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Abstract

For n ≥ 1 let Xn be a vector of n independent Bernoulli random
variables. We assume that Xn consists of M “blocks” such that the
Bernoulli random variables in block i have success probability pi. Here
M does not depend on n and the size of each block is essentially linear
in n. Let X̃n be a random vector having the conditional distribution
of Xn, conditioned on the total number of successes being at least kn,
where kn is also essentially linear in n. Define Ỹn similarly, but with
success probabilities qi ≥ pi. We prove that the law of X̃n converges
weakly to a distribution that we can describe precisely. We then prove
that supP(X̃n ≤ Ỹn) converges to a constant, where the supremum
is taken over all possible couplings of X̃n and Ỹn. This constant is
expressed explicitly in terms of the parameters of the system.

MSC 2010: Primary 60E15, Secondary 60F05

1 Introduction and main results

Let X and Y be random vectors on Rn with respective laws µ and ν. We say
that X is stochastically dominated by Y , and write X � Y , if it is possible to
define random vectors U = (U1, . . . , Un) and V = (V1, . . . , Vn) on a common
probability space such the laws of U and V are equal to µ and ν, respectively,
and U ≤ V (that is, Ui ≤ Vi for all i ∈ {1, . . . , n}) with probability 1. In
this case, we also write µ � ν. For instance, when X = (X1, . . . , Xn) and
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Y = (Y1, . . . , Yn) are vectors of n independent Bernoulli random variables
with success probabilities p1, . . . , pn and q1, . . . , qn, respectively, and 0 < pi ≤
qi < 1 for i ∈ {1, . . . , n}, we have X � Y .

In this paper, we consider the conditional laws of X and Y , conditioned
on the total number of successes being at least k, or sometimes also equal
to k, for an integer k. In this first section, we will state our main results and
provide some intuition. All proofs are deferred to later sections.

Domination issues concerning the conditional law of Bernoulli vectors
conditioned on having at least a certain number of successes have come up
in the literature a number of times. In [2] and [3], a simplest case has been
considered in which pi = p and qi = q for some p < q. In [3], the conditional
domination is used as a tool in the study of random trees.

Here we study such domination issues in great detail and generality. The
Bernoulli vectors we consider have the property that the pi and qi take only
finitely many values, uniformly in the length n of the vectors. The question
about stochastic ordering of the corresponding conditional distributions gives
rise to a number of intriguing questions which, as it turns out, can actually
be answered. Our main result, Theorem 1.8, provides a complete answer to
the question with what maximal probability two such conditioned Bernoulli
vectors can be ordered in any coupling, when the length of the vectors tends
to infinity.

In Section 1.1, we will first discuss domination issues for finite vectors X

and Y as above. In order to deal with domination issues as the length n of the
vectors tends to infinity, it will be necessary to first discuss weak convergence
of the conditional distribution of a single vector. Section 1.2 introduces
the framework for dealing with vectors whose lengths tend to infinity, and
Section 1.3 discusses their weak convergence. Finally, Section 1.4 deals with
the asymptotic domination issue when n → ∞.

1.1 Stochastic domination of finite vectors

As above, let X = (X1, . . . , Xn) and Y = (Y1, . . . , Yn) be vectors of in-
dependent Bernoulli random variables with success probabilities p1, . . . , pn

and q1, . . . , qn, respectively, where 0 < pi ≤ qi < 1 for i ∈ {1, . . . , n}. For
an event A, we shall denote by L(X|A) the conditional law of X given A.
Our first proposition states that the conditional law of the total number of
successes of X, conditioned on the event {

∑n
i=1 Xi ≥ k}, is stochastically

dominated by the conditional law of the total number of successes of Y .

Proposition 1.1. For all k ∈ {0, 1, . . . , n},
L(
∑n

i=1 Xi|
∑n

i=1 Xi ≥ k) � L(
∑n

i=1 Yi|
∑n

i=1 Yi ≥ k).
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In general, the conditional law of the full vector X is not necessarily
stochastically dominated by the conditional law of the vector Y . For exam-
ple, consider the case n = 2, p1 = p2 = q1 = p and q2 = 1− p for some p < 1

2
,

and k = 1. We then have

P(X1 = 1 | X1 + X2 ≥ 1) =
1

2 − p
,

P(Y1 = 1 | Y1 + Y2 ≥ 1) =
p

1 − (1 − p)p
.

Hence, if p is small enough, then the conditional law of X is not stochastically
dominated by the conditional law of Y .

We would first like to study under which conditions we do have stochastic
ordering of the conditional laws of X and Y . For this, it turns out to be very
useful to look at the conditional laws of X and Y , conditioned on the total
number of successes being exactly equal to k, for an integer k. Note that if we
condition on the total number of successes being exactly equal to k, then the
conditional law of X is stochastically dominated by the conditional law of Y

if and only if the two conditional laws are equal. The following proposition
characterizes stochastic ordering of the conditional laws of X and Y in this
case. First we define, for i ∈ {1, . . . , n},

βi :=
pi

1 − pi

1 − qi

qi

. (1)

The βi will play a crucial role in the domination issue throughout the paper.

Proposition 1.2. The following statements are equivalent:

(i) All βi (i ∈ {1, . . . , n}) are equal;

(ii) L(X|
∑n

i=1 Xi = k) = L(Y |
∑n

i=1 Yi = k) for all k ∈ {0, 1, . . . , n};

(iii) L(X|∑n
i=1 Xi = k) = L(Y |∑n

i=1 Yi = k) for some k ∈ {1, . . . , n − 1}.
We will use this result to prove the next proposition, which gives a suffi-

cient condition under which the conditional law of X is stochastically dom-
inated by the conditional law of Y , in the case when we condition on the
total number of successes being at least k.

Proposition 1.3. If all βi (i ∈ {1, . . . , n}) are equal, then for all k ∈
{0, 1, . . . , n},

L(X|∑n
i=1 Xi ≥ k) � L(Y |∑n

i=1 Yi ≥ k).

The condition in this proposition is a sufficient condition, not a necessary
condition. For example, if n = 2, p1 = p2 = 1

2
, q1 = 6

10
and q2 = 7

10
, then

β1 6= β2, but we do have stochastic ordering for all k ∈ {0, 1, 2}.
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1.2 Framework for asymptotic domination

Suppose that we now extend our Bernoulli random vectors X and Y to in-
finite sequences X1, X2, . . . and Y1, Y2, . . . of independent Bernoulli random
variables, which we assume to have only finitely many distinct success prob-
abilities. It then seems natural to let Xn and Yn denote the n-dimensional
vectors (X1, . . . , Xn) and (Y1, . . . , Yn), respectively, and consider the domi-
nation issue as n → ∞, where we condition on the total number of successes
being at least kn = ⌊αn⌋ for some fixed number α ∈ (0, 1).

More precisely, with kn as above, let X̃n be a random vector having the
law L(Xn|

∑n
i=1 Xi ≥ kn), and define Ỹn similarly. Proposition 1.3 gives a

sufficient condition under which X̃n is stochastically dominated by Ỹn for
each n ≥ 1. If this condition is not fulfilled, however, we might still be able
to define random vectors U and V , with the same laws as X̃n and Ỹn, on
a common probability space such that the probability that U ≤ V is high
(perhaps even 1). We denote by

supP(X̃n ≤ Ỹn) (2)

the supremum over all possible couplings (U , V ) of (X̃n, Ỹn) of the prob-
ability that U ≤ V . We want to study the asymptotic behaviour of this
quantity as n → ∞.

As an example (and an appetizer for what is to come), consider the follow-
ing situation. For i ≥ 1 let the random variable Xi have success probability p
for some p ∈ (0, 1

2
). For i ≥ 1 odd or even let the random variable Yi have suc-

cess probability p or 1− p, respectively. We will prove that supP(X̃n ≤ Ỹn)
converges to a constant as n → ∞ (Theorem 1.8 below). It turns out that
there are three possible values of the limit, depending on the value of α:

(i) If α < p, then supP(X̃n ≤ Ỹn) → 1.

(ii) If α = p, then supP(X̃n ≤ Ỹn) → 3
4
.

(iii) If α > p, then supP(X̃n ≤ Ỹn) → 0.

