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Abstract

The possibility of coexistence of two competing populations is a classical

question which dates back to the earliest ‘predator-prey’ models. In this paper

we study this question in the context of a model for the spread of a virus

infection in a population of healthy cells, introduced in [3]. The infected cells

may be seen as a population of ‘predators’ and the healthy cells as a population

of ‘prey’. We show that, depending on the parameters defining the model, there

may or may not be coexistence of the two populations, and we give precise

criteria for this.

Keywords: Coexistence, branching process, interacting branching process

2010 Mathematics Subject Classification: Primary 60J80

Secondary 60J85

1. Introduction

We start by giving an informal description of the model studied in this paper. It

is a two-dimensional Markov process (X(t), Y (t))t≥0, where X(t) is the number of

‘healthy cells’ at time t, and Y (t) is the number of ‘infected cells’ (i.e. cells having

virus in them). Both components (X(t))t≥0 and (Y (t))t≥0 behave in many ways like

branching processes, although there are dependencies between them. A healthy cell

is replaced by a random number of new healthy cells at rate 1. This random number

is independent of other events and drawn from a distribution (pk)k≥0; thus the rate

at which a healthy cell is replaced by k healthy cells is pk. Infected cells are also
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replaced by k new (infected) cells at rate pk if k ≥ 1 while they are replaced by 0

new cells (die) at the higher rate p0 + λ. Here λ ≥ 0 is a parameter that reflects the

negative impact of the virus on the host’s lifelength. When an infected cell dies (i.e.

is replaced by 0 new cells), it converts a random number of healthy cells into infected

cells. The biological motivation is that when infected cells die they burst and release

‘free virions’ which enter a random number of healthy cells, thus infecting them. This

process is called a lysis in biology (see also Section 2). The number of conversions is

independent of all other events, and is drawn from a distribution (γk)k≥0. Hence, the

processes (X(t))t≥0 and (Y (t))t≥0 interact in that (Y (t))t≥0 ‘feeds’ upon (X(t))t≥0.

The model is defined in detail in Section 2. Also, we refer the interested reader to [3]

for a biological motivation of the model. We will sometimes simply write X or Y as a

shorthand for (X(t))t≥0 and (Y (t))t≥0 respectively.

As described, the model is in essence a pair of interacting branching processes.

Markov branching processes with interaction have been much studied, see for in-

stance [12] and the references within. The main purpose of this paper is to study

coexistence of the two, competing, populations X and Y . Similar types of questions

have been studied in many contexts. One recent example is the so-called two-type-

Richardson model. This can be informally described as follows. Consider the graph

Zd, and let the two infections (red and blue) start with only one individual each. A

site is infected by the red (blue) process at a rate which equals the infection parameter

λr (λb) times the number of neighbours infected by the red (blue) process. Further, if

a site gets infected by the red infection it stays red forever and similarly if it is infected

by the blue infection. The main question is if they can coexist, i.e. if there will be two

unbounded components of red and blue sites, see for instance [6, 4, 11].

In [3], much focus was on the study of the extinction probability η of the infected

process (Y (t))t≥0. There, η was taken as an indicator of the ‘evolutionary fitness’ of

the virus. The main result was that for fixed (pk)k≥0 and (γk)k≥0 satisfying γ0 = 0

the extinction probability η is maximized when λ = 0. In fact, it was shown that η is

increasing in λ. The main result of this paper concerns the coexistence probability ζ.

Definition 1. We call

ζ = P (X(t)Y (t) ≥ 1 for all t ≥ 0).
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the coexistence probability of X(t), Y (t).

Of course, ζ depends on the parameters used to define the process, but we suppress

this dependence in the notation. Introducing the stopping time Tu = inf{t ≥ 0 :

X(t)Y (t) = 0}, we have that ζ = P (Tu = ∞). The relevance of coexistence in the

study of η will be discussed in Section 6.

The proof of our main result uses two auxiliary branching processes X̂(t) and Ŷ (t)

defined and discussed in detail in Section 3.1. Informally, X̂(t) is a process distributed

as X(t) without the influence of Y (t), i.e. Y (0) = 0. Furthermore, Ŷ (t) is a process

distributed as Y (t) with an infinite supply of healthy cells, i.e. X(0) = ∞. Our main

result is formulated in terms of the so-called malthusian parameters for these processes,

denoted by α and β for X̂(t) and Ŷ (t) respectively (see Section 3.1). It turns out that

α =
∑∞
k=0 kpk − 1 and β = α+ p0

∑∞
k=0 kγk + λ(

∑∞
k=0 kγk − 1).

Theorem 1. For arbitrary initial conditions X(0), Y (0) ≥ 1 and offspring distribu-

tions (pk)k≥0 with finite second moment, the coexistence probability is positive if and

only if α > β > 0.

Remark 1. Note that coexistence is only possible if γ0 > 0, because otherwise β > α.

This follows from the expressions for α and β and Theorem 1: if γ0 = 0 then Y cannot

die out as long as X survives. Hence, there is then almost surely a time t > 0 such that

X(t) = 0 and Y (t) 6= 0. (This result was announced in [3] as part of Proposition 3.2.)

Theorem 1 establishes, under a second moment condition, for which values of α and β

we can have coexistence. Our next result strengthens the second part of Theorem 1.

Recall that Tu = inf{t > 0 : X(t)Y (t) = 0}.

Theorem 2. For offspring distributions (pk)k≥0 with finite second moment, and for

any choice of α < β we have that E[Tu] <∞.

We have not been able to establish in general if Tu has finite or infinite expectation

when α = β. (But see Remark 2 for a special case.)

On the way to proving that coexistence is indeed possible (when α > β) we use

general facts about order statistics and trimmed sums, see Lemma 4. The second

part of that lemma is an interesting application of Harris’ inequality [8] to bound the

variance of a trimmed sum, which we have not found in the literature.
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In the two-type Richardson model mentioned above, coexistence is conjectured to

hold if and only if λr = λb. The ‘if’ condition has been established, see [6, 4, 11], while

[7] makes progress on the ‘only if’ condition. In fact, the model studied here is closer

to the following variant of the two-type Richardson model. If a site is infected by the

blue process, it changes color if the red process attempts to infect it, while if a site is

infected by the red process it stays so forever. That is, a red site is immune to the blue

process while a blue site is not immune to the red infection. Analogy with the model

studied in this paper suggests that there can then be coexistence if λb > λr, but not if

λb < λr.

