ET: Solutions 2015-03-11

1. (a) Solve the diophantine equation 35x - 55y + 77z = 23. **Answer**: $(x, y, z) = (11s + 138 - 44t, 23 - 7t, -5s - 46 + 15t), s, t \in \mathbb{Z}$. We do the following column transformations

$$\begin{pmatrix} 35 & -55 & 77 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \mapsto \begin{pmatrix} 35 & 15 & 7 \\ 1 & 2 & -2 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \mapsto \begin{pmatrix} 0 & 1 & 7 \\ 11 & 6 & -2 \\ 0 & 1 & 0 \\ -5 & -2 & 1 \end{pmatrix}$$
$$\mapsto \begin{pmatrix} 0 & 1 & 0 \\ 11 & 6 & -44 \\ 0 & 1 & -7 \\ -5 & -2 & 15 \end{pmatrix}$$
and multiply the last matrix with the vector $\begin{pmatrix} s \\ 23 \\ t \end{pmatrix}$.

- (b) Determine all continued fractions $K(a_0, ..., a_n) = \frac{89}{19}$. **Answer**: We have $89 = 4 \cdot 19 + 13, 19 = 1 \cdot 13 + 6, 13 = 2 \cdot 6 + 1, 6 = 6 \cdot 1$. Hence $\frac{89}{19} = K(4, 1, 2, 6) = K(4, 1, 2, 5, 1)$.
- 2. Solve the congruence $251x \equiv 125 \mod (521)$.

Solution:

- (a) 251x = 125 + 521y
- (b) $521y \equiv -125 \mod (251)$
- (c) $19y \equiv -125 \mod (251)$
- (d) 19y = -125 + 251z
- (e) $251z \equiv 125 \mod (19)$
- (f) $4z \equiv -8 \mod (19)$

If we take z = -2, we obtain y = -33 and x = -68. So $x \equiv -68 \mod (521)$ is the solution.

3. Determine the zeros of the following polynomials

(a) $X^2 - X$ in \mathbb{Z}_{91} ,

Answer: The solutions are the idempotents in \mathbb{Z}_{91} . We consider the following chinese remainder table:

$$\begin{array}{c|c|c}
\mathbb{Z}_{91} & \mathbb{Z}_7 \times \mathbb{Z}_{13} \\
\hline
-\overline{13} & (\overline{1}, \overline{0}) \\
\overline{14} & (\overline{0}, \overline{1})
\end{array}$$

,

and obtain the idempotents $\overline{1}, \overline{0}, -\overline{13}, \overline{14}$.

(b) $X^{11} - 2$ in \mathbb{Z}_{125} ,

Answer: Let $f = X^{11} - 2$. For $\xi \in \mathbb{Z}_5^*$ we have $f(\xi) = \xi^{-1} - 2$, thus there is the unique zero $\xi = -\overline{2}$. Since $f'(-\overline{2}) = 11 \cdot \overline{2}^{10} \neq 0$, there is a unique lift to any residue class ring \mathbb{Z}_{5^k} . Indeed $-\overline{2} \in \mathbb{Z}_{25}$ is a zero of f as well. In \mathbb{Z}_{125} it is of the form $-\overline{2} + t \cdot \overline{25}$, with a solution t of the congruence

$$f'(-2)t \equiv -\frac{f(-2)}{25} \mod (5),$$

i.e.

$$-t \equiv -3 \mod (5).$$

So we find t = 3 and $\xi = \overline{73}$ is the unique zero of f in \mathbb{Z}_{125} .

(c) $X^2 + 25$ in \mathbb{Z}_{125} .

Answer: We find $\xi = \overline{5k}$, where $k^2 \equiv -1 \mod (5)$, i.e. $k \equiv \pm 2 \mod (5)$ resp. $k \equiv \pm 2, \pm 7, \pm 12, \pm 17, \pm 22 \mod (25)$. So the solutions are

$$\pm\overline{10},\pm\overline{35},\pm\overline{60},\pm\overline{85},\pm\overline{110}\in\mathbb{Z}_{125}.$$

- 4. Determine whether the following residue classes are squares!
 - (a) $328 \in \mathbb{Z}_{823}$

Answer: No: We compute, the number 823 being prime, Legendre symbols:

$$\left(\frac{328}{823}\right) = \left(\frac{2}{823}\right)^3 \cdot \left(\frac{41}{823}\right) = \left(\frac{823}{41}\right) = \left(\frac{3}{41}\right) = \left(\frac{41}{3}\right) = \left(\frac{2}{3}\right) = -1,$$

since $823 \equiv -1 \mod (8)$ and $41 \equiv 1 \mod (4)$.

(b) $\overline{823} \in \mathbb{Z}_{328}$.

Answer: No: The Chinese remainder isomorphism

$$\mathbb{Z}_{328} \xrightarrow{\cong} \mathbb{Z}_8 \times \mathbb{Z}_{41}$$

maps $\overline{823}$ to $(-\overline{1},\overline{3})$. Since $-\overline{1} \in \mathbb{Z}_8$ is not a square, $\overline{823} \in \mathbb{Z}_{328}$ is not a square either.

5. (a) Find a primitive root in \mathbb{Z}_{14641}^* !

