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Abstract

We consider the Poisson cylinder model in d-dimensional hyperbolic space. We
show that in contrast to the Euclidean case, there is a phase transition in the
connectivity of the collection of cylinders as the intensity parameter varies. We also
show that for any non-trivial intensity, the diameter of the collection of cylinders
is infinite.

1 Introduction

In the recent paper [6], the authors considered the so-called Poisson cylinder model in
Euclidean space. Informally, this model can be described as a Poisson process ω on
the space of bi-infinite lines in Rd. The intensity of this Poisson process is u times a
normalized Haar measure on this space of lines. One then places a cylinder c of radius
one around every line L ∈ ω, and with a slight abuse of notation, we say that c ∈ ω. The
main result of [6] was that for any 0 < u < ∞ and any two cylinders c1, c2 ∈ ω, there
exists a sequence c1, . . . cd−2 ∈ ω such that c1 ∩ c1 6= ∅, c1 ∩ c2 6= ∅, . . . cd−2 ∩ c2 6= ∅. In
words, any two cylinders in the process is connected via a sequence of at most d−2 other
cylinders. Furthermore, it was proven that with probability one, there exists a pair of
cylinders not connected in d−3 steps. The result holds for any 0 < u <∞, and therefore
there is no connectivity phase transition.

This is in sharp contrast to what happens for other percolation models. For example,
ordinary discrete percolation (see [8]), the Gilbert disc model (see [11]), and the Voronoi
percolation model (see [5]) all have a connectivity phase transition. A common property
that all the above listed models exhibit is something that we informally refer to as a ”lo-
cality property” and can be described as follows. Having knowledge of the configuration
in some region A, gives no, or almost no, information about the configuration in some
other region B, as long as A and B are well separated. For instance, in ordinary discrete
percolation the configurations are independent if the two regions A,B are disjoint, while
for the Gilbert disc model with fixed disc radius r, the regions need to be at Euclidean
distance at least 2r in order to have independence. For Voronoi percolation, there is a
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form of exponentially decaying dependence, i.e. the probability that the same cell in a
Voronoi tessellation contains both points x and y decays exponentially in the distance
between x and y.

This is however not the case when dealing with the Poisson cylinder model in Eu-
clidean space. Here, the dependency is polynomially decaying in that

PE[B(x, 1)↔ B(y, 1)] ∼ dE(x, y)−(d−1), (1.1) eqn:nonlocal

where the index E stresses that we are in the Euclidean case, and where ↔ denotes the
existence of a cylinder c ∈ ω connecting B(x, 1) to B(y, 1). Of course, this ”non-locality”
stems from the fact that the basic objects of our percolation model are unbounded cylin-
ders.

In Euclidean space, the non-locality property of (1.1) and the fact that the basic
percolation objects (i.e. the cylinders) are unbounded are, at least in some sense, the
same thing. However, in hyperbolic space, the result corresponding to (1.1) is quite
different (see Lemma 3.1) in that

PH [B(x, 1)↔ B(y, 1)] ∼ e−(d−1)dH(x,y), (1.2) eqn:hypexpdec

(where PH stresses that we are in the hyperbolic case and dH denotes hyperbolic distance).
Since the decay is now exponential, this is a form of locality property. Thus, by studying
this model in hyperbolic space, we can study a model with unbounded percolation objects,
but with a locality property. This is something that does not occur naturally in the
Euclidean setting.

Before we can present our main results, we will provide a short explanation of our
model, see Section 2 below for further details. Consider therefore the d-dimensional
hyperbolic space Hd for any d ≥ 2. We let A(d, 1) be the set of geodesics in Hd and let
µd,1 be the unique (up to scaling) measure on A(d, 1) which is invariant under isometries.
We will sometimes simply refer to the geodesics of A(d, 1) as lines.

Let ω be a Poisson point process on A(d, 1) with intensity uµd,1, where u > 0 is our
parameter. As in the Euclidean case, given a line L ∈ ω, we will let c(L) denote the
corresponding cylinder, and abuse notation somewhat in writing c ∈ ω. Let

C :=
⋃
L∈ω

c(L),

be the occupied set and let V := Hd \ C be the vacant set. Furthermore, define

uc = uc(d) := inf{u : C is a.s. a connected set}.

We note that by Proposition 2.1 below, we have that P[C is connected] ∈ {0, 1}.
Our main result is the following.

thm:main Theorem 1.1. For any d ≥ 2 we have uc(d) ∈ (0,∞). Furthermore, for any u > uc, C
is connected.

Remarks: Theorem 1.1 indicates that even though the cylinders are unbounded, the
exponential decay of (1.2) seems to be the important feature in determining the existence
of a phase transition. The second part of the theorem is a monotonicity property, proving
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that when u is so large that C is a connected set, then we cannot have that C is again
disconnected for an even larger u.

In [17] a result similar to Theorem 1.1 for the random interlacements model on certain
non-amenable graphs was proven. The random interlacements model (which was intro-
duced in [16]) is a discrete percolation model exhibiting long-range dependence. However,
the dependence structure for this model is very different from that of the Poisson cylinder
model. To see this, consider three points x, y, z ∈ Hd (or Rd in the Euclidean case). If
we know that there is a geodesic L ∈ ω such that x, y ∈ L, then this will determine
whether z ∈ L. For a random interlacement process, the objects studied are essentially
trajectories of bi-infinite simple random walks, and so knowing that a trajectory contains
the points x, y ∈ Zd will give some information whether the trajectory contains z ∈ Zd,
but not ”full” information. Thus, the dependence structure is in some sense more rigid
for the cylinder process.

Knowing that C is connected, it is natural to consider the diameter of C defined as
follows. For any two cylinders ca, cb ∈ ω, let Cdist(ca, cb) be the minimal number k of
cylinders c1, . . . ck ∈ ω such that

ca ∪ cb

k⋃
i=1

ci

is a connected set. If no such set exists, we say that Cdist(ca, cb) = ∞. We then define
the diameter of C as

diam(C) = sup{Cdist(ca, cb) : ca, cb ∈ ω}.

Our second main result is

thm:infdiam Theorem 1.2. For any u ∈ (0,∞), we have that

P[diam(C) =∞] = 1.

Remark: Of course, the result is trivial for u < uc.

When 0 < u < uc(d), it is natural to ask about the number of unbounded components.
Our next proposition addresses this.

prop:infnbrinfcomp Proposition 1.3. For any u ∈ (0, uc) the number of infinite connected components of C
is a.s. infinite.

One of the main tools will be the following discrete time particle process. Since we
believe that it may be of some independent interest, we present it here in the introduction,
along with our main result concerning it. In essence, it behaves like a branching process
where every particle gives rise to an infinite number of offspring whose types can take
any positive real value.

Formally, let ξ0, (ξk,n)∞k,n=1 be an i.i.d. collection of Poisson processes on R with

intensity measure uemin(0,x)dx. Let ζ0 = {0}, and we think of this as the single particle
in generation 0. Then, let ζ1 = {x ≥ 0 : x ∈ ξ0} be the particles of generation 1, and let
Z1,1 = min{x ∈ ζ1} and inductively for any k ≥ 2, let Zk,1 = min{x ∈ ζ1 : x > Zk−1,1}.
Thus Z1,1 < Z2,1 < · · · and {Z1,1, Z2,1, . . .} = ζ1. We think of these as the offspring of
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Z1,0 = {0}. In general, if ζn has been defined, and Z1,n < Z2,n < · · · are the points in ζn,
we let

ζk,n+1 =
⋃

x∈ξk,n:x+Zk,n≥0

{x+ Zk,n}, (1.3) eqn:particleproc

and ζn+1 =
⋃∞
k=1 ζ

k,n+1. We think of ζn+1 as the particles of generation n + 1, and
ζk,n+1 as the offspring of Zk,n ∈ ζn. From (1.3), we see that ζk,n+1 ⊂ R+. Furthermore,
conditioned on Zk,n = x, Zk,n gives rise to new particles in generation n + 1 according
to a Poisson process with intensity measure dµx = I(y ≥ 0)ue−(x−y)+dy (where I is an
indicator function and (x− y)+ = max(0, x− y)). We let ζ = (ζn)∞n=1 denote this particle
process. We point out that in our definition, any enumeration of the particles of ζn would
be as good as our ordering Z1,n < Z2,n < · · · , as long as the enumeration does not depend
on ”the future”, i.e. (ξk,n+1)∞k=1 or such.

Informally the above process can be described as follows. Thinking of a particle as a
point in R+ corresponding to the type of that particle, it gives rise to new points with a
homogeneous rate forward of the position of the point, but at an exponentially decaying
rate backward of the position of the point. Of course, since any individual gives rise to
an infinite number of offspring, the process will never die out. However, it can still die
out weakly in the sense that for any R there will eventually be no new points of type R
or smaller.

For any n, let

Xn
[a,b] =

∞∑
k=1

I(Zk,n ∈ [a, b]). (1.4) eqn:Xndef

Thus, Xn
[a,b] is the number of individuals in generation n of type between a and b. We

have the following theorem

thm:bp Theorem 1.4. There exists a constant C <∞ such that for u < 1/4, and any R <∞
∞∑
n=1

E[Xn
[0,R]] < C

e4uR

1− 4u
<∞.

That is, ζ dies out weakly. Furthermore, for any u > 1/4,

lim
n→∞

E[Xn
[0,R]] =∞.

