ET: Solutions 2015-03-11

1. (a) Solve the diophantine equation $35 x-55 y+77 z=23$.

Answer: $(x, y, z)=(11 s+138-44 t, 23-7 t,-5 s-46+15 t), s, t \in$ \mathbb{Z}. We do the following column transformations

$$
\begin{aligned}
\left(\begin{array}{ccc}
35 & -55 & 77 \\
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) & \mapsto\left(\begin{array}{ccc}
35 & 15 & 7 \\
1 & 2 & -2 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \mapsto\left(\begin{array}{ccc}
0 & 1 & 7 \\
11 & 6 & -2 \\
0 & 1 & 0 \\
-5 & -2 & 1
\end{array}\right) \\
& \mapsto\left(\begin{array}{ccc}
0 & 1 & 0 \\
11 & 6 & -44 \\
0 & 1 & -7 \\
-5 & -2 & 15
\end{array}\right)
\end{aligned}
$$

and multiply the last matrix with the vector $\left(\begin{array}{c}s \\ 23 \\ t\end{array}\right)$.
(b) Determine all continued fractions $K\left(a_{0}, \ldots, a_{n}\right)=\frac{89}{19}$.

Answer: We have $89=4 \cdot 19+13,19=1 \cdot 13+6,13=2 \cdot 6+1,6=$ $6 \cdot 1$. Hence $\frac{89}{19}=K(4,1,2,6)=K(4,1,2,5,1)$.
2. Solve the congruence $251 x \equiv 125 \bmod (521)$.

Solution:

(a) $251 x=125+521 y$
(b) $521 y \equiv-125 \bmod (251)$
(c) $19 y \equiv-125 \bmod (251)$
(d) $19 y=-125+251 z$
(e) $251 z \equiv 125 \bmod (19)$
(f) $4 z \equiv-8 \bmod (19)$

If we take $z=-2$, we obtain $y=-33$ and $x=-68$. So $x \equiv-68$ $\bmod (521)$ is the solution.
3. Determine the zeros of the following polynomials
(a) $X^{2}-X$ in \mathbb{Z}_{91},

Answer: The solutions are the idempotents in \mathbb{Z}_{91}. We consider the following chinese remainder table:

$$
\begin{array}{c|c}
\mathbb{Z}_{91} & \mathbb{Z}_{7} \times \mathbb{Z}_{13} \\
\hline-\overline{13} & (\overline{1}, \overline{0}) \\
\hline \overline{14} & (\overline{0}, \overline{1})
\end{array},
$$

and obtain the idempotents $\overline{1}, \overline{0},-\overline{13}, \overline{14}$.
(b) $X^{11}-2$ in \mathbb{Z}_{125},

Answer: Let $f=X^{11}-2$. For $\xi \in \mathbb{Z}_{5}^{*}$ we have $f(\xi)=\xi^{-1}-2$, thus there is the unique zero $\xi=-\overline{2}$. Since $f^{\prime}(-\overline{2})=11 \cdot \overline{2}^{10} \neq 0$, there is a unique lift to any residue class ring $\mathbb{Z}_{5^{k}}$. Indeed $-\overline{2} \in \mathbb{Z}_{25}$ is a zero of f as well. In \mathbb{Z}_{125} it is of the form $-\overline{2}+t \cdot \overline{25}$, with a solution t of the congruence

$$
f^{\prime}(-2) t \equiv-\frac{f(-2)}{25} \quad \bmod (5)
$$

i.e.

$$
-t \equiv-3 \bmod (5)
$$

So we find $t=3$ and $\xi=\overline{73}$ is the unique zero of f in $\mathbb{Z}_{125 .}$.
(c) $X^{2}+25$ in \mathbb{Z}_{125}.

Answer: We find $\xi=\overline{5 k}$, where $k^{2} \equiv-1 \bmod (5)$, i.e. $k \equiv$ $\pm 2 \bmod (5)$ resp. $k \equiv \pm 2, \pm 7, \pm 12, \pm 17, \pm 22 \bmod (25)$. So the solutions are

$$
\pm \overline{10}, \pm \overline{35}, \pm \overline{60}, \pm \overline{85}, \pm \overline{110} \in \mathbb{Z}_{125}
$$

4. Determine whether the following residue classes are squares!
(a) $\overline{328} \in \mathbb{Z}_{823}$

Answer: No: We compute, the number 823 being prime, Legendre symbols:

$$
\left(\frac{328}{823}\right)=\left(\frac{2}{823}\right)^{3} \cdot\left(\frac{41}{823}\right)=\left(\frac{823}{41}\right)=\left(\frac{3}{41}\right)=\left(\frac{41}{3}\right)=\left(\frac{2}{3}\right)=-1,
$$

since $823 \equiv-1 \bmod (8)$ and $41 \equiv 1 \bmod (4)$.
(b) $\overline{823} \in \mathbb{Z}_{328}$.

Answer: No: The Chinese remainder isomorphism

$$
\mathbb{Z}_{328} \xrightarrow{\cong} \mathbb{Z}_{8} \times \mathbb{Z}_{41}
$$

maps $\overline{823}$ to $(-\overline{1}, \overline{3})$. Since $-\overline{1} \in \mathbb{Z}_{8}$ is not a square, $\overline{823} \in \mathbb{Z}_{328}$ is not a square either.
5. (a) Find a primitive root in \mathbb{Z}_{14641}^{*} !

