulo
pk; then b = a+ pkt for some integer t. By (1) we have

0 ≡ f(b) = f(a) + f ′(a)pkt+ p2kt2g(pkt) ≡ f(a) + f ′(a)pkt (mod pk+1),

because 2k ≥ k+ 1. Since f(a) ≡ 0 (mod pk), it follows that f(a)/pk is integer,
and we can divide the congruence above by pk to obtain

f ′(a)t ≡ −f(a)/pk (mod p).

The latter congruence has a unique solution if (f ′(a), p) = 1, i.e. if p 6 | f ′(a). If
p | f ′(a), then we must have f(a)/pk ≡ 0 (mod p), that is pk+1 | f(a), in which
case any value of t in a complete residue system will be a solution. Finally, if
p | f ′(a) but pk+1 6 | f(a), there will be no t that solves the congruence.
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Corollary 10.2 Let p be a prime and k an arbitrary positive integer. If a is
a solution of f(x) ≡ 0 (mod p) and p6 | f ′(a), then there exists precisely one
solution b of f(x) ≡ 0 (mod pk) such that b ≡ a (mod p).

Proof. By Theorem 10.1 (i) there exists a unique solution b2 of f(x) ≡ 0
(mod p2) such that b2 ≡ a (mod p). It follows that f ′(b2) ≡ f ′(a) (mod p),
and hence p6 | f ′(b2). Therefore, by the same theorem there exists a unique so-
lution b3 of f(x) ≡ 0 (mod p3) such that b3 ≡ b2 ≡ a (mod p). Proceeding
like this we will finally obtain the unique solution b = bk that is congruent to a
modulo p of the congruence f(x) ≡ 0 (mod pk).

Summary. The general procedure for finding all roots of f(x) ≡ 0 (mod pk)
can be summarized as follows.

1. First find all solutions of the congruence f(x) ≡ 0 (mod p).

2. Select one, say a1; then there are either 0, 1 or p solutions of f(x) ≡ 0
(mod p2) congruent to a1 modulo p; if solutions exist, they are found by
solving the linear congruence f ′(a1)t ≡ −f(a1)/p (mod p). If there are no
solutions, start again with a different a1.

3. If there are solutions of f(x) ≡ 0 (mod p2), select one, say a2, and find
the corresponding roots of f(x) ≡ 0 (mod p3) by solving the congruence
f ′(a2)t ≡ −f(a2)/p2 (mod p). Do this for each root of f(x) ≡ 0 (mod p2).
Note that since a2 ≡ a1 (mod p), f ′(a2) ≡ f ′(a1) (mod p), so we do not
need to calculate f ′(a2).

4. Proceeding in this fashion, we will eventually determine all solutions of
f(x) ≡ 0 (mod pk).

It is worth emphasizing that if at any step in this procedure we obtain
multiple solutions, then we must apply the above process to each solution.

Unfortunately, there is no general procedure for starting the above algorithm,
that is for finding all solutions of f(x) ≡ 0 (mod p). In the next section, we will
discuss what can be said about the number of solutions, and in later sections
we will treat some special cases.

Example 1 Solve the congruence 7x6 + 4x+ 12 ≡ 0 (mod 135).

Solution: Since 135 = 33 · 5, the congruence is equivalent to the system

(5)

{
7x6 + 4x+ 12 ≡ 0 (mod 5)

7x6 + 4x+ 12 ≡ 0 (mod 33).

Write f(x) = 7x6 + 4x + 12. Using Fermat’s identity, we can replace the first
congruence with 2x2 + 4x+ 2 ≡ 0 (mod 5), which is equivalent to (x+ 1)2 ≡ 0
(mod 5) and has the the sole root −1.

We now turn to the second congruence and start by solving the congruence
f(x) ≡ 0 (mod 3), which is equivalent to x2 + x ≡ 0 (mod 3), since x6 ≡ x2

(mod 3). Its solutions are x ≡ 0 (mod 3) and x ≡ −1 (mod 3). We have
f ′(x) = 42x5 + 4. Since f ′(0) = 4 ≡ 1 (mod 3) and f ′(−1) = −38 ≡ 1
(mod 3), it follows from Corollary 10.2 that the congruence f(x) ≡ 0 (mod 33)
has exactly two solutions.

To find these, we start from x1 = 0 and solve the linear congruence f ′(0)t ≡
−f(0)/3 (mod 3), that is t ≡ −4 ≡ 2 (mod 3). We conclude that x2 = 0+2·3 =
6 solves f(x) ≡ 0 (mod 32). Next, solve the congruence f ′(0)t ≡ f ′(6)t ≡
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−f(6)/9 (mod 3), which yields t ≡ 2 (mod 3). It follows that x3 = 6+2 ·9 = 24
solves f(x) ≡ 0 (mod 33).

Starting instead from y1 = −1 we first solve f ′(−1)t ≡ −f(−1)/3 (mod 3),
which yields t ≡ −5 ≡ 1 (mod 3). We conclude that y2 = −1 + 1 · 3 = 2 solves
f(x) ≡ 0 (mod 32). Next, solve the congruence f ′(−1)t ≡ f ′(2)t ≡ −f(2)/9
(mod 3), which yields t ≡ 2 (mod 3). It follows that y3 = 2 + 2 · 9 = 20 solves
f(x) ≡ 0 (mod 33).

To find the two solutions of our original congruence, we now use the Chinese
Remainder Theorem to solve the two systems{

x ≡ −1 (mod 5)

x ≡ 24 (mod 33)
and

{
x ≡ −1 (mod 5)

x ≡ 20 (mod 33).

The solutions are x ≡ 24 (mod 135) and x ≡ 74 (mod 135).

Example 2 Let us determine all solutions of x10 ≡ 24 (mod 125).

Solution: Since 125 = 53 we start by solving the congruence f(x) ≡ 0 (mod 5),
where f(x) = x10 − 24. By Fermat’s identity, x5 ≡ x (mod 5), and hence
f(x) ≡ x2 − 24 ≡ x2 − 4 ≡ (x − 2)(x + 2) (mod 5). We conclude that the
congruence f(x) ≡ 0 (mod 5) has two roots, x ≡ ±2 (mod 5).

We next note that f ′(x) = 10x9 is divisible by 5 for any x and in particular
for x = ±2. Hence, each of the two solutions ±2 will give rise to 5 or 0 solu-
tions modulo 25 of the congruence f(x) ≡ 0 (mod 25) depending on whether
25 | f(±2) or not. Now f(±2) = 1000 is divisible 25, and hence we get the ten
incongruent solutions ±2 + 5j modulo 25, j = 0, 1, 2, 3, 4. Of course, these can
also be represented as ±2, ±7, ±12, ±17, and ±22.

Let a2 be one of these solutions; since f ′(a2) ≡ f ′(±2) ≡ 0 (mod 5), a2
will induce 5 or 0 solutions of the congruence f(x) ≡ 0 (mod 125) according as
125 | f(a2) or not. Let us therefore compute f(x) modulo 125 for each of the
above solutions of the congruence f(x) ≡ 0 (mod 25). After some computations
we obtain f(±2) ≡ 0, f(±7) ≡ 100, f(±12) ≡ 75, f(±17) ≡ 50, and f(±22) ≡
25. Consequently, we get 5 solutions from each of ±2 and no solutions from the
other roots of the congruence f(x) ≡ 0 (mod 25). The solutions are ±2 + 25j
modulo 125, j = 0, 1, 2, 3, 4, that is 2, 23, 27, 48, 52, 73, 77, 98, 102, and 123.

11 The Congruence x2 ≡ a (mod m)

In this section we will study the congruence

(1) x2 ≡ a (mod m).

There are three main problems to consider. Firstly, when do solutions exist,
secondly, how many solutions are there, and thirdly, how to find them.

We will first show that we can always reduce a congruence of the form (1)
to a congruence of the same form with (a,m) = 1.

Assume therefore that (a,m) > 1, and let p be a prime dividing (a,m), that
is p | a and p | m. Suppose x is a solution of (1). Then p | x2 and hence p | x.
Write x = py; then (1) is equivalent to p2y2 ≡ a (mod m). Divide by p to
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obtain

(2) py2 ≡ a/p (mod m/p).

There are three separate cases to consider:

(i) If p2 | m and p2 | a, then (2) is equivalent to the congruence y2 ≡ a/p2

(mod m/p2), and for each solution y0 of this congruence (if there are any),
there are p incongruent solutions modulo m of the original congruence (1).
These are x ≡ py0 (mod m/p). If (a/p2,m/p2) > 1, we repeat the whole
procedure.

(ii) If p2 | m but p2 6 | a, then (2) is a contradiction. Hence, (1) has no solutions
in this case.

(iii) If p2 6 |m, then (p,m/p) = 1, and hence there is a number c such that
cp ≡ 1 (mod m/p). It follows that (2) is equivalent to the congruence
y2 ≡ ca/p (mod m/p). Any solution y0 of this congruence yields a unique
solution x ≡ py0 (mod m) of (1). If (ca/p,m/p) > 1 we can repeat the
whole procedure.

Note that if p2 | a, then ca/p = cp ·a/p2 ≡ 1 ·a/p2 ≡ a/p2 (mod m/p),
i.e. (2) is equivalent to the congruence y2 ≡ a/p2 (mod m/p) in that case.

Example 1 Solve the four congruences:

(i) x2 ≡ 36 (mod 45), (ii) x2 ≡ 15 (mod 45),

(iii) x2 ≡ 18 (mod 21), (iv) x2 ≡ 15 (mod 21).

Solution: (i) Here (36, 45) = 9 and writing x = 3y we obtain the equivalent
congruence y2 ≡ 4 (mod 5) with the solutions y ≡ ±2 (mod 5). Hence x ≡ ±6
(mod 15), i.e. 6, 9, 21, 24, 36, and 39 are the solutions of (i).

(ii) Since 9 | 45 but 96 | 15 there are no solutions of (ii).
(iii) Since (18, 21) = 3, we write x = 3y and obtain the following sequence of

equivalent congruences: 9y2 ≡ 18 (mod 21), 3y2 ≡ 6 (mod 7), y2 ≡ 2 (mod 7)
with the solutions y ≡ ±3 (mod 7). Hence (iii) has the solutions x ≡ ±9
(mod 21).

(iv) Since (15, 21) = 3, we put x = 3y and obtain 9y2 ≡ 15 (mod 21), that is
3y2 ≡ 5 (mod 7). Since 5 ·3 ≡ 1 (mod 7), we multiply the last congruence by 5,
which yields y2 ≡ 4 (mod 7) with the solutions y ≡ ±2 (mod 7). Consequently,
x ≡ ±6 (mod 21) are the solutions of (iv).

For the rest of this section, we will assume that (a,m) = 1.

Definition 11.1 Suppose that (a,m) = 1. Then a is called a quadratic residue
of m if the congruence x2 ≡ a (mod m) has a solution. If there is no solution,
then a is called a quadratic nonresidue of m.

By decomposing the modulus m into a product of primes and using Theo-
rem 6.5, we reduce the study of the congruence (1) to a study of congruences of
the form

x2 ≡ a (mod pk)

where the modulus is a prime power. Now, the techniques in section 10 apply.
However, since the derivative of x2 is 2x, and 2x ≡ 0 (mod 2) we have to
distinguish between the cases p = 2 and p odd prime.
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Lemma 11.2 If p is an odd prime, (a, p) = 1 and a is a quadratic residue of p,
then the congruence x2 ≡ a (mod p) has exactly two roots.

Proof. By assumption, there is at least one root b. Obviously, −b is a root, too,
and −b 6≡ b (mod p), since b 6≡ 0. By Theorem 9.7, there can not be more than
two roots.

Theorem 11.3 If p is an odd prime and (a, p) = 1, then x2 ≡ a (mod pk) has
exactly two solutions if a is a quadratic residue of p, and no solutions if a is a
quadratic nonresidue of p.

Proof. Let f(x) = x2 − a; then f ′(x) = 2x is not divisible by p for any x 6≡
0 (mod p). Hence, it follows from Corollary 10.2 and Lemma 11.2 that the
equation x2 ≡ a (mod pk) has exactly two roots for each k if a is a quadratic
residue. Since every solution of the latter congruence also solves the congruence
x2 ≡ a (mod p), there can be no solution if a is a quadratic nonresidue of p.

The case p = 2 is different, and the complete story is given by the following
theorem.

Theorem 11.4 Suppose a is odd. Then

(i) The congruence x2 ≡ a (mod 2) is always solvable and has exactly one
solution;

(ii) The congruence x2 ≡ a (mod 4) is solvable if and only if a ≡ 1 (mod 4),
in which case there are precisely two solutions;

(iii) The congruence x2 ≡ a (mod 2k), with k ≥ 3, is solvable if and only if
a ≡ 1 (mod 8), in which case there are exactly four solutions. If x0 is a
solution, then all solutions are given by ±x0 and ±x0 + 2k−1.

Proof. (i) and (ii) are obvious.

(iii) Suppose x2 ≡ a (mod 2k) has a solution x0. Then obviously x20 ≡ a
(mod 8), and x0 is odd since a is odd. But the square of an odd number is
congruent to 1 modulo 8, and hence a ≡ 1 (mod 8). This proves the necessity of
the condition a ≡ 1 (mod 8) for the existence of a solution. Moreover, (−x0)2 =
x20 ≡ a (mod 2k) and (±x0 + 2k−1)2 = x20 ± 2kx0 + 22k−2 ≡ x20 ≡ a (mod 2k),
since 2k−2 ≥ k. It is easily verified that the four numbers ±x0 and ±x0 + 2k−1

are incongruent modulo 2k. Hence, the congruence has at least four solutions if
there is any.

It remains to verify that the condition on a is sufficient and that there are
at most four solutions. We show sufficiency by induction on k. The case k = 3
is clear, since x2 ≡ 1 (mod 8) has the solution x ≡ 1. Now assume that x2 ≡ a
(mod 2k) is solvable with a solution x0. Then we know that ±x0 and ±x0+2k−1

also solve the congruence, and we will prove that one of them also solves the
congruence

(3) x2 ≡ a (mod 2k+1).

We know that x20 = a+2kn for some integer n. If n is even, then x0 is obviously
a solution of (3). If n is odd, then

(x0 + 2k−1)2 = x20 + 2kx0 + 22k−2 = a+ 2k(n+ x0) + 22k−2 ≡ a (mod 2k+1),
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because (n+x0) is even (since n and x0 are both odd) and 2k−2 ≥ k+1 (since
k ≥ 3). This completes the induction step

Finally, in the interval [1, 2k] there are 2k−3 integers a that are congruent
to 1 modulo 8. For each such number a we have already found 4 different
solutions of the congruence x2 ≡ a (mod 2k) in the same interval, all of them
odd. Taking all these solutions together we get 4 · 2k−3 = 2k−1 solutions. But
there are exactly 2k−1 odd numbers in the interval, so there is no room for any
more solutions. Hence, each equation has exactly four solutions.

If we combine the two theorems above with Theorem 6.5, we get the following
complete answer to the question about the number of solutions of a congruence
x2 ≡ a (mod m).

Theorem 11.5 Let m = 2kpk11 · · · pkrr , where the pi are distinct odd primes, and
let a be a number which is relatively prime to m. Then the congruence x2 ≡ a
(mod m) is solvable if and only if a is a quadratic residue of pi for each i, and
a ≡ 1 (mod 4) in the case k = 2, and a ≡ 1 (mod 8) in the case k ≥ 3. If
the congruence is solvable, then there are 2r solutions if k = 0 or k = 1, 2r+1

solutions if k = 2, and 2r+2 solutions if k ≥ 3.

In order to apply Theorem 11.5 we need some criterion telling when a number
is a quadratic residue of given prime p. First, note that there are as many
quadratic residues as nonresidues of an odd prime.

Theorem 11.6 Let p be an odd prime. Then there are exactly (p− 1)/2 incon-
gruent quadratic residues of p and exactly (p − 1)/2 quadratic nonresidues of
p.

Proof. All quadratic residues can be found by squaring the elements of a reduced
residue system. Since each solvable congruence x2 ≡ a (mod p) has exactly two
solutions if (a, p) = 1, it follows that the number of quadratic residues equals
half the number of elements in the reduced residue system, that is (p−1)/2. To
get all quadratic residues one can for example take 12, 22, . . . , [(p− 1)/2]2.

Lemma 11.7 Let p be an odd prime and suppose a 6≡ 0 (mod p). Then modulo
p

(p− 1)! ≡

{
a(p−1)/2 if a is a quadratic nonresidue of p

−a(p−1)/2 if a is a quadratic residue of p.

Proof. The congruence mx ≡ a (mod p) is solvable for each integer m in the
interval 1 ≤ m ≤ p − 1, i.e. for each m there is an integer n, 1 ≤ n ≤ p − 1
such that mn ≡ a (mod p). If the congruence x2 ≡ a (mod p) has no solution,
then n 6= m. If it has a solution, then it has exactly two solutions of the form
x ≡ m0 (mod p) and x ≡ p−m0 (mod p), and it follows that n 6= m for all but
two values of m.

Now consider the product (p−1)! = 1·2·3 · · · (p−1). If the congruence x2 ≡ a
(mod p) has no solution, then we can pair off the p− 1 numbers into (p− 1)/2
pairs such that the product of the two numbers in each pair is congruent to a
(mod p), and this means that (p− 1)! is congruent to a(p−1)/2.

On the other hand, if the congruence has two solutions, m0 and p − m0 ,
then we take away these two numbers and pair off the remaining p− 3 numbers
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into (p − 3)/2 pairs such that the product of the two numbers in each pair is
congruent to a (mod p). Since m0(p − m0) ≡ −m2

0 ≡ −a (mod p), it follows
that (p− 1)! ≡ −a · a(p−3)/2 ≡ −a(p−1)/2 (mod p).

Now, let us recall Wilson’s theorem, which we proved in the previous section
as Theorem 9.6:

Wilson’s theorem If p is a prime then (p− 1)! ≡ −1 (mod p).

First let us note that Wilson’s theorem for p > 2 is a obtained as a special
case of Lemma 11.7 by taking a = 1, which is obviously a quadratic residue of
any prime p. Secondly, and more important, by combining Wilson’s theorem
with Lemma 11.7 we get the following solvability criterion due to Euler:

Theorem 11.8 (Euler’s Criterion) Let p be an odd prime and suppose (a, p) = 1.
Then a is a quadratic residue or nonresidue of p according as a(p−1)/2 ≡ 1
(mod p) or a(p−1)/2 ≡ −1 (mod p).

The following important result follows immediately from Euler’s criterion.

Theorem 11.9 Let p be a prime.Then −1 is a quadratic residue of p if and only
if p = 2 or p ≡ 1 (mod 4).

Proof. −1 is a quadratic residue of 2 since 12 = 1 ≡ −1 (mod 2). For odd
primes, we apply Euler’s Criterion noting that (−1)(p−1)/2 = 1 if and only if
(p− 1)/2 is even, that is if and only if p is a prime of the form 4k + 1.

Let us also note that Fermat’s theorem is an easy consequence of Euler’s
criterion; by squaring we obtain

ap−1 =
(
a(p−1)/2

)2
≡ (±1)2 = 1 (mod p).

Let us finally address the question of finding a solution to the congruence
x2 ≡ a (mod p) assuming that a is a quadratic residue of p. In the case p ≡ 3
(mod 4) we have the following answer.