Theorem 1.4 will be used to prove that uc(d) > 0 (part of Theorem 1.1) through
a coupling procedure informally described in the following way (see Section 6.2 for the
formal definition). Consider a deterministic cylinder c0 passing through the origin o ∈ Hd

and a Poisson process of cylinders in Hd as described above. Let c1,1, c2,1, . . . be the set
of cylinders in this process that intersect c0. These are the first generation of cylinders
(and correspond to ζ1). In the next step, we consider independent Poisson processes
(ωk,1)∞k=1 and the collection of cylinders in ωk,1 that intersect ck,1 (these collections will
correspond to (ζk,2)∞k=1 and the union of them corresponds to ζ2). We then proceed for
future generations in the obvious way. By a straightforward coupling of this ”independent
cylinder process” and the original one described above (and since in every step we use an
independent process in the entire space Hd), we get that the set of cylinders connected to
c0 through this procedure, will contain the set of cylinders in C ∪ c0 connected to c0. With
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some work, the independent cylinder process can be compared to the particle process as
indicated. By Theorem 1.4, for u < 1/4, the latter dies out weakly. We will show that
this implies that the number of cylinders (in the independent cylinder process) connected
to c0 and intersecting B(o,R) will be of order at most e4ucR where c <∞. However, the
number of cylinders in C intersecting B(o,R) must be of order e(d−1)R, which of course
is strictly larger than e4ucR for u > 0 small enough. Assuming that C is connected then
leads to a contradiction.

We end the introduction with an outline of the rest of the paper. In Section 2 we
give some background on hyperbolic geometry and define the cylinder model. In Section
3, we establish some preliminary results on connectivity probabilities that will be useful
in later sections. In Section 4, we prove that uc(d) < ∞ and the monotonicity part of
Theorem 1.1. In Section 5, we prove Theorem 1.4, which (as described) will be a key
ingredient in proving uc(d) > 0, which is done in Section 6. In Sections 7 and 8 we prove
Theorem 1.2 and Proposition 1.3 respectively.

2 The model
sec:model

In this section we will start with some preliminaries of hyperbolic space which we will
have use for later, and proceed by defining the model.

2.1 Some facts about d-dimensional hyperbolic space

There are many models for d-dimensional hyperbolic space (see for instance [2],[12] or
[14]). In this paper, we prefer to consider the so-called Poincaré ball model. Therefore,
we consider the unit ball Ud = {x ∈ Rd : dE(o, x) < 1} (where dE denotes Euclidean
distance) equipped with the hyperbolic metric dH(x, y) given by

dH(x, y) = cosh−1

(
1 + 2

dE(x, y)2

(1− dE(o, x)2)(1− dE(o, y)2)

)
. (2.1) eqn:hyp-eqdistrel2

We refer to Ud equipped with the metric dH as the Poincaré ball model of d-dimensional
hyperbolic space, and denote it by Hd.

For future convenience, we now state two well known (see for instance Chapter 7.12 of
[2]) rules from hyperbolic geometry. Here, we consider a triangle (consisting of segments
of geodesics in Hd) with side lengths a, b, c and we let α, β, γ denote the angles opposite
of the segments corresponding to a, b and c respectively.
Rule 1:

cosh(c) = cosh(a) cosh(b)− sinh(a) sinh(b) cos(γ) (2.2) eqn:CS1

Rule 2:

cosh(c) =
cos(α) cos(β) + cos(γ)

sin(α) sin(β)
(2.3) eqn:CS2

These rules are usually referred to as hyperbolic cosine rules.
Let Sd−1 denote the unit sphere in Rd. We will identify ∂Hd with Sd−1. Any point

x ∈ Hd is then uniquely determined by the distance ρ = dH(o, x) of x from the origin o,
and a point s ∈ Sd−1 by going along the geodesic from o to s a distance ρ from o. If we let
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dνd−1 denote the solid angle element so that Od−1 =
∫

Sd−1 dνd−1 is the (d−1)-dimensional
volume of the sphere Sd−1, then the volume measure in Hd can be expressed in hyperbolic
spherical coordinates (see [14], Chapter 17) as

dvd = sinhd−1(ρ)dρdνd−1.

Thus, for any A ⊂ Hd, the volume vd(A) can be written as

vd(A) =

∫
A

sinhd−1(ρ)dρdνd−1. (2.4) eqn:volume

2.2 The space of geodesics in Hd.
s.geodesics

Let A(d, 1) be the set of all geodesics in Hd. As mentioned in the introduction, a geodesic
L ∈ A(d, 1) will sometimes be referred to as a line. Although it will have no direct
relevance to the paper, we note that it is well known (see [7], section 9) that in the Poincaré
ball model, A(d, 1) consists of diameters and boundary orthogonal circular segments of
the unit ball Ud.

For any K ⊂ Hd, we let LK := {L ∈ A(d, 1) : L ∩ K 6= ∅}. If g is an isometry on
Hd (i.e. g is a Möbius transform leaving Ud invariant, see for instance [1] Chapters 2
and 3), we define gLK := {gL : L ∈ A(d, 1)} (where of course gL = {gx : x ∈ L}).
There exists a unique measure µd,1 on A(d, 1) which is invariant under isometries (i.e.
µd,1(gLK) = µd,1(LK)), and normalized such that µd,1(LB(o,1)) = Od−1 (see [14] Chapter
17 or [3] Section 6).

For any L ∈ A(d, 1) we let a = a(L) be the point on L minimizing the distance to the
origin, and define ρ = ρ(L) = dH(o, a). Note that ρ = dH(o, L). Let L+

K := {L ∈ LK :
a(L) ∈ K}. According to (17.52) of [14], we have that

µd,1(LB(o,r)) = µd,1(L+
B(o,r)) (2.5)

=
(d− 1)Od−1

sinhd−1(1)

∫ r

0

cosh(ρ) sinhd−2(ρ)dρ =
Od−1

sinhd−1(1)
sinhd−1(r).

2.3 The process

We consider the following space of point measures on A(d, 1):

Ω = {ω =
∞∑
i=0

δLi
where Li ∈ A(d, 1), and ω(LA) <∞ for all compact A ⊂ Hd}.

Here, δL of course denotes Dirac’s point measure at L.
We will often use the following standard abuse of notation: if ω is some point measure,

then we will write ”L ∈ ω” instead of ”L ∈ supp(ω)”. We will draw an element ω from Ω
according to a Poisson point process with intensity measure uµd,1 where u > 0. We call
ω a (homogeneous) Poisson line process of intensity u in Hd.

If L ∈ A(d, 1), we denote by c(L, s) the cylinder of base radius s centered around L,
i.e.

c(L, s) = {x ∈ Hd : dH(x, L) ≤ s}.

6



If s = 1 we will simplify the notation and write c(L, 1) = c(L). When convenient, we will
write c ∈ ω instead of c(L) where L ∈ ω. Recall that the union of all cylinders is denoted
by C,

C = C(ω) =
⋃
L∈ω

c(L),

and that the vacant set V is the complement Hd \ C. For an isometry g on Hd and an
event B ⊂ Ω, we define gB := {ω′ ∈ Ω : ω′ = gω for some ω ∈ B}. We say that an event
B ⊂ Ω, is invariant under isometries if gB = B for every isometry g. Furthermore, we
have the following 0− 1 law.

p.01law Proposition 2.1. Suppose that B is invariant under isometries. Then P[B] ∈ {0, 1}.

The proof of Proposition 2.1 is fairly standard, so we only give a sketch based on the
proofs of Lemma 3.3 of [18] and Lemma 2.6 of [9]. Below, ωB(x,k) denotes the restriction
of ω to LB(x,k).

Sketch of proof. Let {zk}k≥1 ⊂ Hd be such that for every k ≥ 1, dH(o, zk) = ek, and
let gk be an isometry mapping o to zk. Define Ix,k = I(ω ∈ {P[B|ωB(x,k)] > 1/2}), and
note that by Lévy’s 0-1 law,

lim
k→∞

Io,k = IB a.s.

Using that B is invariant under isometries, it is straightforward to prove that the laws
of (IB, Io,k) and (IB, Igk(o),k) are the same, and so Igk(o),k converges in probability to IB.
Thus,

lim
k→∞

P[Io,k = Igk(o),k = 1B] = 1. (2.6) e.levy2

The next step is to prove that Io,k and Igk(o),k are asymptotically independent, i.e.

lim
k→∞
|P[Io,k = 1, Igk(o),k = 1]− P[Io,k = 1]P[Igk(o),k = 1]| = 0. (2.7) e.asymptind

Essentially, (2.7) follows from the fact that when k is large, the probability that there is
any cylinder in ω which intersects both B(o, k) and B(gk(o), k) is very small (this is why
we choose dH(o, zk) to grow rapidly). For this, one uses the estimate of the measure of
lines intersecting two distant balls, see Lemma 3.3 below.

Since Io,k and Igk(o),k are asymptotically independent, we get

lim
k→∞

P[Io,k = 1, Igk(o),k = 0] = P[B](1− P[B]). (2.8) e.levy3

The only way both (2.6) and (2.8) can hold is if P[B] ∈ {0, 1}.

We note that the laws of the random objects ω, C and V are all invariant under
isometries of Hd.

3 Connectivity probability estimates.
sec:prel

The purpose of this section is to establish some preliminary estimates on connectivity
probabilities, and in particular to establish (1.2). This result will then be used many
times in the following sections.
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For any two sets A,B ⊂ Hd, we let A ↔ B denote the event that there exists a
cylinder c ∈ ω such that A ∩ c 6= ∅ and B ∩ c 6= ∅. We have the following key estimate.

lemma:prob_balls Lemma 3.1. Let s ∈ (0,∞). There exists two constants 0 < c(s) < C(s) <∞ such that
for any x, y ∈ Hd, and u ≤ 2/µd,1(LB(o,s+1)) we have that

c(s)u e−(d−1)dH(x,y) ≤ P[B(x, s)↔ B(y, s)] ≤ C(s)u e−(d−1)dH(x,y).

Lemma 3.1 will follow easily from Lemmas 3.2 and 3.3 below, and we defer the proof of
Lemma 3.1 till later.

