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1. Solve the Diophantine equations
(a) 18z + 12y = 24;
(b) 15x — 12y + 20z = 7. (5p)

2. Determine the zeros of the following polynomials:
(a) X3 — 2 in Zjos;

(b) X2 — X in Zgg;

(c) X° + X* +4in Z.

(6p)
3. Determine whether the following residue classes are squares:
(a) E in Z743.
(b) m in Z485.

(5p)
4. (a) Prove that 3 is a primitive root in Z.
(b) Determine all elements of order 4 in Z7;. (5p)

p

5. Find all Pythagorean triples which have 16 as one of their compo-

nents!
(5p)

6. (a) Find the continued fraction expansion of /18 and compute its
first three convergents.

(b) Find two solutions (z,y) € N? to the equation 2% — 18y* = 1.
(c) Are there any solutions (z,y) € N? to the equation 2 —18y* = —17?

(5p)

7. Compute the value of the continued fraction expansion (1,2,7)!
(4p)
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8. (a) Assume that m;, my are positive integers which are not relatively
prime, and let x be any integer. Prove that there exists some integer
y which satisfies

y=x (modm;), y==x (modmsy), and yZzx (modmims).

(b) Let a and g > 0 be given integers. Prove that there exist integers
x,y satisfying

(x,y) =g and Ty = a,
if and only if ¢* | a.

LYCKA TILL / GOOD LUCK!



Solutions

1. We use the same method of presentation as in MNZ p. 218 (top).

(a).

18 12 24 6 12 24 6 0 24
1 0 -1 1 O -1 1 =2
0 1 -1 1 -1 3

Answer: (z,y) = (4 —2s,—4+ 3s), s € Z. (Replacing s by s =2 —k
we obtain the slightly nicer answer (z,y) = (2k,2 — 3k), k € Z.)

15 —12 20 7 3 —12 —4 7 30 -1 7
1 0 0 1 0 0 14 1
0 1 0 1 1 2 ~ 15 3
0o 0 1 0 0 1 00 1
00 —1 7
INEREES
10 5 3
30 1
Answer: (z,y,z) = (—7+4s+4t,—214+10s+5t, -7+ 3s), s,t € Z.

2. (a) The prime factorization of 125 is 125 = 53.

Set f(X) = X3 —2 € Z[X]. Note that the only solution to f(X) =
Omodb is X = 3mod5. We have f/(X) =3X? and f'(3) =3-3*=27
which is not divisible with 5; hence by Hensel’s Lemma, 3 mod 5 lifts
to a unique solution modulo 25. and then to a unique solution modulo
125. To determine the lift modulo 25, let t mod 5 be the unique solution
to f/(3)t = —f(3)/5mod5, i.e. 2t = —5mod5, i.e. t = 0mod 5; then
the formula in Hensel’s Lemma says that b = 3+5-0 = 3 is the unique
lift mod 25 of the solution 3 mod 5. Next, to determine the lift modulo
125, let t mod 5 be the unique solution to f/(3)t = — f(3)/5*mod 5, i.e.
2t = —1mod b5, i.e. t = 2mod 5; then the formula in Hensel’s Lemma
says that b = 3 + 25 -2 = 53 mod 125 is the unique lift mod 125 of the
solution 3 mod 25.

Answer: There is exactly one zero, namely X = 53 mod 125.

(b) The prime factorization of 99 is 99 = 3%-11. Note that X*—X =
(X — 1)X in Z[X]; hence we can immediately solve the congruence
equation modulo 9 and modulo 11. Indeed, if (X —1)X = 0mod9 then
X —1or X must be divisible by 3, i.e. X = 0 or 1 mod 3. Then the other
factor (X — 1 or X) is certainly not divisible by 3, and hence the only
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possibility for (X — 1)X = 0mod9 is if X = 0 or 1mod9. Similarly
(but more easily) the only two solutions of (X — 1)X = 0mod9 are
X =0or 1mod11.