Theorem 11.10 Let p be a prime and assume that p ≡ 3 (mod 4). If a is a
quadratic residue of p, then the congruence x2 ≡ a (mod p) has the two solutions
±a(p+1)/4.

Proof. Since a is a quadratic residue, a(p−1)/2 ≡ 1 (mod p). It follows that(
±a(p+1)/4

)2
= a(p+1)/2 = a · a(p−1)/2 ≡ a (mod p).

Note that it is not necessary to verify in advance that a(p−1)/2 ≡ 1 (mod p).
It is enough to compute x ≡ a(p+1)/4 (mod p). If x2 ≡ a (mod p), then ±x are
the two solutions, otherwise x2 ≡ −a (mod p), and we can conclude that there
are no solutions.
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12 General Quadratic Congruences

A general quadratic congruence

(1) ax2 + bx+ c ≡ 0 (mod m),

can be reduced to a system consisting of a congruence of the form y2 ≡ d
(mod m′) and a linear congruence by completing the square.

The simplest case occurs when (4a,m) = 1, because we may then multiply
the congruence (1) by 4a without having to change the modulus m in order to
get the following equivalent congruence

4a2x2 + 4abx+ 4ac ≡ 0 (mod m),

that is,
(2ax+ b)2 ≡ b2 − 4ac (mod m).

Writing y = 2ax+ b, we obtain the following result.

Theorem 12.1 Assume that (4a,m) = 1. Then all solutions of the congruence

ax2 + bx+ c ≡ 0 (mod m)

can be found by solving the following chain of congruences

y2 ≡ b2 − 4ac (mod m), 2ax ≡ y − b (mod m).

Since (2a,m) = 1, the linear congruence has a unique solution modulo m for
each root y.

Example 1 Let us solve the congruence 8x2 + 5x+ 1 ≡ 0 (mod 23). Complete
the square by multiplying by 32 to get (16x+5)2 ≡ 52−32 = −7 ≡ 16 (mod 23).
Thus 16x + 5 ≡ ±4. Solving 16x ≡ −1 (mod 23) gives x ≡ 10, and 16x ≡ −9
(mod 23) yields x ≡ 21. Hence, 10 and 21 are the only solutions of the original
congruence.

When (4a,m) 6= 1, we start by factoring 4a = a1a2 in such a way that
(a2,m) = 1. We may now multiply the congruence (1) by the number a2
without having to change the modulus, but when we then multiply by a1 we
must change the modulus to a1m in order to get the equivalent congruence
4a2x2 + 4abx + 4ac ≡ 0 (mod a1m), which, of course, in turn is equivalent to
the congruence (2ax + b)2 ≡ b2 − 4ac (mod a1m). This proves the following
generalization of theorem 12.1.

Theorem 12.2 Write 4a = a1a2 with a2 relatively prime to m. Then all solu-
tions of the congruence

ax2 + bx+ c ≡ 0 (mod m)

can be found by solving the following chain of congruences

y2 ≡ b2 − 4ac (mod a1m), 2ax ≡ y − b (mod a1m).
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Example 2 Let us solve the congruence 3x2 + 3x + 2 ≡ 0 (mod 10) using
Theorem 12.2.. Since (4 · 3, 10) = 2 6= 1 but (3, 10) = 1, multiplication by 4 · 3
transforms the given congruence into the equivalent congruence

(6x+ 3)2 ≡ 32 − 4 · 3 · 2 = −15 ≡ 25 (mod 40).

The congruence y2 ≡ 25 (mod 40) has four roots modulo 40, namely 5, 15,
25, and 35. For each root y we then solve the linear congruence 6x ≡ y − 3
(mod 40). The solutions are in turn x ≡ 7, 2, 17, 12 (mod 20), which means
that the solutions of our original congruence are x ≡ 2 and x ≡ 7 (mod 10).

13 The Legendre Symbol and Gauss’ Lemma

Definition 13.1 Let p be an odd prime.The Legendre symbol

(
a

p

)
is defined as

follows. (
a

p

)
=


1, if a is a quadratic residue of p

−1, if a is a quadratic nonresidue of p

0, if p | a.

Theorem 13.2 Let p be an odd prime. Then

(i)

(
a

p

)
≡ a(p−1)/2 (mod p),

(ii) a ≡ b (mod p)⇒
(
a

p

)
=

(
b

p

)
,

(iii)

(
ab

p

)
=

(
a

p

)(
b

p

)
,

(iv) If (a, p) = 1 then

(
a2

p

)
= 1 and

(
a2b

p

)
=

(
b

p

)
,

(v)

(
1

p

)
= 1,

(vi)

(
−1

p

)
= (−1)(p−1)/2 =

{
1 if p ≡ 1 (mod 4),

−1 if p ≡ 3 (mod 4).

Proof. If p | a then (i) is obvious, and if (p, a) = 1 then (i) is just a reformu-
lation of Euler’s criterion (Theorem 11.8). The remaining parts are all simple
consequences of (i).

Because of Theorem 13.2 (iii) and (iv), in order to compute

(
a

p

)
for an

arbitrary integer a it is enough, given its prime factorization, to know

(
−1

p

)
,(

2

p

)
and

(
q

p

)
for each odd prime q. We already know

(
−1

p

)
, and

(
2

p

)
will

be computed below. Finally,

(
q

p

)
can be computed via the Reciprocity law,

which will be discussed in the next section.
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Theorem 13.3 (Gauss’ Lemma) Let p be an odd prime and suppose that the
number a is relatively prime to p. Consider the least positive residues modulo p
of the numbers a, 2a, 3a, . . . , p−1

2 a. If N is the number of these residues that

are greater than p/2, then

(
a

p

)
= (−1)N .

Proof. The numbers a, 2a, 3a, . . . , p−1
2 a are relatively prime to p and incon-

gruent modulo p. Let r1, r2, . . . , rN represent the least positive residues that
exceed p/2, and let s1, s2, . . . , sM denote the remaining residues, that is those
that are less than p/2; then N +M = (p− 1)/2.

The quotient q when ja is divided by p is q = [ja/p]. (Here [x] denotes the
greatest integer less than or equal to x.) It follows that

(1) ja = [ja/p] p+ some ri or some sk.

The numbers p − r1, p − r2, . . . , p − rN are positive and less than p/2,
relatively prime to p and incongruent in pairs modulo p. Also, no p−ri is an sj .
For suppose p− ri = sj , and let ri ≡ ma (mod p) and sj ≡ na (mod p), where
m and n are distinct integers between 1 and p/2. Then p = ri + sj ≡ (m+ n)a
(mod p), and since (a, p) = 1, we must have p | (m + n), a contradiction since
0 < m+ n < p.

Thus, p − r1, p − r2, . . . , p − rN , s1, s2, . . . , sM are all different integers in
the intervall [1, (p − 1)/2], and since they are M + N = (p − 1)/2 in number,
they are equal in some order to the numbers 1, 2, . . . , (p− 1)/2. Therefore,

(p− r1)(p− r2) · · · (p− rN )s1s2 · · · sM = ((p− 1)/2)!,

that is
(−1)Nr1r2 · · · rNs1s2 · · · sM ≡ ((p− 1)/2)! (mod p).

But the numbers r1, r2, . . . , rN , s1, s2, . . . , sM are also congruent in some order
to the numbers a, 2a, . . . , p−1

2 a, and hence(
p− 1

2

)
! ≡ (−1)Na · 2a · · · · p− 1

2
a = (−1)Na(p−1)/2

(
p− 1

2

)
! (mod p).

Since each factor in ((p− 1)/2)! is relatively prime to p, we can divide each side
of the last congruence by ((p−1)/2)! to obtain a(p−1)/2 ≡ (−1)N (mod p). The
conclusion of the lemma now follows from part (i) of Theorem 13.2.

As a simple application of Gauss’ lemma, we now compute

(
2

p

)
.

Theorem 13.4 Let p be an odd prime. Then 2 is a quadratic residue of p if
p ≡ ±1 (mod 8), and a quadratic nonresidue of p if p ≡ ±3 (mod 8), that is(

2

p

)
= (−1)(p

2−1)/8 =

{
1, if p ≡ ±1 (mod 8),

−1, if p ≡ ±3 (mod 8).

Proof. Take a = 2 in Gauss’ lemma; then N is the number of integers in the
sequence 2, 4, . . . , p − 1 that are greater than p/2, that is N is the number of
integers k such that p/2 < 2k < p, or equivalently p/4 < k < p/2. Consequently,
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N = [p/2]− [p/4]. Taking p = 4n+ 1 we get N = 2n− n = n, and p = 4n− 1
yields N = (2n − 1) − (n − 1) = n, too. Hence, N is even if n is even, i.e. if
p = 8m± 1, and N is odd if n is so, i.e. if p = 8m± 3.

Example 1 The equation x2 ≡ 2 (mod 17) is solvable since 17 ≡ 1 (mod 8).
Indeed, x ≡ ±6 (mod 17) solves the congruence.

Theorem 13.5 If p is an odd prime and a is an odd number that is not divisible
by p, then (

a

p

)
= (−1)n, where n =

(p−1)/2∑
j=1

[
ja

p

]
.

Proof. We have to prove that n has the same parity as the number N in Gauss’
lemma, i.e. that n ≡ N (mod 2). We use the same notation as in the proof of
the lemma. By summing over j in equation (1), we obtain

(2)

(p−1)/2∑
j=1

ja = p

(p−1)/2∑
j=1

[
ja

p

]
+

N∑
i=1

ri +
M∑
k=1

sk.

Since the numbers (p−r1), (p−r2), . . . , (p−rN ), s1, s2, . . . , sM are the numbers
1, 2, . . . , (p− 1)/2 in some order, we also have

(p−1)/2∑
j=1

j =

N∑
i=1

(p− ri) +

M∑
k=1

sk.

Subtracting this from equation (2), we obtain

(a− 1)

(p−1)/2∑
j=1

j = 2

N∑
i=1

rj + p
((p−1)/2∑

j=1

[
ja

p

]
−N

)
= 2

N∑
i=1

rj + p(n−N).

Since a − 1 is an even number, it follows that p(n −N) is even, that is n −N
is even.

Example 2 Let us use Theorem 13.5 to compute

(
3

p

)
for primes p ≥ 5. Since

[
3j

p

]
=

{
0 if 1 ≤ j ≤ [p/3],

1 if [p/3] + 1 ≤ j ≤ (p− 1)/2.

it follows that

(
3

p

)
= (−1)n, where n = (p− 1)/2− [p/3]. By considering the

cases p = 12k ± 1 and p = 12k ± 5 separately, we see that n is even if and only

if p ≡ ±1 (mod 12). Hence,

(
3

p

)
= 1 if and only if p ≡ ±1 (mod 12).

Gauss’ lemma and Theorem 13.5 are too cumbersome for numerical calcula-

tions of

(
a

p

)
. Instead, one uses Gauss’ law of quadratic reciprocity, which will

be the theme of next section.
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14 Quadratic Reciprocity

Theorem 14.1 (The Gaussian Reciprocity Law) Let p and q be two distinct odd
primes. Then (

p

q

)(
q

p

)
= (−1)

p−1
2

q−1
2 ,

that is

(
q

p

)
=


(
p

q

)
if p ≡ 1 (mod 4) or q ≡ 1 (mod 4),

−
(
p

q

)
if p ≡ 3 (mod 4) and q ≡ 3 (mod 4).

Proof. By Theorem 13.5,

(
p

q

)(
q

p

)
= (−1)M (−1)N = (−1)M+N , where

M =

(q−1)/2∑
k=1

[
kp

q

]
and N =

(p−1)/2∑
j=1

[
jq

p

]
.

We will prove that M +N = {(p− 1)/2}{(q − 1)/2}.
To this end, consider the set

A = {(j, k) | j = 1, 2, . . . , (p− 1)/2 and k = 1, 2, . . . , (q − 1)/2}.

We can represent A as a rectangular set of lattice points, i.e. points with integral
coordinates, in a rectilinear coordinate system. Since (p, q) = 1, no number qj/p
is an integer when j = 1, 2, . . . , p− 1. Hence, there is no point from A on the

line y =
q

p
x. Let B be all points in A that lie below this line, that is (j, k) ∈ B

if and only if k < jq/p. For a given j this condition is satisfied for k = 1, 2,
. . . , [jq/p]. Hence there are exactly [jq/p] points in B whose first coordinate
equals j. Since this holds for j = 1, 2, . . . , (p− 1)/2, we conclude that the total
number of points in B equals N .

Similarly, M is the number of points in the set C = {(j, k) ∈ A | j < kp/q} =
{(j, k) ∈ A | k > jq/p}, which can be represented as the set of all points in A

above the line y =
q

p
x. Since A is the disjoint union of B and C, it follows that

M +N equals the number of points in A, which is {(p− 1)/2}{(q − 1)/2}.
This number is odd if and only if both (p− 1)/2 and (q− 1)/2 are odd, that

is if and only if p ≡ q ≡ 3 (mod 4). Hence

(
p

q

)
and

(
q

p

)
are of opposite sign

if and only if p ≡ q ≡ 3 (mod 4).

Example 1 The number 991 is a prime, and we will compute the Legendre



15 PRIMITIVE ROOTS 48

symbol

(
402

991

)
. We start by factoring 402; 402 = 2 · 3 · 67. Next we compute(

2

991

)
= 1. [991 ≡ −1 (mod 8)](

3

991

)
= −

(
991

3

)
[991 ≡ 3 (mod 4)]

= −
(

1

3

)
[991 ≡ 1 (mod 3)]

= −1.(
67

991

)
= −

(
991

67

)
[991 ≡ 67 ≡ 3 (mod 4)]

= −
(
−14

67

)
[991 ≡ −14 (mod 67)]

= −
(
−1

67

)(
2

67

)(
7

67

)
[−14 = (−1) · 2 · 7]

= −(−1) · (−1) ·
(
−
(

67

7

))
[67 ≡ 3 (mod 8) and 7 ≡ 3 (mod 4)]

=

(
4

7

)
[67 ≡ 4 (mod 7)]

= 1. [4 is a square.]

Finally,

(
402

991

)
=

(
2

991

)(
3

991

)(
67

991

)
= 1 · (−1) · 1 = −1.

Example 2 The number 2137 is a prime which is congruent to 1 modulo 8,
and 666 = 2 · 32 · 37. It follows that(

666

2137

)
=

(
2

2137

)(
37

2137

)
= 1 ·

(
2137

37

)
.

Now 2137 ≡ −9 (mod 37) and 37 ≡ 1 (mod 4). Hence(
2137

37

)
=

(
−9

37

)
=

(
−1

37

)
= 1, that is

(
666

2137

)
= 1.

15 Primitive Roots

Let us start by computing the powers 3i modulo 7 for 0 ≤ i < φ(7) = 6. We
obtain 30 = 1, 31 = 3, 32 ≡ 2, 33 ≡ 6, 34 ≡ 4, 35 ≡ 5. Hence, the set
{3i | 0 ≤ i < φ(7)} is a reduced residue system modulo 7, that is every integer a
not divisible by 7 is congruent to 3i for a unique integer i modulo φ(7). This fact
allows us to replace calculations using only multiplication and exponentiation
modulo 7 by calculations using addition modulo φ(7) instead.

Example 1 1 Solve the equation x5 ≡ 6 (mod 7).

Solution: Let x ≡ 3y (mod 7). Since 6 ≡ 33 (mod 7), the given equation can
now be written 35y ≡ 33 (mod 7), which is equivalent to the congruence 5y ≡ 3
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(mod 6). The latter congruence has the unique solution y ≡ 3 (mod 6), and
hence our original equation has the unique solution x ≡ 6 (mod 7).

Motivated by Example 1, we will investigate numbers m with the property
that there exists a number g such that {gi | 0 ≤ i < φ(m)} is a reduced residue
system. That not all numbers m have this property follows from the following
example.

Example 2 Since 12 ≡ 32 ≡ 52 ≡ 72 ≡ 1 (mod 8) and φ(8) = 4, it follows that
{ai | 0 ≤ i < 4} is never equal to a reduced residue system modulo 8.

Proposition 15.1 Let m be a positive integer and a any integer such that
(a,m) = 1. Define

A = {k ∈ Z | a|k| ≡ 1 (mod m)}.

Then A is an ideal in Z.

Proof. We have to prove that the set A is closed under subtraction, i.e. that
j, k ∈ A ⇒ j − k ∈ A. To prove this we may assume j ≥ k, because j − k
belongs to A if and only if k − j belongs to A.

Suppose j, k ∈ A. If j ≥ k ≥ 0, then aj ≡ ak ≡ 1 (mod m), and hence
aj−k ≡ aj−kak = aj ≡ 1 (mod m). If j ≥ 0 > k, then aj ≡ a−k ≡ 1 (mod m),
and we obtain aj−k = aja−k ≡ 1 · 1 = 1 (mod m). Finally, if 0 > j ≥ k, then
a−j ≡ a−k ≡ 1 (mod m), and we conclude that aj−k ≡ a−jaj−k = a−k ≡ 1
(mod m). Thus, in each case j − k ∈ A.

Note that A contains nonzero integers, because φ(m) belongs to A by Euler’s
theorem. By Theorem 1.8, the ideal A is generated by a unique positive integer
h, which is the smallest positive integer belonging to A, that is ah ≡ 1 (mod m)
while aj 6≡ 1 (mod m) for 1 ≤ j < h.

Definition 15.2 The positive generator h of A, i.e. the smallest positive integer
such that ah ≡ 1 (mod m), is called the order of a modulo m and is denoted by
ord a.

The order ord a of course depends on the modulus m, but since the modulus
will always be fixed during a calculation, this ambiguity in the notation causes
no difficulties.

For any modulus m, ord 1 = 1.

Example 3 Modulo 8 we have ord 3 = ord 5 = ord 7 = 2.

Example 4 Let us compute the order of the numbers 2, 3 and 6 modulo 7.
Our calculations before Example 1 show that ord 3 = 6. Since 22 ≡ 4 (mod 7)
and 23 ≡ 1 (mod 7), ord 2 = 3, and since 62 ≡ 1 (mod 7), ord 6 = 2.

The following theorem is an immediate consequence of the fact that the ideal
A is generated by h = ord a.

Theorem 15.3 Assume (a,m) = 1 and write h = ord a modulo m. Then

(i) an ≡ 1 (mod m) if and only if h | n;

(ii) h | φ(m);
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(iii) aj ≡ ak (mod m) if and only if j ≡ k (mod h);

(iv) the numbers 1, a, a2, . . . , ah−1 are incongruent modulo m, and each power
an is congruent to one of these modulo m;

(v) ord ak = h/(h, k).

Proof. (i) follows from the definition of a generator of an ideal.
(ii) follows from (i) and Euler’s theorem.
(iii) Assume k ≥ j ≥ 0; then ak ≡ aj (mod m) holds if and only if ak−j ≡ 1

(mod m), because we may divide the former congruence by aj since (a,m) = 1.
The conclusion now follows from (i).

(iv) is of course a consequence of (iii).
(v) By (i), (ak)n ≡ 1 (mod m)⇔ kn ≡ 0 (mod h). We can divide the right

hand congruence by k provided we change the modulus to h/(h, k). Thus,

(ak)n ≡ 1 (mod m)⇔ n ≡ 0 (mod h/(h, k)).

The smallest positive number n satisfying the last congruence is n = h/(h, k);
by definition, this is the order of ak modulo m.

