Uppsala Universitet
Matematiska Institutionen
Prov i matematik
Andreas Strömbergsson

Skrivtid: 14.00 - 19.00 .
Tillåtna hjälpmedel: Papper, skrivdon och miniräknare.

1. Solve the Diophantine equations
(a) $18 x+12 y=24$;
(b) $15 x-12 y+20 z=7$.
2. Determine the zeros of the following polynomials:
(a) $X^{3}-2$ in \mathbb{Z}_{125};
(b) $X^{2}-X$ in \mathbb{Z}_{99};
(c) $X^{5}+X^{4}+4$ in \mathbb{Z}_{16}.
3. Determine whether the following residue classes are squares:
(a) $\overline{485}$ in \mathbb{Z}_{743}.
(b) $\overline{743}$ in \mathbb{Z}_{485}.
4. (a) Prove that $\overline{3}$ is a primitive root in \mathbb{Z}_{17}^{\times}.
(b) Determine all elements of order 4 in \mathbb{Z}_{17}^{\times}.
5. Find all Pythagorean triples which have 16 as one of their components!
6. (a) Find the continued fraction expansion of $\sqrt{18}$ and compute its first three convergents.
(b) Find two solutions $(x, y) \in \mathbb{N}^{2}$ to the equation $x^{2}-18 y^{2}=1$.
(c) Are there any solutions $(x, y) \in \mathbb{N}^{2}$ to the equation $x^{2}-18 y^{2}=-1$?
7. Compute the value of the continued fraction expansion $\langle 1, \overline{2,7}\rangle$!
8. (a) Assume that m_{1}, m_{2} are positive integers which are not relatively prime, and let x be any integer. Prove that there exists some integer y which satisfies
$y \equiv x \quad\left(\bmod m_{1}\right), \quad y \equiv x \quad\left(\bmod m_{2}\right), \quad$ and $y \not \equiv x \quad\left(\bmod m_{1} m_{2}\right)$.
(b) Let a and $g>0$ be given integers. Prove that there exist integers x, y satisfying

$$
(x, y)=g \quad \text { and } \quad x y=a
$$

if and only if $g^{2} \mid a$.

LYCKA TILL / GOOD LUCK!

Solutions

1. We use the same method of presentation as in MNZ p. 218 (top).
(a).

$$
\left(\begin{array}{ccc}
18 & 12 & 24 \\
1 & 0 & \\
0 & 1 &
\end{array}\right) \rightarrow\left(\begin{array}{ccc}
6 & 12 & 24 \\
1 & 0 & \\
-1 & 1 &
\end{array}\right) \rightarrow\left(\begin{array}{ccc}
6 & 0 & 24 \\
1 & -2 & \\
-1 & 3 &
\end{array}\right)
$$

Answer: $(x, y)=(4-2 s,-4+3 s), s \in \mathbb{Z}$. (Replacing s by $s=2-k$ we obtain the slightly nicer answer $(x, y)=(2 k, 2-3 k), k \in \mathbb{Z}$.)
(b).

$$
\begin{aligned}
\left(\begin{array}{cccc}
15 & -12 & 20 & 7 \\
1 & 0 & 0 & \\
0 & 1 & 0 & \\
0 & 0 & 1 &
\end{array}\right) \rightarrow\left(\begin{array}{cccc}
3 & -12 & -4 & 7 \\
1 & 0 & 0 \\
1 & 1 & 2 \\
0 & 0 & 1
\end{array}\right) & \rightarrow\left(\begin{array}{cccc}
3 & 0 & -1 & 7 \\
1 & 4 & 1 \\
1 & 5 & 3 & \\
0 & 0 & 1 &
\end{array}\right) \\
& \rightarrow\left(\begin{array}{cccc}
0 & 0 & -1 & 7 \\
4 & 4 & 1 \\
10 & 5 & 3 \\
3 & 0 & 1
\end{array}\right)
\end{aligned}
$$

Answer: $(x, y, z)=(-7+4 s+4 t,-21+10 s+5 t,-7+3 s), s, t \in \mathbb{Z}$.
2. (a) The prime factorization of 125 is $125=5^{3}$.