Recall that we identify Sd−1 with ∂Hd in the Poincaré ball model. Fix a half-line L1/2

emanating from the origin. For 0 < θ < π, let LL1/2,θ be the set of all half-lines L′1/2 such
that L′1/2 emanates from the origin and such that the angle between L1/2 and L′1/2 is at

most θ. Let Sθ(L1/2) be the set of all points s ∈ ∂Hd such that s is the limit point of
some half-line in LL1/2,θ. Then Sθ(L1/2) is the intersection of ∂Hd with a hyperspherical
cap of Euclidean height h = h(θ), where

h(θ) = 1− cos(θ). (3.1) e.htheta

The (d− 1)-dimensional Euclidean volume of Sθ is given by

A(θ) =
Od−1

2
I2h−h2

(
d− 1

2
,
1

2

)
(3.2) e.hyparea

where Od−1 (as above) is the (d − 1)-dimensional Euclidean volume of Sd−1, and I2h−h2

is a regularized incomplete beta function (this follows from [10], equation (1), by noting
that sin2(θ) = 2h− h2).

l.Alemma Lemma 3.2. There are constants 0 < c < C <∞ such that for any θ ≤ 1/10, we have

c θd−1 ≤ A(θ) ≤ C θd−1.

Proof. First observe that if 0 ≤ θ ≤ 1/10, then 1 − θ2/2 ≤ cos(θ) ≤ 1 − θ2/4.
Therefore, from (3.1) we have

θ2

4
≤ h ≤ θ2

2
≤ 1

200
whenever θ ∈ [0, 1/10]. (3.3) e.hthetaineq

We have

I2h−h2

(
d− 1

2
,
1

2

)
=

∫ 2h−h2

0
t(d−1)/2−1(1− t)1/2−1 dt∫ 1

0
t(d−1)/2−1(1− t)1/2−1 dt

. (3.4) e.betafunc

The denominator in (3.4) is a dimension-dependent constant. Furthermore, if 0 ≤ h ≤
1/8, then 0 ≤ 2h − h2 ≤ 1/4, and if 0 ≤ t ≤ 1/4, then 1 ≤ 1/

√
1− t ≤ 2. Hence, for

h ≤ 1/8,

C1

∫ 2h−h2

0

t(d−1)/2−1 dt ≤ I2h−h2

(
d− 1

2
,
1

2

)
≤ C2

∫ 2h−h2

0

t(d−1)/2−1 dt
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which after integration gives

C3(2h− h2)
d−1
2 ≤ I2h−h2

(
d− 1

2
,
1

2

)
≤ C4(2h− h2)

d−1
2 .

Hence, for h ≤ 1/8,

C3h
(d−1)/2 ≤ I2h−h2

(
d− 1

2
,
1

2

)
≤ C4(2h)(d−1)/2. (3.5) e.hineq

The lemma now follows from (3.2), (3.3) and (3.5).

lemma:measure_balls Lemma 3.3. Let s ∈ (0,∞). There exists two constants 0 < c(s) < C(s) <∞ such that
for any x, y ∈ Hd, we have that

c(s) e−(d−1)dH(x,y) ≤ µd,1(LB(x,s) ∩ LB(y,s)) ≤ C(s) e−(d−1)dH(x,y).

Proof. For convenience, we perform the proof in the case s = 1. The general case is
dealt with in the same way. The proof is somewhat similar to the proof of Lemma 3.1 in
[18]. Recall that we use the Poincaré ball model, and keep in mind that ∂Hd is identified
with Sd−1. Let R = dH(x, y) and without loss of generality assume that x = o and so
y ∈ ∂B(o,R). We can assume that R > 2 as the case R ≤ 2 follows by adjusting the
constants c, C. For any R ∈ (0,∞] and A ⊂ ∂B(o,R), let

τR(A) := µd,1(LB(o,1) ∩ LA).

The projection Π∂Hd(A) of A onto ∂Hd is defined as the set of all points y in ∂Hd for
which there is a half-line emanating from o, passing through A and with its end-point at
infinity at y.

We now argue that

µd,1(LB(o,1))σR(A) ≤ τR(A) ≤ 2µd,1(LB(o,1))σR(A), (3.6) e.rotinv

where σR is the unique rotationally invariant probability measure on ∂B(o,R). Here, σ∞
is the rotationally invariant probability measure on ∂Hd, which is just a constant multiple
of the Lebesgue measure on Sd−1. For A ⊂ ∂B(o,R), let NA(ω) denote the number of
points in A that are intersected by some line in LB(o,1) ∩ ω. If L ∈ LB(o,1) ∩ LA then L
intersects A at one or two points. Hence

NA(ω)/2 ≤ ω(LB(o,1) ∩ LA) ≤ NA(ω). (3.7) e.Neq

In addition, every line intersecting B(o, 1) intersects ∂B(o,R) exactly twice. Hence,

N∂B(o,R)(ω) = 2ω(LB(o,1)). (3.8) e.Neq2

For A ⊂ ∂B(o,R) define ρR(A) = E[NA(ω)]. Taking expectations in (3.7) we obtain

ρR(A)/2 ≤ u τR(A) ≤ ρR(A). (3.9) e.rhoeq

9



It is easily verified that ρR(A) is invariant under rotations. Hence, ρR is a constant
multiple of σR. Taking expectations in (3.8), we obtain

ρR(∂B(o,R)) = 2uµd,1(LB(o,1)),

from which it follows that

ρR(·) = 2uµd,1(LB(o,1))σR(·). (3.10) e.rhoeq2

Combining (3.9) and (3.10) we obtain (3.6). Since σR(A) = σ∞(Π∂Hd(A)), this gives

µd,1(LB(o,1))σ∞(Π∂Hd(A)) ≤ τR(A) ≤ 2µd,1(LB(o,1))σ∞(Π∂Hd(A)). (3.11) eqn:A’

Having proved (3.6) and (3.11), we now proceed to prove the lower bound. We observe
that

LB(o,1) ∩ LB(y,1) ⊃ LB(o,1) ∩ LB(y,1)∩∂B(o,R).

Hence, in view of (3.6), we need to estimate σR(E) from below, where E = B(y, 1) ∩
∂B(o,R). Let L1 be any line containing o and intersecting ∂B(y, 1) ∩ ∂B(o,R), and let
Ly be the line intersecting o and y. Denote the angle between L1 and Ly by θ = θ(R).
Observe that Π∂Hd(E) is the intersection of ∂Hd and a hyperspherical cap of Euclidean
height 1− cos(θ), and so we need to find bounds on θ.

Applying (2.2) to the triangle defined by L1 ∩ B(o,R), the line segment between o
and y, and the line segment between L1 ∩ ∂B(o,R) and y, we have

cosh(1) = cosh2(R)− sinh2(R) cos(θ). (3.12) e.thetaeq1

Solving (3.12) for θ gives

θ = arccos

(
1−

(
cosh(1)− 1

sinh2(R)

))
.

Observe that for any 0 ≤ x ≤ 1,

arccos(1− x) = arcsin(
√

2x− x2) ≥ arcsin(
√
x) ≥

√
x.

Hence for R ≥ 1,

θ ≥ C

sinh(R)
≥ Ce−R. (3.13) eqn:thetaR

By Lemma 3.2 , we have
σ∞(Π∂Hd(E)) ≥ c θd−1, (3.14) eqn:E’

and so the lower bound follows by combining (3.11), (3.13) and (3.14).
We turn to the upper bound. Let y′ be the point on ∂B(y, 1) closest to the origin,

and let H be the (d − 1)-dimensional hyperbolic space orthogonal to Ly and containing
y′. Let Π∂Hd(H) ⊂ ∂Hd be the projection of H onto ∂Hd. Since for any z ∈ H, dH(y, z) ≥
dH(y, y′) we get that

LB(o,1) ∩ LB(y,1) ⊂ LB(o,1) ∩ LΠ
∂Hd (H).

Next we find an upper bound of σ∞(Π∂Hd(H)), which will imply the upper bound of
µd,1(LB(o,1)∩LB(y,1)). Let L2 be any geodesic in H, and let s and s′ be the two end-points
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at infinity of L2. Let L3 be the half-line between 0 and s, and let γ = γ(R) be the angle
between L3 and Ly. Applying (2.3) to the triangle defined by L3, the half-line between s
and y′ and the line-segment between 0 and y′, we obtain

cos(0) = − cos(π/2) cos(γ) + sin(π/2) sin(γ) cosh(R− 1),

which gives
1 = sin(γ) cosh(R− 1).

Observe that we here applied (2.3) to an infinite triangle, which can be justified by a
limit argument. Hence

γ = arcsin

(
1

cosh(R− 1)

)
.

Observe that arcsin(x) ≤ 2x for every 0 ≤ x ≤ 1, so that

γ ≤ 2

cosh(R− 1)
≤ Ce−R. (3.15) eqn:gammaR

We observe that Π∂Hd(H) is the intersection between a hyperspherical cap of Euclidean
height 1− cos(γ) and ∂Hd. Hence, according to Lemma 3.2,

σ∞(Π∂Hd(H)) ≤ cγd−1. (3.16) eqn:AR

The upper bound follows by combining (3.11), (3.15) and (3.16), which concludes the
proof.

l.diffballs Lemma 3.4. Suppose dH(x, y) = R and that r, s ∈ (0,∞). There is a constant c(d, s) <
∞ such that if R > r + s, then

µd,1(LB(x,s) ∩ LB(y,r)) ≤ c(d, s) exp(−(d− 1)(R− r)).

Proof. The proof is nearly identical to the proof of the upper bound in Lemma 3.3,
and therefore we leave the details to the reader.

We can now prove Lemma 3.1.
Proof of Lemma 3.1. We perform the proof in the case s = 1 as the general case
follows similarly. First observe that

{B(x, 1)↔ B(y, 1)} = {ω(LB(x,2) ∩ LB(y,2)) ≥ 1}.