Theorem 15.3 (ii) implies that ord a ≤ φ(m) for every number a which is
relatively prime to m. An obvious question now arises: For which m does there
exist an integer whose order is as large as possible, namely φ(m)? This question
motivates the following definition.

Definition 15.4 Assume that (g,m) = 1. If the order of g modulo m equals
φ(m), then g is called a primitive root modulo m, or a primitive root of m.

Example 5 In Example 4 we calculated the order of 3 modulo 7 and found
that ord 3 = 6 = φ(7). Consequently, 3 is a primitive root modulo 7.

Example 6 Not every integer has a primitive root. If m = 8, then a2 ≡ 1 for
every odd integer and hence ord a ≤ 2 < 4 = φ(8) for every a relatively prime
to 8, that is 8 has no primitive roots.

Theorem 15.5 Suppose g is a primitive root modulo m. Then

(i) {1, g, g2, . . . , gφ(m)−1} is a reduced residue system modulo m;

(ii) gj ≡ gk (mod m) if and only if j ≡ k (mod φ(m));

(iii) gk is a primitive root modulo m if and only if (k, φ(m)) = 1.
In particular, if there exists a primitive root modulo m, then there are
precisely φ(φ(m)) primitive roots.

Proof. Theorem 15.5 is just a special case of Theorem 15.3.

Example 7 We have found that 3 is a primitive root modulo 7. Since φ(φ(7)) =
φ(6) = 2, there are 2 primitive roots. The other primitive root is 35, i.e. 5
(mod 7).

We will show that the only positive integers having primitive roots are 1, 2,
4, pk and 2pk, where p is an odd prime and k an arbitrary positive integer. We
start by proving that each prime has primitive roots; for this we will need the
following two lemmas.
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Lemma 15.6 If a has order h and b has order k modulo m, and if (h, k) = 1,
then ab has order hk modulo m.

Proof. Let r be the order of ab. Since (ab)hk = (ah)k(bk)h ≡ 1k · 1h = 1
(mod m), we conclude that r | hk. To complete the proof, we have to show
that hk | r. Note that brh ≡ (ah)rbrh = (ab)rh ≡ 1 (mod m), and hence k | rh.
Since (h, k) = 1 it follows that k | r. In a similar way, we show that h | r. Since
(h, k) = 1 it now follows that hk | r.

Example 8 Working modulo 7 we have ord 2 = 3 and ord 6 = 2. Consequently,
since 2 · 6 ≡ 5 (mod 7), ord 5 = ord(2 · 6) = 2 · 3 = 6.

Lemma 15.7 Let p and q be primes, and suppose that qk | (p− 1). Then there
exists a number a of order qk modulo p.

Proof. By Corollary 9.9, the congruence xq
k ≡ 1 (mod p) has exactly qk roots.

By Theorem 15.3 (i), the order of such a root is a divisor of qk. If a is a root

of order less than qk, then a is the root of the congruence xq
k−1 ≡ 1 (mod p),

but this congruence has exactly qk−1 roots. Hence, there are exactly qk − qk−1
incongruent numbers of order precisely qk.

Theorem 15.8 If p is a prime, then there exist exactly φ(p− 1) primitive roots
modulo p.

Proof. By the last statement of Theorem 15.5, it is enough to show that there
exists at least one primitive root modulo p. Let p − 1 = qk11 q

k2
2 · · · qkrr be the

factorization of p− 1 into distinct primes. By Lemma 15.7 there are integers ai
of order qkii for i = 1, 2, . . . , r. The numbers qkii are pairwise relatively prime,
so by repeated use of Lemma 15.6 we see that g = a1a2 · · · ar has order p − 1,
that is g is a primitive root modulo p.

Suppose that g is a primitive root modulo m. If (a,m) = 1, then Theorem
15.5 implies that there is a unique integer i, with 0 ≤ i ≤ φ(m) − 1 such that
gi ≡ a (mod m). This fact allows us to make the following definition.

Definition 15.9 Let g be a primitive root of m, and suppose (a,m) = 1. The
smallest nonnegative integer i such that gi ≡ a (mod m) is called the index of
a (to the base g) and is denoted by ind a.

The index depends on both the modulus m and the root g, but since m and
g are usually fixed, the notation should cause no confusion.

There is a strong similarity between logarithms and indices, and the following
theorem states the most important properties. The proof is simple and is left
to the reader.

Theorem 15.10 Suppose g is a primitive root modulo m, and let ind a denote
the index of a to the base g.

(i) ind 1 = 0 and ind g = 1.

(ii) a ≡ b (mod m) if and only if ind a = ind b.

(iii) ind ab ≡ ind a+ ind b (mod φ(m)).

(iv) ind ak ≡ k ind a (mod φ(m)), for all nonnegative integers k.
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Theorem 15.11 Let m be a positive integer having a primitive root, and suppose
(a,m) = 1. Then the congruence xn ≡ a (mod m) has a solution if and only if

(1) aφ(m)/(n,φ(m)) ≡ 1 (mod m).

If the congruence xn ≡ a (mod m) is solvable, then it has exactly (n, φ(m))
incongruent solutions.

Proof. Let g be a primitive root modulo m, and let d = (n, φ(m)). Taking
indices, we see that the congruence xn ≡ a (mod m) holds if and only if
n indx ≡ ind a (mod φ(m)). By Theorem 5.1, this congruence is solvable if
and only if d | ind a, and if solutions exist, then there are exactly d incongruent
solutions.

To complete the proof, we show that (1) holds if and only if d | ind a. Taking
indices, we see that (1) is equivalent to (φ(m)/d) ind a ≡ 0 (mod φ(m)), which
holds if and only if d | ind a.

If m has a primitive root, then the solutions of a solvable congruence xn ≡ a
(mod m) can be found using indices, provided we compute (or have available)
a table of indices for the given modulus m. See Example 1.

Since every prime modulus has a primitive root, we have the following corol-
lary of Theorem 15.11.

Corollary 15.12 Suppose p is prime and (a, p) = 1. Then the congruence xn ≡ a
(mod p) is solvable if and only if

a(p−1)/(n,p−1) ≡ 1 (mod p).

Remark. The corollary gives an efficient procedure for determining whether the
congruence xn ≡ a (mod p) is solvable, but to actually find a solution is more
difficult. However, if (n, p − 1) = 1, this is relatively easy. Use the Euclidean
Algorithm to find positive integers s and t such that sn = t(p − 1) + 1; then
asn = at(p−1)a ≡ a (mod p), that is as is a solution of the congruence xn ≡ a
(mod p).

The following corollary is a generalization of Corollary 9.9.

Corollary 15.13 Suppose that m has a primitive root and that n | φ(m). Then
the congruence xn − 1 ≡ 0 (mod m) has exactly n roots.

Proof. The congruence xn ≡ 1 (mod m) is obviously solvable. Hence, by The-
orem 15.11 it has (n, φ(m)) = n incongruent solutions.

We next show that if p is an odd prime, then pk has primitive roots for each
k.

Theorem 15.14 Suppose that p is an odd prime.

(i) If g is a primitive root modulo p, then g + np is a primitive root modulo
p2 for exactly p− 1 values of n modulo p.

(ii) If g is a primitive root modulo p2, then g is a primitive root modulo pk for
all k ≥ 2.

Proof. Let h denote the order of g+np modulo p2. (h may depend on n.) Then
h | φ(p2), that is h | p(p− 1).
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But (g + np)h ≡ 1 (mod p2) implies (g + np)h ≡ 1 (mod p), and by the

binomial theorem, (g + np)h = gh +
∑h
j=1

(
h
j

)
(np)jgh−j ≡ gh (mod p), and

hence gh ≡ 1 (mod p). Since g has order p− 1, it follows that (p− 1) | h.
Thus h = p− 1 or h = p(p− 1). In the latter case, g+np is a primitive root

of p2, and in the former case it is not. We will prove that the former case arises
only for one of the p possible values of n.

Let f(x) = xp−1−1; then g is a root of the congruence f(x) ≡ 0 (mod p) and
f ′(g) = (p− 1)gp−2 6≡ 0 (mod p), since (gp−2, p) = 1. Hence, by Theorem 10.1
there is a unique root of the form g + np of the congruence f(x) ≡ 0 (mod p2).
This proves our claim.

(ii) It suffices to prove that if g is a primitive root modulo pk, k ≥ 2, then
g is also a primitive root modulo pk+1. Let h be the order of g modulo pk+1;
then h | φ(pk+1), that is h | pk(p − 1). Because gh ≡ 1 (mod pk+1) implies
gh ≡ 1 (mod pk) and g is a primitive root modulo pk, φ(pk) must divide h, that
is pk−1(p− 1) | h.

Thus either h = pk−1(p− 1) or h = pk(p− 1) = φ(pk+1). In the latter case,
g is a primitive root modulo pk+1 as claimed. We must show that the former
case is excluded.

Let t = φ(pk−1); then gt ≡ 1 (mod pk−1) by Euler’s theorem, and therefore
gt = 1+npk−1 for some integer n. If p | n then we would have gt ≡ 1 (mod pk),
which contradicts the fact that g is primitive root modulo pk. Thus, p 6 |n.

By the binomial theorem

gpt = (gt)p = (1 + npk−1)p = 1 + npk +
p(p− 1)

2
n2p2k−2 + . . .

≡ 1 + npk (mod pk+1).

Here, we have used that fact that the integer
p(p− 1)

2
n2p2k−2 =

p− 1

2
n2p2k−1

is divisible by pk+1, because 2k − 1 ≥ k + 1 when k ≥ 2, and the remaining
omitted terms in the expansion contain even higher powers of p.

Since p6 |n, we now conclude that

gpt 6≡ 1 (mod pk+1).

Therefore, h 6= pt = pφ(pk−1) = pk−1(p− 1), and the proof is complete.

Example 9 Since 22 ≡ −1 6≡ 1 (mod 5), we conclude that the order of 2
modulo 5 must be 4, that is 2 is a primitive root of 5. By Theorem 15.14,
2 + 5n is a primitive root of 25 for exactly four values of n, 0 ≤ n ≤ 4. Since
φ(25) = 20, the primitive roots of 25 have order 20. The order h modulo 25 of
an arbitrary number a is a divisor of 20. If h < 20, then either h | 4 or h | 10, so
it follows that a4 ≡ 1 (mod 25) or a10 ≡ 1 (mod 25). Hence, to find whether a
number a has order 20 it is enough to compute a4 and a10 modulo 25; the order
is 20 if and only if none of these two powers are congruent to 1. For a = 2 we
obtain 22 ≡ 4, 24 ≡ 16, 28 ≡ 6 and 210 ≡ 24. Hence, the order of 2 is 20, i.e. 2
is a primitive root of 25.

For a = 7 we obtain 72 ≡ −1 and 74 ≡ 1 (mod 25), that is the order of 7 is
4, and 7 is not a primitive root of 25. Of course, it now follows that 12, 17 and
22 are primitive roots of 25.

By Theorem 15.14 (ii), 2 is a primitive root of 5k for all k.
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Theorem 15.15 Suppose that p is an odd prime, and let g be a primitive root
modulo pk. If g is odd, then g is also a primitive root modulo 2pk, and if g is
even, then g + pk is a primitive root modulo 2pk.

Proof. If g is odd, then gj ≡ 1 (mod 2) for every j ≥ 1. Thus gj ≡ 1 (mod 2pk)
if and only if gj ≡ 1 (mod pk), and hence the order of g modulo 2pk is equal to
the order of g modulo pk, namely φ(pk). Since φ(2pk) = φ(pk), g is a primitive
root of 2pk.

If g is even, then g cannot be a primitive root of 2pk, for a primitive root
is always relatively prime to the modulus. But g + pk is odd and, since it is
congruent to g modulo pk, it is also a primitive root modulo pk. Hence, g + pk

is a primitive root of 2pk by the preceding argument.

Example 10 By Example 9, 2 is a primitive root of 5k for each k. Hence, 2+5k

is a primitive root of 2 · 5k for each k. In particular 7 is a primitive root of 10,
and 27 is a primitive root of 50. By the same example, 17 is also a primitive
root of 5k for each k. Since 17 is odd, it follows that 17 is a primitive root of
2 · 5k for each k.

Theorem 15.16 There exists a primitive root modulo m if and only if m = 1,
2, 4, pk, or 2pk, where p is an odd prime and k is an arbitrary positive integer.

Proof. First note that 1, 2, and 4 have primitive roots (1, 1, and 3, respectively).
Theorems 15.8, 15.14, and 15.15 imply that pk and 2pk have primitive roots
whenever p is an odd prime and k is an arbitrary positive integer.

Conversely, to prove that these are the only positive integers having primitive
roots, assume m > 2 has a primitive root. By Corollary 15.13, the congruence
x2 ≡ 1 (mod m) has exactly 2 incongruent solutions (because 2 | φ(m) for all
m ≥ 3). Theorem 11.5 now implies that m must be either 4, pk, or 2pk, where
p is an odd prime.

Concluding remarks. Readers with a basic knowledge of group theory may have
noticed that most of the notions in this section are special cases of general group
notions.

If G is a general finite group with identity element e, then the order ord a of an
element a is defined to be the smallest positive integer n satisfying an = e, while the
order of the group, ordG, is defined to be the number of elements in G. If h = ord a,
then h| ordG and {e, a, a2, . . . , ah−1} is a subgroup of G. This subgroup coincides with
G if ord a = ordG, and G is then called a cyclic group with a as a generator.

Applying these general notions to the specific case when G is the group Z∗m of all

residue classes modulo m that are relatively prime to m, we see that the order h of

an integer a modulo m coincides with the order of the residue class a in Z∗m, that

h|φ(m), that a number g is a primitive root modulo m if and only if the residue class

g generates Z∗m, and that there exists a primitive root modulo m if and only if the

group Z∗m is a cyclic group. Using the language of groups we can state Theorem 15.16

as follows: The group Z∗m is cyclic if and only if m = 1, 2, 4, pk or 2pk, where p is an

odd prime and k is an arbitrary positive integer.
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16 Arithmetic Functions

Functions that are defined for all positive integers and whose range is a subset
of R (or more generally C) are called arithmetic functions.

We have already considered one very important arithmetic functions − the
Euler φ-function. Other important arithmetic functions to be considered in this
section are

• τ(n), the number of positive divisors of n;

• σ(n), the sum of the positive divisors of n;

• σk(n), the sum of the kth powers of the positive divisors of n.

We will use the following sum and product conventions.
∑
d|n f(d) and∏

d|n f(d) denote the sum and product, respectively, of f(d) over all positive

divisors d of n. For example,
∑
d|12 f(d) = f(1)+f(2)+f(3)+f(4)+f(6)+f(12).

Using this notation, we have

τ(n) =
∑
d|n

1, σ(n) =
∑
d|n

d, σk(n) =
∑
d|n

dk.

Note that the divisor functions τ(n) and σ(n) are special cases of σk(n), since
τ(n) = σ0(n) and σ(n) = σ1(n).

Definition 16.1 An arithmetic function f(n) is called multiplicative if it is not
identically zero and satisfies f(mn) = f(m)f(n) for every pair of relatively
prime positive integers m and n. If f(mn) = f(m)f(n) for each pair m and n,
relatively prime or not, then f(n) is said to be completely multiplicative.

If f is a multiplicative function, then f(n) = f(n)f(1) for every positive
integer n, and since there is an n for which f(n) 6= 0, it follows that f(1) = 1.
Using mathematical induction, it is easy to prove that if m1,m2, . . . ,mr are
pairwise relatively prime positive integers, then

f(m1m2 · · ·mr) = f(m1)f(m2) · · · f(mr).

In particular, this holds whenever the integers m1,m2, . . . ,mr are powers of
distinct primes. Thus, if n = pk11 p

k2
2 · · · pkrr is the canonical factorization of

the integer n > 1 as a product of powers of distinct primes, then f(n) =
f(pk11 )f(pk22 ) · · · f(pkrr ). Therefore, the value of f(n) for every n is completely
determined by the values f(pk) for all prime powers.

We already know that φ(n) is multiplicative (Theorem 6.2), and we have
used this fact to obtain a formula for φ(n).

Our next theorem yields a general method for constructing multiplicative
functions.

Theorem 16.2 Let f(n) be a multiplicative function, and let F (n) =
∑
d|n f(d).

Then F (n) is multiplicative.

Proof. Let (m,n) = 1. If d | mn, then d = d1d2, where d1 | m and d2 | n.
Moreover, d1 = (m, d), d2 = (n, d) and (d1, d2) = 1, and the factorization is
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unique. Consequently,

F (mn) =
∑
d|mn

f(d) =
∑
d1|m

∑
d2|n

f(d1d2) =
∑
d1|m

∑
d2|n

f(d1)f(d2)

=
∑
d1|m

f(d1)
∑
d2|n

f(d2) = F (m)F (n).

Corollary 16.3 (i) The functions τ(n), σ(n), and more generally, σk(n) are
multiplicative.

(ii) If n = pk11 p
k2
2 · · · pkrr , then

τ(n) =

r∏
j=1

(kj + 1) and σ(n) =

r∏
j=1

(
p
kj+1
j − 1

pj − 1

)
.

Proof. (i) Since σk(n) =
∑
d|n d

k, and the function f(n) = nk is (completely)

multiplicative, it follows from the previous theorem that σk(n) is multiplicative.
τ(n) and σ(n) are special cases.

(ii) The positive divisors of pk are 1, p, p2, . . . , pk, and hence τ(pk) = k+ 1

and σ(pk) =
∑k
j=0 p

j = (pk+1 − 1)/(p − 1). The formulas for τ(n) and σ(n)
follow from this.

Theorem 16.4 For every positive integer n,
∑
d|n φ(d) = n.

Proof. Write F (n) =
∑
d|n φ(d); then F (n) is multiplicative by Theorem 16.2.

Since the function G(n) = n is also multiplicative, it suffices to verify that
F (pk) = pk for all prime powers pk in order to prove that F (n) = n for all n.
But φ(pj) = pj − pj−1 for j ≥ 1, and hence

F (pk) =
∑
d|pk

φ(d) =

k∑
j=0

φ(pj) = 1 +

k∑
j=1

(pj − pj−1) = pk.

Let f(n) be an arithmetic function, and define F (n) =
∑
d|n f(n). Is the

function f uniquely determined by the function F? We have

F (1) = f(1)

F (2) = f(1) + f(2)

F (3) = f(1) + f(3)

F (4) = f(1) + f(2) + f(4)

F (5) = f(1) + f(5)

...

F (n) = f(1) + . . . + f(n)

This can be viewed as a triangular system of linear equations with f(1), f(2),
. . . , f(n) as unknowns. It is now obvious that f(n) is a linear combination of
F (1), F (2), . . . , F (n) with integral coefficients. In particular, the function f
is uniquely determined by the function F . Our next objective is to derive a
formula for f(n), and for this we will need the following function.
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Definition 16.5 Define

µ(n) =


1 if n = 1,

0 if n is divisible by p2 for some prime p

(−1)r if n = p1p2 · · · pr, where p1, p2, . . . , pr are distinct primes.

The function µ is called Möbius’ µ-function.

Theorem 16.6 The function µ(n) is multiplicative and∑
d|n

µ(d) =

{
1 if n = 1

0 if n > 1.

Proof. Multiplicativity is obvious. Define F (n) =
∑
d|n µ(d); then F (n) is mul-

tiplicative by Theorem 16.2. Since µ(p) = −1 and µ(pj) = 0 for j ≥ 2, we have

F (pk) =
∑k
j=0 µ(pj) = µ(1) + µ(p) = 1− 1 = 0, for all primes p and all k ≥ 1.

