Elementär Talteori: 2012-08-25

Hjälpmedel: Papper och skrivdon.

1. Find all pythagorean triples which have 18 as one of their components! Solution: We look for primitive pythagorean triples $\left(p^{2}-q^{2}, 2 p q, p^{2}+\right.$ q^{2}) with $p>q, \operatorname{gcd}(p, q)=1,2 \mid p q$, where one of the components is a divisor of 18 and then multiply with $\frac{18}{d}$. One checks easily that $d=p^{2}+q^{2}$ is impossible.
(a) $d=1,2$ is impossible.
(b) $d=3 \Longrightarrow 3=p^{2}-q^{2}=(p+q)(p-q) \Longrightarrow p=2, q=1$. So we obtain $6 \cdot(3,4,5)=(18,24,30)$.
(c) $d=6 \Longrightarrow 6=2 p q$, which is impossible, since $p q$ is even.
(d) $d=9 \Longrightarrow 9=(p+q)(p-q) \Longrightarrow p=5, q=4$. So we obtain $2 \cdot(9,40,41)=(18,80,82)$.
(e) $d=18 \Longrightarrow 18=2 p q$, which is impossible, since $p q$ is even.
2. Show that there is no integer solution $(x, y) \in \mathbb{Z}^{2}$ of the equation

$$
6 x^{2}-11 y^{4}=47 .
$$

Solution: If there is a solution in \mathbb{Z}, then as well in \mathbb{Z}_{n} for every $n \in \mathbb{N}$. We take $n=11$ and may forget about $11 y^{4}$. It follows that

$$
\overline{6}^{-1} \cdot \overline{47} \in \mathbb{Z}_{11}
$$

is a square. If so, we have

$$
1=\left(\frac{6 \cdot 47}{11}\right)=\left(\frac{2}{11}\right)\left(\frac{3}{11}\right)\left(\frac{3}{11}\right)=-1,
$$

a contradiction!
3. Solve the congruence $108 x \equiv 171 \bmod (529)$.

Solution:

(a) $108 x=171+529 y$
(b) $529 y \equiv 171 \bmod (108)$
(c) $-11 y \equiv 45 \bmod (108)$
(d) $-11 y=45+108 z$
(e) $108 z \equiv-45 \bmod (11)$
(f) $-2 z \equiv-1 \bmod (11)$

If we take $z=-5$, we obtain $y=45$ and $x=222$. So $x \equiv 222$ $\bmod (529)$ is the solution.
4. (a) Find the least positive solution of the simultaneous congruences

$$
x \equiv 5 \bmod (12), x \equiv 17 \bmod (20), x \equiv 23 \bmod (42) .
$$

Solution: The above congruences are equivalent to four congruences with prime power moduli
$x \equiv 2 \bmod (3), x \equiv 1 \quad \bmod (4), x \equiv 2 \bmod (5), x \equiv 2 \bmod (7)$.
or

$$
x \equiv 1 \quad \bmod (4), x \equiv 2 \quad \bmod (105) .
$$

Then we consider the following chinese remainder table:

\mathbb{Z}_{420}	$\mathbb{Z}_{4} \times \mathbb{Z}_{105}$
$\overline{105}$	$(\overline{1}, \overline{0})$
$-\overline{104}$	$(\overline{0}, \overline{1})$
$-\overline{103}$	$(\overline{1}, \overline{2})$

Thus the least positive solution of our congruences is $x=-103+$ $420=317$.
(b) Solve the congruence $x^{6}-2 x^{5}-35 \equiv 0 \bmod (125)$.

Solution: We are hunting for zeros of $f=X^{6}-2 X^{5}-35 \in \mathbb{Z}[X]$ in \mathbb{Z}_{125}.
i. We have $\bar{f}=X^{6}-2 X^{5}=X^{5}(X-2) \in \mathbb{Z}_{5}[X]$. Hence $x=$ $\overline{0}, \overline{2}$. Furthermore $f^{\prime}=6 X^{5}-10 X^{4}$ satisfies $f^{\prime}(\overline{0})=0$ and $f^{\prime}(\overline{2})=\overline{2}$. So there is a unique lift of $x=\overline{2}$ to \mathbb{Z}_{125}, while for $x=\overline{0}$ we have to see.
ii. In \mathbb{Z}_{25} we consider $y=t \cdot \overline{5}, \overline{2}+t \cdot \overline{5}$. The congruences to be satisfied by t are

$$
0 \cdot t \equiv-7 \quad \bmod (5) \text { resp. } 2 \cdot t \equiv-3 \bmod (5)
$$