In fact, to study the asymptotic domination issue, we will work in an even
more general framework, which we shall describe now. For every n ≥ 1, Xn

is a vector of n independent Bernoulli random variables. We assume that this
vector is organized in M “blocks”, such that all Bernoulli variables in block i
have the same success probability pi, for i ∈ {1, . . . ,M}. Similarly, Yn is
a vector of n independent Bernoulli random variables with the exact same
block structure as Xn, but for Yn, the success probability corresponding to
block i is qi, where 0 < pi ≤ qi < 1 as before.
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For given n ≥ 1 and i ∈ {1, . . . ,M}, we denote by min the size of block i,
where of course

∑M
i=1 min = n. In the example above, there were two blocks,

each containing (roughly) one half of the Bernoulli variables, and the size of
each block was increasing with n. In the general framework, we only assume
that the fractions min/n converge to some number αi ∈ (0, 1) as n → ∞,
where

∑M
i=1 αi = 1. Similarly, in the example above we conditioned on the

total number of successes being at least kn, where kn = ⌊αn⌋ for some fixed
α ∈ (0, 1). In the general framework, we only assume that we are given
a fixed sequence of integers kn such that 0 ≤ kn ≤ n for all n ≥ 1 and
kn/n → α ∈ (0, 1) as n → ∞.

In this general framework, let X̃n be a random vector having the con-
ditional distribution of Xn, conditioned on the total number of successes
being at least kn. Observe that given the number of successes in a particular
block, these successes are uniformly distributed within the block. Hence, the
distribution of X̃n is completely determined by the distribution of the M -
dimensional vector describing the numbers of successes per block. Therefore,
before we proceed to study the asymptotic behaviour of the quantity (2), we
shall first study the asymptotic behaviour of this M -dimensional vector.

1.3 Weak convergence

Consider the general framework introduced in the previous section. We de-
fine Xin as the number of successes of the vector Xn in block i and write
Σn :=

∑M
i=1 Xin for the total number of successes in Xn. Then Xin has a bi-

nomial distribution with parameters min and pi and, for fixed n, the Xin are
independent. In this section, we shall study the joint convergence in distri-
bution of the Xin as n → ∞, conditioned on {Σn ≥ kn}, and also conditioned
on {Σn = kn}.

First we consider the case where we condition on {Σn = kn}. We will
prove (Lemma 3.1 below) that the Xin concentrate around the values cinmin,
where the cin are determined by the system of equations







1 − cin

cin

pi

1 − pi

=
1 − cjn

cjn

pj

1 − pj

∀i, j ∈ {1, . . . ,M};
∑M

i=1 cinmin = kn.

(3)

We will show in Section 3 that the system (3) has a unique solution and that

cin → ci as n → ∞,

for some ci strictly between 0 and 1. As we shall see, each component Xin

is roughly normally distributed around the central value cinmin, with fluc-
tuations around this centre of the order

√
n. Hence, the proper scaling is
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obtained by looking at the M -dimensional vector

X n :=

(

X1n − c1nm1n√
n

,
X2n − c2nm2n√

n
, . . . ,

XMn − cMnmMn√
n

)

. (4)

Since we condition on {Σn = kn}, this vector is essentially an (M − 1)-
dimensional vector, taking only values in the hyperplane

S0 := {(z1, . . . , zM) ∈ RM : z1 + · · · + zM = 0}.

However, we want to view it as an M -dimensional vector, mainly because
when we later condition on {Σn ≥ kn}, X n will no longer be restricted to
a hyperplane. One expects that the laws of the X n converge weakly to a
distribution which concentrates on S0 and is, therefore, singular with respect
to M -dimensional Lebesgue measure. To facilitate this, it is natural to define
a measure ν0 on the Borel sets of RM through

ν0( · ) := λ0( · ∩ S0), (5)

where λ0 denotes ((M − 1)-dimensional) Lebesgue measure on S0, and to
identify the weak limit of the X n via a density with respect to ν0. The
density of the weak limit is given by the function f : RM → R defined by

f(z) = 1S0(z)
M
∏

i=1

exp

(

− z2
i

2ci(1 − ci)αi

)

. (6)

Theorem 1.4. The laws L(X n|Σn = kn) converge weakly to the measure
which has density f/

∫

f dν0 with respect to ν0.

We now turn to the case where we condition on {Σn ≥ kn}. Our strategy
will be to first study the case where we condition on the event {Σn = kn +ℓ},
for ℓ ≥ 0, and then sum over ℓ. We will calculate the relevant range of ℓ to
sum over. In particular, we will show that for large enough ℓ the probability
P(Σn = kn +ℓ) is so small, that these ℓ do not have a significant effect on the
conditional distribution of X n. For kn sufficiently larger than E(Σn), only ℓ
of order o(

√
n) are relevant, which leads to the following result:

Theorem 1.5. If α >
∑M

i=1 piαi or, more generally, (kn−E(Σn))/
√

n → ∞,
then the laws L(X n|Σn ≥ kn) also converge weakly to the measure which has
density f/

∫

f dν0 with respect to ν0.

Finally, we consider the case where we condition on {Σn ≥ kn} with kn

below or around E(Σn), that is, when (kn − E(Σn))/
√

n → K ∈ [−∞,∞).
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An essential difference compared to the situation in Theorem 1.5, is that the
probabilities of the events {Σn ≥ kn} do not converge to 0 in this case, but
to a strictly positive constant. In this situation, the right vector to look at
is the M -dimensional vector

X
p
n :=

(

X1n − p1m1n√
n

,
X2n − p2m2n√

n
, . . . ,

XMn − pMmMn√
n

)

.

It follows from standard arguments that the unconditional laws of X
p
n con-

verge weakly to a multivariate normal distribution with density h/
∫

hdλ
with respect to M -dimensional Lebesgue measure λ, where h : RM → R is
given by

h(z) =
M
∏

i=1

exp

(

− z2
i

2pi(1 − pi)αi

)

. (7)

If kn stays sufficiently smaller than E(Σn), that is, when K = −∞, then the
effect of conditioning vanishes in the limit, and the conditional laws of X

p
n

given {Σn ≥ kn} converge weakly to the same limit as the unconditional
laws of X

p
n. In general, if K ∈ [−∞,∞), the conditional laws of X

p
n given

{Σn ≥ kn} converge weakly to the measure which has, up to a normalizing
constant, density h restricted to the half-space

HK := {(z1, . . . , zM) ∈ RM : z1 + · · · + zM ≥ K}. (8)

Theorem 1.6. If (kn − E(Σn))/
√

n → K for some K ∈ [−∞,∞), then
the laws L(X p

n|Σn ≥ kn) converge weakly to the measure which has density
h1HK

/
∫

h1HK
dλ with respect to λ.

Remark 1.7. If (kn −E(Σn))/
√

n does not converge as n → ∞ and does not
diverge to either ∞ or −∞, then the laws L(X p

n|Σn ≥ kn) do not converge
weakly either. This follows from our results above by considering limits along
different subsequences of the kn.

1.4 Asymptotic stochastic domination

Consider again the general framework for vectors Xn and Yn introduced
in Section 1.2. Recall that we write X̃n for a random vector having the
conditional distribution of the vector Xn, given that the total number of
successes is at least kn. For n ≥ 1 and i ∈ {1, . . . ,M}, we let X̃in denote the
number of successes of X̃n in block i. We define Ỹn and Ỹin analogously. We
want to study the asymptotic behaviour as n → ∞ of the quantity

supP(X̃n ≤ Ỹn),
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where the supremum is taken over all possible couplings of X̃n and Ỹn.
Define βi for i ∈ {1, . . . ,M} as in (1). As a first observation, note that

if all βi are equal, then by Proposition 1.3 we have supP(X̃n ≤ Ỹn) = 1
for every n ≥ 1. Otherwise, under certain conditions on the sequence kn,
supP(X̃n ≤ Ỹn) will converge to a constant as n → ∞, as we shall prove.

The intuitive picture behind this is as follows. Without conditioning,
Xn � Yn for every n ≥ 1. Now, as long as kn stays significantly smaller
than E(Σn), the effect of conditioning will vanish in the limit, and hence we
can expect that supP(X̃n ≤ Ỹn) → 1 as n → ∞. Suppose now that we
start making the kn larger. This will increase the number of successes X̃in

of the vector X̃n in each block i, but as long as kn stays below the expected
total number of successes of Yn, increasing kn will not change the numbers
of successes per block significantly for the vector Ỹn.

At some point, when kn becomes large enough, there will be a block i
such that X̃in becomes roughly equal to Ỹin. We shall see that this happens
for kn “around” the value k̂n defined by

k̂n :=
M
∑

i=1

pimin

pi + βmax(1 − pi)
,

where βmax := max{β1, . . . , βM}. Therefore, the sequence k̂n will play a
key role in our main result. What will happen is that as long as kn stays
significantly smaller than k̂n, X̃in stays significantly smaller than Ỹin for each
block i, and hence supP(X̃n ≤ Ỹn) → 1 as n → ∞. For kn around k̂n

there is a “critical window” in which interesting things occur. Namely, when
(kn − k̂n)/

√
n converges to a finite constant K, supP(X̃n ≤ Ỹn) converges

to a constant PK which is strictly between 0 and 1. Finally, when kn is
sufficiently larger than k̂n, there will always be a block i such that X̃in is
significantly larger than Ỹin. Hence, supP(X̃n ≤ Ỹn) → 0 in this case.