Hence, F (n) = 0 for all n > 1, and F (1) = µ(1) = 1.

Theorem 16.7 (Möbius’ inversion formula) Let f be an arbitrary arithmetic func-
tion. If F (n) =

∑
d|n f(d) for every positive integer n, then

f(n) =
∑
d|n

µ(d)F (n/d).

Proof. Using the definition of F we obtain∑
d|n

µ(d)F (n/d) =
∑
d|n

µ(d)
∑

k|(n/d)

f(k) =
∑

all d, k with dk|n

µ(d)f(k).

Now we can reverse the order of summation and write the last sum in the form∑
all d, k with dk|n

µ(d)f(k) =
∑
k|n

f(k)
∑

d|(n/k)

µ(d).

By Theorem 16.6,
∑
d|(n/k) µ(d) = 0 except for k = n, when the value is 1.

Hence,
∑
d|n µ(d)F (n/d) =

∑
k|n f(k)

∑
d|(n/k) µ(d) = f(n).

The following converse is also true.

Theorem 16.8 If f(n) =
∑
d|n µ(d)F (n/d) for every positive integer n, then

F (n) =
∑
d|n f(d).

Proof. Define G(n) =
∑
d|n f(d); then f(n) =

∑
d|n µ(d)G(n/d) by Theorem

16.7. Thus,

(1)
∑
d|n

µ(d)F (n/d) =
∑
d|n

µ(d)G(n/d)

holds for all n. We will use induction to show that this implies that F (n) = G(n)
for all positive integers n.

First of all, taking n = 1 in (1) we get µ(1)F (1/1) = µ(1)G(1/1), that
is F (1) = G(1). Suppose that we have F (m) = G(m) for all m < n. Since
n/d < n for all positive divisors d of n except for d = 1, (1) now simplifies to
µ(1)F (n/1) = µ(1)G(n/1), and we conclude that F (n) = G(n). This completes
the induction.
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17 Sums of Squares

In this section we will treat the problem of representing a positive integer as a
sum of squares. In particular, we will determine which numbers can be written
as the sum of two squares, and we will prove that every positive number is a
sum of four squares.

By definition, a positive integer n is the sum of two squares if the equation
x2 + y2 = n has an integral solution x, y. Since x2 ≡ 0 or 1 (mod 4) for all
integers x, it is clear that the sum x2 + y2 of two squares is never congruent to
3 modulo 4. Hence no integer of the form 4m+ 3 is the sum of two squares. For
primes we have the following necessary and sufficient condition

Theorem 17.1 Let p be a prime. Then p is the sum of two squares if and only
if p = 2 or p ≡ 1 (mod 4).

Proof. By the preceding comments, no prime ≡ 3 (mod 4) is the sum of two
squares, and clearly 2 = 12+12. It remains to prove that every prime congruent
to 1 modulo 4 is the sum of two squares.

Assume p ≡ 1 (mod 4) and write N = [
√
p]; then of course N <

√
p < N+1.

The number −1 is a quadratic residue of p by Theorem 11.9, and hence there is
an integer i such that i2 ≡ −1 (mod p). Let A be the set of all pairs (j, k), where
j and k are integers in the interval [0, N ], let B denote the set of all residue
classes modulo p, i.e. B = {0, 1, . . . , p− 1}, and define a function f : A→ B by
f(x, y) = x+ iy. Since B has p elements and A has (N + 1)2 > p elements, it is
impossible for the function f to be injective. Hence there must be two distinct
pairs (x1, y1) and (x2, y2) in A that are mapped onto the same equivalence class,
that is x1 + iy1 ≡ x2 + iy2 (mod p). Let a = x1 − x2 and b = y1 − y2; then
a and b are not both zero and a ≡ −ib (mod p), and by squaring we obtain
a2 ≡ i2b2 ≡ −b2 (mod p), that is a2 + b2 is a multiple of p. But |a| ≤ N and
|b| ≤ N , and therefore 0 < a2 + b2 ≤ 2N2 < 2p. It follows that a2 + b2 = p.

Lemma 17.2 Suppose that n = a2 + b2 and that the prime factorization of n
contains the prime factor q, where q ≡ 3 (mod 4). Then

(i) q|a and q|b;
(ii) q must appear to an even power in the prime factorization of n.

Proof. (i) Assume q 6 | a. Then there is a number s such that sa ≡ 1 (mod q),
and by multiplying the congruence a2 +b2 ≡ 0 (mod q) by s2 we obtain (sb)2 =
s2b2 ≡ −s2a2 ≡ −1 (mod q), that is −1 is a quadratic residue modulo q. By
Theorem 11.9, this contradicts the assumption that q ≡ 3 (mod 4). Thus q
divides a and by symmetry, q also divides b.

(ii) Since q | a, q | b and n = a2 + b2, it follows that q2 | n. We can thus
divide the equation n = a2 + b2 by q2 to get n/q2 = (a/q)2 + (b/q)2, that is the
number n1 = n/q2 is a sum of squares. If q | n1 then the preceding argument
shows that q2 | n1. Proceeding in this way, we see that n must be divisible by
an even number of factors of q.

Lemma 17.3 If m and n are each a sum of two squares, then their product mn
is also a sum of two squares.
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Proof. Assume m = a2 + b2 and n = c2 + d2; then

mn = (a2 + b2)(c2 + d2) = (ac+ bd)2 + (ad− bc)2.

Theorem 17.4 Write the canonical factorization of n as

n = 2α
r∏
j=1

p
αj

j

s∏
j=1

q
βj

j ,

where the pjs and qjs are distinct primes, pj ≡ 1 (mod 4) and qj ≡ 3 (mod 4).
Then n can be expressed as a sum of two squares if and only if all the exponents
βj are even.

Proof. The sufficiency of the condition follows by repeated application of Lemma
17.3, because 2 and the primes pj can be represented as a sum of two squares by
Theorem 17.1, and the square q2 (of any number q) is obviously the sum of two
squares (= q2 + 02). The necessity follows immediately from Lemma 17.2.

Having decided which numbers are sums of two squares, the next natural
task is to determine which numbers are representable as sums of three squares.
Since the quadratic residues of 8 are 0, 1, and 4, the sum a2 + b2 + c2 of three
squares can never be congruent to 7 modulo 8. Hence, no integer of the form
8m + 7 is representable as a sum of three squares. It is not difficult to extend
the argument to show that no number of the form 4k(8m + 7) is the sum of
three squares. Conversely, any other number can be written as a sum of three
squares. The proof, which is due to Gauss, is complicated and will not be given
here. Thus the complete characterization is as follows.

Theorem 17.5 A positive integer can be expressed as a sum of three squares if
and only if it is not of the form 4k(8m+ 7).

When it comes to the question of representing numbers as sums of four
squares, we have the following simple answer.

Theorem 17.6 Every positive integer is the sum of four squares.

The first complete proof of this result was given by Lagrange in 1770. We
will base our proof on the following two lemmas.

Lemma 17.7 Suppose 3m is a sum of four squares. Then m is also a sum of
four squares.

Proof. Let 3m = a2 + b2 + c2 + d2. Since every square is congruent to 0 or to 1
modulo 3, there are only two possibilities: either all four of the squares a2, b2,
c2, and d2 are congruent to 0 modulo 3, or one of them, a2 say, is congruent to 0
whereas the other three are congruent to 1. In the first case, a ≡ b ≡ c ≡ d ≡ 0
(mod 3), and in the second case a ≡ 0, b ≡ ±1, c ≡ ±1, and d ≡ ±1 (mod 3).
In any case we have, by changing signs of b, c, and d if necessary, b ≡ c ≡ d
(mod 3). It follows that the four numbers b + c + d, a + b − c, a + c − d, and
a− b+ d are all divisible by 3, and by expanding and simplifying, we find that
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(
b+ c+ d

3

)2

+

(
a+ b− c

3

)2

+

(
a+ c− d

3

)2

+

(
a− b+ d

3

)2

=
3a2 + 3b2 + 3c2 + 3d2

9
=

9m

9
= m,

that is m is the sum of four squares.

Lemma 17.8 Let n be a square-free integer, i.e. n is not divisible by p2 for any
prime p. Then there exist integers a and b such that a2 + b2 ≡ −1 (mod n).

Proof. We will first prove that the result holds when n is a prime p. For p = 2
and p ≡ 1 (mod 4), it follows from Theorem 11.9 that there is a number a
such that a2 ≡ −1 (mod p); thus we can take b = 0. The case p ≡ 3 (mod 4)
remains, and we will give a proof for this case that works for all odd primes.

Let m = (p− 1)/2, and define

A = {02, 12, 22, . . . ,m2} and B = {−1− 02,−1− 12,−1− 22, . . . ,−1−m2}.

Any two elements of A are incongruent modulo p. For let 0 ≤ i ≤ m. The
congruence x2 ≡ i2 (mod p) has exactly two roots ±i modulo p, and the only
number x in the interval [0,m] that is congruent to ±i is x = i, since p− i > m.
Similarly, any two elements of B are incongruent modulo p. Thus, each of the
sets A and B contains m+1 = (p+1)/2 incongruent integers. Since their union
contains p+1 integers, it follows that there is an element a2 of A and an element
−1− b2 of B such that a2 ≡ −1− b2 (mod p), that is a2 + b2 ≡ −1 (mod p).

Suppose now that n = p1p2 · · · pr is a product of distinct primes. For each
prime pj , choose aj , bj such that a2j + b2j ≡ −1 (mod pj). By the Chinese
Remainder Theorem, there are numbers a and b such that a ≡ aj (mod pj) and
b ≡ bj (mod pj) for all j. It follows that a2 + b2 ≡ −1 (mod pj) holds for all j,
and this implies that a2 + b2 ≡ −1 (mod n).

Proof of Theorem 17.6. Let n be a positive integer and write n = k2m, where
m is square-free. If m is the sum of four squares, say m = a2 + b2 + c2 + d2,
then n = (ak)2 + (bk)2 + (ck)2 + (dk)2 is a sum of four squares, too.

Hence, we may as well assume that n is square-free. Then, by Lemma 17.8,
there are two integers a and b such that a2 + b2 ≡ −1 (mod n). Consider all
ordered pairs (ax + by − z, bx − ay − w), where x, y, z, and w range over all
integers from 0 to [

√
n ]. There are (1 + [

√
n ])4 > n2 choices for the quadruple

(x, y, z, w) but only n2 distinct ordered pairs modulo n. Hence there exist
distinct ordered quadruples (x1, y1, z1, w1) and (x2, y2, z2, w2), with all entries
lying in the interval from 0 to [

√
n ], such that ax1 + by1 − z1 ≡ ax2 + by2 − z2

(mod n) and bx1 − ay1 − w1 ≡ bx2 − ay2 − w2 (mod n).
Let x = x1−x2, y = y1−y2, z = z1−z2, and w = w1−w2. Then ax+by ≡ z

(mod n) and bx−ay ≡ w (mod n). Therefore, (ax+by)2 +(bx−ay)2 ≡ z2 +w2

(mod n). But (ax+by)2+(bx−ay)2 = (a2+b2)(x2+y2) ≡ −(x2+y2) (mod n).
It follows that x2 + y2 + z2 + w2 ≡ 0 (mod n), that is x2 + y2 + z2 + w2 = kn
for some integer k. Clearly, |x|, |y|, |z|, and |w| are all less than or equal to
[
√
n ], and they are not all 0, since the ordered quadruples (x1, y1, z1, w1) and

(x2, y2, z2, w2) are distinct. It follows that 0 < x2 +y2 +z2 +w2 ≤ 4[
√
n ]2 < 4n,

and thus k = 1, 2, or 3.
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If k = 1, we are done, while if k = 3, then 3n is a sum of four squares, and n
itself is a sum of four squares by Lemma 17.7. Now suppose k = 2; since 2n is
even, either zero, two, or four of the numbers x, y, z, and w are even. If exactly
two are even, we may suppose that they are x and y. In each case, the numbers
x± y and z ±w are even, and hence (x± y)/2 and (z ±w)/2 are integers. But(

x+ y

2

)2

+

(
x− y

2

)2

+

(
z + w

2

)2

+

(
z − w

2

)2

=
2x2 + 2y2 + 2z2 + 2w2

4

=
4n

4
= n,

and hence n is a sum of four squares. This completes the proof.

The same year as Lagrange proved the four squares theorem, Waring made
the following broader conjecture: Every number is the sum of 4 squares, 9 cubes,
19 fourth powers, and in general, a sum of a fixed number of kth powers. This
conjecture was finally settled in 1909 when David Hilbert proved the following
theorem.

Theorem 17.9 For any k ≥ 2, there is a smallest positive integer s(k) such that
every positive integer can be expressed as a sum of s(k) nonnegative kth powers.

Hilbert’s proof was a pure existence proof and gave no method of determining
s(k). A natural problem is to determine s(k) explicitely. Lagrange’s theorem
and the fact that 7 is not the sum of three squares shows that s(2) = 4. To
determine s(k) for k ≥ 3 turned out to be very difficult. It is now known that
s(3) = 9, s(4) = 19, and s(5) = 37.

It is rather easy to show that the number n = 2k[(3/2)k] − 1 can not be
expressed as a sum with fewer than 2k + [(3/2)k]− 2 kth powers. Hence, s(k) ≥
2k + [(3/2)k] − 2 for every k ≥ 2, and it has been conjectured that in fact
s(k) = 2k+[(3/2)k]−2 for every value of k. This equality is now known to hold
for every k ≤ 471 600 000 and also for all sufficiently large k, so the conjecture
is very likely true.

18 Pythagorean Triples

In this section we will consider the problem of finding right triangles having
sides of integral length, that is of finding integer solutions of the equation

x2 + y2 = z2.

This problem was considered in Egypt long before Pythagoras, but he is credited
for having found a formula generating infinitely many solutions.

Definition 18.1 If x, y and z are positive integers satisfying x2 + y2 = z2, then
(x, y, z) is called a Pythagorean triple. If, in addition, the three numbers are
pairwise relatively prime, then (x, y, z) is called a primitive triple.

Proposition 18.2 If (x, y, z) is a Pythagorean triple, then (x, y) = (x, z) =
(y, z).



18 PYTHAGOREAN TRIPLES 62

Proof. Suppose d | x. If d | y, then d2 | (x2 + y2), and hence d | z. Similarly,
if d | z, then d2 | (z2 − x2), so d | y. It follows that x and y have the same
common divisors as x and z, and in particular the two pairs have the same
greatest common divisor, i.e. (x, y) = (x, z). Similarly, (x, y) = (y, z).

In particular, if (x, y, z) is a Pythagorean triple and two of the three numbers
are relatively prime, then the three numbers are pairwise relatively prime, that
is (x, y, z) is a primitive triple.

Theorem 18.3 Every Pythagorean triple is a multiple of a primitive Pythago-
rean triple. Conversely, every multiple of a Pythagorean triple is a Pythagorean
triple.

Proof. If (x, y, z) is a Pythagorean triple and d = (x, y) is the greatest common
divisor of x and y, then clearly (x/d, y/d, z/d) is a primitive Pythagorean triple
by Proposition 18.2, and hence (x, y, z) is a multiple of a primitive triple. The
converse is obvious.

Proposition 18.4 Suppose (x, y, z) is a primitive Pythagorean triple. Then x
and y are of opposite parity, i.e. one of the numbers is odd and the other is
even.

Proof. Since (x, y) = 1, both numbers cannot be even. Suppose x and y are
both odd. Then x2 ≡ y2 ≡ 1 (mod 4) and hence z2 ≡ 2 (mod 4), which is
impossible. Therefore, x and y are of opposite parity.

In order to find all Pythagorean triples it suffices, by Theorem 18.3, to find
all primitive triples (x, y, z), and when we are looking for primitive triples, it
is no restriction to assume that x is odd and y is even, because (x, y, z) is a
Pythagorean triple if and only if (y, x, z) is so.

All primitive Pythagorean triples (x, y, z) with even y are generated as fol-
lows.

Theorem 18.5 A triple (x, y, z), with y even, is a primitive Pythagorean triple
if and only if it is of the form

x = a2 − b2, y = 2ab, z = a2 + b2,

where a and b are relatively prime positive integers of opposite parity with a > b.

Proof. If x, y, and z are defined as above, then x2 + y2 = (a2 − b2)2 + 4(ab)2 =
(a2 + b2)2 = z2, that is (x, y, z) is a Pythagorean triple. To see that it is
primitive, assume that (x, z) > 1. Then, x and z have a common prime divisor
p which must be odd, since x and z are both odd. Note that z + x = 2a2 and
z − x = 2b2, and hence p | 2a2 and p | 2b2. Since p is odd, it follows that p | a
and p | b, which contradicts the assumption (a, b) = 1. Therefore, (x, z) = 1
and it follows from Proposition 18.2 that (x, y, z) is a primitive triple.

Conversely, assume (x, y, z) is a primitive Pythagorean triple with y even.
Then x and z must be odd. Thus z + x and z − x are even. Let r = (z + x)/2
and s = (z − x)/2. Then z = r + s and x = r − s, so any common divisor of r
and s is a common divisor of x and z. Since (x, z) = 1 it follows that (r, s) = 1.
Since y2 = z2 − x2 = (z + x)(z − x) = 4rs, we have (y/2)2 = rs; but r and s
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are relatively prime, so r and s must each be perfect squares. Write r = a2 and
s = b2, where a and b are positive integers; then a > b and x = r− s = a2 − b2,
z = r + s = a2 + b2, and y = 2

√
rs = 2ab. It is clear that a and b are of

opposite parity, because otherwise x would be even. Finally, (a, b) = 1, since
any common divisor of a and b divides x and z, and (x, z) = 1.

19 Fermat’s Last Theorem

“I have discovered a truly remarkable proof, but the margin is too narrow to
contain it.” This famous note written by Fermat in 1637 in the margin of his
copy of Diophantus’s Arithmetica accompanied a statement by him which in
modern terms reads as follows.

Theorem 19.1 (Fermat’s Last Theorem) The equation xn + yn = zn has no
solution in nonzero integers if n ≥ 3.

It is very likely that Fermat had a proof for the case n = 4 and that he
mistakenly thought that his argument could be generalized to cover the general
case. For more than three and a half centuries a great many mathematicians
tried, unsuccessfully to prove Fermat’s conjecture, and during this search for a
proof many new useful mathematical concepts and theories were invented. In
the beginning of the nineteen nineties, the conjecture was known to be true
for all n containing an odd prime factor less than 106. In June 1993, Andrew
Wiles announced that he had a proof of Fermat’s theorem, but his original proof
turned out to contain some gaps; these were corrected one year later by Wiles
and Richard Taylor. Fermat’s conjecture was finally promoted to a theorem.
The proof is very long and uses many deep results of algebraic geometry.

A popular account of the fascinating hunt for the solution of Fermat’s con-
jecture is given in the book Fermats g̊ata by Simon Singh, MånPocket, 1999.

We will give a proof for the case n = 4 of Fermat’s Last Theorem. In fact,
we will prove the following slightly stronger result.

Theorem 19.2 The equation x4 + y4 = z2 has no solution in nonzero integers.

Proof. Assume the contrary; then there is a solution with positive integers x,
y and z, since any change of sign obviously still yields a solution. Let x, y,
and z be a positive solution, where z is as small as possible. We will derive a
contradiction by proving that there is another positive solution (x1, y1, z1) with
z1 < z.

