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PhD course in Probability, Home Assignment 2: Simp-

le RandomWalks, Percolation and Fractal Percolation

This home assignment consists of 5 exercises. The deadline is on April 22 2015. On
this day the solutions will be posted online, and anything handed in later will give 0
points.

1. SRW: Consider a random walk (Sn)n≥1 on Zd, for which the step size X has
distribution

P(X = ej) =
p

d
, P(X = −ej) =

1− p
d

where p ∈ [0, 1] (when p = 1/2, this is what we referred to as a simple symmetric
random walk). Prove that for any p 6= 1/2 and any d ≥ 1, the random walk
(Sn)n≥1 is transient. Do this by using the combinatorial approach that we used
to prove that ssrw is recurrent when d = 1, 2.

Solution: As in demonstrated in class, we only need to consider the walk in
d = 1 as transience there implies transience for d ≥ 2.

We have that

P(Sn = 0) =
(
n

n/2

)
pn/2(1− p)n/2I(n is even),

or

P(S2n = 0) =
(

2n
n

)
pn(1− p)n,

while P(S2n+1 = 0) = 0 for any n. Furthermore, we have that(
2n
n

)
≤

2n∑
k=0

(
2n
k

)
= 22n,

so that
P(S2n = 0) ≤ (4p(1− p))n.

For any p 6= 1/2, we get that

∞∑
n=0

P(Sn = 0) ≤
∞∑
n=0

(4p(1− p))n <∞.

Non-recurrence follows by BC1.

2. SRW: Consider two random walks (Sn)n≥1 and (Tn)n≥1 on Zd, for which the
step size X has distribution

P(X = ej) =
1
2d
, P(X = −ej) =

1
2d
.

Assume further that the two random walks are independent, and that S0 = 0
and T0 = x for some x ∈ Zd. We say that (Sn)n≥1 and (Tn)n≥1 meets, if there
exists n ≥ 1 such that Sn = Tn. Prove the following



(a) If ||x|| := |x1|+· · ·+|xd| is odd, then for every d ≥ 1, P(Sn = Tn for some n ≥
1) = 0.

(b) If ||x|| is even, then for every d ≥ 1, P(Sn = Tn for some n ≥ 1) > 0.When
is this probability 1?

Solution:

(a) The trick is to consider Wn = Sn − Tn and note that Sn = Tn i� Wn = 0.
If Sn =

∑n
k=1Xk and Tn =

∑n
k=1 Yk (using obvious notation), then we

have that ||Wn −Wn−1|| = ||Xn − Yn|| ∈ {0, 2}. Thus, if ||W0|| = ||x|| is
odd, then ||Wn|| is odd for every n ≥ 1, and therefore will never hit 0.

(b) The fact that P(Sn = Tn for some n ≥ 1) > 0 when ||x|| is even is almost
trivial given the solution in (a). If one really want to give an argument it
might go along the following lines. Assume �rst that d = 2 and x1, x2 > 0
are both even. With positive probability, X1−Y1 = · · · = Xx1/2−Yx1/2 =
−2e1 and then Xx1/2+1 − Yx1/2+1 = · · · = X(x1+x2)/2 − Y(x1+x2)/2 = −2e2
so that W(x1+x2)/2 = o. The other cases and dimensions are handed in the
same way.

The issue is to determine when P(Sn = Tn for some n ≥ 1) = 1. De�ne

Z2n =
n∑
k=1

Xk−Yk = Sn−Tn, and Z2n+1 = Xn+1+
n∑
k=1

Xk−Yk = Sn+1−Tn.

Since the random walk is symmetric, we see that −Yk has the same dis-
tribution as Yk, and therefore (Zn)n≥1 is a ssrw. We know that this is
recurrent i� d = 1, 2 and since

Wn = Z2n,

we see that also (Wn)n≥1 is recurrent i� d = 1, 2. The last conclusion of
course relies on the fact that ||x|| is even.

3. Percolation and Moment methods: We have that for any random variable X
taking values in {1, 2, . . .}

P(X > 0) ≤ E[X], (1)

and by an easy application of Cauchy-Schwarz (you should check this, but its
not a part of the assignment)

P(X > 0) ≥ E[X]2

E[X2]
. (2)

These elementary upper and lower bounds on P(X > 0) can be surprisingly
useful as we shall see in this exercise.

Consider a tree in which the root o has d children, each of which have d children
etc. Denote this tree by Td. The case d = 2 is a binary tree which we encounte-
red in the �rst home assignment. Obviously, Td is a deterministic tree, but by
performing percolation on it, we create a Galton-Watson tree (which we discus-
sed in the beginning of the course) if we consider the open component of the
root. You can choose to do either edge or site percolation, but they are basically
equivalent on trees. For any x, y ∈ Td, let {x↔ y} denote the event that there
exists an open path from x to y. Consider the event {o↔∞}, which is simply
the event that there exists an unbounded open path starting from o.