We end this section with an outline of the rest of the paper. In Section 2 we give

a precise definition of the model. In Section 3 we state and prove preliminary results

needed in the proofs of our main results. In Sections 4 and 5 we prove Theorems 1

and 2 respectively. Finally we discuss some applications of these results in Section 6.

2. Definition of the model

Let (pk)k≥0 and (γk)k≥0 be probability distributions on the nonnegative integers,

and let λ ≥ 0. We exclude the (degenerate) case when p1 = 1; in fact the reader may

for convenience assume that p1 = 0, since this only amounts to a time-change.

The continuous–time Markov chain (X(t), Y (t))t≥0, taking values in Z2
+, was in-

formally described in Section 1. To recapitulate the main points, each healthy cell is

replaced by k ≥ 0 new healthy cells at rate pk. Being replaced by k = 0 new cells

corresponds to dying. Each infected cell is replaced by k ≥ 1 new infected cells at

rate pk. When an infected cell dies, which occurs at rate p0 + λ, a random number

of healthy cells are converted into infected cells. This is called a lysis (see transition

rate (iii) in Table 1). If t is the time of such an event, we draw a random variable Γt

from the distribution (γk)k≥0 independently of other events. If Γt ≤ X(t) we simply

declare Γt of previously healthy cells to be infected, while if Γt > X(t) we declare

all previously healthy cells to be infected. To define this process formally, we list the

different possible jumps in Table 1, where we use the notation x ∧ k = min{x, k}.

Note that there may be several transitions in Table 1 leading to the same state. In

such cases the correct interpretation is to add the corresponding rates. An example of
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Transition from (x, y) to Rate Valid for

(i) (x− 1 + k, y) xpk k ≥ 0

(ii) (x, y − 1 + k) ypk k ≥ 1

(iii) (x− (x ∧ k), y − 1 + (x ∧ k)) y(p0 + λ)γk k ≥ 0

Table 1: Transition rates for the process (X(t), Y (t))t≥0. Rates are given for transitions from

a state (x, y) and are valid for all x, y ≥ 0.

this is the transition (0, y)→ (0, y−1), which occurs at rate y(p0 +λ), which is the sum

over all k ≥ 0 in (iii). To avoid trivial cases, we assume throughout thatX(0), Y (0) ≥ 1.

Biologically it might be most relevant to consider the case when pk = 0 for k ≥ 3, but

all our results are valid in greater generality, so we make no such restriction.

We now state some immediate properties of the model. If it were the case that

Y (t) = 0, then healthy cells would evolve as a Markov branching process, with intensity

1 and offspring distribution (pk)k≥0. Similarly, ifX(t) = 0 for some t, then (Y (t+s))s≥0

would behave like a Markov branching process with the higher intensity (1+λ) and an

offspring distribution derived from (pk)k≥0 by placing more mass on k = 0. When both

X(t), Y (t) > 0, as transition rate (iii) tells us, healthy cells may turn into infected cells.

This scenario hence ‘helps’ the process (Y (t))t≥0 and ‘hurts’ the process (X(t))t≥0.

3. Preliminary results

In this section we establish several lemmas which will be used in the proofs of

Theorems 1 and 2. Although their motivation may not be obvious on a first reading,

we find it convenient to collect all such preliminary results here so as not to interrupt

the flow of the main proofs later.

A note on notation: we will sometimes write a sum of the form
∑a
k=1 xk where a

is non-integer. The correct interpretation is that the sum goes to the integer part bac

but we prefer to omit the b·c to keep the notation more readable. A similar comment

applies also in other places throughout the paper.

3.1. Auxiliary random variables

It will at several points be useful to compare X and Y to two ‘larger’ processes X̂

and Ŷ . Here X̂ may be thought of as the healthy process in the absence of infection,
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and Ŷ as the infected process in an infinite ‘sea’ of healthy cells.

To be precise, we let X̂ and Ŷ be two branching processes with lifelength intensities

1 and 1+λ, and offspring distributions (pk)k≥0 and (qk)k≥0, respectively, where (qk)k≥0

is given by

q0 =
γ0(p0 + λ)

1 + λ
, and qk =

pk + γk(p0 + λ)

1 + λ
for k ≥ 1. (1)

In Table 2 we give a list of the rates used for the coupling of (X̂, Ŷ ) to (X,Y ). However,

before that, we give an intuitive explaination.

We start with equal sizes, X̂(0) = X(0) and Ŷ (0) = Y (0). Each individual in X(0)

is paired with a unique ‘friend’ in X̂(0), and each individual in Y (0) is paired with a

unique friend in Ŷ (0). Whenever a cell in X either multiplies or dies a natural death

(transition (i) in Table 1) then its friend in X̂ undergoes the exact same transition, and

the offspring are paired in the natural way. Similarly, whenever a cell in Y multiplies

(transition (ii) in Table 1) then its friend in Ŷ undergoes the exact same transition, and

again the offspring are paired in the natural way. When a cell Y has a lysis (transition

(iii) in Table 1), sample a random variable Γ with distribution (γk)k≥0. Infect Γ ∧X

cells from X, but let the friends in X̂ of the newly infected cells in X remain unchanged

(but lose their friends, existing as singletons). Proceed by letting the friend in Ŷ of

the cell in Y which underwent lysis be replaced by Γ new cells. Finally, pair the newly

infected cells, now belonging to Y , with the new cells of Ŷ . Note that if Γ > X, the

this will result in some of the cells in Ŷ being unpaired.

Thus every element of X always has a friend in X̂, and every element of Y always

has a friend in Ŷ ; but some cells in X̂ and Ŷ might be unpaired. We let unpaired cells

give rise to independent Markov branching processes with the correct intensities and

offspring distributions. The rates of the coupled process (X, X̂, Y, Ŷ ) are summarized

in Table 2. As before, the correct interpretation is to add the rates of transitions

leading to the same state. We note that our coupling satisfies the following:

1. X(t) ≤ X̂(t) and Y (t) ≤ Ŷ (t) for all t ≥ 0;

2. if X(t) 6= 0 then Ŷ (t) = Y (t).