Before we state our main theorem which makes this picture precise,
let us first define the non-trivial constant PK which occurs as the limit of
supP(X̃n ≤ Ỹn) when kn is in the critical window. To this end, let

I := {i ∈ {1, . . . ,M} : βi = βmax},
and define positive numbers a, b and c by

a2 =
∑

i∈I

βmaxpi(1 − pi)αi

(pi + βmax(1 − pi))2
=
∑

i∈I

qi(1 − qi)αi; (9a)

b2 =
∑

i/∈I

βmaxpi(1 − pi)αi

(pi + βmax(1 − pi))2
; (9b)

c2 = a2 + b2. (9c)
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As we shall see later, these numbers will come up as variances of certain
normal distributions. Let Φ: R → (0, 1) denote the distribution function of
the standard normal distribution. For K ∈ R, define PK by

PK =























1 −
∫ c−b

ac
K

−∞

e−z2/2

√
2π

Φ
(

K−az
b

)

− Φ
(

K
c

)

1 − Φ
(

K
c

) dz if α =
∑M

i=1 piαi,

Φ

(

bK

ac
− 1

a
RK

)

+ Φ

(

−K

a
+

b

ac
RK

)

if α >
∑M

i=1 piαi.

(10)

where RK =
√

K2 + c2 log(c2/b2). It will be made clear in Section 4 where
these formulas for PK come from. We will show that PK is strictly between 0
and 1. In fact, it is possible to show that both expressions for PK are strictly
decreasing in K from 1 to 0, but we omit the (somewhat lengthy) derivation
of this fact here.

Theorem 1.8. If all βi (i ∈ {1, . . . ,M}) are equal, then we have that
supP(X̃n ≤ Ỹn) = 1 for every n ≥ 1. Otherwise, the following holds:

(i) If (kn − k̂n)/
√

n → −∞, then supP(X̃n ≤ Ỹn) → 1.

(ii) If (kn − k̂n)/
√

n → K for some K ∈ R, then supP(X̃n ≤ Ỹn) → PK.

(iii) If (kn − k̂n)/
√

n → ∞, then supP(X̃n ≤ Ỹn) → 0.

Remark 1.9. If βi 6= βj for some i 6= j, and (kn − k̂n)/
√

n does not converge
as n → ∞ and does not diverge to either ∞ or −∞, then supP(X̃n ≤ Ỹn)
does not converge either. This follows from the strict monotonicity of PK ,
by considering the limits along different subsequences of the kn.

To demonstrate Theorem 1.8, recall the example from Section 1.2. Here
βmax = 1, k̂n = pn, I = {1} and a2 = b2 = 1

2
p(1 − p). If α = p, then we have

that (kn− k̂n)/
√

n → 0 as n → ∞. Hence, by Theorem 1.8, supP(X̃n ≤ Ỹn)
converges to

P0 = 1 − 2

∫ 0

−∞

e−z2/2

√
2π

(Φ(−z) − 1/2) dz =
3

4
.

In fact, Theorem 1.8 shows that we can obtain any value between 0 and 1
for the limit by adding ⌊K√

n⌋ successes to kn, for K ∈ R.
Next we turn to the proofs of our results. Results in Section 1.1 are

proved in Section 2, results in Section 1.3 are proved in Section 3 and finally,
results in Section 1.4 are proved in Section 4.
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2 Stochastic domination of finite vectors

Let X = (X1, . . . , Xn) and Y = (Y1, . . . , Yn) be vectors of independent
Bernoulli random variables with success probabilities p1, . . . , pn and q1, . . . , qn

respectively, where 0 < pi ≤ qi < 1 for i ∈ {1, . . . , n}.
Suppose that pi = p for all i. Then

∑n
i=1 Xi has a binomial distribution

with parameters n and p. The quotient

P(
∑n

i=1 Xi = k + 1)

P(
∑n

i=1 Xi = k)
=

n − k

k + 1

p

1 − p

is strictly increasing in p and strictly decreasing in k, and it is also easy to
see that

L(X|∑n
i=1 Xi = k) � L(X|∑n

i=1 Xi = k + 1).

The following two lemmas show that these two properties hold for general
success probabilities p1, . . . , pn.

Lemma 2.1. For k ∈ {0, 1, . . . , n − 1}, consider the quotients

Qn
k :=

P(
∑n

i=1 Xi = k + 1)

P(
∑n

i=1 Xi = k)
(11)

and
P(
∑n

i=1 Xi ≥ k + 1)

P(
∑n

i=1 Xi ≥ k)
. (12)

Both (11) and (12) are strictly increasing in p1, . . . , pn for fixed k, and strictly
decreasing in k for fixed p1, . . . , pn.

Proof. We only give the proof for (11), since the proof for (12) is similar.
First we will prove that Qn

k is strictly increasing in p1, . . . , pn for fixed k. By
symmetry, it suffices to show that Qn

k is strictly increasing in p1. We show
this by induction on n. The base case n = 1, k = 0 is immediate. Next note
that for n ≥ 2 and k ∈ {0, . . . , n − 1},

Qn
k =

P(
∑n−1

i=1 Xi = k)pn +P(
∑n−1

i=1 Xi = k + 1)(1 − pn)

P(
∑n−1

i=1 Xi = k − 1)pn +P(
∑n−1

i=1 Xi = k)(1 − pn)

=
pn + Qn−1

k (1 − pn)

pn/Q
n−1
k−1 + (1 − pn)

,

which is strictly increasing in p1 by the induction hypothesis (in the case
k = n − 1, use Qn−1

k = 0, and in the case k = 0, use 1/Qn−1
k−1 = 0).
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To prove that Qn
k is strictly decreasing in k for fixed p1, . . . , pn, note that

since Qn
k is strictly increasing in pn for fixed k ∈ {1, . . . , n − 2}, we have

0 <
∂

∂pn

Qn
k =

∂

∂pn

pn + Qn−1
k (1 − pn)

pn/Q
n−1
k−1 + (1 − pn)

=
1 − Qn−1

k /Qn−1
k−1

(

pn/Q
n−1
k−1 + (1 − pn)

)2 .

Hence, Qn−1
k < Qn−1

k−1 . This argument applies for any n ≥ 2.

Let X
k = (Xk

1 , . . . , Xk
n) have the conditional law of X, conditioned on the

event {
∑n

i=1 Xi = k}. Our next lemma gives an explicit coupling of the X
k

in which they are ordered. The existence of such a coupling was already
proved in [4, Proposition 6.2], but our explicit construction is new and of
independent value. In our construction, we freely regard X

k as a random
subset of {1, . . . , n} by identifying X

k with {i ∈ {1, . . . , n} : Xk
i = 1}. For

any K ⊂ {1, . . . , n}, let {XK = 1} denote the event {Xi = 1 ∀i ∈ K}, and
for any I ⊂ {1, . . . , n} and j ∈ {1, . . . , n}, define

γj,I :=
∑

L⊂{1,...,n} : |L|=|I|+1

1(j ∈ L)

|L \ I| P(XL = 1 |
∑n

i=1Xi = |I| + 1).

Lemma 2.2. For any I ⊂ {1, . . . , n}, the collection {γj,I}j∈{1,...,n}\I is a
probability vector. Moreover, if I is picked according to X

k and then j is
picked according to {γj,I}j∈{1,...,n}\I , the resulting set J = {I, j} has the same
distribution as if it was picked according to X

k+1. Therefore, we can couple
the sequence {Xk}n

k=1 such that P(X1 ≤ X
2 ≤ · · · ≤ X

n−1 ≤ X
n) = 1.

