Elementär Talteori: 2015-06-10

Hjälpmedel: Papper och skrivdon, miniräknare.

1. Determine all integer solutions of the equation:
(a) $6 x-9 y=3$,
(b) $2 x-2 y+4 z=2$.
2. Solve the following equations in the residue class ring \mathbb{Z}_{n} !
(a) $163 x=1$, where $n=221$
(b) $x^{2}=x$, where $n=105$
(c) $x^{7}-14 x-2=0$, where $n=49$.
3. Let $n=a b$. The Chinese remainder theorem states that the homomorphism $\psi: \mathbb{Z}_{n} \longrightarrow \mathbb{Z}_{a} \times \mathbb{Z}_{b}$ med $\psi(x+\mathbb{Z} n):=(x+\mathbb{Z} a, x+\mathbb{Z} b)$ is an isomorphism, if $\operatorname{gcd}(a, b)=1$. Show that that condition is necessary as well.
4. Find all solutions $(x, y) \in \mathbb{N}^{2}$ of the equation $x^{2}+y^{2}=1768$.
5. (a) Show that $\overline{2} \in \mathbb{Z}_{29}^{*}$ is a primitive root.
(b) Solve the equation $x^{2}=-1$ in \mathbb{Z}_{29}^{*} !
6. Has the quadratic equation $x^{2}+545 x+b=0$ a solution in \mathbb{Z}_{557} for $b=210,673 ?$ (557 is prime.)
7. Write $\frac{2014}{1945}$ and $\sqrt{8}$ as a continued fraction!
8. Show that the equation $x^{2}-10 y^{2}=54$ has infinitely many solutions $(x, y) \in \mathbb{N}^{2}$. Determine two of them!

Lycka till!

