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PhD course in Probability, Home Assignment 1: Pro-
babilities and Convergence
This home assignment consists of 7 exercises. The deadline is on March 4th 2015
23:59 pm. You can hand in the assignment later, but if you hand it in k days too late,
then your score will be multiplied by 1− 0.15k.

1. Consider a branching process with offspring distribution X such that P(X =
k) = pk(1 − p) for k = 0, 1, . . . (this is essentially a geometric distribution)
where p ∈ (0, 1) is the parameter. Let Zn denote the number of individuals at
level/generation n. In class, we proved that P(limZn 6= 0) > 0 iff E[X] > 1,
which in our case translates into p > 1/2. We can call the induced graph the
family tree of a Galton-Watson process with geometric offspring distribution, or
just a geometric tree for short. We always start the process with one individual
in generation 0, i.e. Z0 = 1, and we call the corresponding vertex the root.

(a) It can be of interest to know the value of the survival probability θ(p) =
P(limZn 6= 0). Determine the function θ(p) explicitly.

(b) A binary tree is a tree in which every individual has exactly two descen-
dants. We want to determine the probability that, starting at the root,
the geometric tree contains a binary tree. Let θ2(p) denote this probability
and prove that θ2(p) satisfies the equation

(1− θ2(p))(1− p(1− θ2(p)))2 − (1− p)(1− p+ 2pθ2(p)) = 0. (1)

Remark: Solving (1) gives the solution

θ2(p) =

{
3p−2+

√
p(5p−4)

2p if 4/5 ≤ p ≤ 1

0 otherwise.

As can be seen from a plot (see Figure 1) and indeed from the expression itself,
this has a real solution only when 4/5 ≤ p(≤ 1). Therefore, we conclude that the
geometric tree can contain a binary tree iff 4/5 ≤ p ≤ 1. However, much more
interesting is that at the critical value 4/5, the existence of a binary subtree is
strictly positive!
Hint: It can be useful to condition on the number of individuals in the first
generation.

2. Let f : [0, 1]→ R be a continuous function (i.e. f ∈ C([0, 1])), and letXn ∼Bin(n, x),
i.e. such that

P(Xn = k) =

(
n

k

)
xk(1− x)n−k for k = 0, . . . , n.

Let A = {|Xn/n− x| > δ}, and let Zn = f(x)− f(Xn/n). Using that E[Zn] =
E[ZnI(A)] + E[ZnI(Ac)], prove that

lim
n→∞

sup
0≤x≤1

∣∣∣∣∣f(x)−
n∑
k=0

f(k/n)

(
n

k

)
xk(1− x)n−k

∣∣∣∣∣ = 0.

Remark: This is Weierstrass’ approximation theorem.
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Figur 1: A plot of θ2(p). Note the discontinuity.

3. In many applications, one is interested in the maxima of i.i.d. random variables.
For example, let Xk denote the (random) height of the largest wave to hit the
coastal area of the Netherlands during some fixed month. Then the distribution
of Mn := maxk≤nXk will give some information about how high you should
build the walls protecting the people living there. This is also relevant when
pricing insurances. How bad will the worst storm be that occurs over a hundred
year period? Prove the following:

(a) Thin tail distribution: Assume that Xk have distribution function F (x)
such that

lim
x→∞

1− F (x)
e−x

= 1.

Prove that (Mn− log n)
w→ X where X has distribution function FX(x) =

exp(−e−x) for every x ∈ R.
(b) Heavy tail distribution: Assume that Xk have distribution function

F (x) such that

lim
x→∞

1− F (x)
x−α

= 1.

Prove that Mn/n
1/α w→ X where X has distribution function FX(x) =

exp(−x−α) for every x > 0.

4. Let (Xn)n≥1 be a sequence of random variables such that for every ε > 0,

lim
n→∞

P(|Xn −X| ≥ ε) = 0.

(a) Prove that

sup
n1,n2≥N

P(|Xn1
−Xn2

| ≥ ε)→ 0 as N →∞.

(b) Prove that if (Xn)n≥1 are independent, then X is almost surely constant.

5. In many applications (e.g financial mathematics), one is interested in some
function of normal random variables. In particular taking the exponential. The
purpose of this exercise is to explore some convergence properties of this. Thus,



let α, β ∈ R and Z1, Z2, . . . be an i.i.d. sequence of N(0, 1) random variables.
Define

Xn = eαSn−βn,

where Sn =
∑n
i=1 Zi.

Recall that:

• Xn
P→ X if ∀ ε > 0, P(|Xn −X| ≥ ε)→ 0.

• Xn
r→ X if E[|Xn −X|r]→ 0, (where we assume that r > 0).

(a) Prove that Xn
P→ 0 iff β > 0. (This should be done by direct methods,

i.e. it does not suffice to do (c) and then use that a.s. convergence implies
convergence in probability).

(b) Prove that Xn
r→ 0 iff r < 2β/α2.

(c) Prove that Xn
a.s.→ 0 iff β > 0.

6. Consider C[0, 1], the set of continuous functions from [0, 1] to R, and let C[0, 1]
be equipped with the standard metric

ρ(f, g) = sup
t∈[0,1]

|f(t)− g(t)|.

Let
fn(x) = nxI(x ∈ [0, 1/n]) + (2− nx)I(x ∈ (1/n, 2/n]),

which is simply the function that increases linearly from 0 to 1 for x ∈ [0, 1/n],
and then decreases linearly from 1 to 0 for x ∈ (1/n, 2/n].

Let µn be the measure on C[0, 1] which assigns unit mass to fn, and let µ be
the measure which assigns unit mass to the function f(x) = 0 ∀ x ∈ [0, 1].

Prove that µn 6
w→ µ but that the finite dimensional marginals of µn converges

to those of µ.

Remark: This proves that while Cf is a separating class, it is not a convergence
determining class.

7. Let S be a metric space with metric d. Assume that (Xn, Yn) is a random
variable taking values in S×S (so that Xn and Yn are random variables taking
values in S).

Define the random variable Zn(ω) := d(Xn(ω), Yn(ω)), which is then a random
variable taking values in R+.

Prove that if Xn
w→ X and Zn

w→ 0, then Yn
w→ X.