Using that 1− e−x ≤ x for x ≥ 0, we have that

P[B(x, 1)↔ B(y, 1)] = 1− P[B(x, 1) 6↔ B(y, 1)]

= 1− e−uµd,1(LB(x,2)∩LB(y,2)) ≤ uµd,1(LB(x,2) ∩ LB(y,2)) ≤ Cue−(d−1)dH(x,y)

by Lemma 3.3 with C as in the same lemma.
Using that 1− e−x ≥ x/2 if x ≤ 2, and that uµd,1(LB(x,2) ∩LB(y,2)) ≤ uµd,1(LB(x,2)) =

uµd,1(LB(o,2)) ≤ 2 by assumption, we get as above that

P[B(x, 1)↔ B(y, 1)] ≥
uµd,1(LB(x,2) ∩ LB(y,2))

2
≥ cue−(d−1)dH(x,y)

by again using Lemma 3.3 and letting c be half of that of Lemma 3.3.
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4 Proof of uc <∞ and monotonicity of uniqueness
sec:ubamou

We start by proving the monotonicity of uniqueness. For convenience, in this section we
denote by ωu a Poisson line process with intensity u. In addition, we will let E and P
denote expectation and probability measure for several Poisson processes simultaneously.
Recall also that A(d, 1) is the set of all geodesics in Hd.

lemma:mon Lemma 4.1. If for u1 > 0 P[C(ωu1) is connected ] = 1, then P[C(ωu2) is connected ] = 1
for every u2 > u1.

Proof. It is straightforward to show that for any L ∈ A(d, 1), µd,1(Lc(L)) =∞. Hence,
for any L ∈ A(d, 1),

P[c(L) ∩ C(ωu1) 6= ∅] = 1. (4.1) e.easytoshow

Let u′ = u2−u1 and let ωu′ be a Poisson line process of intensity u′, independent of ωu1 . By
the Poissonian nature of the process, C(ωu2) has the same law as C(ωu1) ∪ C(ωu′). Hence
it suffices to show that the a.s. connectedness of C(ωu1) implies the a.s. connectedness
of C(ωu1) ∪ C(ωu′). To show this, it suffices to show that a.s., every line in ωu′ intersects
C(ωu1). To this end, for L ∈ A(d, 1), define the event S(L) = {c(L) ∩ C(ωu1) 6= ∅}. Then
let

D := ∩L∈ωu′
S(L).

We will show that P[Dc] = 0 and we start by observing that

P[Dc] = P
[
∪L∈ωu′

S(L)c
]
≤ E

∑
L∈ωu′

I(S(L)c)

 .
For clarity, we let Eωu′ and Eωu1 denote expectation with respect to the processes ωu′ and
ωu1 respectively, and we will let E denote expectation with respect to ωu′ ∪ ωu1 . We use
similar notation for probability. We then have that,

E

∑
L∈ωu′

I(S(L)c)


= Eωu′

Eωu1

∑
L∈ωu′

I(S(L)c)

∣∣∣∣ωu′
 = Eωu′

∑
L∈ωu′

Eωu1 [I(S(L)c) |ωu′ ]


= Eωu′

∑
L∈ωu′

Pωu1 [S(L)c |ωu′ ]

 = Eωu′

∑
L∈ωu′

Pωu1 [S(L)c]

 = 0,

where we use the independence between ωu′ and ωu1 in the penultimate equality and that
P [S(L)c] = 0 which follows from (4.1). This finishes the proof of the proposition.

The aim of the rest of this section is to prove the following proposition, which is a
part of Theorem 1.1

p.cylconn Proposition 4.2. For any d ≥ 2,

uc(d) <∞.
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In order to prove Proposition 4.2, we will need some preliminary results and termi-
nology. Recall the definition of L+

A for A ⊂ Hd and the definitions of a(L) and ρ(L), all
from Section 2.2. Using the line process ω, we define a point process τ in Hd as follows:

τ = τ(ω) :=
∑
L∈ω

δa(L).

In other words, τ is the point process induced by the points that minimize the distance
between the origin and the lines of ω. We observe that since ω is a Poisson process,
it follows that τ is also a Poisson process (albeit inhomogeneous). We will consider
a percolation model with balls in place of cylinders, using τ as the underlying point
process. Our aim is to prove that V does not percolate for u < ∞ large enough by
analyzing this latter model. For this, we will need Lemma 4.4, which provides a uniform
bound (in z ∈ Hd) of the probability that a point of τ falls in the ball of radius 1/2
centered at z ∈ Hd. Before that, we present the following lemma, which will be useful on
several occasions.

lemma:D Lemma 4.3. There exists a set D of points in Hd with the following properties:

1. dH(z,D) ≤ 1/2 for all z ∈ Hd.

2. If x, y ∈ D and x 6= y, then dH(x, y) ≥ 1/2.

Furthermore, for any such set, there exist constants 0 < c1(d) < c2(d) < ∞ so that for
any x ∈ Hd, and r ≥ 1,

c1(d)vd(B(o, r)) ≤ |D ∩B(x, r)| ≤ c2(d)vd(B(o, r + 1)). (4.2) e.duniform

Proof. We give an explicit construction of the set D. First let D1 = {o} and E1 =
{x ∈ Hd : dH(o, x) = 1/2}, and define D2 = D1 ∪ {x1} where x1 is any point in E1.
Inductively, having defined Dn, we let En = {x ∈ Hd : dH(Dn, x) = 1/2} and define
Dn+1 = Dn ∪ {xn} where xn is any point in En such that dH(o, xn) = dH(o, En) which
exists by compactness of the set En. Finally we let D = ∪∞n=1Dn. By construction, any
two points in D will then satisfy condition 2. Assume now that there exists a point z ∈ Hd

such that dH(z,D) > 1/2, and let m be any integer such that dH(o, xm) ≥ dH(o, z). Since
dH(z,Dm) ≥ dH(z,D) > 1/2 we have that

dH

(
z,
⋃

x∈Dm

B(x, 1/2)

)
> 0. (4.3) eqn:dzDm

Let Sz be the line segment from o to z, and observe that since o ∈
⋃
x∈Dm

B(x, 1/2), there
must be some point s = s(Em, z) belonging to Sz ∩Em. Because of (4.3), we see that for
some ε > 0, we have that dH(o, z) = dH(o, s) + ε and so we get that

dH(o, z) = dH(o, s) + ε ≥ dH(o, Em) + ε = dH(o, xm) + ε > dH(o, xm),

leading to a contradiction.
We now turn to (4.2) and start with the upper bound. Let y1, . . . , yN be an enu-

meration of D ∩ B(x, r). By construction, the balls B(yk, 1/5) are all disjoint, and
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so Nvd(B(o, 1/5)) ≤ vd(B(o, r + 1)) from which the upper bound follows with c2 =
1/vd(B(o, 1/5)).

For the lower bound, it suffices to observe that from the construction we have that

B(o, r) ⊂
N⋃
k=1

B(yk, 1),

so thatN ≥ vd(B(o, r))/vd(B(o, 1)). Hence, the lower bound follows with c1 = 1/vd(B(o, 1)).

l.closepointbound Lemma 4.4. There is a constant c(d) > 0 such that for any z ∈ Hd,

µd,1(L+
B(z,1/2)) ≥ c.

Proof. We first claim that there is a constant c1 = c1(d) ∈ (0,∞) such that for any r ≥ 0,
the shell B(o, r+ 1/4) \B(o, (r− 1/4)+) can be covered by at most Nr = dc1e

(d−1)re balls
of radius 1/2 centered in ∂B(o, r). For this, we observe that by modifying the proof of
Lemma 4.3, we can obtain a set of points E ⊂ Hd with the properties that d(x,E) ≤ 1/4
for all x ∈ Hd and |E ∩B(o, r+ 1/2)| ≤ cνd(B(o, r+ 3/2)) for some constant c <∞ and
all r ≥ 1. Let Er = E ∩ (B(o, r + 1/2) \ B(o, (r − 1/2)+). Since d(x,E) ≤ 1/4 for all
x ∈ Hd we have

B(o, r + 1/4) \B(o, (r − 1/4)+) ⊂
⋃
x∈Er

B(x, 1/4).

For x ∈ Er let x′ be the point on ∂B(o, r) minimizing the distance between x and ∂B(o, r),
and let E ′r ⊂ ∂B(o, r) denote the collection of all such x′. Since d(x, x′) ≤ 1/4 we have
B(x, 1/4) ⊂ B(x′, 1/2). Hence

B(o, r + 1/4) \B(o, (r − 1/4)+) ⊂
⋃
x′∈E′r

B(x′, 1/2).

The claim follows, since |E ′r| ≤ |E ∩B(o, r + 1/2)| ≤ cνd(B(o, r + 3/2)) ≤ c′e(d−1)r.
Now fix z ∈ Hd and let r := dH(o, z). The µd,1-measure of lines that have their closest

point to the origin inside the shell B(o, r + 1/4) \B(o, (r − 1/4)+) is given by

µd,1(LB(o,r+1/4) \ LB(o,(r−1/4)+)) (4.4)

= µd,1(LB(o,r+1/4))− µd,1(LB(o,(r−1/4)+))

= C(d)(sinhd−1(r + 1/4)− sinhd−1((r − 1/4)+) ≥ C ′(d) e(d−1)r,

where the second equality uses (2.5) with C(d) = (d − 1)/ sinhd−1(1). Let (xi)
Nr
i=1 be a

collection of points in ∂B(o, r) such that

B(o, r + 1/4) \B(o, (r − 1/4)+) ⊂ ∪Nr
i=1B(xi, 1/2). (4.5) e.balleq

From (4.4) and (4.5) we obtain

C ′(d)e(d−1)r ≤
Nr∑
i=1

µd,1(L+
B(xi,1/2)) = Nrµd,1(L+

B(z,1/2)), (4.6) e.nreq2
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where we used that µd,1 is invariant under rotations in the last equality. From (4.6) we
conclude that

µd,1(L+
B(z,1/2)) ≥ C ′(d)e(d−1)r/Nr ≥ c(d) > 0,

finishing the proof of the lemma.

p.pbunique Proposition 4.5. For any d ≥ 2, the set V does not percolate if u is large enough.

Proof. The proof follows the proof of Lemma 6.5 in [4] quite closely. Let

W :=

(⋃
x∈τ

B(x, 1)

)c

.