Let
Zn = |{x ∈ Tdn : o↔ x}|,

where Tdn is the set of vertices of Td at graph distance n from the root. Obviously,
{o↔∞} = ∩∞n=1{Zn > 0}.

(a) Prove that limn→∞ P(Zn > 0) = 0, when p < 1/d by using (1).

(b) Prove that limn→∞ P(Zn > 0) > 0, when p > 1/d by using (2).

It can be useful to observe that

Zn =
∑
x∈Td

n

I(o↔ x),

and to think about what P(o↔ x, o↔ y) is.

The above is consistent with what we did at the start of the course, but we
can do better! Consider a sequence (an)∞n=0 such that an ∈ {1, 2, . . .} for every
n, and let An :=

∏n−1
k=0 ak. Consider the tree T starting with a root, and let

the root have a0 children who in turn have a1 children etc. Using analogous
notation to above,

(c) Prove that limn→∞ P(Zn > 0) = 0, when p < 1/ lim infnA
1/n
n by using

(1).

(d) Prove that limn→∞ P(Zn > 0) > 0, when p > 1/ lim infnA
1/n
n by using

(2).

Remark: The results (c) and (d) are generalizations of the results in (a) and
(b). It is good to do (a) and (b) �rst to �nd the right idea for how to prove (c)
and (d), but only solving (c) and (d) will of course give full credit.

Solution: I will do only (c) and (d).

(c) At level n, the tree has An vertices. Therefore, E[Zn] = pnAn. Since p <

1/ lim infnA
1/n
n there exists an α < 1 and a subsequence (nk)k≥1 such that

pA
1/nk
nk ≤ α for every k ≥ 1. We conclude that

P(Znk
> 0) ≤ E[Znk

] =
(
pA1/nk

nk

)nk ≤ αnk .

Thus, since limn→∞ P(Zn > 0) exists by monotonicity (P(Zn > 0) ≥
P(Zn+1 > 0)), we get that

lim
n→∞P(Zn > 0) = lim

k→∞
P(Znk

> 0) ≤ lim
k→∞

αnk = 0.

(d) We want to bound E[Z2
n]. Let x, y be two vertices at level n, and let kx,y

be the generation of their latest common ancestor. That is, if we consider
the two paths from o to x and from o to y, then kx,y is the generation at
which these paths split. Thus, P(o↔ x, o↔ y) = p2n−kx,y . For a given x,
the number of y such that kx,y = k is bounded by An/Ak. Therefore we
get that

E[Z2
n] ≤

∑
x∈Tn

n∑
k=0

p2n−kAn/Ak = p2nA2
n

n∑
k=0

1
Akpk

≤ CE[Zn]2,
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Figure 8. White top-to-bottom crossing vs. black horizontal
crossing (picture provided by W. Werner)

In the next section, the following very nontrivial result is mentioned but not proved.

Theorem 7.11. In any dimension, if p < pc(d), then there exists c = c(p) > 0 so
that the probability that there is an open path from the origin to distance n away
is at most e−cn.

Exercise 7.3. Use Theorem 7.11 and Lemma 7.1 to show that pc(Z2) ≤ 1/2.

Alternatively, there are at present fairly sophisticated and general results which
imply sharp thresholds, which we have seen is the key to proving that the critical
value is 1/2. An early version of such a result comes from [28], where the following
beautiful result was proved.

Theorem 7.12. Let An be a sequence of increasing events. If (recall Definition 6.3)

lim
n→∞ sup

p,i
Ipi (An) = 0,

then the sequence {An} has a sharp threshold.

Figur 1: This is the box B11 in the notation from class. We also see a con�guration
of open (black) and closed (white) vertices in this box. The origin is that white guy
in the middle.

where C <∞ can be made independent of n as we now argue. To see this,

observe that since p > 1/ lim infnA
1/n
n we have that there exists a β > 1

and an N <∞ such that pA
1/n
n ≥ β for every n ≥ N. Thus,

C =
n∑
k=0

1
Akpk

≤
N∑
k=0

1
Akpk

+
∞∑

k=N+1

1
βk

<∞.

4. Percolation: Consider percolation on the vertices of the triangular lattice (this
is the model that we have studied in class) with density p < pc. Let Bn be the
box of side length n centered at the origin (see Figure 1). In order to avoid
degenerate situations, we assume that n is odd.

Let o ↔ ∂Bn denote the event that there exists an open path from the origin
to the boundary of the �box� Bn Furthermore, let θn(p) := P(o↔ ∂Bn).

