
UPPSALA UNIVERSITET
Matematiska institutionen 11 mars 2015
Erik Broman

PhD course in Probability, Home Assignment 1: Pro-

babilities and Convergence

This home assignment consists of 7 exercises. The deadline is on Wednesday 4/3. You
can hand in the assignment later, but if you hand it in k days too late, then your
score will be multiplied by 1− 0.15 ∗ k.

1. Consider a branching process with o�spring distribution X such that P(X =
k) = pk(1 − p) for k = 0, 1, . . . (this is essentially a geometric distribution)
where p ∈ (0, 1) is the parameter. Let Zn denote the number of individuals at
level/generation n. In class, we proved that P(limZn 6= 0) > 0 i� E[X] > 1,
which in our case translates into p > 1/2. We can call the induced graph the
family tree of a Galton-Watson process with geometric o�spring distribution, or
just a geometric tree for short. We always start the process with one individual
in generation 0, i.e. Z0 = 1, and we call the corresponding vertex the root.

(a) It can be of interest to know the value of the survival probability θ(p) =
P(limZn 6= 0). Determine the function θ(p) explicitly.

(b) A binary tree is a tree in which every individual has exactly two descen-
dants. We want to determine the probability that, starting at the root,
the geometric tree contains a binary tree. Let θ2(p) denote this probability
and prove that θ2(p) satis�es the equation

(1− θ2(p))(1− p(1− θ2(p)))2 − (1− p)(1− p+ 2pθ2(p)) = 0. (1)

Remark: Solving (1) gives the solution

θ2(p) =

{
3p−2+

√
p(5p−4)

2p if 4/5 ≤ p ≤ 1
0 otherwise.

As can be seen from a plot (see Figure 1) and indeed from the expression itself,
this has a real solution only when 4/5 ≤ p(≤ 1). Therefore, we conclude that the
geometric tree can contain a binary tree i� 4/5 ≤ p ≤ 1. However, much more
interesting is that at the critical value 4/5, the existence of a binary subtree is
strictly positive!

Hint: It can be useful to condition on the number of individuals in the �rst
generation.

Solution:

(a) We simply condition on the number k of individuals in generation 1. Given
k, we then have k independent branching processes with exactly the same
distribution as the original.

Therefore, 1−θ(p) =
∑∞
k=0 P(Z1 = k)(1−θ(p))k, since the original process
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Figur 1: A plot of θ2(p). Note the discontinuity.

dies out i� all the trees belonging to the �rst generation dies out. Thus,

1− θ(p) =
∞∑
k=0

P(Z1 = k)(1− θ(p))k

= (1− p)
∞∑
k=0

(p(1− θ(p)))k =
1− p

1− p(1− θ(p))
.

Solving this gives the answer

θ(p) =
{ 2p−1

p if p ≥ 1/2
0 otherwise.

(b) Again, we condition on the number k of individuals in generation 1. Then,
at least two of these individuals must themselves contain a binary subtree
among their descendants. As in part (a) we have that

1− θ2 =
∞∑
k=0

P(Z1 = k)
(
(1− θ2)k + kθ2(1− θ2)k−1

)
=
∞∑
k=0

(1− p)pk
(
(1− θ2)k + kθ2(1− θ2)k−1

)
= (1− p)

∞∑
k=0

(p(1− θ2))k +
(1− p)θ2
1− θ2

∞∑
k=0

k(p(1− θ2))k

=
1− p

1− p(1− θ2)
+

(1− p)θ2
1− θ2

p(1− θ2)
(1− p(1− θ2))2

=
1− p

1− p(1− θ2)

(
1 +

pθ2
1− p(1− θ2)

)
=

(1− p)(1− p+ 2pθ2)
(1− p(1− θ2))2

2. Let f : [0, 1]→ R be a continuous function (i.e. f ∈ C([0, 1])), and letXn ∼Bin(n, x),
i.e. such that

P(Xn = k) =
(
n

k

)
xk(1− x)n−k.



Let A = {|Xn/n− x| > δ}, and let Zn = f(x)− f(Xn/n). Using that E[Zn] =
E[ZnI(A)] + E[ZnI(Ac)], prove that

lim
n→∞

sup
0≤x≤1

∣∣∣∣∣f(x)−
n∑
k=0

f(k/n)
(
n

k

)
xk(1− x)n−k

∣∣∣∣∣ = 0.

Remark: This is Weierstrass' approximation theorem.

Solution: We �rst note that

P(A) = P(|Xn/n− x| > δ) ≤ V ar(Xn/n)
δ2

=
x(1− x)
nδ2

.

Furthermore, f is in fact bounded and uniformly continuous since [0, 1] is com-
pact. By using that f is bounded by some constant C <∞, we get that

E[ZnI(A)] ≤ 2CP(A) ≤ 2C
x(1− x)
nδ2

.