Suppose (x, y) > 1; then there is a prime p dividing both of x and y. It follows
that p4 | (x4 + y4), that is p4 | z2, and hence p2 | z. Thus (x/p)4 + (y/p)4 =
(z/p2)2, and we have found a positive solution with a smaller value of z. This
would contradict our original choice of (x, y, z), and we conclude that (x, y) = 1.
It follows that (x2, y2) = 1 and hence (x2, y2, z) is a primitive Pythagorean
triple. We may of course assume that x2 is odd and y2 is even, and by Theorem
18.5 there exist relatively prime numbers u and v such that

x2 = u2 − v2, y2 = 2uv, z = u2 + v2.

In particular, (x, v, u) is a primitive Pythagorean triple with x odd. Therefore,
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there exist relatively prime integers s and t such that

x = s2 − t2, v = 2st, u = s2 + t2.

Since (s, t) = 1 it follows from the last equality that u, s, and t are pairwise
relatively prime. But (y/2)2 = uv/2 = ust, so the product ust is a perfect
square, and this implies that u, s, and t are all perfect squares. Hence, there
exist positive integers a, b, and c such that s = a2, t = b2, and u = c2. Since
u = s2 + t2, it follows that a4 + b4 = c2, i.e. (a, b, c) is a positive solution of our
original equation. But this contradics our minimality assumption on z, because
c =
√
u ≤ u2 < u2 + v2 = z. This completes the proof.

Corollary 19.3 The equation x4 + y4 = z4 has no solution in nonzero integers.

Proof. If (x, y, z) is such a solution, then (x, y, z2) is a solution of the equation
in Theorem 19.2. This is a contradiction.

20 Continued Fractions

In this and the following section, we will describe a technique for writing any
real number as an iterated sequence of quotients. For example, the rational
number 157/30 can be expanded as follows

157

30
= 5 +

7

30
= 5 +

1

30

7

= 5 +
1

4 +
2

7

= 5 +
1

4 +
1

7

2

= 5 +
1

4 +
1

3 +
1

2

and the last expression is called a finite continued fraction. To expand an
irrational number, we need infinite continued fractions; for example

√
2 + 1 = 2 + (

√
2− 1) = 2 +

1√
2 + 1

= 2 +
1

2 +
1√

2 + 1

= 2 +
1

2 +
1

2 +
1√

2 + 1

= 2 +
1

2 +
1

2 +
1

2 +
1

. . .

We start by giving a formal definition of finite continued fractions. Though
we are mainly interested in continued fractions whose terms are integers, it is
convenient with a more general definition.

Definition 20.1 Let a0, a1, . . . , an be real numbers, all positive except possibly
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a0. The expression

a0 +
1

a1 +
1

a2 +
1

. . . +
1

an−1 +
1

an

is called a finite continued fraction and is denoted by 〈a0, a1, . . . , an〉. The num-
bers ak are called the terms or the partial quotients of the continued fraction.

If the reader does not like the dots in the above definition, the following
recursive definition should satisfy her completely:

〈a0〉 = a0

〈a0, a1〉 = 〈a0 + 1/a1〉

〈a0, a1, . . . , an〉 = 〈a0, a1, . . . , an−2, an−1 +
1

an
〉, if n ≥ 2.

The reason for assuming ak > 0 for k ≥ 1 in the above definition is that this
guarantees that no division by zero will occur.

A continued fraction with n + 1 terms can be compressed by viewing it as
composed of two shorter continued fractions as follows, which is very useful in
induction proofs.

Proposition 20.2 Let 1 ≤ k ≤ n. Then

(i) 〈a0, a1, . . . , an〉 = 〈a0, a1, . . . , ak−1, 〈ak, ak+1, . . . , an〉〉, and

(ii) 〈a0, a1, . . . , an〉 = a0 +
1

〈a1, . . . , an〉
.

Proof. The formulas should be obvious from the very definition of continued
fractions. For a formal proof of (i), use induction on the number m of terms
in the innermost continued fraction 〈ak, ak+1, . . . , an〉. If m = 1, that is k = n,
then 〈an〉 = an, and there is nothing to prove. If m = 2, then 〈an−1, an〉 =
an−1 + 1/an, and the identity (i) coincides with the recursive definition of
〈a0, a1, . . . , an〉.

Now suppose inductively that the identity (i) holds whenever the innermost
continued fraction has m terms, and consider the case when 〈ak, ak+1, . . . , an〉
has m+ 1 terms. By the induction hypothesis applied twice and the case m = 2
applied once, we obtain

〈a0, a1, . . . , an〉 = 〈a0, a1, . . . , ak−1, ak, 〈ak+1, . . . , an〉〉
= 〈a0, a1, . . . , ak−1, 〈ak, 〈ak+1, . . . , an〉〉〉
= 〈a0, a1, . . . , ak−1, 〈ak, ak+1, . . . , an〉〉.

This completes the induction argument.
(ii) is a special case of (i), obtained by taking k = 1.

Infinite continued fractions are defined as limits of finite continued fractions
in a straightforward way.
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Definition 20.3 Let (an)∞n=0 be a sequence of real numbers, all positive exept
possibly a0. The sequence (〈a0, a1, . . . , an〉)∞n=0 is called an infinite continued
fraction and is denoted by 〈a0, a1, a2, . . . 〉. The infinite continued fraction is
said to converge if the limit

lim
n→∞

〈a0, a1, . . . , an〉

exits, and in that case the limit is also denoted by 〈a0, a1, a2, . . . 〉.

In order to determine the convergence of a given infinite continued fraction
we need to consider the finite continued fractions 〈a0, a1, . . . , an〉 for increasing
values of n. Suppose now that we have computed the value of 〈a0, a1, . . . , an〉
and want to compute the value of 〈a0, a1, . . . , an, an+1〉 without having to repeat
the whole computation from scratch. The recursion formula (ii) in Proposition
20.2 will then be of no use, since it defines 〈a0, a1, . . . , an, an+1〉 in terms of
a0 and 〈a1, . . . , an, an+1〉 and not in terms of 〈a0, a1, . . . , an〉 and an+1. Fortu-
nately, there is an easy way to compute the continued fractions 〈a0, a1, . . . , an〉
in succession, and we will now describe this method.

Definition 20.4 Let (an)Nn=0 be a finite (N ∈ N) or infinite (N = ∞) se-
quence of real numbers, all positive except possibly a0, and define two sequences
(pn)Nn=−2 and (qn)Nn=−2 recursively as follows:

p−2 = 0, p−1 = 1, pn = anpn−1 + pn−2 if n ≥ 0,

q−2 = 1, q−1 = 0, qn = anqn−1 + qn−2 if n ≥ 0.

The pair (pn, qn), as well as the quotient pn/qn (where n ≥ 0), is called the nth
convergent of the given sequence (an)Nn=0 or, equivalently, of the corresponding
continued fraction.

Obviously, q0 = 1, and qn > 0 for all n ≥ 0. Thus, (qn)Nn=0 is a positive
sequence.

The connection between continued fractions and convergents is given by the
next theorem, which also contains some crucial identities.

Theorem 20.5 Let (an)Nn=0 be a sequence of real numbers, all positive except
possibly a0, with corresponding convergents (pn, qn), and write cn = pn/qn.
Then

(i) 〈a0, a1, . . . , an〉 = cn, for all n ≥ 0;

(ii) pnqn−1 − pn−1qn = (−1)n−1, if n ≥ −1;

(iii) cn − cn−1 = (−1)n−1/qn−1qn, if n ≥ 1;

(iv) pnqn−2 − pn−2qn = (−1)nan, if n ≥ 0;

(v) cn − cn−2 = (−1)nan/qn−2qn, if n ≥ 2.

Proof. (i): The case n = 0 is trivial, because c0 = p0/q0 = a0/1 = a0.
Suppose inductively that (i) holds for all continued fractions with n terms,

and let 〈a0, a1, . . . , an〉 be a continued fraction with n+ 1 terms. Since

〈a0, a1, . . . , an〉 = 〈a0, a1, . . . , an−2, an−1 + 1/an〉,

and since the latter continued fraction has n terms and its (n− 1)st convergent
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equals ((an−1 +1/an)pn−2 +pn−3), (an−1 +1/an)qn−2 +qn−3), we conclude that

〈a0, a1, . . . , an〉 =
(an−1 + 1/an)pn−2 + pn−3
(an−1 + 1/an)qn−2 + qn−3

=
an(an−1pn−2 + pn−3) + pn−2
an(an−1qn−2 + qn−3) + qn−2

=
anpn−1 + pn−2
anqn−1 + qn−2

=
pn
qn
.

This completes the induction step.

(ii) Write zn = pnqn−1 − pn−1qn. Using the recursive definitions, we obtain

zn = pnqn−1 − pn−1qn = (anpn−1 + pn−2)qn−1 − pn−1(anqn−1 + qn−2)

= pn−2qn−1 − pn−1qn−2 = −zn−1,

for n ≥ 0, and it follows at once that zn = (−1)n−1z−1. But z−1 = 1, since
p−1 = q−2 = 1 and p−2 = q−1 = 0. Hence, zn = (−1)n−1, as required.

(iii) follows from (ii) upon division by qn−1qn, which is nonzero for n ≥ 1.

(iv) Using the recursive definition of pn and qn and equality (ii), we obtain

pnqn−2 − pn−2qn = (anpn−1 + pn−2)qn−2 − pn−2(anqn−1 + qn−2)

= an(pn−1qn−2 − pn−2qn−1) = an(−1)n−2 = (−1)nan.

(v) follows from (iv) upon division by qn−2qn.

Example 1 We use Theorem 20.5 to evaluate the continued fraction

〈−2, 5, 4, 3, 2, 1〉.

The computations are easily caried out by using the following table:

n −2 −1 0 1 2 3 4 5

an −2 5 4 3 2 1
pn 0 1 −2 −9 −38 −123 −284 −407
qn 1 0 1 5 21 68 157 225

The entries are computed according to the recursive formulas given in Def-
inition 20.4. For example, to find p4 = a4p3 + p2, multiply a4 = 2 by the
last computed p-value p3 (= −123) and add the preceding term p2 (= −38)
to obtain p4 = 2(−123) + (−38) = −284. Finally, note that 〈−2, 5, 4, 3, 2, 1〉 =
p5/q5 = −407/225. The successive convergents are −2, −9/5, −38/21, −123/68,
−284/157, and −407/225.

Corollary 20.6 Let (an)Nn=0 be a finite or infinite sequence of real numbers, all
positive except possibly a0, with convergents cn = pn/qn. The convergents c2i
with even indices form a strictly increasing sequence and the convergents c2j+1

with odd indices form a strictly decreasing sequence, and c2i < c2j+1, that is

c0 < c2 < · · · < c2i < · · · < c2j+1 < · · · < c3 < c1.

Proof. We have cn − cn−2 = (−1)nan/qnqn−2, by Theorem 20.5 (v). Hence, if
n ≥ 2 is even, then cn − cn−2 > 0 and if n ≥ 3 is odd, then cn − cn−2 < 0.
Finally, by Theorem 20.5 (iii), c2k+1 − c2k = 1/q2kq2k+1 > 0. Thus, if i ≥ j,
then c2j < c2i < c2i+1 and c2i < c2i+1 < c2j+1.
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Example 2 In Example 1 we computed the continued fraction 〈−2, 5, 4, 3, 2, 1〉
and its successive convergents. It is easily verified that

−2 < −38

21
< −284

157
< −407

225
< −123

68
< −9

5

in accordance with Corollary 20.6.

Let (an)∞n=0 be a sequence of real numbers, all positive except possibly a0,
with convergents cn = pn/qn. By Theorem 20.5, cn = 〈a0, a1, . . . , an〉. Corol-
lary 20.6 implies that the sequence (c2k)∞k=0 of convergents with even indices is
strictly increasing and bounded above by c1. Hence, the limit c′ = limk→∞ c2k
exists. Similarly, the sequence (c2k+1)∞k=0 is strictly decreasing and bounded
below by c0. Therefore, the limit c′′ = limk→∞ c2k+1 exists, too, and obviously
c2k < c′ ≤ c′′ < c2k+1 for all k.

The limit
c = lim

n→∞
cn = lim

n→∞
〈a0, a1, . . . , an〉

exists if and only if c′ = c′′, that is if and only if c2k+1 − c2k → 0 as k → ∞.
By Theorem 20.5, 0 < c2k+1 − c2k < 1/q2kq2k+1. Therefore, limn→∞ qn = ∞
is a sufficient condition for the existence of the limit c, i.e. for the convergence
of the infinite continued fraction 〈a0, a1, a2, . . . 〉. Our next proposition gives a
condition on the sequence (an)∞n=0 which will guarantee that qn →∞.

Proposition 20.7 Let (an)∞n=0 be a sequence with convergents (pn, qn) and as-
sume that there is a constant α > 0 such that an ≥ α for all n ≥ 1. Then
qn → ∞ as n → ∞. More precisely, there is a constant r > 1 and a positive
constant C such that qn ≥ Crn for all n ≥ 0. The sequence (qn)∞n=1 is strictly

increasing if an ≥ 1 for all n ≥ 1 .

Proof. By assumption, qn = anqn−1 + qn−2 ≥ αqn−1 + qn−2 for all n ≥ 1.
Let r denote the positive root of the quadratic equation x2 = αx + 1, that is
r = α/2 +

√
1 + α2/4, and let C denote the smallest of the two numbers 1 and

a1/r. Then q0 = 1 ≥ Cr0 and q1 = a1 ≥ Cr1. We claim that qn ≥ Crn for all
n ≥ 0. This follows by induction, because if qk ≥ Crk for 0 ≤ k ≤ n − 1, then
qn ≥ αCrn−1 +Crn−2 = Crn−2(αr+ 1) = Crn−2 · r2 = Crn. Obviously, r > 1,
so it follows that qn →∞ as n→∞.

If an ≥ 1 for all n ≥ 1, then qn = anqn−1 + qn−2 ≥ qn−1 + qn−2 > qn−1 for
all n ≥ 2, which means that the sequence (qn)∞n=1 is strictly increasing.

Definition 20.8 A sequence (an)∞n=0 of real numbers will be called admissible
if there is a positive constant α such that an ≥ α for all n ≥ 1.

A sequence (an)∞n=0 consisting of integers, all positive except possibly a0, is
obviously admissible with α = 1. In particular, for such sequences the corre-
sponding sequence (qn)∞n=1 is strictly increasing and unbounded.

The discussion preceeding Proposition 20.7 may now be summarized as fol-
lows:

Theorem 20.9 Let (an)∞n=0 be an admissible sequence with convergents cn =
pn/qn. The infinite continued fraction ξ = 〈a0, a1, a2, . . . 〉 is then convergent,
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and it satisfies

c2n < ξ < c2n+1 and(1)

an+2

qnqn+2
< |ξ − cn| <

1

qnqn+1
(2)

for all n ≥ 0.

Proof. It only remains to prove (2). By (1), for each n ≥ 0, the number ξ
belongs to the interval with endpoints cn and cn+1, and hence

|ξ − cn| < |cn+1 − cn| =
1

qnqn+1
,

where the last equality follows from Theorem 20.5 (iii).
Moreover, the number cn+2 lies strictly between the numbers cn and ξ.

Consequently,

|ξ − cn| > |cn+2 − cn| =
an+2

qnqn+2
,

where the last equality is a consequence of Theorem 20.5 (v). This completes
the proof of the theorem.

Is is often useful to regard an infinite continued fractions as a finite continued
fraction with an infinite continued fraction as its last term (cf. Proposition 20.2).

Theorem 20.10 Let (an)∞n=0 be an admissible sequence of real numbers, let k
be a positive integer, and write ξk = 〈ak, ak+1, ak+2, . . . 〉. Then

〈a0, a1, a2, . . . 〉 = 〈a0, a1, . . . , ak−1, ξk〉.

Proof. Write ξ = 〈a0, a1, a2, . . . 〉 = limn→∞〈a0, a1, . . . , an〉. By letting n → ∞
in the relation

〈a0, a1, . . . , an〉 = a0 +
1

〈a1, a2, . . . , an〉
,

we obtain
ξ = a0 + 1/ξ1 = 〈a0, ξ1〉.

(Note that ξ1 > a1 > 0.) This proves the case k = 1. In particular, we have
ξk = 〈ak, ξk+1〉 for each k.

The general case now follows by induction. Assume that the theorem holds
for a certain k ≥ 1; then

ξ = 〈a0, a1, . . . , ak−1, ξk〉 = 〈a0, a1, . . . , ak−1, 〈ak, ξk+1〉〉
= 〈a0, a1, . . . , ak−1, ak, ξk+1〉,

where the last equality follows from Proposition 20.2. This completes the in-
duction step.

Example 3 Let us use Theorem 20.10 to compute the periodic infinite con-
tinued fraction ξ = 〈1, 2, 3, 1, 2, 3, . . . 〉 = 〈1, 2, 3 〉, where the bar over 1, 2, 3
indicates that this block of integers is repeated indefinitely. By periodicity,
ξ = 〈1, 2, 3, ξ3〉 with ξ3 = ξ, that is ξ = 〈1, 2, 3, ξ〉. To compute the value of
this finite continued fraction we use convergents, which are computed in the
following table:
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n −2 −1 0 1 2 3

an 1 2 3 ξ
pn 0 1 1 3 10 10ξ + 3
qn 1 0 1 2 7 7ξ + 2

It follows that

ξ = 〈1, 2, 3, ξ〉 =
p3
q3

=
10ξ + 3

7ξ + 2
.

Solving for ξ we obtain the quadratic equation 7ξ2 − 8ξ − 3 = 0 with the roots
(4±

√
37)/7. Since ξ > 0, we conclude that ξ = (4 +

√
37)/7.

Example 4 To compute the infinite periodic continued fraction

η = 〈0, 1, 1, 2, 3 〉,

we start by writing η = 〈0, 1, ξ〉, where ξ = 〈1, 2, 3 〉, and η = 0 + 1/(1 + 1/ξ) =
ξ/(ξ + 1). The value of ξ was computed in the previous example. Inserting
ξ = (4 +

√
37)/7 into the expression for η, we obtain η = (1 +

√
37)/12.

Example 5 ξ = 〈1, 1, 1, . . . 〉 = 〈1 〉 is the simplest possible infinite continued
fraction. We will see later that this number plays a special role when it comes
to approximation of irrational numbers by rational numbers. Since ξ = 〈1, ξ〉, ξ
satisfies the equation ξ = 1 + 1/ξ, that is ξ2 = ξ + 1. This quadratic equation
has the roots (1±

√
5)/2, and since ξ is positive we conclude that 〈1, 1, 1, . . . 〉 =

(1 +
√

5)/2.

21 Simple Continued Fractions

Definition 21.1 A finite or infinite continued fraction is called simple, if all its
terms are integers.

We recall that all terms of a continued fraction, except possibly the first
term a0, are by default supposed to be positive. In particular, all terms of a
simple continued fraction, except possibly the first one, are positive integers.
This means that the terms of an infinite simple continued fraction form an
admissible sequence (with α = 1), so there are no convergence problems: The
infinite simple continued fractions are automatically convergent.

The value of a finite simple continued fraction is a rational number. Of
course, this follows easily from the recursive definition of finite continued frac-
tions, but we can also deduce it from the following theorem.

Theorem 21.2 Let (pn, qn) be the nth convergent of a finite or infinite simple
continued fraction. The numbers pn and qn are then relatively prime integers
for each n. Thus, the fractions cn = pn/qn, n ≥ 0, are rational numbers in
reduced form.