Set $f(X)=X^{3}-2 \in \mathbb{Z}[X]$. Note that the only solution to $f(X) \equiv$ $0 \bmod 5$ is $X \equiv 3 \bmod 5$. We have $f^{\prime}(X)=3 X^{2}$ and $f^{\prime}(3)=3 \cdot 3^{2}=27$ which is not divisible with 5 ; hence by Hensel's Lemma, $3 \bmod 5$ lifts to a unique solution modulo 25 . and then to a unique solution modulo 125. To determine the lift modulo 25 , let $t \bmod 5$ be the unique solution to $f^{\prime}(3) t \equiv-f(3) / 5 \bmod 5$, i.e. $2 t \equiv-5 \bmod 5$, i.e. $t \equiv 0 \bmod 5$; then the formula in Hensel's Lemma says that $b=3+5 \cdot 0=3$ is the unique lift $\bmod 25$ of the solution $3 \bmod 5$. Next, to determine the lift modulo 125 , let $t \bmod 5$ be the unique solution to $f^{\prime}(3) t \equiv-f(3) / 5^{2} \bmod 5$, i.e. $2 t \equiv-1 \bmod 5$, i.e. $t \equiv 2 \bmod 5$; then the formula in Hensel's Lemma says that $b=3+25 \cdot 2 \equiv 53 \bmod 125$ is the unique lift $\bmod 125$ of the solution $3 \bmod 25$.

Answer: There is exactly one zero, namely $X \equiv 53 \bmod 125$.
(b) The prime factorization of 99 is $99=3^{2} \cdot 11$. Note that $X^{2}-X=$ $(X-1) X$ in $\mathbb{Z}[X]$; hence we can immediately solve the congruence equation modulo 9 and modulo 11. Indeed, if $(X-1) X \equiv 0 \bmod 9$ then $X-1$ or X must be divisible by 3 , i.e. $X \equiv 0$ or $1 \bmod 3$. Then the other factor ($X-1$ or X) is certainly not divisible by 3 , and hence the only
possibility for $(X-1) X \equiv 0 \bmod 9$ is if $X \equiv 0$ or $1 \bmod 9$. Similarly (but more easily) the only two solutions of $(X-1) X \equiv 0 \bmod 9$ are $X \equiv 0$ or $1 \bmod 11$.

Now we use the Chinese Remainder Theorem to determine all the solutions mod 99 . We first seek $a, b \in \mathbb{Z}$ so that $9 a+11 b=1$; we find $a=5, b=-4$ by simple trying (or using Euclid's Algorithm). From this we find the number $9 \cdot 5=45$ which is $\equiv 0 \bmod 9$ and $\equiv 1 \bmod 11$, and we also find the number $11 \cdot(-4)=-44$ which is $\equiv 1 \bmod 9$ and $\equiv 0 \bmod 11$. Hence for any $x, y \in \mathbb{Z}$, the unique integer $\bmod 99$ which is $\equiv x \bmod 9$ and $\equiv y \bmod 11$ equals $-44 x+45 y$. Applying this to the solutions of the given equation $\bmod 9$ and $\bmod 11$, we see that there are the following four solutions $\bmod 99$:

$$
\begin{aligned}
& 0 \cdot(-44)+0 \cdot 45=0 ; \quad 1 \cdot(-44)+0 \cdot 45=-44 \equiv 55 ; \\
& 0 \cdot(-44)+1 \cdot 45=45 ; \quad 1 \cdot(-44)+1 \cdot 45=1 .
\end{aligned}
$$

Answer: $\overline{0}, \overline{1}, \overline{45}$ and $\overline{55}$.
(c) The prime factorization of 16 is $16=2^{4}$. Set $f(X)=X^{5}+$ $X^{4}+4 \in \mathbb{Z}[X]$. Note that the solutions to $f(X) \equiv 0 \bmod 2$ are both $X \equiv 0$ and $1 \bmod 2$. We compute $f^{\prime}(X)=5 X^{4}+4 X^{3} \in \mathbb{Z}[X]$, and note that $f^{\prime}(0) \equiv 0 \bmod 2$ but $f^{\prime}(1) \equiv 1 \bmod 2$. Hence by Hensel's Lemma, $1 \bmod 2$ lifts to a unique solution modulo 16 , while $0 \bmod 2$ lifts to either 0 or 2 solutions modulo 4 , etc. We compute that $f(0)=$ $4 \equiv 0 \bmod 4$; hence in fact $0 \bmod 2$ lifts to the two solutions $0 \bmod 4$ and $2 \bmod 4$. However none of these lift to any solution modulo 8 , since $f(0) \equiv 4 \not \equiv 0 \bmod 8$ and $f(2) \equiv 4 \not \equiv 0 \bmod 8$.