By using that f is uniformly continuous, we see that for any ε > 0, there exists
a δ > 0 such that |f(x)− f(Xn/n)| ≤ ε if |Xn/n− x| ≤ δ. Therefore,

E[ZnI(Ac)] ≤ ε.

Thus, for any ε > 0, by �rst taking δ > 0 small enough, and then n large enough
(uniformly for x ∈ [0, 1]) we have that∣∣∣∣∣f(x)−

n∑
k=0

f(k/n)
(
n

k

)
xk(1− x)n−k

∣∣∣∣∣ = |E[Zn]| ≤ 2ε.

3. In many applications, one is interested in the maxima of i.i.d. random variables.
For example, let Xk denote the (random) height of the largest wave to hit the
coastal area of the Netherlands during some �xed month. Then the distribution
of Mn := maxk≤nXk will give some information about how high you should
build the walls protecting the people living there. This is also relevant when
pricing insurances. How bad will the worst storm be that occurs over a hundred
year period? Prove the following:

(a) Thin tail distribution: Assume that Xk have distribution function F (x)
such that

lim
x→∞

1− F (x)
e−x

= 1.

Prove that (Mn− log n) w→ X where X has distribution function FX(x) =
exp(−e−x) for every x ∈ R.

(b) Heavy tail distribution: Assume that Xk have distribution function
F (x) such that

lim
x→∞

1− F (x)
x−α

= 1.

Prove that Mn/n
1/α w→ X where X has distribution function FX(x) =

exp(−x−α) for every x > 0.

Solution:



(a) Thin tail distribution: First we observe that

P(Mn − log n ≤ y) =
n∏
k=1

P(Xk ≤ y + log n) = F (y + log n)n.

The condition gives that for any c > 1, and x large enough, we have that
F (x) ≤ 1− ce−x and so for any y and n large enough

F (y + log n)n ≤
(
1− ce−y−logn

)n
=
(
1− ce−y/n

)n → e−ce
−y
.

Since c > 1 was arbitrary, we have that

lim sup
n

P(Mn − log n ≤ y) = lim sup
n

F (y + log n)n ≤ e−e
−y
.

The statement follows by a similar argument for the other direction.

(b) Heavy tail distribution: We have that P(Mn ≤ x) = P(X1 ≤ x)n =
F (x)n and so for any c > 1,

lim sup
n

P(Mn/n
1/α ≤ x)

= lim sup
n

F (n1/αx)n ≤ lim sup
n

(
1− c(n1/αx)−α

)n
= lim sup

n

(
1− cn−1x−α

)n
= e−cx

−α
.

As above, the statement follows.

4. Let (Xn)n≥1 be a sequence of random variables such that for every ε > 0,

lim
n→∞

P(|Xn −X| ≥ ε) = 0.

(a) Prove that

sup
n1,n2≥N

P(|Xn1 −Xn2 | ≥ ε)→ 0 as N →∞.

(b) Prove that if (Xn)n≥1 are independent, then X is almost surely constant.

Solution:

(a) This is short and mainly meant as a hint for (b). Obviously,

{|Xn1 −Xn2 | ≥ ε} ⊂ {|Xn1 −X| ≥ ε/2} ∪ {|Xn2 −X| ≥ ε/2},

and so for any δ > 0, by letting N be so large that P(|Xn−X| ≥ ε/2) ≤ δ/2
for every n ≥ N, we see that P(|Xn1 −Xn2 | ≥ ε) ≤ δ for all n1, n2 ≥ N.

(b) Assume that X is not a.s. constant. Then, there exists c and δ, ε > 0 such
that P(X < c) ≥ ε and P(X > c + δ) ≥ ε. (This fact can be argued in a
number of ways, for example, let I, S be the essential in�mum/supremum
of X respectively. Then, let δ = (S − I)/3 and c = (I + S)/2 − δ/2, the
claim follows with these choices of c, δ.)

Using this, and by taking M large enough, P(Xn < c) ≥ ε/2 and P(Xn >

c+ δ) ≥ ε/2 ∀ n ≥M (this follows since
P→ implies

d→ by theorem during
lecture). Thus, for n1, n2 ≥M,

P(|Xn1 −Xn2 | ≥ δ)
≥ P(Xn1 < c,Xn2 > c+ δ) = P(Xn2 > c+ δ)P(Xn1 < c) ≥ ε2/4.



Since this is uniform over n1, n2 ≥M we cannot have that

sup
n1,n2≥N

P(|Xn1 −Xn2 | ≥ ε)→ 0 as N →∞,

which contradicts (a).

5. In many applications (e.g �nancial mathematics), one is interested in some
function of normal random variables. In particular taking the exponential. The
purpose of this exercise is to explore some convergence properties of this. Thus,
let α, β ∈ R and Z1, Z2, . . . be an i.i.d. sequence of N(0, 1) random variables.
De�ne

Xn = eαSn−βn,

where Sn =
∑n
i=1 Zi.