For a probability vector π = (πk : k ≥ 0) we write π̄ for the mean
∑
k≥0 kπk. Let α
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Transition from (x, x̂, y, ŷ) to state Rate Valid for

(i) (x− 1 + k, x̂− 1 + k, y, ŷ) xpk k ≥ 0

(ii) (x, x̂− 1 + k, y, ŷ) (x̂− x)pk k ≥ 0

(iii) (x, x̂, y − 1 + k, ŷ − 1 + k) ypk k ≥ 1

(iv) (x, x̂, y, ŷ − 1 + k) (ŷ − y)pk k ≥ 1

(v) (x− (x ∧ k), x̂, y − 1 + (x ∧ k), ŷ − 1 + k) y(p0 + λ)γk k ≥ 0

(vi) (x, x̂, y, ŷ − 1 + k) (ŷ − y)(p0 + λ)γk k ≥ 0

Table 2: Transition rates in the coupled chain (X, X̂, Y, Ŷ ). Rates are given for transitions

from a state (x, x̂, y, ŷ) and are valid for all x, x̂, y, ŷ ≥ 0. Note that the ordering x ≤ x̂, y ≤ ŷ

is preserved.

and β be the Malthusian parameters of X̂ and Ŷ , respectively, given by

α = p̄− 1, β = (q̄ − 1)(1 + λ).

It is well known [9] that X̂(t)/eαt and Ŷ (t)/eβt are martingales which converge almost

surely to some nonnegative random variables. We have that P (A ∪B) = 1 where

A =
{
X̂(t) = 0 for some t ≥ 0

}
and B =

{
lim inf
t→∞

log(X̂(t))/t > 0
}
. (2)

Moreover, P (A) = 1 if and only if α ≤ 0. On the event B, the limit limt→∞ log(X̂(t))/t

exists and equals α. The corresponding statements hold for Ŷ (t) with α replaced by

β. Note for future reference that

β = (q̄ − 1)(1 + λ) =
( p̄+ γ̄(p0 + λ)

1 + λ
− 1
)

(1 + λ)

= p̄− 1 + p0γ̄ + λ(γ̄ − 1) = α+ p0γ̄ + λ(γ̄ − 1).

(3)

Next, let U , V , W and Φ denote random variables with the following distributions.

Firstly, U and V have the distributions of (the sizes of) X̂(1) and Ŷ (1), respectively,

when X̂(0) = 1 and Ŷ (0) = 1. Secondly, W has the distribution of X̃(1), where X̃ is

a branching process, started at 1, with lifelength intensity 1 and offspring distribution

π given by π0 = 0, π1 = p0 + p1, and πk = pk for k ≥ 2. Thus X̃ is essentially X̂ with

deaths suppressed. Finally, to define Φ let t1, t2, . . . denote the times of transitions

of the form (v) or (vi) in Table 2 starting with Ŷ (0) = 1, and let Γtj be independent

copies of Γ as in Section 2. Let L = inf{j ≥ 1 : tj > 1} − 1 and Φ =
∑L
j=1 Γtj . Thus
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Φ is, intuitively, the number of infection attempts during a unit time interval starting

with one infected cell.

Lemma 1. Let r ≥ 1 and let D denote a random variable with distribution (pk)k≥0.

Then

1. E(Ur) <∞ if E(Dr) <∞,

2. E(V r) <∞ if E(Dr) <∞ and E(Γr) <∞,

3. E(W r) <∞ if E(Dr) <∞,

4. E(Φ) <∞ if E(Γ) <∞ and E(D) <∞.

Proof. From [2, Corollary III.6.1], we know that a branching process with offspring

distribution π has finite rth moment at time t > 0 if π has its rth moment. This

immediately gives parts 1 and 3. Part 2 follows from (1), which implies that (qk)k≥0

has its rth moment if (pk)k≥0 and (γk)k≥0 do. For the final part, by Wald’s equation

E(Φ) = E
(∑L

j=1 Γtj
)

= E(Γ)E(L). An easy (stochastic) upper bound on L is given

by Ỹ (1) where Ỹ is a branching process with intensity 1 +λ and offspring distribution

(q̃k)k≥0, where q̃0 = q̃1 = 0, q̃2 = q2 + q1 + q0, and q̃k = qk for k ≥ 3. Thus E(L) is

finite if E(Γ) and E(D) are finite, as in part 2.

We will in what follows always assume that (pk)k≥0 has finite second moment, since

this is part of the assumptions in Theorems 1 and 2. By Lemma 1 this implies that

E(U2) < ∞, E(V 2) < ∞, E(W 2) < ∞ and E(Φ) < ∞. This will allow us to

apply Chebyshev’s bound, which we will use in the following form. Let Zj (j ≥ 1)

be independent, all with the same nonnegative mean E(Z) ≥ 0 and finite variance

Var(Z) < ∞ as some random variable Z. Let N ≥ 1 be any integer and let δ > 0.

Then

P
( N∑
j=1

Zj > (1 + δ)NE(Z)
)
≤ P

([ N∑
j=1

Zj − E(Zj)
]2
> N2δ2E(Z)2

)
≤ NVar(Z)

N2δ2E(Z)2
=

1

N
· Var(Z)

δ2E(Z)2
.

(4)

Similarly

P
( N∑
j=1

Zj < (1− δ)NE(Z)
)
≤ 1

N
· Var(Z)

δ2E(Z)2
. (5)
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3.2. Estimates

The following lemma says that Y cannot be much larger than X for very long

without making X extinct. This lemma will be the main step in the proof of the case

β > α in Theorem 1, which is the case when the process Ŷ grows much faster than X.

In the statement of the lemma, we let W be as in Lemma 1, and let ξ be a Bernoulli

variable with success probability 1−e−(1−γ0)(p0+λ) (this being the probability of a lysis

leading to at least one new infection occuring in a time interval of length 1). We fix

c > 0 and let δ(t) > 0 be any function such that

nδ(n) >
1

2
log

(
2
E(W )

E(ξ)

)
(6)

for all sufficiently large n. We write

An = {∀t ∈ [n, n+ 1], 0 < X(t) ≤ e(c−δ(t))t < e(c+δ(t))t ≤ Y (t)}.

Lemma 2. There is a constant C > 0 such that for n large enough that (6) holds,

P (An) ≤ Ce−(c−δ(n))n. (7)

In particular, we can take C = 9(Var(W )/E(W )2 + Var(ξ)/E(ξ)2). It follows that

P (An i.o.) = 0.

Before turning to the proof we remark that we only actually use this lemma with δ

constant. We prove this slightly more general result since very little extra work is

required, and we hope that it will be useful for future work.

Proof. The result is trivial if δ(n) ≥ c so we assume that δ(n) < c; we also assume

throughout the proof that n is large enough that (6) holds. Suppose that An occurs.