To compute the lift of $1 \bmod 2$, let $t \bmod 2$ be the unique solution to $f^{\prime}(1) t \equiv-f(1) / 2 \bmod 2$, i.e. $t \equiv 1 \bmod 2$; then the formula in Hensel's Lemma says that $b=1+2 \cdot 1=3$ is the unique lift $\bmod 4$ of the solution $1 \bmod 2$. Next let $t \bmod 2$ be the unique solution to $f^{\prime}(1) t \equiv$ $-f(3) / 4 \bmod 2($ note $f(3)=328 \equiv 0 \bmod 8)$, that is $t \equiv 0 \bmod 2$; then the formula in Hensel's Lemma says that $b=3+4 \cdot 0=3$ is the unique lift $\bmod 8$ of the solution $3 \bmod 4$. Finally let $t \bmod 2$ be the unique solution to $f^{\prime}(1) t \equiv-f(3) / 8 \bmod 2($ note $f(3)=328 \equiv 8 \bmod 16)$, that is $t \equiv 1 \bmod 2$; then the formula in Hensel's Lemma says that $b=3+8 \cdot 1=11$ is the unique lift $\bmod 16$ of the solution $3 \bmod 8$.

Answer: There is exactly one solution, $X=11 \bmod 16$.
3. (a) No: 743 is a prime and we compute

$$
\begin{aligned}
\left(\frac{485}{743}\right)=\left(\frac{5}{743}\right) \cdot\left(\frac{97}{743}\right)=\left(\frac{743}{5}\right) \cdot & \left(\frac{743}{97}\right)=\left(\frac{3}{5}\right) \cdot\left(\frac{64}{97}\right) \\
& =(-1)\left(\frac{2}{97}\right)^{6}=-1 .
\end{aligned}
$$

(b) No: $485=5 \cdot 97$ and 743 is not a square $\bmod 5$.
4. (a) $p=17$ is a prime and $\phi(p)=p-1=16=2^{4}$. Let h be the order of $\overline{3}$ in \mathbb{Z}_{17}. By Fermat's Little Theorem, $\overline{3}^{16}=\overline{1}$; hence $h \mid 16$. Therefore, if $h \neq 16$, then we must have $h \mid 8$, and this would imply $\overline{3}^{8}=\overline{1}$. Hence if we check that $\overline{3}^{8} \neq \overline{1}$ then it follows that $h=16$ and therefore that $\overline{3}$ is a primitive root in \mathbb{Z}_{17}. We compute in \mathbb{Z}_{17} : $\overline{3}^{3}=\overline{27}=-\overline{7} ; \overline{3}^{6}=(-\overline{7})^{2}=\overline{49}=-\overline{2} ; \overline{3}^{8}=-\overline{2} \cdot \overline{3}^{2}=-\overline{1}$. This is $\neq \overline{1}$, and hence we have proved that $\overline{3}$ is a primitive root in \mathbb{Z}_{17}.
(b) The elements of \mathbb{Z}_{17}^{\times}are $\overline{3}^{j}$ for $j \in \mathbb{Z}, j(\bmod 16)$, and $\overline{3}^{j}$ has order $16 /(16, j)$, by MNZ Lemma 2.33 (cf. the beginning of Lecture $\# 6)$. Hence $\overline{3}^{j}$ has order 4 iff

$$
\begin{aligned}
& 16 /(16, j)=4 \\
& \Leftrightarrow(16, j)=4 \\
& \Leftrightarrow[4 \mid j \text { and }(4, j / 4)=1] \\
& \Leftrightarrow j \equiv 4 \text { or } 12 \quad(\bmod 16) .
\end{aligned}
$$

Hence there are exactly two elements of order 4 in \mathbb{Z}_{16}^{\times}, namely $\overline{3}^{4}=$ $\overline{81}=\overline{13}$ and $\overline{3}^{12}=\overline{3}^{-4}=\overline{13}^{-1}=-\overline{13}$. (The last equality is easiest seen as follows: Since $\overline{13}$ has order 4, we must have $\overline{13}^{2}=-\overline{1}$; hence $\overline{13}^{-1}=-\overline{13}$.)