Recall that:

• Xn
P→ X if ∀ ε > 0, P(|Xn −X| ≥ ε)→ 0.

• Xn
r→ X if E[|Xn −X|r]→ 0 (de�ned for r > 0).

(a) Prove that Xn
P→ 0 i� β > 0. (This should be done by direct methods,

i.e. it does not su�ce to do (c) and then use that a.s. convergence implies
convergence in probability).

(b) Prove that Xn
r→ 0 i� r < 2β/α2.

(c) Prove that Xn
a.s.→ 0 i� β > 0.

Solution:

(a) We may assume that α > 0 by symmetry. Thus, for any ε > 0,

P(Xn > ε) = P
(
eαSn−βn > ε

)
= P (αSn − βn > log ε) = P

(
Sn√
n
>

log ε+ βn√
n

)
→ 0,

by using that Sn/
√
n ∼ N(0, 1) and that β > 0.

On the other hand if β < 0,

P(Xn > 1) = P(αSn − βn > 0) = P
(
Sn√
n
≥ β

α

√
n

)
→ 1,

as above. When β = 0, then in fact P(Xn > 1) = 1/2 for every n.

(b) We have that

E[Xr
n] = E[eαrSn−βrn] = e−βrn

n∏
i=1

E[eαrZi ] = e−βrnen
(αr)2

2 .

This goes to 0 i� (αr)2 < 2βr from which the proof follows. The fact that

E[eαrZi ] = en
(αr)2

2 ,

can be explicitly calculated, or looked up in a table.



(c) For this we use good-old Borel-Cantelli as follows. If β > 0, let r < 2β/α2

and conclude by using Markovs inequality that

P(Xn > 1/n) = P(Xr
n > 1/nr) ≤ nrE[Xr

n].

By part (b) and since we picked 0 < r < 2β/α2, we have that for some
c > 0, E[Xr

n] ≤ e−cn. Therefore
∞∑
i=1

P(Xn > 1/n) ≤
∞∑
i=1

nre−cn <∞,

and so by BC
P(Xn > 1/n i.o.) = 0.

This means that indeed Xn
a.s.→ 0.

You can also use the SLLN proved during the lectures, but this is somewhat
of an overkill...

If β ≤ 0, we do not have a.s. convergence by (a) and theorem from class.

6. Consider C[0, 1], the set of continuous functions from [0, 1] to R. Let

fn(x) = nxI(x ∈ [0, 1/n]) + (2− nx)I(x ∈ (1/n, 2/n]),

which is simply the function that increases linearly from 0 to 1 for x ∈ [0, 1/n],
and then decreases linearly from 1 to 0 for x ∈ (1/n, 2/n].

Let µn be the measure on C[0, 1] which assigns unit mass to fn, and let µ be
the measure which assigns unit mass to the function f(x) = 0 ∀ x ∈ [0, 1].

Prove that µn 6
w→ µ but that the �nite dimensional marginals of µn converges

to those of µ.

Remark: This proves that while Cf is a separating class, it is not a convergence
determining class.

Solution: Let A := {f ∈ C[0, 1] : supx∈[0,1] f(x) ≥ 1/2}. Obviously, A is a con-
tinuity set since µ(A) = 0. However µn(A) = 1 ∀n ≥ 1, so by the Portmanteau

theorem, µn 6
w→ µ.

We need to prove that µnπ
−1
x1···xk

w→ µπ−1
x1···xk . For all n large enough we have

that πx1···xk(fn) = (0, 0, . . . , 0) so that for any H ⊂ Rk (or rather in B(Rk))
µnπ

−1
x1···xk(H) = I((0, 0, . . . , 0) ∈ H) = µπ−1

x1···xk(H).

7. Let S be a metric space with metric d. Assume that (Xn, Yn) is a random
variable taking values in S×S (so that Xn and Yn are random variables taking
values in S).

De�ne the random variable Zn(ω) := d(Xn(ω), Yn(ω)), which is then a random
variable taking values in R+.

Prove that if Xn
w→ X and Zn

w→ 0, then Yn
w→ X.

Solution: Let F be a closed set, and de�ne Fε := {s ∈ S : d(s, F ) ≤ ε} which
is then also a closed set. Then,

P(Yn ∈ F ) ≤ P(Zn ≥ ε) + P(Xn ∈ Fε).

By the Portmanteau theorem

lim sup P(Yn ∈ F )
≤ lim sup P(Zn ≥ ε) + lim sup P(Xn ∈ Fε)
≤ P(0 ≥ ε) + P(X ∈ Fε) = P(X ∈ Fε),



since [ε,∞) is a closed set. Since F is closed we have that F = ∩ε>0Fε, so that
by letting ε ↓ 0 we get that lim sup P(Yn ∈ F ) ≤ P(X ∈ F ) which proves the
statement by again using the Portmanteau theorem.