Proof. Throughout the proof, I, J , K and L denote subsets of {1, . . . , n},
and we simplify notation by writing Σn :=

∑n
i=1 Xi. First observe that

∑

j /∈I

γj,I =
∑

L : |L|=|I|+1

P(XL = 1 | Σn = |I| + 1) = 1,

which proves that the {γj,I}j /∈I form a probability vector, since γj,I ≥ 0.
Next note that for any K containing j,

P(XK = 1 | Σn = |K|)
P(XK\{j} = 1 | Σn = |K| − 1)

=
P(Xj = 1)

P(Xj = 0)

P(Σn = |K| − 1)

P(Σn = |K|) . (13)

Now fix J , and for j ∈ J , let I = I(j, J) = J \ {j}. Then for j ∈ J , by (13),

γj,I =
P(XJ = 1 | Σn = |J |)
P(XI = 1 | Σn = |I|)

∑

L : |L|=|J |

1(j ∈ L)

|L \ I| P(XL\{j} = 1 | Σn = |I|)

=
P(XJ = 1 | Σn = |J |)
P(XI = 1 | Σn = |I|)

∑

K : |K|=|I|

1(j /∈ K)

|J \ K| P(XK = 1 | Σn = |I|),
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where the second equality follows upon writing K = L \ {j}, and using
|L \ I| = |L \ J |+ 1 = |K \ J |+ 1 = |J \K| in the sum. Hence, by summing
first over j and then over K, we obtain

∑

j∈J

γj,I P(XI = 1 | Σn = |I|) = P(XJ = 1 | Σn = |J |).

Corollary 2.3. For k ∈ {0, 1, . . . , n − 1} we have

L(X|
∑n

i=1 Xi ≥ k) � L(X|
∑n

i=1 Xi ≥ k + 1).

Proof. Using Lemma 2.2, we will construct random vectors U and V on
a common probability space such that U and V have the conditional dis-
tributions of X given {∑n

i=1 Xi ≥ k} and X given {∑n
i=1 Xi ≥ k + 1},

respectively, and U ≤ V with probability 1.
First pick an integer m according to the conditional law of

∑n
i=1 Xi given

{∑n
i=1 Xi ≥ k}. If m ≥ k + 1, then pick U according to the conditional

law of X given {∑n
i=1 Xi = m}, and set V = U . If m = k, then first

pick an integer m + ℓ according to the conditional law of
∑n

i=1 Xi given
{
∑n

i=1 Xi ≥ k + 1}. Next, pick U and V such that U and V have the
conditional laws of X given {

∑n
i=1 Xi = m} and X given {

∑n
i=1 Xi = m+ℓ},

respectively, and U ≤ V . This is possible by Lemma 2.2. By construction,
U ≤ V with probability 1, and a little computation shows that U and V

have the desired marginal distributions.

Now we are in a position to prove Propositions 1.1, 1.2 and 1.3.

Proof of Proposition 1.1. By Lemma 2.1 we have that for ℓ ∈ {1, . . . , n−k},

P(
∑n

i=1 Xi ≥ k + ℓ)

P(
∑n

i=1 Xi ≥ k)
=

ℓ−1
∏

j=0

P(
∑n

i=1 Xi ≥ k + j + 1)

P(
∑n

i=1 Xi ≥ k + j)

is strictly increasing in p1, . . . , pn. This implies that for ℓ ∈ {1, . . . , n − k},

P(
∑n

i=1 Xi ≥ k + ℓ |
∑n

i=1 Xi ≥ k) ≤ P(
∑n

i=1 Yi ≥ k + ℓ |
∑n

i=1 Yi ≥ k).

Proof of Proposition 1.2. Let x, y ∈ {0, 1}n be such that
∑n

i=1 xi =
∑n

i=1 yi

and let k =
∑n

i=1 xi. Write I = {i ∈ {1, . . . , n} : xi = 1} and, likewise,
J = {i ∈ {1, . . . , n} : yi = 1}, and recall the definition (1) of βi. We have

P(X = x |∑n
i=1 Xi = k)

P(X = y |∑n
i=1 Xi = k)

=

∏

i∈I pi

∏

i/∈I(1 − pi)
∏

i∈J pi

∏

i/∈J(1 − pi)

=
∏

i∈I\J

pi

1 − pi

∏

i∈J\I

1 − pi

pi

=

∏

i∈I\J βi
∏

i∈J\I βi

P(Y = x |
∑n

i=1 Yi = k)

P(Y = y |
∑n

i=1 Yi = k)
. (14)
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Since |I| = |J | = k, we have |I \ J | = |J \ I|. Hence, (i) implies (ii),
and (ii) trivially implies (iii). To show that (iii) implies (i), suppose that
L(X|∑n

i=1 Xi = k) = L(Y |∑n
i=1 Yi = k) for a given k ∈ {1, . . . , n− 1}. Let

i ∈ {2, . . . , n} and let K be a subset of {2, . . . , n} \ {i} with exactly k − 1
elements. Choosing I = {1}∪K and J = K ∪{i} in (14) yields βi = β1.

Proof of Proposition 1.3. By Proposition 1.2 and Lemma 2.2, we have for
m ∈ {0, 1, . . . , n} and ℓ ∈ {0, 1, . . . , n − m}

L(X|
∑n

i=1 Xi = m) � L(Y |
∑n

i=1 Yi = m + ℓ).

Using this result and Proposition 1.1, we will construct random vectors U

and V on a common probability space such that U and V have the condi-
tional distributions of X given {∑n

i=1 Xi ≥ k} and Y given {∑n
i=1 Yi ≥ k},

respectively, and U ≤ V with probability 1.
First, pick integers m and m + ℓ such that they have the conditional

laws of
∑n

i=1 Xi given {∑n
i=1 Xi ≥ k} and

∑n
i=1 Yi given {∑n

i=1 Yi ≥ k},
respectively, and m ≤ m + ℓ with probability 1. Secondly, pick U and V

such that they have the conditional laws of X given {∑n
i=1 Xi = m} and Y

given {
∑n

i=1 Yi = m + ℓ}, respectively, and U ≤ V with probability 1. A
little computation shows that the vectors U and V have the desired marginal
distributions.

We close this section with a minor result, which gives a condition under
which we do not have stochastic ordering.

Proposition 2.4. If pi = qi for some i ∈ {1, . . . , n} but not for all i, then
for k ∈ {1, . . . , n − 1},

L(X|∑n
i=1 Xi ≥ k) 6� L(Y |∑n

i=1 Yi ≥ k).

Proof. Without loss of generality, assume that pn = qn. We have

P(Xn = 1 |
∑n

i=1 Xi ≥ k)

=
pnP(

∑n−1
i=1 Xi ≥ k − 1)

pnP(
∑n−1

i=1 Xi ≥ k − 1) + (1 − pn)P(
∑n−1

i=1 Xi ≥ k)

=
pn

pn + (1 − pn)P(
∑n−1

i=1 Xi ≥ k)
/

P(
∑n−1

i=1 Xi ≥ k − 1)

>
qn

qn + (1 − qn)P(
∑n−1

i=1 Yi ≥ k)
/

P(
∑n−1

i=1 Yi ≥ k − 1)

= P(Yn = 1 |∑n
i=1 Yi ≥ k),

where the strict inequality follows from Lemma 2.1.
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3 Weak convergence

We now turn to the framework for asymptotic domination described in Sec-
tion 1.2 and to the setting of Section 1.3. Recall that Xin is the number of
successes of the vector Xn in block i. We want to study the joint convergence
in distribution of the Xin as n → ∞, conditioned on {Σn ≥ kn}, and also
conditioned on {Σn = kn}. Since we are interested in the limit n → ∞, we
may assume from the outset that the values of n we consider are so large that
kn and all min are strictly between 0 and n, to avoid degenerate situations.

We will first consider the case where we condition on the event {Σn = kn}.
Lemma 3.1 below states that the Xin will then concentrate around the values
cinmin, where the cin are determined by the system of equations (3), which
we repeat here for the convenience of the reader:







1 − cin

cin

pi

1 − pi

=
1 − cjn

cjn

pj

1 − pj

∀i, j ∈ {1, . . . ,M};
∑M

i=1 cinmin = kn.

(3)

Before we turn to the proof of this concentration result, let us first look at
the system (3) in more detail. If we write

An =
1 − cin

cin

pi

1 − pi

(15)

for the desired common value for all i, then

cin =
pi

pi + An(1 − pi)
.

Note that this is equal to 1 for An = 0 and to pi for An = 1, and strictly
decreasing to 0 as An → ∞, so that there is a unique An > 0 such that

M
∑

i=1

cinmin =
M
∑

i=1

pimin

pi + An(1 − pi)
= kn. (16)

It follows that the system (3) does have a unique solution, characterized
by this value of An. Moreover, it follows from (16) that if kn > E(Σn) =
∑M

i=1 pimin, then An < 1. Furthermore, kn/n → α and min/n → αi. Hence,
by dividing both sides in (16) by n, and taking the limit n → ∞, we see that
the An converge to the unique positive number A such that

M
∑

i=1

piαi

pi + A(1 − pi)
= α,
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where A = 1 if α =
∑M

i=1 piαi. As a consequence, we also have that

cin → ci =
pi

pi + A(1 − pi)
as n → ∞.