Now we use the Chinese Remainder Theorem to determine all the
solutions mod 99. We first seek a,b € Z so that 9a + 116 = 1; we find
a =5, b = —4 by simple trying (or using Euclid’s Algorithm). From
this we find the number 9 - 5 = 45 which is = 0mod 9 and = 1 mod 11,
and we also find the number 11 - (—4) = —44 which is = 1 mod 9 and
= O0mod 11. Hence for any z,y € Z, the unique integer mod 99 which
is = rmod9 and = ymod 11 equals —44x + 45y. Applying this to the
solutions of the given equation mod 9 and mod 11, we see that there
are the following four solutions mod 99:

0. (—44)+0-45=0;  1-(—44)+0-45 = —44 = 55;
0-(—44)+1-45=45;  1-(—44)+1-45=1.
Answer: 0, 1, 45 and 55.

(c) The prime factorization of 16 is 16 = 2%. Set f(X) = X° +
X*+4 € Z|X]. Note that the solutions to f(X) = 0mod2 are both
X =0 and 1mod2. We compute f'(X) = 5X* +4X? € Z[X], and
note that f/(0) = Omod2 but f’(1) = 1mod2. Hence by Hensel’s
Lemma, 1mod2 lifts to a unique solution modulo 16, while 0 mod 2
lifts to either 0 or 2 solutions modulo 4, etc. We compute that f(0) =
4 = 0mod4; hence in fact Omod 2 lifts to the two solutions 0 mod 4
and 2 mod 4. However none of these lift to any solution modulo 8, since
f(0) =4 # 0mod8 and f(2) =4 # 0mod8.

To compute the lift of 1 mod 2, let ¢ mod 2 be the unique solution to
f/(Dt=—=f(1)/2mod 2, i.e. t = 1 mod 2; then the formula in Hensel’s
Lemma says that b = 14+ 2 -1 = 3 is the unique lift mod4 of the
solution 1 mod 2. Next let ¢ mod 2 be the unique solution to f'(1)t =
—f(3)/4mod 2 (note f(3) = 328 = 0mod8), that is £ = 0 mod 2; then
the formula in Hensel’s Lemma says that b = 3+4-0 = 3 is the unique
liftt mod 8 of the solution 3mod4. Finally let tmod2 be the unique
solution to f'(1)t = —f(3)/8mod2 (note f(3) = 328 = 8mod 16),
that is ¢ = 1mod2; then the formula in Hensel’s Lemma says that
b=3+8-1=11 is the unique lift mod 16 of the solution 3 mod 8.

Answer: There is exactly one solution, X = 11 mod 16.



3. (a) No: 743 is a prime and we compute
() - () () - () (743> (?) (—)
(5 )

(b) No: 485 = 5-97 and 743 is not a square mod 5

4. (a) p =17 is a prime and ¢(p) = p — 1 = 16 = 2%. Let h be the
order of 3 in Z;7;. By Fermat’s Little Theorem, 3'° = T, hence h | 16.
Therefore, if h # 16, then we must have h | 8, and this would imply
3% = T. Hence if we check that 3° # T then it follows that h = 16
and therefore that 3 is a primitive root in Z;7. We compute in Zr:
3 =2T=-T73"=(-T)2=19=-2,3=-2.3 = —T1. Thisis # 1,
and hence we have proved that 3 is a primitive root in Zi7. _

(b) The elements of Z}; are 3’ for j € Z, j (mod 16), and 3’ has
order 16/(16, j), by MNZ Lemma 2.33 (cf. the beginning of Lecture

#6). Hence 3’ has order 4 iff
16/(16,5) =4
o (16,5) =4
< [4]7 and (4,5/4) = 1]
& j=4orl12 (mod 16).

Hence there are exactly two elements of order 4 in Zjy, namely 3 =

81 =13 and 37 =3" = T3 = —T3. (The last equality is easiest
seen as follows: Since I3 has order 4, we must have 13- = —1; hence
3 =-13)