Answer: $\overline{13}$ and $\overline{4}$.
5. We search all primitive Pythagorean triples $\left\langle 2 r s, r^{2}-s^{2}, r^{2}+s^{2}\right\rangle$ with $r>s>0$ and $\operatorname{gcd}(r, s)=1$ and $r \not \equiv s \bmod 2$, where one of the components equals d, a divisor of 16 (thus: $d \in\{1,2,4,8,16\}$), and then multiply with $16 / d$. Now one notes that there are no solutions with $d=1$ or $d=2$ (proof: $r>s>0$ implies $r^{2}+s^{2}>r^{2}-s^{2}=$ $(r-s)(r+s) \geq 1 \cdot 3=3$ and $2 r s \geq 4$). Hence from now on we assume $d=4$ or $d=8$ or $d=16$, i.e. $d=2^{j}$ with $j \in\{2,3,4\}$. Note that $r \not \equiv s \bmod 2$ implies that $r^{2}-s^{2}$ and $r^{2}+s^{2}$ are odd; hence the only possibility is $2 r s=d=2^{j}$, i.e. $r s=2^{j-1}$. Now by assumption one of r, s is odd; and from $r s=2^{j-1}$ it follows that the odd number among r, s is not divisible by any prime; hence it must be equal to 1 ; and using $r>s$ we conclude that this number must be s; thus $s=1$ and $r=2^{j-1}$. Conversely we see that this choice of r, s works; it gives the Pythagorean triple $\left\langle 2^{j}, 2^{2 j-2}-1,2^{2 j-2}+1\right\rangle$, and multiplying with $16 / d=2^{4-j}$ we obtain the Pythagorean triple $\left\langle 16,2^{j+2}-2^{4-j}, 2^{j+2}+2^{4-j}\right\rangle$.

Answer: There are exactly three such triples, namely

$$
\left\langle 16,2^{j+2}-2^{4-j}, 2^{j+2}+2^{4-j}\right\rangle \quad \text { for } j \in\{2,3,4\} ;
$$

or with numbers: $\langle 16,12,20\rangle$ and $\langle 16,30,34\rangle$ and $\langle 16,63,65\rangle$. (This is disregarding the obvious possibility to switch the first two components; otherwise of course there are six triples: $\langle 16,12,20\rangle$ and $\langle 12,16,20\rangle$ and $\langle 16,30,34\rangle$ and $\langle 30,16,34\rangle$ and $\langle 16,63,65\rangle$ and $\langle 63,16,65\rangle$.)
6. (a). We follow the algorithm from Lecture 12. Note that if we set $d=18, u_{0}=0, v_{0}=1$, then $\sqrt{18}=\frac{u_{0}+\sqrt{d}}{v_{0}}$ and $v_{0} \mid d-u_{0}^{2}$. Next we compute a_{j} for $j \geq 0$ and u_{j}, v_{j} for $j \geq 1$ using the recursion formulas $a_{j}=\left[\frac{u_{j}+\sqrt{d}}{v_{j}}\right], u_{j+1}=a_{j} v_{j}-u_{j}, v_{j+1}=\left(d-u_{j+1}^{2}\right) / v_{j}$. We get:

j	0	1	2	3
u_{j}	0	4	4	4
v_{j}	1	2	1	2
a_{j}	4	4	8	

Thus $\sqrt{18}=\langle 4, \overline{4,8}\rangle$.
We compute the convergents using the formulas $h_{-2}=0, h_{-1}=1$, $h_{j}=a_{j} h_{j-1}+h_{j-2}$ and $k_{-2}=1, k_{-1}=0, k_{j}=a_{j} k_{j-1}+k_{j-2}$.