Note that the ci are the unique solution to the system of equations






1 − ci

ci

pi

1 − pi

=
1 − cj

cj

pj

1 − pj

∀i, j ∈ {1, . . . ,M};
∑M

i=1 ciαi = α.

Observe also that ci = pi in case A = 1, or equivalently
∑M

i=1 piαi = α,
which is the case when the total number of successes kn is within o(n) of the
mean E(Σn). The concentration result:

Lemma 3.1. Let c1n, . . . , cMn satisfy (3). Then for each i and all positive
integers r, we have that

P(|Xin − cinmin| ≥ Mr | Σn = kn) ≤ 2Me−(M−1)r2/n.

Proof. The idea of the proof is as follows. Condition on {Σn = kn}, and
consider the event that for some i 6= j we have that Xin = cinmin + s, and
Xjn = cjnmjn − t, for some positive numbers s and t. We will show that if
the cin satisfy (3), the event obtained by increasing Xin by 1 and decreasing
Xjn by 1 has smaller probability. This establishes that the conditional dis-
tribution of the Xin is maximal at the central values cinmin identified by the
system (3). The precise bound in Lemma 3.1 also follows from the argument.

Now for the details. Let s and t be nonnegative real numbers such that
cinmin + s and cjnmjn − t are integers. By the binomial distributions of Xin

and Xjn and their independence, if it is the case that 0 ≤ cinmin + s < min

and 0 < cjnmjn − t ≤ mjn, then

P(Xin = cinmin + s + 1, Xjn = cjnmjn − t − 1)

P(Xin = cinmin + s, Xjn = cjnmjn − t)

=

(

min − cinmin − s

cinmin + s + 1

pi

1 − pi

)(

cjnmjn − t

mjn − cjnmjn + t + 1

1 − pj

pj

)

≤
(

min − cinmin − s

cinmin

pi

1 − pi

)(

cjnmjn − t

mjn − cjnmjn

1 − pj

pj

)

.

Hence, if the cin satisfy (3), then using 1 − z ≤ exp(−z) we obtain

P(Xin = cinmin + s + 1, Xjn = cjnmjn − t − 1)

P(Xin = cinmin + s, Xjn = cjnmjn − t)

≤
(

1 − s

min − cinmin

)(

1 − t

cjnmjn

)

≤ exp

(

−s + t

n

)

.
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It follows by iteration of this inequality, that for all real s, t ≥ 0 and all
integers u ≥ 0,

P(Xin = cinmin + s + u, Xjn = cjnmjn − t − u)

≤ exp

(

−(s + t)u

n

)

P(Xin = cinmin + s, Xjn = cjnmjn − t). (17)

Now fix i, and observe that for all integers r > 0,

P(Xin ≥ cinmin + Mr, Σn = kn)

=
∑

ℓ1,...,ℓM∈N0 :
ℓ1+···+ℓM=kn

1(ℓi ≥ cinmin + Mr)P(Xkn = ℓk ∀k).

But if ℓ1 + · · · + ℓM = kn and ℓi ≥ cinmin + Mr, then there must be some
j 6= i such that ℓj ≤ cjnmjn − r. Therefore,

P(Xin ≥ cinmin + Mr, Σn = kn)

≤
M
∑

j=1

∑

ℓ1,...,ℓM∈N0 :
ℓ1+···+ℓM=kn

1

(

ℓi ≥ cinmin + Mr
ℓj ≤ cjnmjn − r

)

P(Xkn = ℓk ∀k).

By independence of the Xin and using (17) with s = (M − 1)r, t = 0 and
u = r, we now obtain

P(Xin ≥ cinmin + Mr, Σn = kn)

≤ e−(M−1)r2/n

M
∑

j=1

∑

ℓ1,...,ℓM∈N0 :
ℓ1+···+ℓM=kn

1

(

ℓi ≥ cinmin + Mr − r
ℓj ≤ cjnmjn

)

P(Xkn = ℓk ∀k)

≤ Me−(M−1)r2/n
P(Σn = kn).

This proves that

P(Xin ≥ cinmin + Mr | Σn = kn) ≤ Me−(M−1)r2/n.

Similarly, one can prove that

P(Xin ≤ cinmin − Mr | Σn = kn) ≤ Me−(M−1)r2/n.

As we have already mentioned, we expect that the Xin have fluctuations
around their centres of the order

√
n. It is therefore natural to look at the

M -dimensional vector

X n :=

(

X1n − x1n√
n

,
X2n − x2n√

n
, . . . ,

XMn − xMn√
n

)

, (18)

16



o o
σ−→

Figure 1: The shear transformation σ (illustrated here for M = 2) maps
sheared cubes to cubes. The dots are the sites of the integer lattice Z2. The
gray band on the left encompasses those sheared cubes that intersect S0.

where the vector xn = (x1n, . . . , xMn) represents the centre around which
the Xin concentrate. To prove weak convergence of X n, we will not set xin

equal to cinmin, because the latter numbers are not necessarily integer, and
it will be more convenient if the xin are integers. So instead, for each fixed n,
we choose the xin to be nonnegative integers such that |xin − cinmin| < 1 for
all i, and

∑M
i=1 xin = kn. Of course, the vector X n as it is defined in (18),

and the vector defined in (4) have the same weak limit. In our proofs of
Theorems 1.4 and 1.5, X n will refer to the vector defined in (18).

If we condition on {Σn = kn}, then the vector X n will only take values
in the hyperplane

S0 := {(z1, . . . , zM) ∈ RM : z1 + · · · + zM = 0}.

However, as we have already explained in the introduction, we still regard X n

as an M -dimensional vector, because we will also condition on {Σn ≥ kn},
in which case X n is not restricted to a hyperplane. To deal with this, it
turns out that for technical reasons which will become clear later, it is useful
to introduce the projection π : (z1, . . . , zM) 7→ (z1, . . . , zM−1) and the shear
transformation σ : (z1, . . . , zM) 7→ (z1, . . . , zM−1, z1 + · · ·+ zM). We can then
define a metric ρ on RM by setting ρ(x, y) := |σx − σy|, where |·| denotes
Euclidean distance. See Figure 1 for an illustration.

Using the projection π, we now define a new measure µ0 on the Borel
subsets of RM , which is concentrated on S0, by

µ0( · ) := λM−1(π( · ∩ S0)),

where λM−1 is the ordinary Lebesgue measure on RM−1. Note that up to a
multiplicative constant, µ0 is equal to the measure ν0 defined in Section 3, so
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we could have stated Theorems 1.4 and 1.5 equally well with µ0 instead of ν0.
In the proofs it turns out to be more convenient to work with µ0, however,
so that is what we shall do.

Our proofs of Theorems 1.4 and 1.5 resemble classical arguments to prove
weak convergence of random vectors living on a lattice via a local limit the-
orem and Scheffé’s theorem, see for instance [1, Theorem 3.3]. However,
we cannot use these classic results here, for two reasons. First of all, in
Theorem 1.5 our random vectors live on an M -dimensional lattice, but in
the limit all the mass collapses onto a lower-dimensional hyperplane, leading
to a weak limit which is singular with respect to M -dimensional Lebesgue
measure. The classic arguments do not cover this case of a singular limit.

Secondly, we are considering conditioned random vectors, for which it is
not so obvious how to obtain a local limit theorem directly. Our solution is to
get rid of the conditioning by considering ratios of conditioned probabilities,
and prove a local limit theorem for these ratios. An extra argument will
then be needed to prove weak convergence. Since we cannot resort to classic
arguments here, we have to go through the proofs in considerable detail.

3.1 Proof of Theorem 1.4

As we have explained above, the key idea in the proof of Theorem 1.4 is that
we can get rid of the awkward conditioning by considering ratios of con-
ditional probabilities, rather than the conditional probabilities themselves.
Thus, we will be dealing with ratios of binomial probabilities, and the follow-
ing lemma addresses the key properties of these ratios needed in the proof.
The lemma resembles standard bounds on binomial probabilities, but we
point out that here we are considering ratios of binomial probabilities which
centre around cinmin rather than around the mean pimin. We also note that
actually, the lemma is stronger than required to prove Theorem 1.4, but we
will need this stronger result to prove Theorem 1.5 later.

Lemma 3.2. Recall the definition (15) of An. Fix i ∈ {1, 2, . . . ,M} and let
b1, b2, . . . be a sequence of positive integers such that bn/

√
n → 0 as n → ∞.

Then, for every z ∈ R,

sup
x : |x−xin|<bn

r : |r−z
√

n|<bn

∣

∣

∣

∣

1

Ar
n

P(Xin = x + r)

P(Xin = x)
− exp

(

− z2

2ci(1 − ci)αi

)∣

∣

∣

∣

→ 0.