Let Φn denote the number of infection attempts during the time interval [n, n+1], that

is to say the sum of an independent sample of Γ for each lysis of (Y (t) : t ∈ [n, n+ 1]).

Let ξ(n) be obtained from (Y (t) : t ∈ [n, n + 1]) as follows. Start by numbering the

elements of Y (n) (arbitrarily); then observe those elements numbered at most e(c+δ(n))n

until they undergo a branching event; let ξj be the indicator of the event that cell j

has a branching event which results in a lysis for which the associated Γ-value is at

least 1 (ξj = 0 if there is no branching event before time n+ 1); finally let ξ(n) be the

sum of the ξj . Then ξ(n) has the following properties:
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1. ξ(n) ≤ Φn,

2. ξ(n) is a sum of e(c+δ(n))n independent Bernoulli variables, each with success

probability 1− e−p0(1−γ0)(1+λ), and

3. ξ(n) is independent of (X(t) : t ∈ [n, n+ 1]).

Next, let W (n) denote the total number of healthy cells that ever exist in the time-

interval [n, n+1]. Of course, if W (n) ≤ Φn, then An cannot occur since this would imply

that X(n+1) = 0. We cannot immediately conclude from the fact that X(t) ≤ e(c−δ(t))t

for every t ∈ [n, n + 1], that W (n) is bounded by e(c−δ(n+1))(n+1). However W (n)

must be stochastically bounded by the sum of e(c−δ(n))n independent copies Wj of the

random variable W in Lemma 1. (Recall that W is, intuitively, X̂(1) when deaths are

suppressed.) Also, W (n) is independent of ξ(n). Thus, writing an = e(c−δ(n))n and

bn = e(c+δ(n))n, we have that

P (An) ≤ P (W (n) > ξ(n)) ≤ P
( an∑
j=1

Wj >

bn∑
j=1

ξj

)

= P
( 1

an

an∑
j=1

Wj >
bn
an

1

bn

bn∑
j=1

ξj

)
.

Note that bn/an = e2nδ(n) > elog(2E(W )/E(ξ)) = 2E(W )/E(ξ), by (6). We get that

P (An) ≤ P
( 1

an

an∑
j=1

Wj > 2
E(W )

E(ξ)

1

bn

bn∑
j=1

ξj

)

≤ P
( 1

an

an∑
j=1

Wj > 2
E(W )

E(ξ)

2

3
E(ξ)

)
+ P

(2

3
E(ξ) >

1

bn

bn∑
j=1

ξj

)
≤ 9Var(W )

anE(W )2
+

9Var(ξ)

bnE(ξ)2
,

where we use (4) and (5). This gives (7). That P (An i.o.) = 0 follows from the

Borel–Cantelli lemma.

Recall that if U(t) is a Markov branching process with Malthusian parameter u

then W (t) = U(t)/eut is a martingale. We make no claim as to the originality of the

following lemma, yet have not seen it explicitly formulated.

Lemma 3. Let U(t) be a branching process whose offspring distribution has finite

second moment and with Malthusian parameter u > 0.
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1. For any ∆ > 0 we have that

P (∃t ≥ 0 : W (t) ≥ ∆) ≤ ∆−1.

2. For each ε > 0 there is some κ > 0 such that for all τ > 0,

P (∃t ≥ τ : 0 < W (t) < e−εt) ≤ e−κτ .

Proof. The first part is simply a consequence of Doob’s submartingale inequality,

which gives that for any T > 0,

P (∃t ∈ [0, T ] : W (t) ≥ ∆) = P
(

sup
0≤t≤T

W (t) ≥ ∆
)
≤ E[W (T )]/∆ = ∆−1.

Letting T →∞ concludes the proof of this case.

For the second part, we proceed by discretizing. Let µ = E[U(1)] = eu and let

Wn = U(n)/µn for every n ∈ N. It is no loss of generality to assume that ε < u/2.

The limit W := limnWn exists a.s. since (Wn)n≥1 is a nonnegative martingale. A

straightforward and standard calculation (see for instance [9, p. 13]) shows that for

any r > n,

E[µn(Wr −Wn)2] = σ2(µ−1 + µ−2 + · · ·+ µ−r),

where σ2 = Var(U(1)). Therefore by Fatou’s lemma

E[(W −Wn)2] ≤ lim inf
r→∞

E[(Wr −Wn)2] =
σ2

µ− 1
µ−n (8)

for all n. Hence by Markov’s inequality

P (|W −Wn| > e−εn) ≤ E[(W −Wn)2]

e−2εn
≤ σ2

µ− 1
e−(u−2ε)n.

It is well known (see for instance [9, Theorem 8.3]) that there exists a constant c3 > 0

such that for any interval I ⊂ (0,∞) we have P (W ∈ I) ≤ c3|I|. Furthermore, it

is also well known [9, Theorem 8.4] that there exists a constant c4 > 0 such that

P (W = 0,Wn 6= 0) ≤ e−c4n. Therefore (adjusting c3 as necessary)

P (0 < Wn < e−εn) ≤ P (W = 0,Wn > 0) + P (0 < W < 2e−εn)

+ P (|W −Wn| > e−εn)

≤ c3(e−c4n + e−εn + e−(u−2ε)n).

(9)
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Clearly

P (∃s ≥ t : 0 < W (s) < e−εs) ≤ P (∃n ≥ t : 0 < Wn < e−εn/2)

+ P (∃s ≥ t : 0 < W (s) < e−εs,∀n ≥ t Wn = 0 or Wn ≥ e−εn/2). (10)

We have bounded the first probability on the right hand side in (9). The second

probability is bounded above by

P
( ⋃
n≥t

{∃s ∈ [n, n+ 1] : W (s) < e−εn, Wn ≥ e−εn/2}
)

≤
∑
n≥t

P (∃s ∈ [n, n+ 1] : W (s) < e−εn |Wn ≥ e−εn/2)P (Wn ≥ e−εn/2)

≤
∑
n≥t

P (∃s ∈ [n, n+ 1] : U(s) < eu(n+1)−εn | U(n) ≥ eun−εn/2).

It therefore suffices to show that each of the summands is exponentially small in n for

large enough n.