Proof. It follows at once from their defining recursive relations that pn and qn
are integers when the terms an of the continued fraction are integers. Relative
primeness is a consequence of the identity pnqn−1 − pn−1qn = (−1)n−1.
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Corollary 21.3 Every finite simple continued fraction 〈a0, a1, . . . , an〉 is a ra-
tional number.

Proof. Because 〈a0, a1, . . . , an〉 = pn/qn.

Theorem 21.4 The value of an infinite simple continued fraction is irrational.

Proof. Assume ξ = 〈a0, a1, a2, . . . 〉 is rational and write ξ = a/b with integers a
and b. By Theorem 20.9, 0 < |a/b− pn/qn| < 1/qnqn+1. Multiplying by bqn we
obtain

0 < |aqn − bpn| <
b

qn+1
.

By choosing n so large that b/qn+1 < 1, which is possible since qn+1 → ∞, we
obtain the inequality 0 < |aqn − bpn| < 1. Since aqn − bpn is an integer, this is
a contradiction.

Theorem 21.5 Every real number can be expressed as a simple continued frac-
tion. The fraction is finite if and only if the real number is rational.

Proof. Let ξ be a real number, and define a0 = [ξ]. We use the following
recursive algorithm to define a (possibly empty) finite or infinite sequence a1,
a2, . . . of positive integers.

Step 0: If ξ = a0, then ξ = 〈a0〉, and the algorithm stops. Otherwise, 0 <
ξ − a0 < 1, and we define ξ1 = 1/(ξ − a0), noting that ξ1 > 1 and that
ξ = 〈a0, ξ1〉. We then proceed to step 1.

Step k for k = 1, 2, . . . : Suppose the positive integers a1, a2, . . . , ak−1 and
the real number ξk > 1 have been defined and that ξ = 〈a0, a1, . . . , ak−1, ξk〉.
Define ak = [ξk].

If ξk = ak, then ξ = 〈a0, a1, . . . , ak〉 and the algorithm stops. Otherwise,
define ξk+1 = 1/(ξk − ak), which is then a real number > 1, note that ξk =
〈ak, ξk+1〉, and ξ = 〈a0, a1, . . . , ak, ξk+1〉, and proceed to step k + 1.

If the algorithm stops, then ξ is a finite simple continued fraction. Otherwise
it defines an infinite sequence (an)∞n=0. Define η = 〈a0, a1, a2, . . . 〉, and let
cn = pn/qn denote the nth convergent of the infinite continued fraction η. Since
ξ = 〈a0, a1, . . . , an, ξn+1〉, the numbers cn−1 and cn are also convergents of ξ. It
therefore follows from Theorem 20.9 and Corollary 20.6 that ξ and η both lie
between the numbers cn−1 and cn. Hence,

|ξ − η| < |cn − cn−1| =
1

qn−1qn
.

Since qn →∞ as n→∞, we conclude that ξ = η = 〈a0, a1, a2, . . . 〉.

Example 1 Using the algorithm of Theorem 21.5 we compute the continued
fraction expansion of

√
2 as follows:

a0 = [
√

2] = 1, ξ1 = 1/(ξ − a0) = 1/(
√

2− 1) =
√

2 + 1;

a1 = [ξ1] = 2, ξ2 = 1/(ξ1 − a1) = 1/(
√

2− 1) =
√

2 + 1 = ξ1.

Since ξ2 = ξ1, we conclude that a2 = a1 and ξ3 = ξ2, etc. Hence, an = a1 = 2
for all n ≥ 1. Therefore,

√
2 = 〈1, 2, 2, 2, . . . 〉 = 〈1, 2 〉.



21 SIMPLE CONTINUED FRACTIONS 72

Since k = k − 1 + 1/1, any integer k can be written in two ways as a simple
continued fraction: k = 〈k〉 = 〈k − 1, 1〉. It follows that every rational number
has at least two different representations as finite simple continued fractions,
because if 〈a0, a1, . . . , an〉 is a representation with an > 1, then

〈a0, a1, . . . , an − 1, 1〉

is a different representation ending in 1. Conversely, if 〈a0, a1, . . . , an, 1〉 is a
continued fraction ending in 1, then 〈a0, a1, . . . , an, 1〉 = 〈a0, a1, . . . , an + 1〉.
However, these are the only different ways to represent a rational number as a
simple continued fraction. For the proof of this fact we shall need the following
lemma.

Lemma 21.6 Let a0, b0 be integers, let a1, a2, . . . , an be positive integers, and
let x, y be two real numbers ≥ 1. Then

b0 = 〈a0, x〉 ⇒ x = 1 and a0 = b0 − 1(1)

a0 6= b0 ⇒ 〈a0, x〉 6= 〈b0, y〉(2)

〈a0, a1, . . . , an, x〉 = 〈a0, a1, . . . , an, y〉 ⇒ x = y(3)

Proof. (1): Suppose b0 = 〈a0, x〉 and x > 1. Then

a0 < 〈a0, x〉 = b0 = a0 + 1/x < a0 + 1,

which is a contradiction, since b0 is an integer. Hence, x = 1, and b0 = a0 + 1.
(2): Suppose a0 < b0; then 〈a0, x〉 = a0 + 1/x ≤ a0 + 1 ≤ b0 < 〈b0, y〉.
(3): If 〈a0, x〉 = 〈a0, y〉, then obviously x = y, so the assertion holds when

n = 0. Now suppose that the implication is true with n replaced by n− 1, and
assume that 〈a0, a1, . . . , an, x〉 = 〈a0, a1, . . . , an, y〉. Since

〈a0, a1, . . . , an, x〉 = 〈a0, a1, . . . , an−1, 〈an, x〉〉,

and the other continued fraction may be shortened analogously, it follows from
our induction hypothesis that first 〈an, x〉 = 〈an, y〉, and then x = y.

Theorem 21.7 Each integer k has exactly two representations as simple con-
tinued fractions, viz. 〈k〉 and 〈k − 1, 1〉. Each nonintegral rational number has
exactly two representations as simple continued fractions, and they are of the
form 〈a0, a1, . . . , an〉 and 〈a0, a1, . . . , an − 1, 1〉, where n ≥ 1 and an > 1. Each
irrational number has a unique representation as an infinite simple continued
fraction.

Proof. We have already noted that each rational number has two different rep-
resentations as finite simple continued fractions, and that each irrational has
one representation as infinite simple continued fraction, so it suffices to prove
that these representations are the only one.

First assume that k is an integer and k = 〈a0, a1, . . . , an〉 = 〈a0, 〈a1, . . . , an〉〉,
with n ≥ 1. It then follows from Lemma 21.6 (1) that a0 = k − 1 and x =
〈a1, . . . , an〉 = 1. If n ≥ 2, then x > a1 ≥ 1, which is impossible. Hence n = 1
and a1 = 1, that is k = 〈k〉 and k = 〈k − 1, 1〉 are the only representations of k
as a simple continued fraction.
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Let now 〈a0, a1, . . . , an〉 = 〈b0, b1, . . . , bm〉 be two representations of a non-
integral rational number, and assume that m ≥ n. Suppose there is an in-
dex k < n such that ak 6= bk, and let k denote the least such index. Writ-
ing the continued fraction 〈a0, a1, . . . , an〉 as 〈a0, . . . , ak−1, 〈ak, . . . , an〉〉 and
similarly for 〈b0, b1, . . . , bm〉, we then conclude, using Lemma 21.6 (3), that
〈ak, . . . , an〉 = 〈bk, . . . , bm〉, or equivalently that

〈ak, 〈ak+1, . . . , an〉〉 = 〈bk, 〈bk+1, . . . , bm〉〉.

However, this is impossible because of (2). Thus, ak = bk for all k < n and
we conclude using (3) that an = 〈bn, . . . , bm〉. But an is an integer, and we
already know that there are only two possible representations of integers as
simple continued fractions; either m = n and an = bn, or m = n+1, bn = an−1
and bn+1 = 1.

Let finally ξ be an irrational number, and suppose

ξ = 〈a0, a1, a2, . . . 〉 = 〈b0, b1, b2, . . . 〉

are two different representations of ξ. Then there is a first index k such that ak 6=
bk, and we conclude from (3) that 〈ak, ak+1, ak+2, . . . 〉 = 〈bk, bk+1, bk+2, . . . 〉.
However, this contradicts (2).

22 Rational Approximations to Irrational Num-
bers

Let ξ be an irrational number. Given a positive integer b, we let a denote the
integer that is nearest to bξ, that is a is either equal to [bξ] or [bξ] + 1. Then
|bξ − a| < 1/2, and dividing by b we obtain∣∣ξ − a

b

∣∣ < 1

2b
.

Since b can be taken arbitrarily large, it follows that ξ can be approximated
arbitrarily well by rational numbers a/b. This is sometimes expressed by saying
that the rational numbers are dense in the set of real numbers.

The inequality above gives a bound on |ξ−a/b| in terms of the denominator
b. A natural question now arises: How well can we approximate ξ with rational
numbers a/b given that there is a prescribed upper bound on the size of b?

It follows from Theorem 20.9, that cn = pn/qn, the nth convergent of the
expansion of ξ as an infinite simple continued fraction, satisfies∣∣ξ − pn

qn

∣∣ < 1

q2n
.

Thus, the approximation error for convergents pn/qn is considerably smaller
than what can be expected for general rational numbers a/b.

We will prove that we can do a bit better; there are infinitely many rational
numbers a/b such that |ξ−a/b| < 1/

√
5 b2 (Theorem 22.7). This result is sharp

in the sense that the constant
√

5 can not be replaced by any bigger constant
(Theorem 22.8). The rational numbers a/b satisfying this inequality have to be
convergents, because we will also prove that if |ξ−a/b| < 1/2b2, then necessarily
a/b is a convergent (Theorem 22.4).
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Thus, continued fractions and convergents play a very important role in the
theory of rational approximation.

In the sequel, we will use both |ξ − a/b| and |bξ − a| as measures of how
well a/b approximates ξ. For convenience, we first reformulate inequality (2) of
Theorem 20.9 slightly:

Let pn/qn be the nth convergent of the irrational number ξ = 〈a0, a1, a2, . . . 〉.
Then

(1)
an+2

qn+2
< |qnξ − pn| <

1

qn+1
.

Inequality (1) is of course obtained from Theorem 20.9 (2) by multiplying
through by qn.

Theorem 22.1 Let (pn, qn) denote the nth convergent of the simple continued
fraction expansion of the irrational number ξ. Then∣∣ξ − pn

qn

∣∣ < ∣∣ξ − pn−1
qn−1

∣∣ and(2)

|qnξ − pn| < |qn−1ξ − pn−1|(3)

for every n ≥ 1.

Proof. We start by proving the second stronger inequality. Suppose

ξ = 〈a0, a1, a2, . . . 〉.

Using inequality (1) twice, we obtain

|qn−1ξ − pn−1| > an+1/qn+1 ≥ 1/qn+1 > |qnξ − pn|,

which proves (3).
Inequality (2) is an easy consequence of (3) and the fact that qn ≥ qn−1 for

n ≥ 1:∣∣ξ− pn
qn

∣∣ =
1

qn

∣∣qnξ−pn∣∣ < 1

qn

∣∣qn−1ξ−pn−1∣∣ ≤ 1

qn−1

∣∣qn−1ξ−pn−1∣∣ =
∣∣ξ− pn−1

qn−1

∣∣.
Convergents have some interesting extremal properties which we are now

going to study. The proofs of these will rely on the following simple observation:
If r1 = a1/b1 and r2 = a2/b2 are two rational numbers with positive denom-

inators and r1 6= r2, then

|r1 − r2| ≥
1

b1b2
.

This is obvious because r1 − r2 = (a1b2 − a2b1)/b1b2 and the numerator a1b2 −
a2b1 is a nonzero integer and its absolute value is thus at least one.

On the other hand, if cn = pn/qn and cn+1 = pn+1/qn+1 are two consecutive
convergents of a number ξ, then |cn+1 − cn| = 1/qn+1qn, according to Theorem
20.5.

In the formulation of the following theorems we will use the notation

min
1≤t≤B

f(s, t)

to denote the minimum of f(s, t) when s ranges over all integers and t ranges
over all integers in the interval [1, B].
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Theorem 22.2 Let ξ be an irrational number, let B be a positive integer, and
consider the value of |tξ − s| for all integers t in the interval [1, B] and all
integers s. Suppose that the minimum is achieved for s = a and t = b, that is

|bξ − a| = min
1≤t≤B

|tξ − s|.

Then, a and b are relatively prime, and (a, b) is a convergent of the simple
continued fraction expansion of ξ.

Proof. Let d be a common divisor of a and b, and suppose d > 1. Write a′ = a/d
and b′ = b/d; then 1 ≤ b′ ≤ B and |b′ξ − a′| = |bξ − a|/d < |bξ − a|, which
contradicts the choice of a and b. Thus d = 1, and a and b are relatively prime.

Let now cn = pn/qn denote the nth convergent of ξ and write r = a/b. We
shall prove that r = cn for some n; since both fractions a/b and pn/qn are in
reduced form, it will then follow that a = pn and b = qn.

First suppose r < c0. Since c0 < ξ, |ξ − r| > |c0 − r| ≥ 1/bq0. Multiplying
through by b, we obtain |bξ − a| = b|ξ − r| > 1/q0 ≥ 1/q1 > |q0ξ − p0|. Since
q0 = 1 ≤ b, this contradict the minimality assumption on a and b. Thus, r ≥ c0.

Next suppose that r > c1. Since c1 > ξ, |ξ−r| > |c1−r| ≥ 1/bq1. Multiplying
through by b, we again obtain |bξ − a| > 1/q1 > |q0ξ − p0|, which is impossible.

Hence, c0 ≤ r ≤ c1. Since (c2k) is an increasing sequence and (c2k+1) is
a decreasing sequence, both with limit ξ, the rational number r lies between
cn−1 and cn+1 for some integer n. If r is either cn−1 or cn+1, we are finished.
Otherwise, note that these two convergents are on the same side of ξ, and that
cn lies on the other side. It follows that |r − cn−1| < |cn − cn−1|. Since the
left hand side of this inequality is ≥ 1/bqn−1 and the right hand side equals
1/qnqn−1, we conclude that 1/bqn−1 < 1/qnqn−1, that is qn < b.

We also have |ξ − r| > |cn+1 − r| ≥ 1/bqn+1, and multiplying both sides by
b we obtain |bξ − a| > 1/qn+1 > |qnξ − pn|. Since qn < b, this contradicts the
assumption that |tξ − s| is minimized when t = b and s = a. The proof is now
complete.

Theorem 22.2 tells us that if a/b is the “best” approximation to ξ in the
sense that |bξ − a| cannot be made smaller by replacing a/b with any other
rational number s/t with 1 ≤ t ≤ b, then a/b is necessarily a convergent of
ξ. By combining this result with Theorem 22.1 we obtain the following more
precise information:

Theorem 22.3 Let ξ be irrational with convergents (pn, qn). Then

|qnξ − pn| = min
1≤t<qn+1

|tξ − s|(4) ∣∣ξ − pn
qn

∣∣ = min
1≤t≤qn

∣∣ξ − s

t

∣∣.(5)

Proof. By Theorem 22.2, there is a convergent (pm, qm) of ξ such that

|qmξ − pm| = min
1≤t<qn+1

|tξ − s|.

Since qk ≥ qn+1 for all k ≥ n+1 and since |qkξ−pk| decreases when k increases,
it follows that m = n. This proves (4).
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To prove (5), assume that 1 ≤ t ≤ qn and let s be arbitrary. Using (4), we
obtain∣∣ξ − pn

qn

∣∣ =
1

qn

∣∣qnξ − pn∣∣ ≤ 1

qn

∣∣tξ − s∣∣ =
t

qn

∣∣ξ − s

t

∣∣ ≤ qn
qn

∣∣ξ − s

t

∣∣ =
∣∣ξ − s

t

∣∣.
Hence, ∣∣ξ − pn

qn

∣∣ = min
1≤t≤qn

∣∣ξ − s

t

∣∣.
Remark. If qn+1 > 2qn, the following stronger result holds:∣∣ξ − pn

qn

∣∣ = min
1≤t≤qn+1/2

∣∣ξ − s

t

∣∣.
Proof. Assume |ξ−s/t| < |ξ−pn/qn|. Using the triangle inequality and Theorem
20.9, we then obtain

1/tqn ≤ |s/t− pn/qn| ≤ |s/t− ξ|+ |ξ − pn/qn| < 2|ξ − pn/qn| < 2/qnqn+1.

It follows that t > qn+1/2.

Example 1 Using the algorithm in Theorem 21.5 and the decimal expansion
of π, one easily finds that π = 〈3, 7, 15, 1, 292, 1, 1, 1, 2, . . . 〉. To compute the
first five convergents we use the following table:

n −2 −1 0 1 2 3 4

an 3 7 15 1 292 1
pn 0 1 3 22 333 355 103 993
qn 1 0 1 7 106 113 33 102

The convergent p1/q1 is the familiar approximation 22/7, first given by Archime-
des; it is the best approximation among all rationals with denominator not
exceeding 7. The approximation 355/113 is remarkably accurate; by Theorem
20.9, ∣∣∣∣π − 355

113

∣∣∣∣ < 1

113 · 33102
< 3 · 10−7.

Using the remark following Theorem 22.3 we see that in order to obtain a better
approximation we need a rational a/b with b > 33102/2 = 16 551. In fact,
355/113 is the best approximation to π among all rationals with denominators
not exceeding 16 603.

In Theorems 22.2 and 22.3, the convergents appear as solutions to certain
minimum problems. Therefore, it should not come as a surprise that “best”
rational approximations to irrationals have to be convergents. The following
theorem gives a precise meaning to this statement.

Theorem 22.4 Let ξ be irrational, and let a and b be integers with b positive.
If ∣∣∣ξ − a

b

∣∣∣ < 1

2b2
,

then a/b equals one of the convergents of the simple continued fraction expansion
of ξ.
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Remark. The fraction a/b is not necessarily reduced.

Proof. If the fraction a/b is not reduced, then the reduced fraction a′/b′ obvi-
ously satisfies the same inequality. Therefore, we may as well assume from the
beginning that a/b is reduced, i.e. that a and b are relatively prime. Under this
assumption we will prove that the inequality

(6) |bξ − a| ≤ |tξ − s|

holds for all integers s and t with 1 ≤ t ≤ b. It then follows from Theorem 22.2
that a/b is a convergent.

Assume (6) is false for some integers s and t with 1 ≤ t ≤ b. Then

(7) |tξ − s| < |bξ − a|,

and it follows that∣∣ξ − s

t

∣∣ < 1

t
|bξ − a| = b

t

∣∣∣ξ − a

b

∣∣∣ < b

t
· 1

2b2
=

1

2bt
.

Using the triangle inequality, we thus obtain∣∣a
b
− s

t

∣∣ ≤ ∣∣a
b
− ξ
∣∣+
∣∣ξ − s

t

∣∣ < 1

2b2
+

1

2bt
=

1

2bt

(
1 +

t

b

)
≤ 1

bt
.

Multiply through by bt; this results in |at − bs| < 1, and since at − bs is an
integer we conclude that at − bs = 0, that is a/b = s/t. Since the fraction a/b
is reduced, t ≥ b. But t ≤ b, and hence t = b and s = a. This is a contradiction
because of (7).