Solution: First of all $14641 = 11^4$. Now $\overline{2} \in \mathbb{Z}_{11}$ is a primitive root, since $\overline{2}^2 = \overline{4} \neq \overline{1}$ as well as $\overline{2}^5 = -\overline{1} \neq \overline{1}$. So $\overline{2} \in \mathbb{Z}_{121}$ has either order 10 as well or 110. But $\overline{2}^{10} = \overline{56} \neq \overline{1}$ holds in \mathbb{Z}_{121} , so $\overline{2}$ is a primitive root for \mathbb{Z}_{121}^* and then automatically for \mathbb{Z}_{14641}^* as well.

(b) Does Z^{*}₁₀₀₁ admit a primitive root?
 Answer: No: The Chinese remainder isomorphism

$$\mathbb{Z}_{1001} \xrightarrow{\cong} \mathbb{Z}_7 \times \mathbb{Z}_{11} \times \mathbb{Z}_{13}$$

induces a bijection

$$\mathbb{Z}_{1001}^* \xrightarrow{\cong} \mathbb{Z}_7^* \times \mathbb{Z}_{11}^* \times \mathbb{Z}_{13}^*.$$

It follows that $\xi^{60} = 1$ holds for all $\xi \in \mathbb{Z}_{1001}^*$, while $|\mathbb{Z}_{1001}^*| = 720$.

6. (a) Find all $(x, y) \in \mathbb{N}, x < y$, s.th. $x^2 + y^2 = 845$. Answer: We onsider the equation

$$z\overline{z} = 845 = 5 \cdot 13^2 = (2+i)(2-i)(3+2i)^2(3-2i)^2.$$

Up to sign and interchange of components the real and imaginary parts of the following complex numbers

i. $z = (2+i)(3+2i)^2 = -2+29i$ ii. z = (2+i)(3+2i)(3-2i) = 26+13i, iii. $z = (2+i)(3-2i)^2 = 22-19i$.

provide all $(x, y), x^2 + y^2 = 845$. We obtain

(x, y) = (2, 29), (13, 26), (19, 22).

(b) Which numbers $c \in \mathbb{N}_{>0}$ do occur in a pythagorean triple $(a, b, c) \in (\mathbb{N}_{>0})^3$?

Answer: All numbers having a prime divisor $p \equiv 1 \mod (4)$. For such a divisor $(c = c_0 p)$ we have $p = z\overline{z}$ for some z = x + iy, 0 < y < x, and $z^2 = a + ib$ with a, b > 0. So $(c_0 a, c_0 b, c)$ is a pythagorean triple. If c is not divisible with a prime $p \equiv 1 \mod (4)$, we have $c = 2^m q$ with a product q of primes $\equiv 3 \mod (4)$, and $c^2 = z\overline{z}$ implies

$$z \in (1+i)^{2m} \mathbb{Z}q \cup (1+i)^{2m} \mathbb{Z}qi,$$

i.e. x = 0 or y = 0, whenever $c^2 = x^2 + y^2$.

- 7. (a) Find the continued fraction $K(a_0,...) = \sqrt{15}$. Compute $K(a_0,a_1,a_2)^2$. Solution:
 - i. $x_0 = \sqrt{15}$ gives $a_0 = [x_0] = 3$,
 - ii. $x_1 = \frac{1}{\sqrt{15}-3} = \frac{1}{6}(\sqrt{15}+3)$ gives $a_1 = [x_1] = 1$,
 - iii. $x_2 = \sqrt{15} + 3$ gives $a_2 = [x_2] = 6$,
 - iv. $x_3 = \frac{1}{6}(\sqrt{15} + 3)$ gives $a_2 = [x_2] = 1$.

Since $x_3 = x_1$ we obtain $\sqrt{15} = K(3, \overline{1, 6})$. Furthermore $K(3, 1, 6)^2 = 14\frac{43}{49}$.

- (b) Find three solutions $(x, y) \in \mathbb{N}^2$ of $x^2 15y^2 = 1$. **Answer**: (1, 0), (4, 1) and (x, y), where $x + y\sqrt{15} = (4 + \sqrt{15})^2$, i.e. (x, y) = (31, 8).
- (c) Are there solutions $(x, y) \in \mathbb{N}^2$ of $x^2 15y^2 = -1$?

Answer: No. $4 + \sqrt{15}$ is the basic unit, since the coefficient of $\sqrt{15}$ equals 1, and $N(4 + \sqrt{15}) = 1$. The fact, that the period of the preperiodic continued fraction $\sqrt{15} = K(...)$ is even, gives the result as well.

8. Let $\tau : \mathbb{N}_{>0} \longrightarrow \mathbb{C}$ be the arithmetic function with $\tau(n) :=$ the number of positive divisors of n. Find $\psi : \mathbb{N}_{>0} \longrightarrow \mathbb{C}$ with

$$\tau * \psi = \delta.$$

Here $\delta(n) = \delta_{n1}$.

Solution: We have $\tau = 1 * 1$ and $1 * \mu = \delta$. Hence $\psi = \mu * \mu$, a multiplicative function. For primes p we find $\psi(p) = -2, \psi(p^2) = 1$ and $\psi(p^k) = 0$ for k > 2.