Answer: 13 and 4.
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5. We search all primitive Pythagorean triples (2rs,r? — s r? + s%)
with 7 > s > 0 and ged(r,s) = 1 and r Z smod 2, where one of the
components equals d, a divisor of 16 (thus: d € {1,2,4,8,16}), and
then multiply with 16/d. Now one notes that there are no solutions
with d = 1 or d = 2 (proof: r > s > 0 implies r*> + s*> > r? — s =
(r—s)(r+s)>1-3=3and 2rs > 4). Hence from now on we assume
d=4ord=8ord=16,1e d=2 with j € {2,3,4}. Note that
r # smod?2 implies that 72 — s? and 7? + s? are odd; hence the only
possibility is 2rs = d = 27, i.e. rs = 277!, Now by assumption one of
r,s is odd; and from rs = 277! it follows that the odd number among
r, s is not divisible by any prime; hence it must be equal to 1; and using
r > s we conclude that this number must be s; thus s = 1 and r = 2971,
Conversely we see that this choice of r, s works; it gives the Pythagorean
triple (27,2272 — 1,2%-2 + 1), and multiplying with 16/d = 277 we
obtain the Pythagorean triple (16,2772 — 2477 2i+2 4 24-7),
Answer: There are exactly three such triples, namely

(16,2912 — 2477 2112 4 94-J) for j € {2,3,4};

or with numbers: (16,12,20) and (16,30, 34) and (16,63, 65). (This is
disregarding the obvious possibility to switch the first two components;
otherwise of course there are siz triples: (16, 12,20) and (12, 16, 20) and
(16,30, 34) and (30,16, 34) and (16,63, 65) and (63, 16, 65).)
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6. (a). We follow the algorithm from Lecture 12. Note that if we set
d=18, up = 0, vy = 1, then V18 = %O\/E and vy | d — u2. Next we
compute a; for j > 0 and u;,v; for 7 > 1 using the recursion formulas

a; = [u";ﬂ], Ujp1 = av; — Uj, Vjp1 = (d — U?H)/Uj- We get:
j 0 1 2 3
w |0 4 4 4
v |12 1 2
CLj 4 4 8

Thus V18 = (4,4, 8).
We compute the convergents using the formulas h_o =0, h_; = 1,
hj = ajhj_l + hj_g and k’_g = 1, k‘_l = 0, k’j = ajkj_l + k‘j_g.

j 2 1 0 1 2 3
a; 4 4 8

h; 0 1 4 17 140

k; 1 0 1 4 33

Answer: /18 = (4,4,8), and the first three convergents are
ho 4 hy 17 hy 140

ko Uky 47k 33

(b). Since V18 = (4,4,8) with period r = 2, the first solution is
given by (z,9) = (h,_1,k_1) = (17,4). Computing (17 + 41/18)? =
172 + 16 - 18 + 136v/17 = 577 + 136y/17 we find a second solution
(577, 136).
Answer: (17,4) and (577, 136).

(c). Answer: No, since (4,4, 8) has even period r = 2.



7. We first compute = = (2, 7). Note that

1 €T 15z + 2
27N =24~ 9 — :
=) =24 oy =2 e = T

xT

hence 72? — 14z — 2 = 0, and so
r=1+ %\ﬁ.

Here choosing the minus sign would lead to x < 1, contradicting x =
(2,7,--+) > 2; hence

r=1+ %\/?
It follows that

1 1 1-3V7 T=37

1,2, =14—-—=1+ ———F%=1 1
(1,2,7) T +1+§ﬁ +1—(§)2-7 Ay
LTI 5 3
2 2 2
5 3
Answer: (1,2,7) = 5t 5\/?

8. (a). Let d = (my, my); then d > 1 by assumption. Now set

mymmg
=r+ .
Y d
mym m
Note that ——2 is divisible by both m; and ms, since both 71 and

m .
72 are integers. Hence y = xmodm; and y = xmodms. On the

myme mimsg .

other hand we have 1 < is

not divisible by myms, and therefore y Z x mod myms. O

< mymy since d > 1; hence

(b) (This is MNZ, p. 18, Problem 30.) First assume that = and y are
integers satisfying (z,y) = ¢ and xy = a. Set r; = x/g and y; = y/g;
these are integers satisfying (z1,y1) = 1 and z1y; = a/g* The last
relation shows that ¢* | a.

Conversely, if g? | a then (following the previous discussion) we may
take e.g. 71 = a/g? and y; = 1; then (z1,%1) = 1 and 21y, = a/g?, and
therefore if we set x = gx1 = a/g and y = gy; = g then (z1,41) = g
and zy = a. U