Furthermore, there exist constants B1
i , B

2
i < ∞ such that for all n and r,

sup
x : |x−xin|<bn

1

Ar
n

P(Xin = x + r)

P(Xin = x)
≤ B1

i

(

1 +
r4

n2

)

exp

(

B2
i

|r|√
n
− 1

2

r2

n

)

.
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Proof. Robbins’ note on Stirling’s formula [5] states that for all m = 1, 2, . . . ,

√
2π mm+1/2 e−m+1/(12m+1) < m! <

√
2π mm+1/2 e−m+1/(12m),

from which it is straightforward to show that for all m = 0, 1, 2, . . . (so
including m = 0), there exists an ηm satisfying 1/7 < ηm < 1/5 such that

m! =
√

2π(m + ηm) mm e−m =
√

2π[[m]] mm e−m, (19)

where we have introduced the notation [[m]] := m + ηm.
Since Xin has the binomial distribution with parameters min and pi,

1

Ar
n

P(Xin = x + r)

P(Xin = x)
=

x!

(x + r)!

(min − x)!

(min − x − r)!

(

cin

1 − cin

)r

.

Using (19), we can write this as the product of the three factors

P 1
in(x, r) =

(

[[x]]

[[x + r]]

[[min − x]]

[[min − x − r]]

)1/2

P 2
in(x, r) =

(

cinmin

x

min − x

min − cinmin

)r

P 3
in(x, r) =

(

x

x + r

)x+r(
min − x

min − x − r

)min−x−r

for all x and r such that 0 < x < min and 0 ≤ x + r ≤ min.
To study the convergence of P 3

in(x, r), first write

P 3
in(x, r) =

(

1 − r

x + r

)x+r(

1 +
r

min − x − r

)min−x−r

.

Using the fact that for all u > −1, (1 + u) lies between exp
(

u − 1
2
u2
)

and
exp
(

u− 1
2
u2/(1+u)

)

, a little computation now shows that P 3
in(x, r) is wedged

in between

exp

(

−1

2

(min − r)r2

x(min − x − r)

)

and exp

(

−1

2

(min + r)r2

(x + r)(min − x)

)

.

From this fact, it follows that for fixed z ∈ R,

sup
x : |x−xin|<bn

r : |r−z
√

n|<bn

∣

∣

∣

∣

P 3
in(x, r) − exp

(

− z2

2ci(1 − ci)αi

)∣

∣

∣

∣

→ 0,
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because xin/min → ci, hence x = cimin + o(n) and r = z
√

n + o(
√

n) under
the supremum, and min/n → αi. Since |xin − cinmin| < 1, we also have that

sup
x : |x−xin|<bn

r : |r−z
√

n|<bn

∣

∣P 1
in(x, r) − 1

∣

∣→ 0 and sup
x : |x−xin|<bn

r : |r−z
√

n|<bn

∣

∣P 2
in(x, r) − 1

∣

∣→ 0.

Together with the uniform convergence of P 3
in(x, r), this establishes the first

part of Lemma 3.2.
We now turn to the second part of the lemma. If x and r are such

that 0 < x < min and 0 ≤ x + r ≤ min, then min − r ≥ x > 0 and
min + r ≥ min − x > 0, hence from the bounds on P 3

in(x, r) given in the
previous paragraph we can conclude that

P 3
in(x, r) ≤ exp

(

−1

2

r2

min

)

≤ exp

(

−1

2

r2

n

)

.

Next observe that if x is such that |x− xin| < bn, then |x− cinmin| < 1 + bn,
from which it follows that uniformly in n, for all x and r such that 0 < x <
min, 0 ≤ x + r ≤ min and |x − xin| < bn,

P 2
in(x, r) ≤

(

1 + const. × bn

n

)|r|
≤ exp

(

const. × |r|√
n

)

.

To finish the proof, it remains to bound P 1
in(x, r). To this end, observe

first that uniformly in n, for all x and r such that |x−xin| < bn and |r| < n3/4,
P 1

in(x, r) is bounded by a constant. On the other hand, uniformly for all x
and r such that 0 < x < min and 0 ≤ x + r ≤ min, P 1

in(x, r) is bounded by a
constant times n, and n ≤ r4/n2 if |r| ≥ n3/4. Combining these observations,
we see that uniformly in n, for all x and r satisfying |x − xin| < bn and
0 ≤ x + r ≤ min,

P 1
in(x, r) ≤ const. ×

(

1 +
r4

n2

)

.

Proof of Theorem 1.4. For a point z in R
M , let ⌈z⌋ be the point in Z

M

ρ-closest to z (take the lexicographically smallest one if there is a choice).
Graphically, this means that the collection of those points z for which ⌈z⌋ = a
comprises the sheared cube a+σ−1(−1/2, 1/2]M , see Figure 1. Now, for each
fixed z ∈ RM , set rz

n = (rz
1n, . . . , r

z
Mn) := ⌈z√n⌋. Observe that because (for

fixed n) the xin sum to kn, if rz
n ∈ S0 we have that

P(
√

n X n = rz
n | Σn = kn)

P(
√

n X n = 0 | Σn = kn)
=
P(

√
n X n = rz

n)

P(
√

n X n = 0)
=

M
∏

i=1

P(Xin = xin + rz
in)

P(Xin = xin)
,

(20)
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where we have used the independence of the components Xin. If rz
n /∈ S0, on

the other hand, this ratio obviously vanishes.
We now apply Lemma 3.2 to (20), taking bn = M for every n ≥ 1. Since

∑M
i=1 rz

in = 0 if rz
n ∈ S0 and hence

∏M
i=1 A

rz

in
n = 1, the first part of Lemma 3.2

immediately implies that for all z ∈ RM ,

P(
√

n X n = rz
n | Σn = kn)

P(
√

n X n = 0 | Σn = kn)
→ 1S0(z)

M
∏

i=1

exp

(

− z2
i

2ci(1 − ci)αi

)

= f(z)

as n → ∞. To see how this will lead to Theorem 1.4, define fn : RM → R by

fn(z) := (
√

n)M
P
(√

n X n = rz
n

∣

∣ Σn = kn

)

.

Then fn is a probability density function with respect to M -dimensional
Lebesgue measure λ. Moreover, if Zn is a random vector with this density,
then the vector Z

′
n = ⌈Zn

√
n⌋/√n has the same distribution as the vec-

tor X n, conditioned on {Σn = kn}. Since clearly Zn and Z
′
n must have the

same weak limit, it is therefore sufficient to show that the weak limit of Zn

has density f/
∫

f dµ0 with respect to µ0.
Now, by what we have established above, we already know that

fn(z)

fn(0)
=
P(

√
n X n = rz

n | Σn = kn)

P(
√

n X n = 0 | Σn = kn)
→ f(z) for every z ∈ RM .

Moreover, the second part of Lemma 3.2 applied to (20) shows that the ra-
tios fn(z)/fn(0) are uniformly bounded by some µ0-integrable function g(z).
Thus it follows by dominated convergence that for every Borel set A ⊂ R

M ,
∫

A

fn(z)

fn(0)
dµ0(z) →

∫

A

f(z) dµ0(z).

Next observe that 1 =
∫

fn dλ =
∫

n−1/2fn dµ0, because by the condition-
ing, fn is nonzero only on the sheared cubes which intersect S0. Therefore,
taking A = R

M in the previous equation yields n−1/2fn(0) → (
∫

f dµ0)
−1,

which in turn implies that for every Borel set A,
∫

A

n−1/2fn(z) dµ0(z) →
∫

A
f(z) dµ0(z)
∫

f dµ0

.

In general,
∫

F
fn dλ 6=

∫

F
n−1/2fn dµ0 for an arbitrary Borel set F , but we

have equality here for sufficiently large n if F is a finite union of sheared
cubes. Hence, if A is open, we can approximate A from the inside by unions
of sheared cubes contained in A to conclude that

lim inf
n→∞

∫

A

fn(z) dλ(z) ≥
∫

A
f(z) dµ0(z)
∫

f dµ0

.
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3.2 Proof of Theorem 1.5

We now turn to the case where we condition on {Σn ≥ kn}, for the same
fixed sequence kn → ∞ as before. To treat this case, we are going to consider
what happens when we condition on the event that Σn = kn + ℓ for some
ℓ ≥ 0, and later sum over ℓ. It will be important for us to know the relevant
range of ℓ to sum over. In particular, for large enough ℓ we expect that the
probability P(Σn = kn+ℓ) will be so small, that these ℓ will not influence the
conditional distribution of the vector X n in an essential way. The relevant
range of ℓ can be determined from the following lemma:

Lemma 3.3. For all positive integers s,

P(Σn ≥ kn + 2Ms) ≤ M exp

(

−(kn −E(Σn) + Ms)s

Mn

)

P(Σn ≥ kn).