Solution: First of all $14641=11^{4}$. Now $\overline{2} \in \mathbb{Z}_{11}$ is a primitive root, since $\overline{2}^{2}=\overline{4} \neq \overline{1}$ as well as $\overline{2}^{\dot{5}}=-\overline{1} \neq \overline{1}$. So $\overline{2} \in \mathbb{Z}_{121}$ has either order 10 as well or 110 . But $\overline{2}^{10}=\overline{56} \neq \overline{1}$ holds in \mathbb{Z}_{121}, so $\overline{2}$ is a primitive root for \mathbb{Z}_{121}^{*} and then automatically for \mathbb{Z}_{14641}^{*} as well.
(b) Does \mathbb{Z}_{1001}^{*} admit a primitive root?

Answer: No: The Chinese remainder isomorphism

$$
\mathbb{Z}_{1001} \xrightarrow{\cong} \mathbb{Z}_{7} \times \mathbb{Z}_{11} \times \mathbb{Z}_{13}
$$

induces a bijection

$$
\mathbb{Z}_{1001}^{*} \xrightarrow{\cong} \mathbb{Z}_{7}^{*} \times \mathbb{Z}_{11}^{*} \times \mathbb{Z}_{13}^{*} .
$$

It follows that $\xi^{60}=1$ holds for all $\xi \in \mathbb{Z}_{1001}^{*}$, while $\left|\mathbb{Z}_{1001}^{*}\right|=720$.
6. (a) Find all $(x, y) \in \mathbb{N}, x<y$, s.th. $x^{2}+y^{2}=845$.

Answer: We onsider the equation

$$
z \bar{z}=845=5 \cdot 13^{2}=(2+i)(2-i)(3+2 i)^{2}(3-2 i)^{2} .
$$

Up to sign and interchange of components the real and imaginary parts of the following complex numbers
i. $z=(2+i)(3+2 i)^{2}=-2+29 i$
ii. $z=(2+i)(3+2 i)(3-2 i)=26+13 i$,
iii. $z=(2+i)(3-2 i)^{2}=22-19 i$.
provide all $(x, y), x^{2}+y^{2}=845$. We obtain
$(x, y)=(2,29),(13,26),(19,22)$.
(b) Which numbers $c \in \mathbb{N}_{>0}$ do occur in a pythagorean triple $(a, b, c) \in$ $\left(\mathbb{N}_{>0}\right)^{3}$?
Answer: All numbers having a prime divisor $p \equiv 1 \bmod (4)$. For such a divisor $\left(c=c_{0} p\right)$ we have $p=z \bar{z}$ for some $z=x+$ $i y, 0<y<x$, and $z^{2}=a+i b$ with $a, b>0$. So $\left(c_{0} a, c_{0} b, c\right)$ is a pythagorean triple. If c is not divisible with a prime $p \equiv$ $1 \bmod (4)$, we have $c=2^{m} q$ with a product q of primes $\equiv 3$ $\bmod (4)$, and $c^{2}=z \bar{z}$ implies

$$
z \in(1+i)^{2 m} \mathbb{Z} q \cup(1+i)^{2 m} \mathbb{Z} q i
$$

i.e. $x=0$ or $y=0$, whenever $c^{2}=x^{2}+y^{2}$.
7. (a) Find the continued fraction $K\left(a_{0}, \ldots\right)=\sqrt{15}$. Compute $K\left(a_{0}, a_{1}, a_{2}\right)^{2}$.

Solution:

i. $x_{0}=\sqrt{15}$ gives $a_{0}=\left[x_{0}\right]=3$,
ii. $x_{1}=\frac{1}{\sqrt{15}-3}=\frac{1}{6}(\sqrt{15}+3)$ gives $a_{1}=\left[x_{1}\right]=1$,
iii. $x_{2}=\sqrt{15}+3$ gives $a_{2}=\left[x_{2}\right]=6$,
iv. $x_{3}=\frac{1}{6}(\sqrt{15}+3)$ gives $a_{2}=\left[x_{2}\right]=1$.

Since $x_{3}=x_{1}$ we obtain $\sqrt{15}=K(3, \overline{1,6})$. Furthermore $K(3,1,6)^{2}=$ $14 \frac{43}{49}$.
(b) Find three solutions $(x, y) \in \mathbb{N}^{2}$ of $x^{2}-15 y^{2}=1$.

Answer: $(1,0),(4,1)$ and (x, y), where $x+y \sqrt{15}=(4+\sqrt{15})^{2}$, i.e. $(x, y)=(31,8)$.
(c) Are there solutions $(x, y) \in \mathbb{N}^{2}$ of $x^{2}-15 y^{2}=-1$?

Answer: No. $4+\sqrt{15}$ is the basic unit, since the coefficient of $\sqrt{15}$ equals 1 , and $N(4+\sqrt{15})=1$. The fact, that the period of the preperiodic continued fraction $\sqrt{15}=K(\ldots)$ is even, gives the result as well.
8. Let $\tau: \mathbb{N}_{>0} \longrightarrow \mathbb{C}$ be the arithmetic function with $\tau(n):=$ the number of positive divisors of n. Find $\psi: \mathbb{N}_{>0} \longrightarrow \mathbb{C}$ with

$$
\tau * \psi=\delta .
$$

Here $\delta(n)=\delta_{n 1}$.

Solution: We have $\tau=1 * 1$ and $1 * \mu=\delta$. Hence $\psi=\mu * \mu$, a multiplicative function. For primes p we find $\psi(p)=-2, \psi\left(p^{2}\right)=1$ and $\psi\left(p^{k}\right)=0$ for $k>2$.