Then it is clear that W ⊃ V so it suffices to show that W does not percolate when u is
large.

For z ∈ Hd let Q(z) be the event that z is within distance 1/2 from W . Then Q(z)
is determined by τ ∩ B(z, 3/2) so that Q(z) and Q(z′) are independent if dH(z, z′) ≥ 3.
Let A be the event that o belongs to an infinite component ofW . If A occurs, then there
exists an infinite continuous curve γ : [0,∞) → W with the properties that γ(0) = o
and dH(o, γ(t)) → ∞ as t → ∞. Let t0 = 0 and y0 = o, and for k ≥ 1 let inductively
tk = sup{t : dH(γ(t), yk−1) = 6} and yk = γ(tk). For each k, let y′k be a point in
D which minimizes the distance to yk. By definition dH(yj, yk) ≥ 6 if j 6= k, and
since dH(yj, y

′
j) ≤ 1/2 and dH(yk, y

′
k) ≤ 1/2, we get dH(y′j, y

′
k) ≥ 5 if j 6= k. Since

dH(yk, yk+1) = 6 we also have dH(y′k, y
′
k+1) ≤ 7. Observe that since yk ∈ W , the event

Q(y′k) occurs.
Let D be as in Lemma 4.3, and let Xn be the set of sequences x0, ..., xn of points in D

such that dH(o, x0) ≤ 1/2, dH(xn, xn+1) ≤ 7 and dH(xj, xk) ≥ 5 if j 6= k. Furthermore,
let Nn denote the number of such sequences. We have that

P[A] ≤
∑

(x0,...,xn)∈Xn

P[Q(x0) ∩ ... ∩Q(xn)], (4.7) e.AQeq1

and that

Nn ≤ sup{|D ∩B(z, 7)|n+1 : z ∈ Hd}
(4.2) e.AQeq2
≤ c1(d)n+1 (4.8) e.AQeq2

for some constant c(d) <∞. By independence,

P[Q(x0) ∩ ... ∩Q(xn)] = Πn
i=0P[Q(xi)]. (4.9) e.AQeq3

Observe that if τ(B(z, 1/2)) ≥ 1, then B(z, 1/2) ⊂ Wc. Hence we have

P[Q(z)] = P[B(z, 1/2) ∩W 6= ∅] (4.10)

≤ P[τ(B(z, 1/2)) = 0] = e−uµd,1(L+
B(z,1/2)

) ≤ e−uc(d),

where the last inequality follows from Lemma 4.4. From (4.7), (4.8), (4.9), and (4.10)
it follows that

P[A] ≤ (c1(d)e−uc(d))n+1 → 0. (4.11) e.Aprobupper
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as n → ∞ if u < ∞ is large enough. We conclude that P[A] = 0 for u large enough but
finite.

We can now prove Proposition 4.2.
Proof of Proposition 4.2: If C is disconnected, then it consists of more than one
infinite connected component. Since any two disjoint infinite components of C must be
separated by some infinite component of V , we get that the disconnectedness of C implies
that V percolates. According to Proposition (4.5), there is no percolation in V when u is
large enough. Hence C is connected when u is large enough.

5 Proof of Theorem 1.4.
s.actbt

Before we can prove Theorem 1.4, we will need to do some preliminary work. To that
end, let {ck,n}n≥0,−1≤k≤n be defined by letting c0,0 = c0,1 = c1,1 = 1 and c−1,n = 0 for
every n and then inductively for every 0 ≤ k ≤ n letting

ck,n :=
n−1∑
l=k−1

cl,n−1, (5.1) eqn:cattri

where we define cn+1,n = 0. Note that by this definition, ck,n = ck−1,n−1 + ck+1,n. These
numbers constitute (a version) of the Catalan triangle, and it is easy to verify that

ck,n =
(2n− k)!(k + 1)

(n− k)!(n+ 1)!
=
k + 1

n+ 1

(
2n− k
n

)
(5.2) eqn:ckn

for every n and 0 ≤ k ≤ n. This follows by using that if (5.2) holds for ck−1,n−1 and
ck+1,n, we get that

ck,n = ck−1,n−1 + ck+1,n

=
(2n− k − 1)!k

(n− k)!n!
+

(2n− k − 1)!(k + 2)

(n− k − 1)!(n+ 1)!

=
(2n− k − 1)!k(n+ 1) + (2n− k − 1)!(k + 2)(n− k)

(n− k)!(n+ 1)!

=
(2n− k − 1)!(2kn− k + 2n− k2)

(n− k)!(n+ 1)!
=

(2n− k)!(k + 1)

(n− k)!(n+ 1)!
.

By an induction argument, we see that (5.2) holds for every 0 ≤ k ≤ n.
Consider the following sequence {gn(x)}n≥0 of functions such that gn : R+ → R+ for

every n. Let g0(x) ≡ 1, and define g1(x), g2(x), . . . inductively by letting

gn+1(x) =

∫ x

0

gn(y)dy +

∫ ∞
x

ex−ygn(y)dy, (5.3) eqn:indg

for every n ≥ 1.
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prop:fcniter Proposition 5.1. With definitions as above, we have that

gn(x) =
n∑
k=0

ck,n
xk

k!
.

Proof. We start by noting that

g1(x) =

∫ x

0

1dy + ex
∫ ∞
x

e−ydy = x+ 1,

and since c1,1 = c0,1 = 1 the statement holds for n = 1. Assume therefore that it holds
for n− 1 and observe that with c−1,n = 0,

gn(x) =

∫ x

0

gn−1(y)dy + ex
∫ ∞
x

gn−1(y)e−ydy

=
n−1∑
k=0

ck,n−1

(∫ x

0

yk

k!
dy + ex

∫ ∞
x

yk

k!
e−ydy

)

=
n−1∑
k=0

ck,n−1

(
xk+1

(k + 1)!
+
xk

k!
+ · · ·+ 1

)

=
n−1∑
k=0

ck,n−1

k+1∑
l=0

xl

l!
=

n∑
k=0

xk

k!

n−1∑
l=k−1

cl,n−1.

By using (5.1), we conclude the proof.

Our next result provides a link between the particle process ζ defined in the intro-
duction, and the functions gn(x). Recall the interpretation that a particle at position
Zk,n = x, independently gives rise to new particles according to a Poisson process with
intensity measure dµx = I(y ≥ 0)ue−(y−x)+dy, so that in particular the entire process is
restricted to R+. Recall also the definition of Xn

[a,b] in (1.4).

prop:contbranch Proposition 5.2. Let
Fn(R) = E[Xn

[0,R]].

For any u <∞, Fn(R) is differentiable with respect to R, and we have that with fn(R) :=
F ′n(R),

fn(R) = un
n−1∑
k=0

ck,n−1
Rk

k!
= ungn−1(R),

for every n ≥ 1.

Proof of Proposition 5.2. We will prove the statement by induction, and so we start
by noting that

F1(R) = E[X1
[0,R]] = uR,

which follows since Z1,0 is of type 0. Therefore, the statement holds for n = 1.
Assume now that the statement holds for some fixed n ≥ 1. Let R,∆R > 0 and

consider
Fn+1(R + ∆R)− Fn+1(R) = E[Xn+1

[R,R+∆R]].
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Any particle in generation n of type smaller than R gives rise to individuals in [R,R+∆R]
(in generation n+1) at rate u. Furthermore, any individual of type x ∈ [R,R+∆R] gives
rise to individuals in [R,R+ ∆R] at most at rate u while individuals of type x > R+ ∆R
produce individuals in [R,R + ∆R] at rate at most ueR+∆R−x. We therefore get the
following upper bound

E[Xn+1
[R,R+∆R]] ≤ u∆R

(
E[Xn

[0,R+∆R]] +
∞∑
k=0

E[Xn
[R+∆R+k/N,R+∆R+(k+1)/N ]]e

−k/N

)
, (5.4) eqn:indUB

where N is an arbitrary number. By assumption, Fn(R) is differentiable, and by the
mean value theorem,

E[Xn
[R+∆R+k/N,R+∆R+(k+1)/N ]] ≤

fn(R + ∆R + (k + 1)/N)

N
,

since fn(x) is increasing. Thus, we conclude from (5.4) that

E[Xn+1
[R,R+∆R]]

≤ lim sup
N→∞

u∆R

(
Fn(R + ∆R) +

∞∑
k=0

fn(R + ∆R + (k + 1)/N)

N
e−k/N

)

≤ lim sup
N→∞

u∆R

(
Fn(R + ∆R) +

∫ ∞
0

fn(R + ∆R + (y + 1)/N)

N
e−(y−1)/Ndy

)
= lim sup

N→∞
u∆R

(
Fn(R + ∆R) + e1/N

∫ ∞
0

fn(R + ∆R + z + 1/N)e−zdz

)
= u∆R

(
Fn(R + ∆R) +

∫ ∞
0

fn(R + ∆R + z)e−zdz

)
,

by the dominated convergence theorem. Hence, we conclude that

lim sup
∆R→0

Fn+1(R + ∆R)− Fn+1(R)

∆R
(5.5)

≤ u

(
Fn(R) +

∫ ∞
0

fn(R + z)e−zdz

)
= u

(∫ R

0

fn(z)dz +

∫ ∞
R

fn(z)eR−zdz

)
,

again by the dominated convergence theorem.
Similarly, we get the following lower bound

E[Xn+1
[R,R+∆R]] (5.6)

≥ u∆R lim inf
N→∞

(
E[Xn

[0,R]] +
∞∑
k=0

E[Xn
[R+k/N,R+(k+1)/N ]]e

−(k+1)/N

)

≥ u∆R lim inf
N→∞

(
Fn(R) +

∞∑
k=0

fn(R + k/N)

N
e−(k+1)/N

)

≥ u∆R lim inf
N→∞

(
Fn(R) +

∫ ∞
0

fn(R + (y − 1)/N)

N
e−(y+1)/Ndy

)
= u∆R

(
Fn(R) +

∫ ∞
0

fn(R + z)e−zdz

)
,
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which together with (5.5) gives us

lim
∆R→0

Fn+1(R + ∆R)− Fn+1(R)

∆R
= u

(∫ R

0

fn(z)dz +

∫ ∞
R

fn(z)eR−zdz

)
.