Proof. Let u be such that 0 < u < (1 − pi)min. Observe that then, for all
integers m such that pimin + u ≤ m ≤ min,

P(Xin = m + 1)

P(Xin = m)
=

min − m

m + 1

pi

1 − pi

≤
pimin − u pi

1−pi

pimin + u
,

hence

P(Xin = m + 1)

P(Xin = m)
≤ 1 − u

pimin + u

(

1 +
pi

1 − pi

)

≤ 1 − u

min

≤ 1 − u

n
.

Since 1 − z ≤ exp(−z), by repeated application of this inequality it follows
that for all u > 0 and all positive integers t, if m is an integer such that
m ≥ pimin + u, then

P(Xin = m + t) ≤ exp

(

−ut

n

)

P(Xin = m). (21)

Now observe that if Σn ≥ E(Σn) + Mr + 2Ms, where s is a positive
integer, and r a real number such that r + s > 0, then for some k it must be
the case that Xkn ≥ pkmkn + r + 2s. Therefore,

P(Σn ≥ E(Σn) + Mr + 2Ms)

≤
∑

ℓ1,...,ℓM∈N0 :
ℓ1+···+ℓM≥E(Σn)+Mr+2Ms

M
∑

k=1

1(ℓk ≥ pkmkn + r + 2s)P(Xin = ℓi ∀i).
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But by (21), taking u = r + s and t = s,

1(ℓk ≥ pkmkn + r + 2s)P(Xin = ℓi ∀i)

≤ exp

(

−(r + s)s

n

)

P(Xkn = ℓk − s, Xin = ℓi ∀i 6= k),

and therefore

P(Σn ≥ E(Σn) + Mr + 2Ms)

≤ M exp

(

−(r + s)s

n

)

P(Σn ≥ E(Σn) + Mr + 2Ms − s)

≤ M exp

(

−(r + s)s

n

)

P(Σn ≥ E(Σn) + Mr
)

.

Choosing r such that kn ≡ E(Σn) + Mr yields Lemma 3.3 (observe that the
bound holds trivially if r + s ≤ 0).

Lemma 3.3 shows that if α >
∑M

i=1 piαi, then for sufficiently large n,
P(Σn ≥ kn + ℓ) will already be much smaller than P(Σn ≥ kn) when ℓ
is of order log n. However, when α =

∑M
i=1 piαi, we need to consider ℓ of

bigger order than
√

n for P(Σn ≥ kn + ℓ) to become much smaller than
P(Σn ≥ kn). In either case, Lemma 3.3 shows that ℓ of larger order than

√
n

become irrelevant.
Keeping this in mind, we will now look at the conditional distribution of

the vector X n, conditioned on {Σn = kn + ℓ}. The first thing to observe is
that for ℓ > 0, the locations of the centres around which the components Xin

concentrate will be shifted to larger values. Indeed, these centres are located
at cℓ

inmin, where the cℓ
in are of course determined by the system of equations











1 − cℓ
in

cℓ
in

pi

1 − pi

=
1 − cℓ

jn

cℓ
jn

pj

1 − pj

∀i, j ∈ {1, . . . ,M};
∑M

i=1 cℓ
inmin = kn + ℓ.

(22)

To find an explicit expression for the size of the shift cℓ
in − cin, we can sub-

stitute cℓ
in = cin + δin into (22), and then perform an expansion in powers of

the correction δin to guess this correction to first order. This procedure leads
us to believe that cℓ

in must be of the form

cℓ
in = cin + cin(1 − cin)dℓ

n + eℓ
in, (23)

where

dℓ
n :=

ℓ
∑M

j=1 cjn(1 − cjn)mjn

,
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and eℓ
in should be a higher-order correction. The following lemma shows that

the error terms eℓ
in are indeed of second order in dℓ

n, so that the effective
shift in cin by adding ℓ extra successes to our Bernoulli variables is given by
cin(1 − cin)dℓ

n. For convenience, we assume in the lemma that |dℓ
n| ≤ 1/2,

which means that |ℓ| cannot be too large, but by Lemma 3.3, this does not
put too severe a restriction on the range of ℓ we can consider later.

Lemma 3.4. For all ℓ (positive or negative) such that |dℓ
n| ≤ 1/2, we have

that |eℓ
in| ≤ (dℓ

n)2 for all i = 1, . . . ,M .

Proof. For ease of notation, write σin := cin(1 − cin). As before, we write

Aℓ
n =

1 − cℓ
in

cℓ
in

pi

1 − pi

=
1 − cin − σind

ℓ
n − eℓ

in

cin + σindℓ
n + eℓ

in

pi

1 − pi

for the desired common value for all i, so

eℓ
in =

pi(1 − cin − σind
ℓ
n) − Aℓ

n(1 − pi)(cin + σind
ℓ
n)

Aℓ
n(1 − pi) + pi

. (24)

As before, the value of Aℓ
n is uniquely determined by the requirement that

∑M
i=1 cℓ

inmin = kn + ℓ. Since
∑M

i=1 cinmin = kn and
∑M

i=1 σind
ℓ
nmin = ℓ, this

requirement says that
M
∑

i=1

eℓ
inmin = 0.

In particular, the eℓ
in cannot be all positive or all negative, from which we

derive, using (24), that Aℓ
n must satisfy the double inequalities

min
i=1,...,M

{

pi(1 − cin − σind
ℓ
n)

(1 − pi)(cin + σindℓ
n)

}

≤ Aℓ
n ≤ max

i=1,...,M

{

pi(1 − cin − σind
ℓ
n)

(1 − pi)(cin + σindℓ
n)

}

.

A simple calculation establishes that

pi(1 − cin − σind
ℓ
n)

(1 − pi)(cin + σindℓ
n)

=
1 − cin

cin

pi

1 − pi

(

1 +
∞
∑

k=1

(−(1 − cin)dℓ
n)k

1 − cin

)

,

from which (using |dℓ
n| ≤ 1/2) we can conclude that

1 − cin

cin

pi

1 − pi

(

1 − dℓ
n

)

≤ Aℓ
n ≤ 1 − cin

cin

pi

1 − pi

(1 − dℓ
n + 2

(

dℓ
n)2
)

,

since by (3), neither the lower bound nor the upper bound here depends on i.
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Inserting the lower bound on Aℓ
n into (24) gives

eℓ
in ≤ σin(1 − cin)(dℓ

n)2

1 − (1 − cin)dℓ
n

≤ 1

2
(dℓ

n)2,

where in the last step we used that |dℓ
n| ≤ 1/2 and σin ≤ 1/4. Likewise,

substituting the upper bound on Aℓ
n into (24) yields

eℓ
in ≥ −σin(1 + cin)(dℓ

n)2 + 2σin(1 − cin)(dℓ
n)3

1 − (1 − cin)dℓ
n + 2(1 − cin)(dℓ

n)2
≥ −2σin(dℓ

n)2

1 − 1/2
≥ −(dℓ

n)2.

For future use, we state the following corollary:

Corollary 3.5. If (kn−
∑M

i=1 cimin)/
√

n → K for some K ∈ [−∞,∞], then
for i ∈ {1, . . . ,M},

(cin − ci)min√
n

→ ci(1 − ci)αi
∑M

j=1 cj(1 − cj)αj

K.

Remark 3.6. If (kn − E(Σn))/
√

n → K ∈ R, then α =
∑M

i=1 piαi and we
have ci = pi for all i ∈ {1, . . . ,M}. In this situation, Corollary 3.5 states
that the vectors X

p
n − X n, and hence also the same vectors conditioned on

{Σn ≥ kn}, converge pointwise to the vector whose i-th component is

pi(1 − pi)αi
∑M

j=1 pj(1 − pj)αj

K.

Proof of Corollary 3.5. First, suppose that K ∈ R. If ℓ =
∑M

i=1 cimin − kn

and the cℓ
in satisfy (22), then cℓ

in = ci. Hence, by Lemma 3.4,

ci − cin = cin(1 − cin)dℓ
n + O

(

(dℓ
n)2
)

,

where

dℓ
n =

∑M
i=1 cimin − kn

∑M
j=1 cjn(1 − cjn)mjn

= O
(

n−1/2
)

.

This implies

(ci − cin)min√
n

=
cin(1 − cin)min

∑M
j=1 cjn(1 − cjn)mjn

∑M
i=1 cimin − kn√

n
+ O

(

n−1/2
)

,

from which the result follows.
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Next, suppose that K = ∞. Since cin is increasing as a function of kn,
we have by the first part of the proof

lim inf
n→∞

(cin − ci)min√
n

≥ ci(1 − ci)αi
∑M

j=1 cj(1 − cj)αj

L

for all L ∈ R. Hence, the left-hand side is equal to ∞. The proof for the
case K = −∞ is similar.