To establish this we take the following point of view. Let M = U(n) and label the

particles present at time n by 1, 2, . . . ,M . If particle j has a branching event with zero

offspring we say that particle j is destroyed. If it has a branching event with one or

more offspring, we consider particle j to be still present, essentially identifying it with

one of its offspring particles. With this convention, we let Aj denote the event that

particle j is ever destroyed during the time interval [n, n+ 1]. Thus P (Aj) < 1 for all

j, and the events Aj are independent. If U(s) ≤ eu(n+1)−εn for some s ∈ [n, n + 1]

then at least M − eu(n+1)−εn of the events Aj must occur. But since M ≥ eun−εn/2

P
( M∑
j=1

1IAj ≥M − eu(n+1)−εn
)
≤ P

( M∑
j=1

1IAj ≥M(1− eue−εn/2)
)

≤ P
( M∑
j=1

1IAj ≥MP (Aj)(1 + δ)
)

for large enough n and some δ > 0. The latter probability is by (4) at most

C/M ≤ Ce−(u−ε/2)n.

This gives the result.



Coexistence of Markovian viruses 13

3.3. A lemma about order statistics

The following result will be used in the case α > β in Theorem 1, but may also be

of independent interest. The first part essentially goes back to [1] (in the case p = 2),

but we have not found the second part in the literature.

If (Xj)1≤j≤M is a sequence of identically distributed random variables, we let X(1) ≤

X(2) ≤ · · · ≤ X(M) denote the order statistics of (Xj)1≤j≤M .

Lemma 4. Let (Xj)1≤j≤M be as above, and let A ⊆ B ⊆ {1, . . . ,M}.

1. If p > 1 and ‖X1‖p = E[Xp
1 ]1/p <∞ then

E
[∑
j∈A

X(j)

]
≤ ‖X1‖pM1/pm1/q, (11)

where m = |A| and 1/p+ 1/q = 1.

2. If the Xi are independent and E[X2
1 ] <∞, then

Var
(∑
j∈A

X(j)

)
≤ Var

(∑
j∈B

X(j)

)
. (12)

Proof. The first part is a consequence of Hölder’s inequality:

E
[∑
j∈A

X(j)

]
= E

[ M∑
j=1

X(j)1I{j ∈ A}
]
≤ E

[ M∑
j=1

|X(j)|p
]1/p

E
[ M∑
j=1

1I{j ∈ A}
]1/q

= E
[ M∑
j=1

|Xj |p
]1/p
|A|1/q = ‖X1‖pm1/qM1/p.

For the second part, let X denote the sequence (X1, . . . , XM ) and let

f(X) =
∑
j∈A

X(j) and g(X) =
∑

j∈B\A

X(j).

Note that both f and g are increasing functions in the sense that if x = (x1, . . . , xn)

and y = (y1, . . . , yn) satisfy xi ≤ yi for every i = 1, . . . , n, then f(x) ≤ f(y) and

g(x) ≤ g(y). Thus also f(X)−E[f(X)] and g(X)−E[g(X)] are increasing functions.

It follows from Harris’ inequality that

E
[
(f(X)− E[f(X)])(g(X)− E[g(X)])

]
≥ E

[
f(X)− E[f(X)]

]
E
[
g(X)− E[g(X)]

]
= 0,
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that is to say

Cov
(∑
j∈A

X(j),
∑

j∈B\A

X(j)

)
≥ 0.

It follows that

Var
(∑
j∈B

X(j)

)
= Var

(∑
j∈A

X(j) +
∑

j∈B\A

X(j)

)
= Var

(∑
j∈A

X(j)

)
+ Var

( ∑
j∈B\A

X(j)

)
+ 2Cov

(∑
j∈A

X(j),
∑

j∈B\A

X(j)

)
≥ Var

(∑
j∈A

X(j)

)
.

Setting m = 1 in (11) we deduce that E[X(M)] is of order at most M1/p when the

Xi have finite p:th moment. Results of this type, usually formulated for p = 2, go back

to [1, 5, 10]. Note that (11) is in some sense sharpest when A = {M −m+ 1, . . . ,M}

because then the sum consists of the m largest terms; this is the case we will be using.

Also note that if B = {1, . . . ,M} then (12) gives

Var
(∑
j∈A

X(j)

)
≤MVar(X1).

4. Proof of Theorem 1

Clearly (by (2)) ζ = 0 if either α ≤ 0 or β ≤ 0, so we assume henceforth that

α, β > 0. The proof of Theorem 1 will be divided into the three cases (i) α < β, (ii)

α = β and (iii) α > β.

The case α < β. The intuition is that if coexistence were to take place, then Y (t)

would eventually be much larger than X(t); but then there is a good chance that all

healthy cells are infected in, say, time 1, which would contradict coexistence. To make

this intuition exact, let c = (α+ β)/2, δ = (β − α)/4 > 0, and use (2) to see that

P (Tu =∞) = P (Tu =∞,∃t0 : X̂(t) ≤ e(c−δ)t < e(c+δ)t ≤ Ŷ (t), ∀t ≥ t0)

≤ P (∃t0 : 0 < X(t) ≤ e(c−δ)t < e(c+δ)t ≤ Y (t), ∀t ≥ t0),
(13)
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since on {Tu = ∞} we have that 0 < X(t) ≤ X̂(t) and Y (t) = Ŷ (t) for every t ≥ 0.

Trivially, the right hand side is bounded above by P (An i.o.) where

An := {∀t ∈ [n, n+ 1], 0 < X(t) ≤ e(c−δ)t < e(c+δ)t ≤ Y (t)}.

But P (An i.o.) = 0 by Lemma 2.

The case α = β. For the case α = β > 0 the intution is that there will typically be

so many infection events that X effectively (i.e. counting losses due to infections) has

a strictly larger rate of deaths than X̂, allowing us to essentially reduce this case to

the case α < β. Note that the process

R(t) =
Ŷ (t)

X̂(t)
=
Ŷ (t)

eαt
eαt

X̂(t)

converges almost surely to some random variable R, since Ŷ (t)/eαt and X̂(t)/eαt are

nonnegative martingales. The limit R may be infinite, but on the event {Tu =∞} we

have that 0 < R <∞. Furthermore, since 0 is an absorbing state for the process R(t)

we have (up to a null event) that {Tu = ∞} ⊆ {inft≥0R(t) > 0}. It follows that for

each r > 0 we have

{Tu =∞} ⊆ {0 < inf
t≥0

R(t) < r} ∪Gr,

where

Gr =
{ Ŷ (t)

X̂(t)
≥ r ∀t ≥ 0

}
∩ {X(t)Y (t) > 0 ∀t ≥ 0}.