Thus, we conclude that Fn+1(R) is differentiable and that

fn+1(R) = un+1

(∫ R

0

gn−1(z)dz +

∫ ∞
R

gn−1(z)eR−zdz

)
= un+1gn(R),

where the last equality follows from (5.3).

Remarks: The proof shows that for u = 1, the functions fn(x) = F ′n(x) satisfies (5.3),
which is of course why (5.3) is introduced in the first place.

For future reference, we observe that Fn(R) in fact depends on u, and we sometimes
stress this by writing Fn(R, u). Furthermore, it is easy to see that for any 0 < u < ∞,
we have that Fn(R, u) = unFn(R, 1) for every n ≥ 1.

We have the following result

p.fupperbound Proposition 5.3. Let u < 1/4, then for every x ≥ 0,

∞∑
n=1

fn(x) ≤ u
e4ux

1− 4u
.

Proof. By Propositions 5.1 and 5.2,

∞∑
n=1

fn(x) =
∞∑
n=1

ungn−1(x) =
∞∑
n=0

un+1gn(x) (5.7)

=
∞∑
n=0

un+1

n∑
k=0

ck,n
xk

k!
=
∞∑
k=0

xk

k!

∞∑
n=k

un+1ck,n.

Furthermore, by using that
(
m
n

)
is increasing in m ≥ n, we see that

ck,n =
k + 1

n+ 1

(
2n− k
n

)
≤
(

2n

n

)
≤

2n∑
l=0

(
2n

l

)
= 4n. (5.8) eqn:claim

Combining (5.7) and (5.8), we see that for u < 1/4,

∞∑
n=1

fn(x) ≤
∞∑
k=0

xk

k!
u
∞∑
n=k

(4u)n =
u

1− 4u

∞∑
k=0

(4ux)k

k!
= u

e4ux

1− 4u
, (5.9) e.fupperbound

finishing the proof.

Remark: As pointed out to us by an anonymous referee, a variant of Proposition 5.3
can be proved along the following lines. Let T be the integral operator defined by

T (g) =

∫ x

0

g(y)dy +

∫ ∞
x

ex−yg(y)dy.
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It is easy to check that g(x) = (x+ 2)ex/2 is an eigenfunction of T satisfying T (g) = 4g.
Thus, since g0(x) ≡ 1 ≤ g(x) we get that g1 = T (g0) ≤ T (g) = 4g, and iterating we
see that gn+1 = T (gn) ≤ T (4ng) = 4n+1g. This can then be used in conjunction with
Proposition 5.2 to prove the desired result.

The justification for obtaining and using the explicit forms of gn, fn and Fn is twofold.
Firstly, these forms will be convenient when proving the second part of Theorem 1.4 and
also when proving Lemma 7.1 below. Secondly, we believe that the infinite type branching
process ζ is of independent interest, and therefore a detailed analysis is intrinsically of
value.

We can now prove Theorem 1.4.
Proof of Theorem 1.4. We have that

Fn(R) =

∫ R

0

fn(x)dx,

so that
∞∑
n=1

Fn(R) =
∞∑
n=1

∫ R

0

fn(x)dx.

Furthermore, for u < 1/4, we can use Proposition 5.3 and the dominated convergence
theorem to conclude that

∞∑
n=1

Fn(R) ≤
∫ R

0

u
e4ux

1− 4u
dx ≤ e4uR

4(1− 4u)
.

We can now use Propositions 5.1 and 5.2 to get that

Fn+1(R) = un+1

∫ R

0

gn(x)dx = un+1

∫ R

0

n∑
k=0

ck,n
xk

k!
dx

= un+1

n∑
k=0

ck,n
Rk+1

(k + 1)!
≥ un+1c0,nR =

un+1

n+ 1

(
2n

n

)
R ≥ un+14n

2(n+ 1)2
R,

by using that 2(n + 1)
(

2n
n

)
≥
∑2n

l=0

(
2n
l

)
= 4n which follows since l = n maximizes

(
2n
l

)
.

We see that if u > 1/4, the right hand side diverges, and so the statement follows.

6 Proof of uc(d) > 0.
sec:lb

The aim of this section is to prove the lower bound of Theorem 1.1. We will do this by
establishing a link between the cylinder process ω and the particle process of Section 5.
As an intermediate step, we will in Section 6.1 consider particle processes with offspring
distributions that can be weakly bounded above by ζ. In Section 6.2, these new particle
processes and the cylinder process in Hd will be compared. Thereafter, this link is used
in Section 6.3 to obtain the required lower bound.
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6.1 Particle processes weakly dominated by ζ
subsec:mbp

Recall that dµx(y) = 1(y≥0)ue
−(x−y)+ dy and suppose that (νx)x∈R+ is a family of measures

with the following property: there is a constant c ∈ (0,∞) such that for all integers
k, l ≥ 0

sup
x∈(l,l+1]

νx((k, k + 1]) ≤ c inf
x∈(l,l+1]

µx((k, k + 1]), (6.1) e.compeq

and moreover, νx({0}) = 0 for all x ≥ 0. This last assumption is made only for con-
venience; if one allows the measures to have an atom at 0 what follows below can be
modified fairly easy to get similar conclusions. The particle processes that we consider
here are defined as the one in Theorem 1.4, but using νx as the offspring distribution
in place of µx for a particle of type x. Recall that we think of the position of a particle
in R+ as being the type of that particle. Of course, we still assume that every particle
produces offspring independently. For this process, let X̃n

D be the number of individuals
in generation n of type in D ⊂ R+. Furthermore let

F̃n(R) = E[X̃n
[0,R]].

l.altproc Lemma 6.1. With c ∈ (0,∞) as in (6.1), we have that for every R ∈ N+

F̃n(R) ≤ cnFn(R).

Proof. Let R ∈ N+. It suffices to show that with c as in (6.1), and any integers n ≥ 1
and k ≥ 0, we have

E[X̃n
(k,k+1]] ≤ cn E[Xn

(k,k+1]]. (6.2) e.nts

Since F̃n(0) = Fn(0) = 0, the claim of the lemma will then follow by summing the two
sides of (6.2) from k = 0 to k = R− 1. We proceed by induction in n. For any k ∈ N we
have that

E[X̃1
(k,k+1]] = ν0((k, k + 1])

(6.1)

≤ c µ0((k, k + 1]) = cE[X1
(k,k+1]],

so that (6.2) holds for n = 1. Assume therefore that (6.2) holds for some n ≥ 1 and every
k ≥ 0. Let Ỹ n

k,l denote the number of individuals in generation n of type in (k, k+ 1] with
parents of type in (l, l + 1]. We have

E[X̃n+1
(k,k+1]] (6.3)

=
∞∑
l=0

E[Ỹ n+1
k,l ] ≤

∞∑
l=0

sup
x∈(l,l+1]

νx((k, k + 1])E[X̃n
(l,l+1]]

(6.2)

≤
∞∑
l=0

c inf
x∈(l,l+1]

µx((k, k + 1])cnE[Xn
(l,l+1]] ≤ cn+1E[Xn+1

(k,k+1]].

This finishes the proof of the lemma.
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6.2 The independent cylinder process
subsec:icp

We now turn to the independent cylinder process discussed in the introduction. We
start by defining the process itself, and the coupling with the ordinary line process ω.
Thereafter we establish a link between our independent cylinder process and the particle
process studied in Section 6.1.

Formally, we define the independent cylinder process as follows. Let ω, (ωk,n)∞k,n=1 be
an i.i.d. collection of Poisson line processes with intensity uµd,1. We use ω to define C(ω).
Fix any (deterministic) line L1,0 such that o ∈ L1,0. This is the single line of generation
0. Let

η1 := {L ∈ ω : c(L) ∩ c(L1,0) 6= ∅}.

Thus η1 is simply the collection of lines in ω such that the corresponding cylinders inter-
sect c(L1,0). Recall the definition of ρ(L) for L ∈ A(d, 1) from Section 2.2. Let L1,1, L2,1, . . .
be the enumeration of the lines in η1 satisfying ρ(Lk,1) < ρ(Lk+1,1) for every k ≥ 1. As
when we defined the particle process ζ in the introduction, the particular choice of enu-
meration is somewhat arbitrary. Define

η1,2 := {L ∈ ω\η1 : c(L)∩c(L1,1) 6= ∅}∪{L ∈ ω1,1 : c(L)∩c(L1,1) 6= ∅, c(L)∩c(L1,0) 6= ∅}.

The first set of lines corresponds to the cylinders in ω that intersect c(L1,1) but are
not included in the definition of η1 (i.e. intersect c(L1,0)). The second set of lines is an
independent copy of the set of lines in ω that intersects both c(L1,0) and c(L1,1). Thus, we
see that η1,2 and η1 are created in the same way, i.e. by considering the set of cylinders
of a Poisson cylinder process intersecting c(L1,1) and c(L1,0) respectively. For any k ≥ 1,
let

ηk,2 := {L ∈ ω \
(
η1 ∪k−1

l=1 η
l,1
)

: c(L) ∩ c(Lk,1) 6= ∅}
∪{L ∈ ωk,1 : c(L) ∩ c(Lk,1) 6= ∅, c(L) ∩

(
c(L1,0) ∪k−1

l=1 c(Ll,1)
)
6= ∅}.

We think of ηk,2 as being created from ω where ω has not already been used, and from ωk,1
where ω has been used. From this construction it is obvious that given η1, the sequence
η1,2, η2,2, . . . is independent. We let

η2 = ∪∞k=1η
k,2,

and let L1,2, L2,2, . . . be the enumeration of the lines in η2 satisfying ρ(L1,2) < ρ(L2,2) <
· · · . These are the lines belonging to generation 2.