It remains to prove that there are fractions a/b that satisfy the inequality in
Theorem 22.4. By Theorem 20.9, the convergents p/q of an irrational number
ξ satisfy the inequality |ξ − p/q| < 1/q2. The following theorem shows that of
any two successive convergents at least one will satisfy the stronger inequality
in Theorem 22.4.

Theorem 22.5 Of any two successive convergents of the simple continued frac-
tion expansion of the irrational number ξ, at least one convergent p/q will satisfy
the inequality ∣∣ξ − p

q

∣∣ < 1

2q2
.

Proof. Assume the theorem is false. Then there are two successive conver-
gents cn = pn/qn and cn+1 = pn+1/qn+1 such that |ξ − cn| > 1/2q2n and
|ξ − cn+1| > 1/2q2n+1. (The inequalities are strict since ξ is irrational.) Since
the two convergents are on opposite sides of ξ, it follows that

1

qnqn+1
= |cn+1 − cn| = |cn+1 − ξ|+ |ξ − cn| >

1

2q2n+1

+
1

2q2n
.

Multiplying through by qn+1qn, we obtain

(8) 1 >
1

2

( qn
qn+1

+
qn+1

qn

)
.

To conclude the proof we note that x + 1/x = 2 + (
√
x − 1/

√
x)2 ≥ 2 for all

positive numbers x. Therefore, the right hand side of inequality (8) is certainly
≥ 1, and this is a contradiction. This proves the theorem.
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The result of Theorem 22.5 can be improved, as Theorem 22.7 will show.
We shall need the following simple lemma.

Lemma 22.6 Let x be a positive real number, and suppose x+
1

x
<
√

5. Then

x <

√
5 + 1

2
and

1

x
>

√
5− 1

2
.

Proof.

x+ 1/x <
√

5⇔ x2 −
√

5x+ 1 < 0⇔
(
x− (

√
5 + 1)/2

)(
x− (

√
5− 1)/2

)
< 0

⇔ (
√

5− 1)/2 < x < (
√

5 + 1)/2,

and if x < (
√

5 + 1)/2, then 1/x > (
√

5− 1)/2.

Theorem 22.7 If ξ is irrational, then there exist infinitely many rational num-
bers a/b such that ∣∣ξ − a

b

∣∣ < 1√
5 b2

.

Indeed, out of three successive convergents of ξ, at least one will satisfy the
inequality.

Proof. Suppose on the contrary that none of the convergents ck = pk/qk, k =
n− 1, n, n+ 1, satisfies the inequality. Then |ξ − ck| ≥ 1/

√
5 q2k for k = n− 1,

n, and n+ 1. The successive convergents cn−1 and cn lie on opposite sides of ξ;
hence

1

qnqn−1
= |cn − cn−1| = |cn − ξ|+ |ξ − cn−1| ≥

1√
5

( 1

q2n
+

1

q2n−1

)
.

Multiplying through by qnqn−1, we obtain qn/qn−1+qn−1/qn <
√

5 (the inequal-
ity is strict since the number on the left hand side is rational), and using Lemma
22.6, we conclude that qn/qn−1 < (

√
5 + 1)/2 and qn−1/qn > (

√
5− 1)/2.

Analogously, we must have qn+1/qn < (
√

5 + 1)/2, and hence

√
5 + 1

2
>
qn+1

qn
=
anqn + qn−1

qn
≥ qn + qn−1

qn
= 1 +

qn−1
qn

> 1 +

√
5− 1

2
=

√
5 + 1

2
.

This contradiction proves the theorem.

Theorem 22.8 The constant
√

5 in the preceding theorem is best possible, be-
cause if C >

√
5 and ξ = 〈1, 1, 1, . . . 〉 = (

√
5 + 1)/2, then the inequality∣∣ξ − a

b

∣∣ < 1

Cb2

holds for only finitely many integers a and b.

Proof. By Theorem 22.4, any fraction a/b satisfying the inequality must be a
convergent, so it suffices to prove that only finitely many convergents pn/qn of
ξ satisfy the inequality.
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First note that ξ−1 = (
√

5− 1)/2, ξ + ξ−1 =
√

5, and ξ − ξ−1 = 1.
Since pn = pn−1 + pn−2 and qn = qn−1 + qn−2, where p−2 = 0 and p−1 = 1,

whereas q−1 = 0 and q0 = 1, we conclude that qn = pn−1 for all n ≥ −1, and
that (qn)∞0 is the ordinary Fibonacci sequence. Moreover, using induction it is
easy to show that

pn = Aξn +B(−ξ)−n,

where the constants A and B are determined by the condition{
p−1 = Aξ−1 −Bξ = 1

p0 = A+B = 1

Solving for A and B, we find

A =
1 + ξ

ξ + ξ−1
, B =

ξ−1 − 1

ξ + ξ−1
, and AB(ξ + ξ−1) =

ξ−1 − ξ
ξ + ξ−1

= − 1√
5
.

Hence,

|qnξ − pn| = |pn−1ξ − pn| = |Aξn −B(−ξ)2−n −Aξn −B(−ξ)−n|
= |B(ξ2 + 1)ξ−n| = −B(ξ2 + 1)ξ−n.

It follows that

q2n
∣∣ξ − pn

qn

∣∣ = |qnξ − pn| qn = −B(ξ2 + 1)ξ−n(Aξn−1 +B(−ξ)1−n)

= −AB(ξ + ξ−1) + (−1)nB2(ξ2 + 1)ξ1−2n

=
1√
5

+B2(−1)n(ξ2 + 1)ξ1−2n.

Let n tend to ∞; then ξ1−2n → 0 since ξ > 1, and we conclude that

lim
n→∞

q2n
∣∣ξ − pn

qn

∣∣ =
1√
5
.

Since 1/
√

5 > 1/C, it follows that

q2n
∣∣ξ − pn

qn

∣∣ > 1

C
,

for all but finitely many n. Thus, the inequality in Theorem 22.8 holds for only
finitely many convergents pn/qn.

23 Periodic Continued Fractions

In section 20 we computed some periodic simple continued fractions and found
that they were roots of quadratic equations with integer coefficients. The goal of
this section is to prove that this property characterizes the periodic simple con-
tinued fractions, that is an irrational number has a periodic continued fraction
expansion if and only if it satifies a quadratic equation with integer coefficients.
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Definition 23.1 An infinite sequence (an)∞n=0 is called periodic if there is a
nonzero integer p and an integer m such that

an = an+p for all n ≥ m.

The integer p is called a period of the sequence.
If p and q are two different periods for the sequence, then p− q is a period,

too, because an+p−q = an+p−q+q = an+p = an for all sufficiently large integers
n. Thus, the set of all periods together with the number 0 is an ideal in Z. It
follows that there exists a smallest positive integer r such that all periods of
the sequence are multiples of r. This uniquely determined number is called the
period and the period length of the sequence.

A periodic sequence with period p > 0 can be written in the form

b0, b1, . . . , bm−1, c0, c1, . . . , cp−1, c0, c1, . . . , cp−1, . . .

= b0, b1, . . . , bm−1, c0, c1, . . . , cp−1

where the bar over the c0, c1, . . . , cp−1 indicates that this block of numbers is
repeated indefinitely.

A periodic sequence (an)∞n=0 with period p > 0 is called purely periodic if
an = an+p holds for all n ≥ 0. Purely periodic sequences are of the form
a0, a1, . . . , ap−1.

Definition 23.2 An infinite continued fraction 〈a0, a1, a2, . . . 〉 is called (purely)
periodic if the corresponding sequence (an)∞n=0 of terms is (purely) periodic. Of
course, the period of a periodic continued fraction is by definition the period of
the sequence of terms.

Let ξ = 〈a0, a1, a2, . . . 〉 be a continued fraction and write

ξk = 〈ak, ak+1, ak+2, . . . 〉.

If ξ is a periodic continued fraction with period p, then obviously there is an
integer m such that ξn = ξn+p holds for all n ≥ m. Conversely, if ξn+p = ξn
holds for some number n, then ξ is a periodic continued fraction with p as a
period (and the period r is some divisor of p).

Definition 23.3 An irrational number ξ is called a quadratic irrational (or al-
gebraic of degree two) if it is the root of a quadratic polynomial with integer
coefficients, that is if aξ2 + bξ + c = 0 for suitable integer coefficients a, b, and
c with a 6= 0.

Proposition 23.4 A real number ξ is a quadratic irrational if and only if it has
the form ξ = r+ s

√
d, where d is a positive integer that is not a perfect square,

r and s are rational numbers and s 6= 0.

Proof. Any real irrational solution of a quadratic equation ax2 + bx + c = 0
obviously has this form. Conversely, a real number of this form is irrational
and satisfies the quadratic equation (x− r)2 = s2d, which can be turned into a
quadratic equation with integer coefficients upon multiplication by the squares
of the denominators of r and s.
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Definition 23.5 Let d be a positive integer that is not a perfect square. We
define Q[

√
d ] to be the set of all real numbers ξ of the form ξ = r + s

√
d, with

r and s rational. The number ξ′ = r − s
√
d is called the conjugate of ξ.

The simple proofs of the following two propositions are left to the reader.

Proposition 23.6 Q[
√
d ] is a number field, that is if ξ and η are numbers in

Q[
√
d ], then their sum ξ+η, difference ξ−η, product ξη, and quotient ξ/η also

belong to Q[
√
d ], the quotient of course provided η 6= 0.

Proposition 23.7 Suppose ξ, η ∈ Q[
√
d ]. Then (ξ + η)′ = ξ′ + η′, (ξ − η)′ =

ξ′ − η′, (ξη)′ = ξ′η′, and (ξ/η)′ = ξ′/η′.

Proposition 23.8 If the number ξ has a periodic simple continued fraction ex-
pansion, then ξ is a quadratic irrational.

Proof. Being an infinite continued fraction, ξ is irrational. We will prove that
ξ ∈ Q[

√
d ] for a suitable positive integer d that is not a perfect square.

Assume
ξ = 〈b0, b1, . . . , bm−1, c0, c1, . . . , cr−1 〉,

and let η = 〈 c0, c1, . . . , cr−1 〉. Then η = 〈c0, c1, . . . , cr−1, η〉.
Let (pk, qk) be the convergents of the continued fraction 〈c0, c1, . . . , cr−1〉.

Then

η = 〈c0, c1, . . . , cr−1, η〉 =
ηpr−1 + pr−2
ηqr−1 + qr−2

,

and solving for η we see that η satisfies a quadratic equation with integer co-
efficients. Hence, η is a quadratic irrational, that is η ∈ Q[

√
d ] for a suitable

positive integer d that is not a perfect square.
Similarly, in terms of the convergents (Pk, Qk) of 〈b0, b1, . . . , bm−1〉, we have

ξ = 〈b0, b1, . . . , bm−1, η〉 =
ηPm−1 + Pm−2
ηQm−1 +Qm−2

,

so by Proposition 23.6, ξ belongs to Q[
√
d ].

The converse of Proposition 23.8 is true, that is every quadratic irrational
has a periodic simple continued fraction expansion. The proof of this needs
some preparatory work.

Lemma 23.9 If ξ is a quadratic irrational, then ξ can be written in the form

ξ =
u+
√
d

v
,

where d is an integer that is not a perfect square, u and v are integers, and
v | (d− u2).

Proof. By Proposition 23.4, ξ = r + s
√
D, where D is an integer that is not a

perfect square, r and s are rational numbers and s 6= 0. We can obviously write
r = a/c and s = b/c, where a, b, and c are integers and b > 0. Then

ξ =
a+ b

√
D

c
=
a|c|+

√
b2c2D

c|c|
=
u+
√
d

v
,
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and the integers u = a|c|, v = c|c| and d = b2c2D satisfy the requirement
v | (d− u2).

Suppose ξ0 is a quadratic irrational. Using Lemma 23.9, we first write

ξ0 = (u0 +
√
d)/v0,

where d is an integer that is not a perfect square, and u0 and v0 are integers,
and v0 | (d− u20).

We then recall the recursive algorithm in Theorem 21.5 for obtaining the
continued fraction expansion of 〈a0, a1, a2, . . . 〉 of ξ0. The terms an are given
by

a0 = [ξ0], ξn+1 =
1

ξn − an
, and an+1 = [ξn+1] for n = 0, 1, 2, . . . ,

and we have ξ0 = 〈a0, a1, . . . , an, ξn+1〉 for all n.
Now suppose inductively that ξn = (un +

√
d)/vn, with integers un and vn

that satisfy vn | (d− u2n). Then

ξn+1 =
1

ξn − an
=

1√
d− (anvn − un)

vn

=

√
d+ (anvn − un)

d− (anvn − un)2

vn

=
un+1 +

√
d

vn+1
,

where un+1 = anvn − un and vn+1 = (d− u2n+1)/vn.
Clearly, un+1 is an integer and un+1 ≡ −un (mod vn). Hence by the in-

duction assumption, d − u2n+1 ≡ d − u2n ≡ 0 (mod vn), that is vn divides
d − u2n+1. Therefore, vn+1 is also an integer, and vn+1 | (d − u2n+1), because
vnvn+1 = d− u2n+1.

By induction, we have thus proved the validity of the following algorithm:

Theorem 23.10 Suppose ξ0 = (u0+
√
d)/v0, where d is a positive integer that is

not a perfect square, u0 and v0 are integers and v0 | (d−u20). Define recursively
the sequences (un)∞0 , (vn)∞0 , (an)∞0 and (ξn)∞0 as follows:

ξn =
un +

√
d

vn
, an = [ξn]

un+1 = anvn − un, vn+1 =
d− u2n+1

vn
, for n ≥ 0.

Then un and vn are integers, vn | (d − u2n), and ξ0 = 〈a0, a1, . . . , an, ξn+1〉 for
all n, and

ξ0 = 〈a0, a1, a2, . . . 〉.

Example 1 Let us compute the continued fraction expansion of the number
(1 −

√
5)/3 using the algorithm of Theorem 23.10. Since 3 6 | (5 − 12), we first

have to put the number in the form of Lemma 23.9. Multiplying numerator and
denominator by −3, we obtain

ξ0 =
−3 +

√
45

−9
, that is u0 = −3, v0 = −9, and d = 45.

Now v0 | (d−u20), so we can start the algorithm. The result of the computations
is shown in the following table:
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n 0 1 2 3 4 5 6 7 8 9

un −3 12 −1 5 5 3 6 6 3 5
vn −9 11 4 5 4 9 1 9 4 5
an −1 1 1 2 2 1 12 1 2 2

Since (u9, v9) = (u3, v3), we conclude that ξ9 = ξ3. Thus,

1−
√

5

3
= 〈−1, 1, 1, 2, 2, 1, 12, 1, 2 〉.

Lemma 23.11 Let ξ be a quadratic irrational and define ξn as in Theorem
23.10. If the conjugate ξ′k < 0 for some index k, then −1 < ξ′n < 0 for all
n > k.

Proof. By induction, it suffices to prove that ξ′n < 0 implies −1 < ξ′n+1 < 0. So
assume ξ′n < 0. Using the relation ξn+1 = 1/(ξn − an) and taking conjugates,
we obtain ξ′n+1 = 1/(ξ′n−an). Since an ≥ 1, the denominator ξ′n−an is strictly
less than −1, so it follows that −1 < ξ′n+1 < 0.

Lemma 23.12 Let ξ be a quadratic irrational, and define ξn and an = [ξn] as
above. If −1 < ξ′n < 0, then an = [−1/ξ′n+1].

Proof. We have ξ′n+1 = 1/(ξ′n − an), whence −1/ξ′n+1 = an − ξ′n. Since 0 <
−ξ′n < 1, it follows that [−1/ξ′n+1] = [an − ξ′n] = an.

Lemma 23.13 If ξ is a quadratic irrational, then there exists an index k such
that ξ′k < 0.

Proof. Let (pk, qk) denote the kth convergent of ξ. Since

ξ = 〈a0, a1, . . . , an−1, ξn〉,

we have

ξ =
pn−1ξn + pn−2
qn−1ξn + qn−2

,

and solving for ξn we obtain

ξn =
qn−2ξ − pn−2
pn−1 − qn−1ξ

= −qn−2
qn−1

(ξ − pn−2/qn−2
ξ − pn−1/qn−1

)
.

By taking conjugates, we get

ξ′n = −qn−2
qn−1

(ξ′ − pn−2/qn−2
ξ′ − pn−1/qn−1

)
.

We now use the fact that the convergents pn/qn converge to ξ as n tends to
infinity and that ξ′ 6= ξ. It follows that the expression within parenthesis con-
verges to (ξ′− ξ)/(ξ′− ξ), that is to 1, as n tends to infinity. Consequently, the
expression within parenthesis is certainly > 0 when n is big enough, that is ξ′n
has the same sign as −qn−2/qn−1, which is negative since qn is positive for all
n ≥ 0.
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Theorem 23.14 A real number ξ has a periodic simple continued fraction ex-
pansion if and only if it is a quadratic irrational.

Proof. We have already proved that a periodic continued fraction is a quadratic
irrational (Proposition 23.8). To prove the converse, let ξ = ξ0 be a quadratic
irrational and write

ξn =
un +

√
d

vn

as in Theorem 23.10. By Lemma 23.13, there is an index k such that ξ′k < 0,
and by Lemma 23.11, −1 < ξ′n < 0 for all n > k. Since ξn > 1 for all n ≥ 1, we
conclude that

1 < ξn − ξ′n =
2
√
d

vn
and 0 < ξn + ξ′n =

2un
vn

for all n > k. Hence 0 < vn < 2
√
d and un > 0 if n > k. Moreover, using the

relation d − u2n+1 = vnvn+1 > 0, we obtain u2n+1 < d, that is un+1 <
√
d for

n > k. Thus, if n > k + 1, then 0 < un <
√
d and 0 < vn < 2

√
d. Hence, the

ordered pairs (un, vn) can assume only a fixed number of possible pair values,
and so there are distinct integers i and j with j > i such that uj = ui and
vj = vi. This implies that ξi = ξj = ξi+(j−i), and hence ξ has a periodic
continued fraction expansion.

We will next characterize the purely periodic continued fractions.

Definition 23.15 A quadratic irrational ξ = r + s
√
d is called reduced it ξ > 1

and its conjugate ξ′ = r − s
√
d satisfies −1 < ξ′ < 0.

Theorem 23.16 The simple continued fraction expansion of the real quadratic
irrational number ξ is purely periodic if and only if ξ is reduced. Also, if ξ =
〈a0, a1, . . . , ar−1 〉, then −1/ξ′ = 〈ar−1, ar−2, . . . , a1, a0 〉.

Proof. Suppose ξ = ξ0 is a reduced quadratic irrational, and use Theorem 23.10
to write ξn = (un +

√
d)/vn. Since −1 < ξ′0 < 0 by assumption, we have

−1 < ξ′n < 0 and an = [−1/ξ′n+1] for all n ≥ 0 by Lemma 23.11 and Lemma
23.12.

We know from Theorem 23.14 that ξ has a simple periodic continued fraction
expansion. Let r be the period length; then there is a smallest number m ≥ 0
such that

ξn+r = ξn for all n ≥ m.