The first one is unsolvable, the second one has the solution $t=1$. So in \mathbb{Z}_{25} there is only one zero, namely $y=\overline{7}$.
iii. In \mathbb{Z}_{125} we have $z=\overline{7}+t \cdot \overline{25}$, where t satisfies

$$
2 \cdot t \equiv 0 \quad \bmod (5)
$$

$$
\text { so } z=\overline{7} \in \mathbb{Z}_{125}
$$

5. Determine all natural numbers such that there are exactly 8 primitive roots in \mathbb{Z}_{m}^{*}.

Solution: First of all the only integers m, such that \mathbb{Z}_{m}^{*} admits a primitive root are $m=2,4, p^{r}, 2 p^{r}$ with an odd prime p. Since $\mathbb{Z}_{m}^{*} \cong$ $\mathbb{Z}_{2 m}^{*}$ for odd m, we may assume $m=p^{r}$. Now if a is a primitive root, then a power a^{k} is a primitive root iff $\operatorname{gcd}(k, \varphi(m))=1$. So there are $\varphi(\varphi(m))$ primitive roots. We distinguish three cases:
(a) $m=p^{r}, r \geq 3$: In that case we have $\varphi(\varphi(m))=\varphi\left(p^{r-1}(p-1)\right)=$ $p^{r-2}(p-1) \varphi(p-1)$, so p divides 8 - but that is absurd.
(b) $m=p^{2}$: In that case we have $\varphi(\varphi(m))=\varphi(p(p-1))$
$=(p-1) \varphi(p-1)$, so $p-1$ divides 8 and thus $p=3,5$. Obviously only $p=5$ resp. $m=25$ is a solution.
(c) $m=p$: For a prime divisor q of $p-1$ the number $q-1$ is a divisor of 8 , hence $q=2,3,5$, and $p-1=5^{k} 3^{\ell} 2^{n}$ with $k, \ell \leq 1$. For $k=\ell=1$ we have the possibilities $n=0,1$. If $n=0$, we find $p=16$ - impossible, but $n=1$ gives $p=m=31$. Now if $p-1=5 \cdot 2^{n}$, we have $n=2$ and $p=21$, impossible as well. The case $p-1=3 \cdot 2^{n}$ leads to $n=3$ resp. $p=25$, impossible! Finally $p-1=2^{n}$ gives $n=4$ and $p=17$, a further solution!
6. Find the value of the continued fraction $K(5, \overline{7,3})$!

Solution: We have $K(5, \overline{7,3})=5+\frac{1}{y}$, where $x:=K(\overline{7,3})$ satisfies

$$
y=K(7,3, y)=7+\frac{1}{3+\frac{1}{x}} \Longleftrightarrow 3 y^{2}-21 y-7=0, y>7 \Longleftrightarrow y=\frac{7}{2}+\frac{5}{6} \sqrt{21} .
$$

Finally

$$
K(5, \overline{7,3})=5+\frac{1}{y}=\frac{1}{42}(147+15 \sqrt{21}) .
$$

7. Find a primitive root a for the group of units $(\mathbb{Z}[\sqrt{6}])^{*}$ of the ring $\mathbb{Z}[\sqrt{6}]$, i.e. such that $\mathbb{Z}[\sqrt{6}]^{*}=\left\{ \pm a^{n} ; n \in \mathbb{Z}\right\}$, or equivalently, determine a fundamental solution for the equations $x^{2}-6 y^{2}= \pm 1$.
Solution: Obviously $a=5+2 \sqrt{6}$ it is a unit. Indeed is the basic unit, since there is no unit $\alpha+\beta \sqrt{6}$ with $\alpha<5, \beta<2$.
8. Compute ($\frac{461}{773}$).

Solution: Both 461 and 773 are primes, hence

$$
\begin{gathered}
\left(\frac{461}{773}\right)=\left(\frac{773}{461}\right)=\left(\frac{461}{773}\right)=\left(\frac{-149}{461}\right)=\left(\frac{-1}{461}\right)\left(\frac{149}{461}\right) \\
\left(\frac{461}{149}\right)=\left(\frac{14}{149}\right)=\left(\frac{2}{149}\right)\left(\frac{7}{149}\right)=-\left(\frac{149}{7}\right)=-\left(\frac{2}{7}\right)=-1 .
\end{gathered}
$$