We proceed in the obvious way, defining ηk,n and ηn for k, n ≥ 1. Finally, let

η := ∪∞n=1η
n,

and
C0(η) = c(L1,0)

⋃
L∈η

c(L). (6.4) eqn:defC0eta

Consider the set c(L1,0) ∪ C(ω), and define C0(ω) ⊂ c(L1,0) ∪ C(ω) to be the maximally
connected component of the origin. By our construction,

C0(ω) ⊂ C0(η). (6.5) eqn:C0coupling
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Indeed, any cylinder in C0(ω) intersecting L1,0 is by definition in η1, and in general, any
cylinder in C0(ω) separated from L1,0 by k other cylinders will belong to ηk+1.

From η, a particle process ζ̄ is induced in the following way. With L1,n, L2,n, . . . being
the enumeration of ηn satisfying ρ(L1,n) < ρ(L2,n) < · · · , we let Z̄k,n = Z̄k,n(Lk,n) :=
ρ(Lk,n) for every k = 1, 2, . . . . Furthermore, ζ̄k,n = {Z̄l,n(Ll,n) : Ll,n ∈ ηk,n}, and of course
ζ̄n =

⋃∞
k=1 ζ̄

k,n. Since given ηn, the sequence η1,n+1, η2,n+1, . . . is independent, it follows
that ζ̄1,n+1, ζ̄2,n+1, . . . are independent given ζ̄n. Therefore, ζ̄ = (ζ̄n)∞n=1 has the desired
independence properties. We note the similarities between ζ and ζ̄, and that the only
essential difference lies in the offspring distributions, which we address next.

Fix some Lk,n ∈ ηn and consider an offspring L ∈ ηk,n+1. If L is at distance between
l and l + 1 from the origin, then this corresponds to an offspring Z̄ ∈ ζ̄k,n+1 of Z̄k,n such
that Z̄ ∈ (l, l + 1]. Furthermore, the expected number of offspring (of Lk,n) belonging
to LB(o,l+1) \ LB(o,l) equals uµd,1

(
Lc(Lk,n,2) ∩ (LB(o,l+1) \ LB(o,l))

)
, and so we see that the

particle process ζ̄ can be described using the intensity measures {τx}x≥0 where

τx((l, l + 1]) = uµd,1
(
Lc(Lx,2) ∩ (LB(o,l+1) \ LB(o,l))

)
, (6.6) e.taufact

with Lx satisfying x = dH(o, Lx). Our next result will be used to prove that {τx}x≥0

satisfies (6.1) for some c <∞.

l.skallemma Lemma 6.2. Let x ∈ R+ and L ∈ A(d, 1) be such that dH(o, L) = x. There exists a
constant C(d) ∈ (0,∞) such that for any k ≥ 0,

µd,1(Lc(L,2) ∩
(
LB(o,k+1) \ LB(o,k))

)
≤ C exp(−(d− 1)(x− k)+).

Proof. Fix k ∈ N. Suppose that L = {γ(t) : −∞ < t <∞} where the parametriza-
tion of γ is chosen to be unit speed and so that dH(o, L) = dH(o, γ(0)). For i ∈ Z let
yi = γ(i) and Bi = B(yi, 3). Then c(L, 2) ⊂ ∪Bi since any point in c(L, 2) is at distance
at most 2 from L, and any point in L is at distance at most 1/2 from some yi. We now
claim that

dH(o, yi+1)− dH(o, yi) ≥ c1 (6.7) e.ybound

for every i ≥ 0, and some constant c1 > 0. To see this, assume that i ≥ 0, and observe
that by (2.2),

dH(0, yi) = cosh−1(cosh(x) cosh(i)),

since the angle between L and the geodesic from o to L is π/2. Equivalently, we get that

dH(0, yi) = log

(
cosh(x) cosh(i) +

√
cosh2(x) cosh2(i)− 1

)
.
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Hence,

dH(0, yi+1)− dH(0, yi)

= log

cosh(x) cosh(i+ 1) +
√

cosh2(x) cosh2(i+ 1)− 1

cosh(x) cosh(i) +
√

cosh2(x) cosh2(i)− 1


≥ log

cosh(x) cosh(i) cosh(1) +
√

cosh2(x) cosh2(i) cosh2(1)− 1

cosh(x) cosh(i) +
√

cosh2(x) cosh2(i)− 1


≥ log

cosh(x) cosh(i) cosh(1) +
√

cosh2(x) cosh2(i) cosh2(1)− cosh2(1)

cosh(x) cosh(i) +
√

cosh2(x) cosh2(i)− 1


= log(cosh(1)),

where we use that cosh(i + 1) ≥ cosh(i) cosh(1) which holds since i ≥ 0. Hence, (6.7)
follows with c1 = log(cosh(1)).

Assume first that k < x. From (6.7), we get that d(yi, 0) ≥ x+ c1|i| for every i using
symmetry. We get that

µd,1(Lc(L,2) ∩
(
LB(o,k+1) \ LB(o,k))

)
≤ µd,1(Lc(L,2) ∩

(
LB(o,k+1))

)
≤
∑
i∈Z

µd,1(LBi
∩ LB(o,k+1))

≤
∑
i∈Z

C exp(−(d− 1)(x+ c1|i| − k) ≤ C ′ exp(−(d− 1)(x− k)),

where the penultimate inequality follows from Lemma 3.4. Now assume instead that
x ≤ k. Let p = inf{|i| : dH(o, yi) ≥ k − 3}. Using the union bound and that µd,1(LBi

∩(
LB(o,k+1) \ LB(o,k))

)
= 0 when |i| ≤ p, we get

µd,1(Lc(L,2) ∩
(
LB(o,k+1) \ LB(o,k))

)
≤
∑
i∈Z

µd,1(LBi
∩
(
LB(o,k+1) \ LB(o,k))

)
≤ 2

∞∑
i=p

µd,1(LBi
∩ LB(o,k+1)) ≤ 2

∞∑
i=p

c exp(−(d− 1)(c1(i− p))) ≤ C,

where again we use Lemma 3.4.

Let

Z̄n
[0,R] =

∞∑
k=1

I(Z̄k,n ≤ R),

and let Hn(R, u) = E[Z̄n
[0,R]]. It is not hard to show that, similarly to the observation after

the proof of Proposition 5.2, Hn(R, u) = unHn(R, 1). This follows from the Poissonian
nature of the process.

We can now use Lemma 6.2 to show the following result (recall the definition of
Fn(R) = Fn(R, u) from Section 5).
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l.FHcompare Lemma 6.3. There is a constant c(d) ∈ (0,∞) such that for every R ∈ N+, and 0 <
u <∞,

Hn(R, u) ≤ c(d)nFn(R, u).

Proof. Since Hn(R, u) = E[Z̄n
[0,R]], and the particle process ζ̄ uses {τx}x≥0 as intensity

measures, it suffices in view of Lemma 6.1, to show that there is a constant c <∞ such
that for every integer k, l ≥ 0,

sup
x∈(k,k+1]

τx((l, l + 1]) ≤ c inf
x∈(k,k+1]

µx((l, l + 1]). (6.8) eqn:msrineq

From Lemma 6.2, we have

sup
x∈(k,k+1]

τx((l, l + 1]) (6.9)

≤ cu sup
x∈(k,k+1]

exp(−(d− 1)(x− l)+) ≤ c′u exp(−(d− 1)(k − l)+).

On the other hand

inf
x∈(k,k+1]

µx((l, l + 1]) = inf
x∈(k,k+1]

u

∫ l+1

l

exp(−(x− y)+) dy ≥ cu exp(−(k − l)+). (6.10) e.mu1

Equations (6.9) and (6.10) establishes (6.8), and the lemma follows.
In what follows, we drop the explicit dependence on u from the notation and simply write
Hn(R) and Fn(R).

6.3 Proof of Theorem 1.1
subsec:lb

We now have all the ingredients to prove our main result.
Proof of Theorem 1.1.
Using Lemma 4.1 and Proposition 4.2, we only need to prove that uc(d) > 0. To that
end, let

V (R) = E [|{L ∈ C0(ω) : L ∩B(o,R) 6= ∅}|] ,
that is, V (R) is the expected number of cylinders in C0(ω) which intersect B(o,R).
Recall that C0(ω) is the maximally connected component of c(L1,0) ∪ C(ω), and recall
also the definition of C0(η) from (6.4). By (6.5) we can couple C0(ω) and C0(η) so that
C0(ω) ⊂ C0(η), and so we have as in the proof of Theorem 1.4, that for u < 1/(4c) with
c = c(d) as in Lemma 6.3,

V (R) ≤
∞∑
n=0

Hn(R) ≤
∞∑
n=0

cnFn(R) ≤ Ce4ucR

4(1− 4cu)

by using Lemma 6.3 in the second inequality.
Hence, we see that when 0 < u < 1/(4c), V (R) grows at most exponentially in R at

a rate which is strictly smaller than 1. On the other hand, we have that

E[|L ∈ ω : L ∩B(o,R)|] = uµd,1(LB(o,R)) = Cu sinhd−1(R),

by (2.5). This grows exponentially at rate (d− 1)R and so we see that with probability
one, C0(ω) is a strict subset of c(L1,0)∪C(ω). We conclude that C(ω) is a.s. not connected
for this choice of u.
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7 Proof of Theorem 1.2.
sec:infdiam

Similar to the notation of Section 3 we let A
m↔ B denote the event that there exists

1 ≤ l ≤ m and a sequence of cylinders c1, · · · , cl ∈ ω such that A ∩ c1 6= ∅, c1 ∩ c2 6=
∅, . . . , cl ∩B 6= ∅. That is, the sequence c1, · · · , cl connects A to B in l steps. We observe

that {A↔ B} = {A 1↔ B}.
We start with the following lemma.