We must prove that m = 0.
Assume m ≥ 1. Starting from ξm = ξm+r we first obtain ξ′m = ξ′m+r by

taking conjugates, and hence am−1 = [−1/ξ′m] = [−1/ξ′m+r] = am+r−1. Since

1

ξm−1 − am−1
= ξm = ξm+r =

1

ξm+r−1 − am+r−1
,

we then conclude that ξm−1+r = ξm−1, which violates the definition of m. Thus
m = 0, and ξ is purely periodic.
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Conversely, suppose that ξ is purely periodic, say ξ = 〈a0, a1, . . . , ar−1 〉,
where a0, a1, . . . , ar−1 are positive integers. Then ξ > a0 ≥ 1. Let (pn, qn)
denote the nth convergent of ξ; then

ξ = 〈a0, a1, . . . , ar−1, ξ〉 =
pr−1ξ + pr−2
qr−1ξ + qr−2

.

Thus ξ satisfies the quadratic equation

f(x) = qr−1x
2 + (qr−2 − pr−1)x− pr−2 = 0.

This equation has two roots, ξ and its conjugate ξ′. Since ξ > 1, we need only
prove that f(x) has a root between −1 and 0 to establish that −1 < ξ′ < 0. We
will do this by showing that f(0) < 0 and f(−1) > 0.

Note that pn is positive for all n ≥ −1 (since a0 > 0). Hence, f(0) =
−pr−2 < 0. Next we see that

f(−1) = qr−1 − qr−2 + pr−1 − pr−2 = (ar−1 − 1)(qr−2 + pr−2) + qr−3 + pr−3

≥ qr−3 + pr−3 > 0.

Thus, ξ is reduced.
Finally, to prove that −1/ξ′ has the stated continued fraction expansion,

we suppose that ξ = 〈a0, a1, . . . , ar−1 〉. Taking conjugates in the relation ξn =
1/(ξn−1 − an−1) we obtain ξ′n = 1/(ξ′n−1 − an−1), which can be rewritten as

−1/ξ′n = an−1 +
1

−1/ξ′n−1
for all n ≥ 1.

Since −1/ξ′n > 1 for all n, the above equation can be expressed as a continued
fraction expansion

−1/ξ′n = 〈an−1,−1/ξ′n−1〉.

Starting with −1/ξ′r, iterating and using the fact that ξ = ξ0 = ξr, we thus
obtain

−1/ξ′ = −1/ξ′0 = −1/ξ′r = 〈ar−1,−1/ξ′r−1〉 = 〈ar−1, ar−2,−1/ξ′r−2〉 = . . .

= 〈ar−1, ar−2, . . . , a1, a0,−1/ξ′0〉.

Hence, −1/ξ′ = 〈ar−1, ar−2, . . . , a1, a0 〉.

Example 2 The quadratic irrational (2 +
√

10)/3 is reduced. Its continued
fraction expansion is easily computed with the aid of Theorem 23.10. Since
3 | (10 − 22), we can start with u0 = 2, v0 = 3 and d = 10. The computations
are summarized in the following table:

n 0 1 2 3

un 2 1 2 2
vn 3 3 2 3
an 1 1 2 1

Since (u3, v3) = (u0, v0), the period is 3 and (2 +
√

10)/3 = 〈1, 1, 2 〉.
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24 Continued Fraction Expansion of
√

d

Theorem 24.1 Let d be a positive integer that is not a perfect square. The
simple continued fraction expansion of

√
d is of the form

〈a0, a1, a2, . . . , ar−1, 2a0 〉,

where a0 = [
√
d ] and aj = ar−j for j = 1, 2, . . . , r − 1.

Proof. Let a0 = [
√
d ] and ξ = a0 +

√
d. Then ξ is reduced, because ξ > 1 and

ξ′ = a0 −
√
d satisfies −1 < ξ′ < 0. By Theorem 23.16, ξ has a purely periodic

continued fraction expansion starting with [ξ] = 2a0, say

(1) ξ = a0 +
√
d = 〈2a0, a1, a2, . . . , ar−1 〉 = 〈2a0, a1, a2, . . . , ar−1, 2a0 〉.

If we subtract a0 from each side, we get

√
d = 〈a0, a1, a2, . . . , ar−1, 2a0 〉.

To prove that the sequence a1, a2, . . . , ar−1 is “symmetric”, we note that

ξ = a0 +
√
d = 2a0 +

√
d− a0 = 2a0 − ξ′ = 2a0 +

1

−1/ξ′
= 〈2a0,−1/ξ′〉.

By Theorem 23.16,

−1/ξ′ = 〈ar−1, ar−2, . . . , a1, 2a0 〉,

and hence
ξ = 〈2a0, ar−1, ar−2, . . . , a1, 2a0 〉.

A comparison with (1) gives aj = ar−j for 1 ≤ j ≤ r − 1.

Example 1 To compute the continued fraction expansion of
√

19 we use The-
orem 23.10 with u0 = 0, v0 = 1 and d = 19. We get the following table:

n 0 1 2 3 4 5 6 7

un 0 4 2 3 3 2 4 4
vn 1 3 5 2 5 3 1 3
an 4 2 1 3 1 2 8 2

It follows that the expansion has period length 6, and that

√
19 = 〈4, 2, 1, 3, 1, 2, 8 〉.

Theorem 24.2 Let (pn, qn) denote the nth convergent of
√
d, let the integers

un and vn be defined for the number ξ =
√
d as in Theorem 23.10, that is

ξn = (un +
√
d)/vn with vn | (d − u2n), and let r be the period length of the

continued fraction expansion of
√
d. Then

(i) p2n − dq2n = (−1)n−1vn+1 for every n ≥ −1;

(ii) vn > 0 for every n ≥ 0;

(iii) vn = 1 if and only if r | n.
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Proof. Write
√
d = 〈a0, a1, a2, . . . 〉 = 〈a0, a1, . . . , an, ξn+1〉.

(i) We have

√
d =

ξn+1pn + pn−1
ξn+1qn + qn−1

=
(un+1 +

√
d)pn + vn+1pn−1

(un+1 +
√
d)qn + vn+1qn−1

,

which can also be written as

un+1pn + vn+1pn−1 − dqn − (un+1qn + vn+1qn−1 − pn)
√
d = 0.

Since
√
d is irrational, it follows that{

un+1pn + vn+1pn−1 − dqn = 0

un+1qn + vn+1qn−1 − pn = 0

Eliminating un+1 from this system, we obtain

p2n − dq2n = vn+1(pnqn−1 − qnpn−1) = (−1)n−1vn+1,

where we used Theorem 20.5 to get the last equality.

(ii) The convergents pn/qn are >
√
d if n is odd and <

√
d if n is even.

Therefore, p2n − dq2n has the same sign as (−1)n−1, so it follows from (i) that
vn+1 is positive for every n ≥ −1.

(iii) Since ξ =
√
d has period length r, ξkr+1 = ξ1 for all positive integers

k. It follows that

ξkr − akr =
1

ξkr+1
=

1

ξ1
= ξ0 − a0 = −a0 +

√
d,

that is ξkr = akr − a0 +
√
d. Hence, vkr = 1 (and ukr = akr − a0).

Conversely, assume vn = 1; then ξn = un +
√
d, so an = [ξn] = un + [

√
d ] =

un + a0 and ξn − an =
√
d − a0 = ξ0 − a0, that is ξn+1 = 1/(ξn − an) =

1/(ξ0 − a0) = ξ1. It follows from this that n is a multiple of the period length
r.

The reader may have noted in the few examples of continued fraction ex-
pansion of

√
d that we have given, that the numbers appearing in the period of√

d were all less than or equal to a0 except for the last one, which equals 2a0.
This holds in general.

Proposition 24.3 Let
√
d = 〈a0, a1, . . . , ar−1, 2a0 〉. Then an ≤ a0 for 1 ≤ n ≤

r − 1.

Proof. With ξ = ξ0 =
√
d, let ξn = (un +

√
d)/vn be as in Theorem 23.10 and

suppose 1 ≤ n ≤ r − 1. Then vn ≥ 2 by the previous theorem, and using
Lemma 23.11 we conclude that ξ′n = (un−

√
d)/vn < 0, because ξ′0 = −

√
d < 0.

It follows that un −
√
d < 0, that is un <

√
d and hence ξn < 2

√
d/vn ≤

√
d.

Finally, an = [ξn] ≤ [
√
d ] = a0.
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25 Pell’s Equation

The equation x2 − dy2 = N , with given nonzero integers d and N , is called
Pell’s equation. If d is negative, Pell’s equation can have only a finite number
of solutions in integers, since x2 ≤ N and y2 ≤ −N/d.

If d = a2 is a perfect square, then we have (x+ ay)(x− ay) = N , and again
there is only a finite number of integral solutions to Pell’s equation, since there
is only a finite number of ways to factor N .

We will therefore suppose that d is a positive integer that is not a perfect
square. We will show that in that case there is either no solution at all or
infinitely many solutions in integers. When N = ±1, we will give a complete
description of the set of solutions.

If (u, v) is an integral solution of Pell’s equation x2−dy2 = N , then (±u,±v)
is also a solution for every combination of the signs. Thus, in order to find all
integral solutions it suffices to find all positive solutions, that is all solutions
(u, v) with u > 0 and v > 0. If N is a perfect square, there will of course
be two additional trivial solutions (±

√
N, 0), and if −N/d happens to be an

integer that is a perfect square, (0,±
√
−N/d) are two trivial solutions of Pell’s

equation.
If (x1, y1) and (x2, y2) are two positive solutions of x2 − dy2 = N , then

x21−x22 = d(y21−y22), and hence x1 < x2 if and only if y1 < y2. Thus, if we order
the positive solutions according to increasing x-value or according to increasing
y-value we will get the same result.

If there is a positive solution in integers of Pell’s equation, then there is
obviously a positive solution (x1, y1) with a least positive x-value. This solution
has also the least y-value among all positive solutions. Since it plays a special
role we introduce the following definition.

Definition 25.1 Suppose Pell’s equation x2 − dy2 = N has positive integral
solutions. The fundamental solution, or least positive solution, is the positive
solution (x1, y1) such that x1 < u and y1 < v for every other positive solution
(u, v).

The following theorem gives a connection between Pell’s equation and con-
tinued fractions.

Theorem 25.2 Let d be a positive integer that is not a perfect square, and
suppose |N | <

√
d. If (u, v) is a positive solution in integers of x2 − dy2 = N ,

then there is a convergent (pn, qn) of the simple continued fraction expansion of√
d such that u/v = pn/qn.

Remark. The numbers u and v need not be relatively prime, but if c is their
greatest common divisor, then obviously c2 | N . Hence, if N is square-free, and
in particular if N = ±1, then u and v are necessarily relatively prime. That
means that there is an index n such that u = pn and v = qn.

Proof. We will consider a more general situation. Let d and N be any positive
real numbers, not necessarily integers, such that

√
d is irrational and N <

√
d,

and assume that u and v are positive integers satisfying u2 − dv2 = N .
Since (u

v
−
√
d
)(u
v

+
√
d
)

=
u2 − dv2

v2
=
N

v2
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and the second factor of the left hand side is positive, we first conclude that
u/v −

√
d > 0, and consequently u/v +

√
d > 2

√
d. Hence

0 <
u

v
−
√
d =

N

v2(u/v +
√
d)

<

√
d

2v2
√
d

=
1

2v2
.

By Theorem 22.4, u/v is a convergent of
√
d.

Let now d and N be as in the statement of the theorem. The case N > 0 is
a special case of what we have just proved.

If N < 0, we rewrite the equation as y2 − (1/d)x2 = −N/d. Since 0 <
−N/d <

√
d/d =

√
1/d, we can apply the general case above, and we conclude

that v/u is a convergent of 1/
√
d. Suppose

√
d has the continued fraction

expansion 〈a0, a1, a2, . . . 〉. Then 1/
√
d = 〈0,

√
d〉 = 〈0, a0, a1, a2, . . . 〉. Hence,

there is an n such that

v

u
= 〈0, a0, a1, . . . , an〉 =

1

〈a0, a1, . . . , an〉
,

that is u/v = 〈a0, a1, . . . , an〉 is a convergent of
√
d.

By combining the theorem above with Theorem 24.2, we get a complete
description of the solution set of Pell’s equation in the case N = ±1.

Theorem 25.3 Suppose d is a positive integer that is not a perfect square, let
r be the period length of the simple continued fraction expansion of

√
d, and let

(pn, qn)∞n=0 be the corresponding sequence of convergents.

(i) Suppose r is even. Then

(a) x2 − dy2 = −1 has no solutions in integers;

(b) all positive integral solutions of x2 − dy2 = 1 are given by x = pkr−1,
y = qkr−1 for k = 1, 2, 3, . . . , with x = pr−1 and y = qr−1 as the
fundamental solution.

(ii) Suppose r is odd Then

(a) all positive integral solutions of x2−dy2 = −1 are given by x = pkr−1,
y = qkr−1 for k = 1, 3, 5, . . . , with x = pr−1 and y = qr−1 as the
fundamental solution;

(b) all positive integral solutions of x2 − dy2 = 1 are given by x = pkr−1,
y = qkr−1 for k = 2, 4, 6, . . . , with x = p2r−1 and y = q2r−1 as the
fundamental solution.

Proof. By the previous theorem, the positive integral solutions of x2−dy2 = ±1
are to be found among the convergents (pn, qn). Furthermore, a0 = [

√
d ] ≥ 1,

so the sequence (pn)∞n=0 is strictly increasing. Therefore, the first solution that
appears in the sequence (pn, qn) will be the fundamental solution.

According to Theorem 24.2, p2n − dq2n = (−1)n−1vn+1, where vn ≥ 1 for all
n and vn = 1 if and only if r | n. Thus, |p2n − dq2n| ≥ 2 except when n = kr − 1
for some nonnegative integer k, in which case

p2n − dq2n = (−1)kr.

If r is even, then (−1)kr = 1 for all k, and hence (pkr−1, qkr−1) is a solution
of x2 − dy2 = 1 for all k, whereas the equation x2 − dy2 = −1 has no positive
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solution, and of course no solution at all in integers. This proves part (i). If the
period length r is odd, then (−1)kr = 1 for k even, and = −1 for k odd, and
this proves part (ii).

Example 1 We shall use Theorem 25.3 to find the fundamental solution of the
equation x2 − 19y2 = 1.

The continued fraction expansion
√

19 = 〈4, 2, 1, 3, 1, 2, 8 〉 was found in
the previous section. Since the period length is 6, the fundamental solution
is (x, y) = (p5, q5). The convergents are computed in the following table:

n −2 −1 0 1 2 3 4 5

an 4 2 1 3 1 2
pn 0 1 4 9 13 48 61 170
qn 1 0 1 2 3 11 14 39

Thus, the fundamental solution is (x, y) = (170, 39).

Theorem 25.3 gives a method for computing the successive solutions of Pell’s
equation but it is tedious to compute convergents (pn, qn). Having found the
fundamental solution, we can find the remaining positive solutions by a simpler
method, which will be described in Theorem 25.6 below.

Lemma 25.4 Let (x1, y1) be an arbitrary integral solution of x2−dy2 = M and
(x2, y2) an arbitrary integral solution of x2 − dy2 = N , and define the integers
u and v by

(x1 + y1
√
d)(x2 + y2

√
d) = u+ v

√
d,

that is u = x1x2 + y1y2d, v = x1y2 + x2y1. Then (u, v) is a solution of
x2 − dy2 = MN . If (x1, y1) and (x2, y2) are positive solutions, then (u, v) is
also positive.

Proof. By taking conjugates we have (x1 − y1
√
d)(x2 − y2

√
d) = u− v

√
d, and

hence

u2 − dv2 = (u+ v
√
d)(u− v

√
d)

= (x1 + y1
√
d)(x2 + y2

√
d)(x1 − y1

√
d)(x2 − y2

√
d)

= (x21 − dy21)(x22 − dy22) = MN.

The solution (u, v) will obviously be positive if the original ones are positive.

Corollary 25.5 If the equation x2 − dy2 = N has an integral solution, then it
has infinitely many integral solutions.

Proof. Suppose the equation x2 − dy2 = N has at least one integral solution.
This solution multiplied by any solution of x2− dy2 = 1 yields another solution
of x2 − dy2 = N . Since the equation x2 − dy2 = 1 has infinitely many integral
solutions, there will also be infinitely many integral solutions of x2 − dy2 =
N .

Theorem 25.6 Let (x1, y1) be the fundamental solution of x2 − dy2 = 1. Then
all positive integral solutions are given by (xn, yn), n ≥ 1, where the integers xn
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and yn are recursively defined by

xn+1 = x1xn + y1ynd, yn+1 = x1yn + y1xn.

Proof. Note that xn+1 + yn+1

√
d = (x1 + y1

√
d)(xn + yn

√
d) = (x1 + y1

√
d)n+1.

Hence by Lemma 25.4 with M = N = 1, if (xn, yn) is a positive solution of
Pell’s equation x2 − dy2 = 1, then (xn+1, yn+1) will also be a positive solution.
It therefore follows by induction, that (xn, yn) is a solution for all n.

It remains to show that every positive integral solution is obtained in this
way. Suppose there is a positive solution (u, v) that is not of the form (xn, yn).
Since xn forms an increasing sequence, there must be some integer m such that
xm ≤ u < xm+1. It follows that ym ≤ v < ym+1, because we get the same
result if positive solutions are ordered according to their x-value or y-value. We
cannot have equality, because u = xm would imply v = ym. Now (xm,−ym) is
of course also a (non-positive) solution of x2 − dy2 = 1, so by Lemma 25.4 we
will obtain another solution (s, t) by defining

s+ t
√
d = (u+ v

√
d)(xm − ym

√
d) =

u+ v
√
d

xm + ym
√
d
.

Since xm + ym
√
d < u+ v

√
d < xm+1 + ym+1

√
d, we have

1 < s+ t
√
d <

xm+1 + ym+1

√
d

xm + ym
√
d

= x1 + y1
√
d.

But s− t
√
d = 1/(s+ t

√
d) and hence 0 < s− t

√
d < 1. It now follows that

s = 1
2 (s+ t

√
d) + 1

2 (s− t
√
d) > 1

2 + 0 > 0

t
√
d = 1

2 (s+ t
√
d)− 1

2 (s− t
√
d) > 1

2 −
1
2 = 0,

so (s, t) is a positive solution. Therefore, s > x1 and t > y1, but this contradicts
s + t

√
d < x1 + y1

√
d. This contradiction shows that every integral solution

(u, v) must be of the form (xn, yn).

Example 2 In Example 1, we showed that the fundamental solution of

x2 − 19y2 = 1

is (x1, y1) = (170, 39). Using the recursion formulas

xn = x1xn + 19y1yn, yn = x1yn + y1xn,

we can compute the next positive solutions. They are

(x2, y2) = (57 799, 13 260)

(x3, y3) = (19 651 490, 4 508 361)

(x4, y4) = (6 681 448 801, 1 532 829 480)

Just as in the case of x2−dy2 = 1, further solutions of the equation x2−dy2 =
−1 can be found from its fundamental solution. We leave the proof of the
following result to the reader.
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Theorem 25.7 Suppose that x2 − dy2 = −1 has an integral solution, and let
(x1, y1) denote the fundamental solution. For n ≥ 1, define positive integers xn
and yn recursively as in Theorem 25.6, i.e. (xn + yn

√
d) = (x1 + y1

√
d)n. Then

all positive integral solutions of x2− dy2 = −1 are given by (xn, yn) with n odd,
and all positive integral solutions of x2 − dy2 = 1 are given by (xn, yn) with n
even. In particular, (x2, y2) is the fundamental solution of x2 − dy2 = 1.