(a) Prove that there exists a constant C <∞ such that θn(1/2) ≥ 1/(Cn) for
every (odd) n ≥ 1.

(b) Prove that there exist some constants ν > 0 and C < ∞ such that for
every (odd) n ≥ 1, and p ≤ 1/2,

θn(p) ≤ Cn−ν .

Hints: For (a): draw a picture and compare to the crossing events we used in
class. For (b): circuits!

Solution:

(a) We know that P(Ho
n,n) = 1/2. Let v1, . . . , vn denote the vertices on the

LHS of Bn, and let Ho,k
n,n denote the event that we can �nd an open path

connecting the vertex vk to the RHS of Bn. Obviously, H
o,k
n,n implies that

there exists an open path connecting the vertex vk to the boundary of
vk +B2(n−1)+1. Thus

1/2 = P(Ho
n,n) = P(

n⋃
k=1

Ho,k
n,n) ≤

n∑
k=1

P(vk ↔ (vk + ∂B2n−1)) = nθ2n−1(1/2).



Thus
θ2n−1(1/2) ≥ 1/(2n) ≥ 1/(2(2n− 1)),

proving the statement for C = 2.

(b) By monotonicity, it su�ces to prove this for p = 1/2. Consider the annulus
Ak = B3·4k \B4k , and let O(Ak) denote the event that there exists a closed
circuit surrounding the origin, contained in Ak. By RSW+result in class,
we know that there exists a constant c > 0 such that

P(O(Ak)) ≥ c,

uniformly in k ≥ 1. For any n, let kn be the largest integer such that
3 · 4k ≤ n, so that kn = b logn−log 3

log 4 c. We have that

θn(p) ≤ Pp(O(Ak) does not occur for k = 1, 2, . . . , kn)

=
kn∏
k=1

(1− Pp(O(Ak))) ≤ ckn ≤ clogn/ log 4−1 =
1
c
nlog c/ log 4,

and so we have proven the statement with C = 1/c and ν = − log c/ log 4.

5. Fractals: Consider the fractal percolation model discussed in class, and assume
for convenience that d = 2 and N = 3. Recall the notation C1(p) ⊃ C2(p) ⊃ · · · ,
and as usual de�ne

C(p) := ∩nk=1Ck(p).

(a) Consider the set F of �corners� , i.e.

F :=
∞⋃
k=1

3k⋃
l1=0

3k⋃
l2=0

{(
l1
3k
,
l2
3k

)}
.

The set F consists of all corners of any box on any scale in the fractal
construction. Prove that

P(F ∩ C(p) 6= ∅) = 0.

(b) Consider the lattice G = (Z2,E2) (i.e. not the hexagonal lattice from class).

Perform site percolation onG, i.e. pick a random con�guration ω ∈ {0, 1}Z2

(in the �rst lecture on percolation, we considered edge percolation on this
graph). Let

Bn := Z2 ∩ [0, n]2,

so that Bn is a box of side length n. We let Ho(Bn) denote the event that
there exists a left-right open crossing of Bn. De�ne

pc,site := sup{p > 0 : lim sup
n→∞

Pp(Ho(Bn)) = 0}.

De�ne also

HF (p) := {C(p) contains a L-R crossing of [0, 1]2}

(H=Horizontal, F=Fractal), so that with notation from class, ϕ̄(p) =
P(HF (p)). Let

p̄c := inf{p > 0 : ϕ̄(p) > 0}.



Use part (a), i.e. the fact that with probability one, no corners are in the
fractal set, to prove that

p̄c ≥ pc,site.
Hint: Scaling invariance!

Remark:With θsite(p) de�ned as in class, but considering site-percolation
on Z2, it is known that

pc,site := inf{p > 0 : θsite(p) > 0}.

This is a non-trivial statement, which is not needed for the exercise.

Solution:

(a) Fix a level k-cube and one of its corners x. The probability that x ∈
Ck+l(p) is bounded by (1−(1−p)4)l, and by considering further smaller
scales we conclude that P(x ∈ C(p)) = 0. The result follows since F is
clearly countable.

(b) By the same type of scaling invariance that we utilized during class,
we get that for any n ≥ 1,

ϕ̄(p) ≤ P(C(p) contains a L-R crossing of [0, 3n]2)
= P(C(p) \ F contains a L-R crossing of [0, 3n]2),

where the last equality follows from part (a).
In order for C(p) \ F to contain a L-R crossing of [0, 3n]2, there must
be a path of level-2 squares connected by line-segments (not through
corners!) and which are all retained in C1(p). This is equivalent to
looking for a crossing of Z2 ∩ [0, 3n+1]2 in the site percolation model.
Thus, for any p < pc,site

ϕ̄(p) ≤ Pp(Ho(B3n+1))→ 0.

This concludes the proof.