lemma:mballest Lemma 7.1. There exists a constant D(m) <∞ (depending only on u and m) such that
for any x, y ∈ Hd we have that

P[B(x, 1)
m↔ B(y, 1)] ≤ D(m)dH(x, y)me−(d−1)dH(x,y). (7.1) eqn:mballest

Proof. Assume without loss of generality that x = o and let dH(o, y) = R. As in
Section 6.2, the expected number of cylinders in η up to generation m that intersect the
ball B(o,R) is bounded by

m∑
n=1

Hn(R) ≤
m∑
n=1

c(d)nFn(R)

=
m∑
n=1

c(d)n
∫ R

0

fn(x)dx =
m∑
n=1

c(d)nun
∫ R

0

gn−1(x)dx

=
m∑
n=1

c(d)nun
∫ R

0

n−1∑
k=0

ck,n−1
xk

k!
dx ≤

m∑
n=1

c(d)nunC4n
∫ R

0

n−1∑
k=0

xk

k!
dx

=
m∑
n=1

c(d)nunC4n
n∑
k=1

Rk

k!
=

m∑
k=1

Rk

k!
C

m∑
n=k

(4cu)n ≤ D(m)Rm,

for some constant D(m) <∞.
There exists a collection BR of balls of radius 1/4 with centers in ∂B(o,R) such that

|BR| ≥ ce(d−1)R for some c > 0 and such that any cylinder intersecting B(o,R) intersects
at most c(d) < ∞ balls in BR. To construct such a collection BR, we consider first D as
in Lemma 4.3. Let GR = D∩ (B(o,R+3/2)\B(o, (R−1/2)+)). By a slight modification
of the lower bound in (4.2), we get that |GR| ≥ ce(d−1)R/νd(B(o, 1/2)) = c′e(d−1)R. For
x ∈ GR, let x′ be defined as the point on ∂B(o,R) such that x′ minimizes the distance
to ∂B(o,R), and let G′R be the collection of all such x′. Obviously, the collection of
balls BR := {B(x, 1/4)}x∈G′R satisfies |BR| ≥ c′e(d−1)R. Now let L be a line intersecting
B(o,R+5/4) (only cylinders centered around such lines might intersect some ball in BR).
Using (6.7), there is a universal constant c2 <∞ and two points x1, x2 ∈ ∂B(o,R) (these
points depend on L) such that c(L) ∩ (B(o,R + 1/4) \ B(o, (R − 1/4)+)) ⊂ B(x1, c2) ∪
B(x2, c2). Hence the number of balls from BR intersecting c(L) is bounded by the number
of points in D∩ (B(x1, c2 + 2)∪B(x2, c2 + 2)). This in turn is bounded by some constant
c3(d) <∞, by the upper bound of (4.2). Hence, the existence of the BR is verified.

Using BR, we see that the probability that a fixed ball at distance R from o will be
intersected by any cylinder in η of generation less than or equal to m is bounded by

c3

|BR|

m∑
n=1

Hn(R) ≤ D(m)Rm

e(d−1)R
,
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by possibly increasing the value of D(m).
The statement follows by using that C0(ω) ⊂ C0(η) and noting that any cylinder that

intersects B(o, 1) must also intersect the cylinder c(L1,0).

Proof of Theorem 1.2. Let m ∈ N+ and fix ε ∈ (0, 1). Using Lemma 7.1, we
can choose r = r(m, ε) < ∞ so large that the probability that any two fixed cylinders
separated by distance r will be connected in at most m steps is less than ε. Indeed, take r
so large that the probability that B(o, 1) and B(y, 1) (where y ∈ ∂B(o, r)) are connected
in at most m + 2 steps is less than ε. Consider then two cylinders c1, c2 separated by
distance r, and assume without loss of generality that c1∩B(o, 1) 6= ∅ and c2∩B(y, 1) 6= ∅.
Then, if the probability that c1, c2 are connected in at most m steps is larger than ε, this
would lead to a contradiction.

For lines L1, L2 ∈ A(d, 1), let Em(L1, L2) be the event that c(L1) and c(L2) are
connected in at most m steps. Define the event

H =

 ∑
(L1,L2)∈ω2

6=

I(Em(L1, L2)c) ≥ 1

 ,

where the union is over all 2-tuples of distinct lines in ω. In words, H is the event that
there is at least one pair of lines in ω whose corresponding cylinders are not connected in
at most m steps. We now let EL1,L2 denote the expectation with respect to ω+ δL1 + δL2 .
Using the Slivnyak-Mecke formula ([15] Corollary 3.2.3) we get that

E

 ∑
(L1,L2)∈ω2

6=

I(Em(L1, L2)c)


= u2

∫
A(d,1)

∫
A(d,1)

EL1,L2 [I(Em(L1, L2)c)]µd,1(dL1)µd,1(dL2)

= u2

∫
A(d,1)

∫
A(d,1)

PL1,L2 [Em(L1, L2)c]µd,1(dL1)µd,1(dL2)

= u2

∫
A(d,1)

∫
A(d,1)

P [Em(L1, L2)c]µd,1(dL1)µd,1(dL2)

≥ u2

∫
A(d,1)

∫
A(d,1)

I(dH(L1, L2) ≥ r)P [Em(L1, L2)c]µd,1(dL1)µd,1(dL2)

≥ u2

∫
A(d,1)

∫
A(d,1)

I(dH(L1, L2) ≥ r)(1− ε)µd,1(dL1)µd,1(dL2).

Obviously, the expression on the right hand side diverges for any 0 < u <∞, so that

E

 ∑
(L1,L2)∈ω2

6=

I(Em(L1, L2)c)

 =∞,

and from this, it follows that P[H] > 0. Since the event H is invariant under isometries
of Hd, it follows from Proposition 2.1 that P[H] = 1. Hence for any m ∈ N+ we have
P[diam(C) ≥ m− 2] = 1, from which we conclude that P[diam(C) =∞] = 1.
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8 Proof of Proposition 1.3
sec:inic

In this section, we prove that when u < uc(d), there are a.s. infinitely many connected
components in C. Let N(ω) =the number of connected components in C.

Proof of Proposition 1.3 Obviously, the event N(ω) = k is invariant under isome-
tries of Hd and so using Proposition 2.1, we have that for any u there is k = k(u) ∈ N∪{∞}
such that P[N(ω) = k] = 1. Suppose u < uc(d) and suppose that 1 < k(u) < ∞. It is
not hard to show that there exist points y1, ..., yk ∈ Hd such that the event

A := {∪ki=1yi intersects all components of C(ω)} ∩ {ω(LB(o,1)) = 0}

has positive probability.
Now let ω1 be the restriction of ω to LB(o,1), and let ω2 be the restriction of ω to

(LB(o,1))
c. Since P[A] > 0, it follows that

B := {∪ki=1yi intersects all components of C(ω2)}

has positive probability. Define the event

C := {∪ki=1yi ⊂ C(ω1)} ∩ {C(ω1) is connected}.

It is easy to see that P[C] > 0 (indeed, ω1 might consist of k lines L1,...,Lk such that
c(Li) contains o and yi). Since ω1 and ω2 are independent, it follows that B and C are
independent and hence P[B ∩ C] > 0. The event B ∩ C implies that N(ω) = 1, whence
P[N(ω) = 1] > 0 which contradicts P[N(ω) = k] = 1. We conclude that N(ω) ∈ {1,∞},
and since u < uc by assumption, it follows that a.s. N(ω) =∞.
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Ahlfors [1] L.V. Ahlfors, Möbius transformations is several dimensions, Ordway Professorship
Lectures in Mathematics University of Minnesota, School of Mathematics, 1981

Beardon [2] A.F. Beardon, The geometry of discrete groups (Springer), 1993.

BJST [3] I. Benjamini, J. Jonasson, O. Schramm and J. Tykesson, Visibility to infinity in the
hyperbolic plane, despite obstacles. ALEA, 6, 323-342, 2009.

BS [4] I. Benjamini and O. Schramm, Percolation in the hyperbolic plane. J. Amer. Math.
Soc., 14(2):487-507, 2001.

BR [5] B. Bollobas and O. Riordan, The critical probability for random Voronoi percolation
in the plane is 1/2. Probab. Theory Related Fields 136:417-468, 2006.

BroTyk [6] E. I. Broman and J.H. Tykesson, Connectedness of Poisson cylinders in Euclidean
space. To appear in Ann. Inst. H. Poinc.

28



CFKP [7] J. W. Cannon, W.J. Floyd, R. Kenyon and W.R. Perry, Hyperbolic Geometry, Fla-
vors of Geometry, MSRI Publications 31, 59–115, 1997.

Grimmett [8] G. Grimmett. Percolation (Springer), 1999.
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RS [13] B. Ráth and A. Sapozhnikov. Connectivity properties of random interlacement and
intersection of random walks. ALEA, 9:67-83, 2012.

Santalo [14] L.A.Santalo, Integral Geometry and Geometric Probability (Cambridge University
Press), 1976.

SchWeil [15] R. Schneider and W. Weil, Stochastic and Integral Geometry (Springer), 2008.

Szn [16] A.-S. Sznitman. Vacant set of random interlacements and percolation. Ann. of Math.
(2), 171(3):2039-2087, 2010.

TT [17] A. Teixeira and J. Tykesson, Random interlacements and amenability. Ann. Appl.
Probab., 23(2):923-956, 2013.

TykWinPre [18] J. Tykesson and D. Windisch, Percolation in the vacant set of Poisson cylinders.
Probab. Theory Related Fields, 154:165-191, 2012.

29


	Introduction
	The model
	Some facts about d-dimensional hyperbolic space
	The space of geodesics in Hd.
	The process

	Connectivity probability estimates.
	Proof of uc< and monotonicity of uniqueness
	Proof of Theorem 1.4.
	Proof of uc(d)>0.
	Particle processes weakly dominated by 
	The independent cylinder process
	Proof of Theorem 1.1

	Proof of Theorem 1.2.
	Proof of Proposition 1.3