For each δ > 0 we may choose r > 0 sufficiently small so that P (0 < inft≥0R(t) <

r) ≤ δ and thus ζ ≤ δ + P (Gr). We aim to show that P (Gr) = 0 for each r > 0; since

δ > 0 was arbitrary this will complete the proof.

Fix δ, r > 0 as above. We will couple X, X̂ and Y to a new process X ′ which is

obtained by taking into account some of the effect of Y on X. The process X ′(t) will

be a Markov branching process and will satisfy X ′(t) ≤ X̂(t) for all t ≥ 0. Moreover,

on the event Gr we will have that X(t) ≤ X ′(t) for all t ≥ 0. We let X ′(0) = X(0).

The rates governing the quadruple (X,X ′, X̂, Y ) are given in Table 3, where we have

written

κ = κ(x′, y) =
(
r
x′

y

)
∧ 1.

We note from Table 3 that the triple (X, X̂, Y ) has the correct marginal distribution,

i.e. as described in Section 3.1. For example, summing the first two lines the of the
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Transition to state Rate For

(x+ k − 1, x′ + k − 1, x̂+ k − 1, y) (x ∧ x′)pk k ≥ 0

(x+ k − 1, x′, x̂+ k − 1, y) (x− x ∧ x′)pk k ≥ 0

(x, x′ + k − 1, x̂+ k − 1, y) (x′ − x ∧ x′)pk k ≥ 0

(x, x′, x̂+ k − 1, y) (x̂− x ∨ x′)pk k ≥ 0

(x, x′, x̂, y + k − 1) ypk k ≥ 1

(x, x′, x̂, y − 1) y(p0 + λ)γ0

(x− (x ∧ k), x′, x̂, y − 1 + (x ∧ k)) y(p0 + λ)γk(1− κ) k ≥ 1

(x− (x ∧ k), x′ − 1, x̂, y − 1 + (x ∧ k)) y(p0 + λ)γkκ k ≥ 1

(x, x′ − 1, x̂, y) (rx′ − κy)(p0 + λ)(1− γ0)

Table 3: Transition rates in the coupled chain (X,X ′, X̂, Y ). Rates are given for transitions

from a state (x, x′, x̂, y) and are valid for all x, x′, x̂, y ≥ 0.

table gives the rate (x ∧ x′ + x − x ∧ x′)pk = xpk for the transition x → x + k − 1.

Similarly, x̂→ x̂+ k− 1 at rate given by the sum of the first four lines, and using that

x+ x′ − x ∧ x′ = x ∨ x′ we get the correct rate x̂pk.

Consider now the marginal distribution for X ′. First note that, since κ ≤ rx′/y, the

final rate in Table 3 is nonnegative. Adding the rates for the transitions x′ → x′ − 1,

we find that this transition occurs at rate

x′(p0 + r(p0 + λ)(1− γ0)).

Together with the rates for x′ → x′+k−1 for k ≥ 1, this means that X ′(t) is a Markov

branching process with lifelength intensity

1 + r(p0 + λ)(1− γ0)

and offspring distribution p′ given by

p′0 =
p0 + r(p0 + λ)(1− γ0)

1 + r(p0 + λ)(1− γ0)
,

p′k =
pk

1 + r(p0 + λ)(1− γ0)
, k ≥ 1.
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In particular, the Malthusian parameter of X ′ is

α′ = (1 + r(p0 + λ)(1− γ0))(p̄′ − 1)

= α− r(p0 + λ)(1− γ0)

< α for r > 0.

Clearly X ′(t) ≤ X̂(t) for all t ≥ 0. On the event Gr we also have that Ŷ (t) = Y (t) for

all t ≥ 0 and that Ŷ (t)/X̂(t) ≥ r for all t ≥ 0. It follows that, on Gr, we have that

r ≤ Ŷ (t)

X̂(t)
=
Y (t)

X̂(t)
≤ Y (t)

X ′(t)
for all t ≥ 0,

so that rX ′(t)/Y (t) ≤ 1 and hence κ(X ′(t), Y (t)) = rX ′(t)/Y (t). Thus the final rate

in Table 3 is always 0 on the event Gr, and hence so is the second rate. Therefore, we

get that Gr ⊆ {X(t) ≤ X ′(t)∀t ≥ 0}.

Let c = (α+ α′)/2 and δ = (α− α′)/4 > 0. Using (2) we therefore deduce that

P (Gr) ≤ P (∃t0 : 0 < X(t) ≤ X ′(t) ≤ e(c−δ)t < e(c+δ)t ≤ Y (t), ∀t ≥ t0). (14)

By Lemma 2, the probability on the right equals zero. Since δ > 0 was arbitrary it

follows that ζ = 0.

We are now ready to prove the final case of Theorem 1.

The case α > β. The intuition here is that X(t) ‘wants’ to be of the order eαt and

Y (t) ‘wants’ to be of the, much smaller, order eβt. Typically, therefore, the infection

will have very little impact on the healthy population.

To make this intuition rigorous, let

an =

n∏
k=2

(
1− 2

k2

)
, bn =

n∏
k=2

(
1− 1

k2

)
, cn =

n∏
k=2

(
1 +

1

k2

)
.

Note that an and bn form decreasing sequences with limits in (0, 1) and that cn is an

increasing sequence with limit in (1,∞). Write Bn for the event that

X(n) ≥ aneαn and bne
βn ≤ Y (n) ≤ cneβn.

We will prove that there is some N such that

P (Bn+1 | Bn) ≥ 1− 3

n2
(15)
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for all n ≥ N . This will, using the Markov property, establish the result, since P (BN ) >

0 and

ζ ≥ P (∩n≥NBn) = P (BN )
∏
n≥N

P (Bn+1 | Bn) > 0.

We start by observing that (again using that Y (t) = Ŷ (t) whenever X(t) > 0)

P (Bn+1 | Bn) (16)

= P (X(n+ 1) ≥ an+1e
α(n+1), bn+1e

β(n+1) ≤ Ŷ (n+ 1) ≤ cn+1e
β(n+1) | Bn)

≥ 1− P (X(n+ 1) < an+1e
α(n+1) | Bn)− P

(
Ŷ (n+ 1) < bn+1e

β(n+1) | Bn
)

−P
(
Ŷ (n+ 1) > cn+1e

β(n+1) | Bn
)
.

We will proceed to show that all three probabilities on the right hand side are small.

