Elementär Talteori: 2015-06-10

Hjälpmedel: Papper och skrivdon, miniräknare.

- 1. Determine all integer solutions of the equation:
 - (a) 6x 9y = 3,
 - (b) 2x 2y + 4z = 2.
- 2. Solve the following equations in the residue class ring $\mathbb{Z}_n!$
 - (a) 163x = 1, where n = 221
 - (b) $x^2 = x$, where n = 105
 - (c) $x^7 14x 2 = 0$, where n = 49.
- 3. Let n = ab. The Chinese remainder theorem states that the homomorphism $\psi : \mathbb{Z}_n \longrightarrow \mathbb{Z}_a \times \mathbb{Z}_b \mod \psi(x + \mathbb{Z}n) := (x + \mathbb{Z}a, x + \mathbb{Z}b)$ is an isomorphism, if gcd(a, b) = 1. Show that that condition is necessary as well.
- 4. Find all solutions $(x, y) \in \mathbb{N}^2$ of the equation $x^2 + y^2 = 1768$.
- 5. (a) Show that $\overline{2} \in \mathbb{Z}_{29}^*$ is a primitive root.
 - (b) Solve the equation $x^2 = -1$ in \mathbb{Z}_{29}^* !
- 6. Has the quadratic equation $x^2 + 545x + b = 0$ a solution in \mathbb{Z}_{557} for b = 210,673? (557 is prime.)
- 7. Write $\frac{2014}{1945}$ and $\sqrt{8}$ as a continued fraction!
- 8. Show that the equation $x^2 10y^2 = 54$ has infinitely many solutions $(x, y) \in \mathbb{N}^2$. Determine two of them!

Lycka till!