j	-2	-1	0	1	2	3
a_{j}			4	4	8	
h_{j}	0	1	4	17	140	
k_{j}	1	0	1	4	33	

Answer: $\sqrt{18}=\langle 4, \overline{4,8}\rangle$, and the first three convergents are $\frac{h_{0}}{k_{0}}=\frac{4}{1}, \frac{h_{1}}{k_{1}}=\frac{17}{4}, \frac{h_{2}}{k_{2}}=\frac{140}{33}$.
(b). Since $\sqrt{18}=\langle 4, \overline{4,8}\rangle$ with period $r=2$, the first solution is given by $\langle x, y\rangle=\left\langle h_{r-1}, k_{r-1}\right\rangle=\langle 17,4\rangle$. Computing $(17+4 \sqrt{18})^{2}=$ $17^{2}+16 \cdot 18+136 \sqrt{17}=577+136 \sqrt{17}$ we find a second solution $\langle 577,136\rangle$.
Answer: $\langle 17,4\rangle$ and $\langle 577,136\rangle$.
(c). Answer: No, since $\langle 4, \overline{4,8}\rangle$ has even period $r=2$.
7. We first compute $x=\langle\overline{2,7}\rangle$. Note that

$$
x=\langle 2,7, x\rangle=2+\frac{1}{7+\frac{1}{x}}=2+\frac{x}{7 x+1}=\frac{15 x+2}{7 x+1}
$$

hence $7 x^{2}-14 x-2=0$, and so

$$
x=1 \pm \frac{3}{7} \sqrt{7}
$$

Here choosing the minus sign would lead to $x<1$, contradicting $x=$ $\langle 2,7, \cdots\rangle>2$; hence

$$
x=1+\frac{3}{7} \sqrt{7}
$$

It follows that

$$
\begin{aligned}
\langle 1, \overline{2,7}\rangle=1+\frac{1}{x}=1+\frac{1}{1+\frac{3}{7} \sqrt{7}}= & 1+\frac{1-\frac{3}{7} \sqrt{7}}{1-\left(\frac{3}{7}\right)^{2} \cdot 7}=1+\frac{7-3 \sqrt{7}}{7-9} \\
& =1+\frac{-7+3 \sqrt{7}}{2}=-\frac{5}{2}+\frac{3}{2} \sqrt{7}
\end{aligned}
$$

Answer: $\langle 1, \overline{2,7}\rangle=-\frac{5}{2}+\frac{3}{2} \sqrt{7}$.
8. (a). Let $d=\left(m_{1}, m_{2}\right)$; then $d>1$ by assumption. Now set

$$
y=x+\frac{m_{1} m_{2}}{d} .
$$

Note that $\frac{m_{1} m_{2}}{d}$ is divisible by both m_{1} and m_{2}, since both $\frac{m_{1}}{d}$ and $\frac{m_{2}}{d}$ are integers. Hence $y \equiv x \bmod m_{1}$ and $y \equiv x \bmod m_{2}$. On the other hand we have $1 \leq \frac{m_{1} m_{2}}{d}<m_{1} m_{2}$ since $d>1$; hence $\frac{m_{1} m_{2}}{d}$ is not divisible by $m_{1} m_{2}$, and therefore $y \not \equiv x \bmod m_{1} m_{2}$.
(b) (This is MNZ, p. 18, Problem 30.) First assume that x and y are integers satisfying $(x, y)=g$ and $x y=a$. Set $x_{1}=x / g$ and $y_{1}=y / g$; these are integers satisfying $\left(x_{1}, y_{1}\right)=1$ and $x_{1} y_{1}=a / g^{2}$. The last relation shows that $g^{2} \mid a$.

Conversely, if $g^{2} \mid a$ then (following the previous discussion) we may take e.g. $x_{1}=a / g^{2}$ and $y_{1}=1$; then $\left(x_{1}, y_{1}\right)=1$ and $x_{1} y_{1}=a / g^{2}$, and therefore if we set $x=g x_{1}=a / g$ and $y=g y_{1}=g$ then $\left(x_{1}, y_{1}\right)=g$ and $x y=a$.