To prove that P (X(n+ 1) < an+1e
α(n+1) | Bn) is small, let Φn denote the number of

infection attempts during the time interval [n, n+ 1], as in the proof of Lemma 2. We

will first show that Φn will typically be much smaller than X(n), and will deduce from

this the required lower bound on X(n + 1). For the bound on Φn, we use Markov’s

inequality to see that

P (Φn ≥ cneβn · (n+ 1)2E(Φ) | Bn) ≤ E(Φn | Bn)

cneβn · (n+ 1)2E(Φ)
≤ 1

(n+ 1)2
, (17)

where Φ is the random variable of Lemma 1 and we used the fact that, given Bn, the

number Φn of infection attempts is dominated by the sum of cne
βn independent copies

of Φ.

Let M = M(n) = ane
αn and m = m(n) = cne

βn(n + 1)2E(Φ) (so X(n) ≥ M on

Bn, and m is the quantity in (17)). Let (Uj)1≤j≤M denote independent copies of the

random variable U of Lemma 1. The lower bound on X(n + 1) will be obtained by

noting that the impact of infection during the time interval [n, n+ 1] can be no larger

than the effect of removing, at time n, those Φn healthy cells that would otherwise

give rise to the largest ancestry at time n+ 1. In particular,

X(n+ 1) ≥
X(n)−Φn∑

j=1

U(j), (18)

where U(1) ≤ U(2) ≤ · · · ≤ U(M) denote the order statistics of U1, . . . , UM as in

Section 3.3. For n large enough we have M ≥ m, and on the event Bn ∩ {Φn ≤ m} we
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have

X(n+ 1) ≥
M−m∑
j=1

U(j). (19)

Recall that E(Uj) = eα. From the first part of Lemma 4, we have that

E
[ M∑
j=M−m+1

U(j)

]
= O

(√
mM

)
= O

(
M

n

e(α−β)n/2

)
,

where O(f(n)) denotes a function bounded above by Cf(n) for some 0 < C <∞.

Observe that an+1e
α(n+1) =

(
1− 2

(n+1)2

)
M ·eα and that for large enough n we have

that

P
(M−m∑

j=1

U(j) <
(
1− 2

(n+1)2

)
M · eα

)
= P

(M−m∑
j=1

U(j) − E
[ M∑
j=1

Uj

]
< − 2Meα

(n+1)2

))

= P
(M−m∑

j=1

U(j) − E
[M−m∑
j=1

U(j)

]
< − 2Meα

(n+1)2 + E
[ M∑
j=M−m+1

U(j)

])

≤ P
(M−m∑

j=1

U(j) − E
[M−m∑
j=1

U(j)

]
< − Meα

(n+1)2

)
.

(20)

By Chebyshev’s bound (4) and the second part of Lemma 4, with A = {1, . . . ,M −m}

and B = {1, . . . ,M},

P
(M−m∑

j=1

U(j) − E
[M−m∑
j=1

U(j)

]
< − Meα

(n+1)2

)
≤

(n+ 1)4Var
(∑M−m

j=1 U(j)

)
e2αM2

≤ (n+ 1)4Var(U1)

e2αM
= O(e−αn).

Taking into account also (17) it follows that

P
(
X(n+ 1) ≥ an+1e

α(n+1) | Bn
)

≥ P
(
X(n+ 1) ≥ an+1e

α(n+1) | Φn ≤ m,Bn
)
P
(
Φn ≤ m | Bn

)
≥ P

(M−m∑
j=1

U(j) ≥ an+1e
α(n+1)

)(
1− 1

(n+ 1)2

)
≥
(
1−O(e−αn)

)(
1− 1

(n+ 1)2

)
≥ 1− 2

(n+ 1)2
,

for n large enough.

We proceed with the second and third probabilities on the right hand side of (16).

We have, with Vj independent and having the distribution of V in Lemma 1, using
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that E(V ) = eβ , (5) and that Y (t) = Ŷ (t) whenever X(t) > 0,

P
(
Ŷ (n+ 1) < bn+1e

β(n+1) | Bn
)

= P
(
Ŷ (n+ 1) < bn+1e

β(n+1) | X(n) ≥ aneαn, bneβn ≤ Ŷ (n) ≤ cneβn
)

= P
(
Ŷ (n+ 1) < bn+1e

β(n+1) | bneβn ≤ Ŷ (n) ≤ cneβn
)

≤ P
(
Ŷ (n+ 1) < bn+1e

β(n+1) | Ŷ (n) = bne
βn
)

= P
( bneβn∑

j=1

Vj < bn+1e
β(n+1)

)

= P
( bneβn∑

j=1

Vj <
(

1− 1

(1 + n)2

)
bne

βnE(V )
)

≤ 1

bneβn
(1 + n)4Var(V )

E(V )2
= O(e−βn).

Similarly, but using (4) in place of (5) ,

P
(
Ŷ (n+ 1) > cn+1e

β(n+1) | Bn
)

≤ P
(
Ŷ (n+ 1) > cn+1e

β(n+1) | Ŷ (n) = cne
βn
)

= P
( cneβn∑

j=1

Vj > cn+1e
β(n+1)

)

= P
( cneβn∑

j=1

Vj >
(

1 +
1

(1 + n)2

)
cne

βnE(V )
)

≤ 1

cneβn
(1 + n)4Var(V )

E(V )2
= O(e−βn).

We conclude that (15) holds for n large enough.

5. Proof of Theorem 2

The proof of Theorem 2 will be in two parts.

The case α < 0. It is well known (see [9, Theorem 11.1]) that the probability that

a subcritical branching process survives until time t > 0 decays exponentially fast in

t. That is, there exists c > 0 such that for every t > 0,

P (X(t) > 0) ≤ e−ct.

Letting TX = inf{t : X(t) = 0} we get that E[Tu] ≤ E[TX ] <∞.
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The case 0 < α < β. Similarly to (13) let c = (α + β)/2 and δ = (β − α)/4, and

note that c− δ = α+ δ and c+ δ = β − δ. We have that

P (Tu ≥ τ) (21)

= P (Tu ≥ τ, X̂(t) ≤ e(c−δ)t < e(c+δ)t ≤ Ŷ (t), ∀t ≥ τ/2)

+P (Tu ≥ τ, {X̂(t) ≤ e(c−δ)t < e(c+δ)t ≤ Ŷ (t), ∀t ≥ τ/2}c)

≤ P (Tu ≥ τ, X̂(t) ≤ e(c−δ)t < e(c+δ)t ≤ Ŷ (t), ∀t ≥ τ/2)

+P (Tu ≥ τ,∃t ≥ τ/2 : X̂(t) ≥ e(α+δ)t or ∃t ≥ τ/2 : 0 < Ŷ (t) < e(β−δ)t)

≤ P (Tu ≥ τ, X̂(t) ≤ e(c−δ)t < e(c+δ)t ≤ Ŷ (t), ∀t ≥ τ/2)

+P (∃t ≥ τ/2 : X̂(t) ≥ e(α+δ)t or ∃t ≥ τ/2 : 0 < Ŷ (t) < e(β−δ)t).

For the first part of the right hand side of (21), we consider (for simplicity) first the

case τ = 2n, where we get

P (Tu ≥ τ, X̂(t) ≤ e(c−δ)t < e(c+δ)t ≤ Ŷ (t), ∀t ≥ τ/2)

= P (Tu ≥ 2n, X̂(t) ≤ e(c−δ)t < e(c+δ)t ≤ Ŷ (t), ∀t ≥ n)

≤ P (0 < X(t) ≤ e(c−δ)t < e(c+δ)t ≤ Y (t), ∀t ∈ [n, n+ 1]) = P (An),

where An is as in Lemma 2. According to that lemma, there exists a c2 > 0 such that

for any n, we have that P (An) ≤ e−2c2n = e−c2τ . It is easy to see that the same holds

for all τ (adjusting c2 if necessary).

For the second part of the right hand side of (21), we use Lemma 3, to conclude

that there exists a c1 = c1(δ) > 0 such that for any τ,

P (∃t ≥ τ/2 : X̂(t) ≥ e(α+δ)t ∪ ∃t ≥ τ/2 : 0 < Ŷ (t) < e(β−δ)t)

≤ P (∃t ≥ τ/2 : X̂(t) ≥ eαt+δτ/2) + P (∃t ≥ τ/2 : 0 < Ŷ (t) < e(β−δ)t)

≤ e−δτ/2 + e−c1τ .

We conclude that there exists c3 > 0 such that P (Tu ≥ t) ≤ e−c3t for any t > 0,

and so E[Tu] <∞.

Remark 2. Clearly E[Tu] = ∞ when α > β > 0, since then Tu takes value ∞ with

positive probability. We have not been able to determine in general whether or not

E[Tu] is finite in the remaining case α = β, but in the following special case it is easily
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seen to be finite. Suppose α = β = 0, γ0 = 1 and λ = 0. Then X and Y form

independent critical branching processes. The extinction times TX and TY for these

respective processes satisfy

P (TX > t) ∼ 1

t
, P (TY > t) ∼ 1

t
;

see [2, p. 159]. Thus Tu = min{TX , TY } satisfies

P (Tu > t) = P (TX > t)P (TY > t) ∼ 1

t2

so

E[Tu] =

∫ ∞
0

P (Tu > t)dt ≤ 1 +

∫ ∞
1

P (Tu > t)dt ∼ 1 +

∫ ∞
1

dt

t2
<∞.

6. Applications of the main results

In this section we will briefly discuss some applications of our main theorems. Using

our results on coexistence we are able to comment more on the issue of extinction of

Y , which was the main focus of [3].

Central to the analysis in the present article were the auxiliary processes X̂ and Ŷ .

Recall that Ŷ was in essence the process Y in an ‘infinite sea of food’, i.e. X(0) =∞.

However, if instead X(t) = 0, then (Y (t + s))s≥0 has no healthy cells to feed on, and

therefore (Y (t+ s))s≥0 grows at the exponential rate (see also (3))

β′ = p̄− 1− λ = α− λ.

The qualitative behavior of (X(t), Y (t))t≥0 depends on the values of α, β and β′. We

discuss the possible different regimes.

Regime 1. If α ≤ 0 then (X(t))t≥0 eventually dies out, and since β′ ≤ α, so does

(Y (t))t≥0. Hence η = 1.

Regime 2. If 0 < α ≤ β then if γ0 > 0 it might be the case that (Y (t))t≥0 dies out

spontaneoulsy. However, if it does not, then according to Theorem 1, instead (X(t))t≥0

will go extinct. If β′ ≤ 0, we then conclude that also (Y (t))t≥0 dies out, that is η = 1.

However, if β′ > 0 then (Y (t))t≥0 can survive on its own, that is η < 1.
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Regime 3. If 0 < β < α we are in the coexistence regime, in particular η < 1. As

stated in Theorem 1, it might be the case that X(t)Y (t) > 0 for all t > 0. However, as

in Regime 2, if γ0 > 0, it is possible that (Y (t))t≥0 dies out. Furthermore, if (X(t))t≥0

dies out, then the behavior of (Y (t))t≥0 would again be governed by the sign of β′.

Regime 4. If β < 0 then (Y (t))t≥0 eventually dies out, that is η = 1.

We can draw qualitative conclusions from the above description, using also (3). For

instance, if we fix α > 0 and E(Γ) ≥ 1 it follows that α ≤ β for every λ ≥ 0, and so

we are always in Regime 2. As long as λ is small enough, so that β′ > 0, the process

(Y (t))t≥0 can survive. This supports the intuition that small λ is good for the long

term survival of (Y (t))t≥0, see [3].

If instead α > 0 while E(Γ) < 1 we see that we are in Regime 2 for small values of

λ and in Regime 3 for large values of λ. Depending on the exact values of α and E(Γ)

we have the following possibilities:

• for small λ we have 0 < α < β, and β′ > 0 so that (Y (t))t≥0 might survive, that

is η < 1;

• for slightly larger λ we can have 0 < α < β, and β′ ≤ 0 so that (Y (t))t≥0 dies

out, that is η = 1;

• for larger λ we have 0 < β < α, so that (Y (t))t≥0 might again survive, that is

η < 1;

• for even larger λ we have β ≤ 0 so that (Y (t))t≥0, again dies out, that is η = 1.

In [3], monotonicity of η as a function of λ was established when γ0 = 0. In contrast,

we see here that monotonicity of η in λ may fail if E(Γ) < 1 (and it is easy to find

specific parameters for this to be the case). Note also the difference between the first

case, in which (Y (t))t≥0 is strong enough to survive on its own, and case three where

(Y (t))t≥0 needs the process (X(t))t≥0 to feed on.
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