When we condition on {Σn = kn + ℓ}, then in analogy with what we have
done before, the natural scaled vector to consider would be the vector

X
ℓ
n :=

(

X1n − xℓ
1n√

n
,
X2n − xℓ

2n√
n

, . . . ,
XMn − xℓ

Mn√
n

)

,

where the components of the vector xℓ
n = (xℓ

1n, . . . , x
ℓ
Mn) identify the centres

around which the Xin concentrate. Here, the xℓ
in are nonnegative integers

chosen such that |xℓ
in − cℓ

inmin| < 1 for all i, and
∑M

i=1 xℓ
in = kn + ℓ. Note

that the vector X
ℓ
n is simply a translation of X n by (xℓ

n − xn)/
√

n. Since
Lemma 3.3 shows that if kn is sufficiently larger than E(Σn), only values of ℓ
up to small order in n are relevant, the statement of Theorem 1.5 should not
come as a surprise. To prove it, we need to refine the arguments we used to
prove Theorem 1.4.

Proof of Theorem 1.5. Assume that (kn −E(Σn))/
√

n → ∞, and let

an := 2M

⌊

√
n

( √
n

kn −E(Σn)

)1/2
⌋

.

Note that then an → ∞ but an/
√

n → 0. Furthermore, Lemma 3.3 and a
short computation show that

P(Σn > kn + an)

P(Σn ≥ kn)
→ 0.

It is easy to see that from this last fact it follows that

sup
A

∣

∣

∣
P(X n ∈ A | Σn ≥ kn) −P(X n ∈ A | kn ≤ Σn ≤ kn + an)

∣

∣

∣
→ 0,

where the supremum is over all Borel subsets A of RM . It is therefore suf-
ficient to consider the limiting distribution of the vector X n conditioned on
the event {kn ≤ Σn ≤ kn + an}, rather than on the event {Σn ≥ kn}.
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1/
√

n
(2an + 1)/

√
n

Figure 2: We coarse-grain our densities by combining (2an + 1)M sheared
cubes into larger sheared cubes. Here, we show this coarse-graining for M = 2
and an = 2. The dots are the points in ((2an + 1)Z)M/

√
n. The combined

sheared cubes have been coloured in a chessboard fashion as a visual aid.

As in the proof of Theorem 1.4, for z ∈ RM we let rz
n = ⌈z√n⌋, and we

define the functions fn : RM → R by setting

fn(z) := (
√

n)M
P
(√

n X n = rz
n

∣

∣ kn ≤ Σn ≤ kn + an

)

.

As before, this is a probability density function with respect to Lebesgue
measure λ on RM , and if Zn is a random vector with this density, then
the vector Z

′
n = ⌈Zn

√
n⌋/√n has the same distribution as the vector X n

conditioned on the event {kn ≤ Σn ≤ kn + an}. Hence, it is enough to show
that the weak limit of Zn has density f/

∫

f dµ0 with respect to µ0.
An essential difference compared to the situation in Theorem 1.4, how-

ever, is that the densities fn are no longer supported by the collection of
points z for which rz

n is in the hyperplane S0 (i.e. the union of those sheared
cubes that intersect S0). Rather, the support now encompasses all the
points z for which rz

n is in any of the hyperplanes

Sℓ := {(z1, . . . , zM) ∈ RM : z1 + · · · + zM = ℓ}, ℓ = 0, 1, . . . , an,

because if rz
n ∈ Sℓ, then the event {√n X n = rz

n} is contained in the event
{Σn = kn +ℓ}. For this reason, the densities fn are not so convenient to work
with here. Instead, it is more convenient to “coarse-grain” our densities by
spreading the mass over sheared cubes of volume ((2an + 1)/

√
n)M rather

than volume (1/
√

n)M , to the effect that all the mass is again contained in
the collection of sheared (coarse-grained) cubes intersecting S0.

To this end, for given n we partition RM into the collection of sets
{ 1√

n

(

a + σ−1(−an − 1/2, an + 1/2]M
)

: a ∈
(

(2an + 1)Z
)M
}

. (25)
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See Figure 2. For a given point z ∈ RM , we denote by Qz
n the sheared cube

in this partition containing z. Now we can define the coarse-grained densities

gn(z) :=

( √
n

2an + 1

)M

P(X n ∈ Qz
n | kn ≤ Σn ≤ kn + an)

=

( √
n

2an + 1

)M ∫

Qz
n

fn(y) dλ(y).

By construction, these are again probability density functions with respect
to M -dimensional Lebesgue measure λ. Moreover, each of these densities is
supported on the collection of sheared cubes in (25) that intersect S0, and is
constant on each sheared cube Qz

n. In particular, for any given point z ∈ RM

we have
∫

Qz
n

gn(y) dλ(y) =
2an + 1√

n

∫

Qz
n

gn(y) dµ0(y).

Finally, because an/
√

n → 0 it is clear that if Z
′′
n has density gn, then its

weak limit will coincide with that of Zn, and hence also with that of the
vector X n conditioned on the event {kn ≤ Σn ≤ kn + an}.

Suppose now that we could prove that

2an + 1√
n

gn(z) → f(z)
∫

f dµ0

for every z ∈ RM . (26)

Then it would follow from Fatou’s lemma that for every open set A ⊂ RM ,

lim inf
n→∞

∫

A

2an + 1√
n

gn(z) dµ0(z) ≥
∫

A
f(z) dµ0(z)
∫

f dµ0

.

By approximating the open set A by unions of sheared cubes contained in A,
as in the proof of Theorem 1.4, it is then clear that this would imply that

lim inf
n→∞

∫

A

gn(z) dλ(z) ≥
∫

A
f(z) dµ0(z)
∫

f dµ0

.

It therefore only remains to establish (26).
Since (26) holds by construction for z /∈ S0, we only need to consider

the case z ∈ S0. So let us fix z ∈ S0, and look at gn(z). By definition,
this is just the rescaled conditional probability that the vector X n lies in the
sheared cube Qz

n, given that kn ≤ Σn ≤ kn + an. In other words, if we define
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Cz
n :=

√
nQz

n ∩ ZM and Cz
ℓn := Cz

n ∩ Sℓ, then we have

gn(z) =

( √
n

2an + 1

)M
∑

r∈Cz
n

P(
√

n X n = r | kn ≤ Σn ≤ kn + an)

=

( √
n

2an + 1

)M an
∑

ℓ=0

∑

r∈Cz

ℓn

P(
√

n X n = r | Σn = kn + ℓ)P(Σn = kn + ℓ)

P(kn ≤ Σn ≤ kn + an)
.

Since Cz
ℓn contains exactly (2an+1)M−1 points, from this equality we conclude

that to prove (26), it is sufficient to show that

sup
0≤ℓ≤an

sup
r∈Cz

ℓn

∣

∣

∣

∣

(
√

n)M−1
P(

√
n X n = r | Σn = kn + ℓ) − f(z)

∫

f dµ0

∣

∣

∣

∣

→ 0. (27)

The proof of (27) proceeds along the same line as the proof of pointwise
convergence in Theorem 1.4, based on Lemma 3.2. However, there is a catch:
because we are now conditioning on Σn = kn + ℓ, the Xin are no longer
centred around xin, but around xℓ

in. We therefore first write the conditional
probabilities in a form analogous to what we had before, by using that

P
(√

n X n = r
∣

∣ Σn = kn + ℓ
)

= P
(√

n X
ℓ
n = r + xn − xℓ

n

∣

∣ Σn = kn + ℓ
)

.

Writing rℓ := r + xn − xℓ
n for convenience, we now want to study the ratios

P(
√

n X
ℓ
n = rℓ | Σn = kn + ℓ)

P(
√

n X
ℓ
n = 0 | Σn = kn + ℓ)

=
P(

√
n X

ℓ
n = rℓ)

P(
√

n X
ℓ
n = 0)

=
M
∏

i=1

P(Xin = xℓ
in + rℓ

i )

P(Xin = xℓ
in)

for ℓ and r satisfying 0 ≤ ℓ ≤ an and r ∈ Cz
ℓn.

By equation (23) and Lemma 3.4 we have that supℓ|xℓ
in − xin| = o(

√
n),

from which it follows that also supℓ,r|rℓ − z
√

n| = o(
√

n), where the suprema
are over all ℓ ∈ {0, . . . , an} and r ∈ Cz

ℓn. Thus, by the first part of Lemma 3.2,

sup
0≤ℓ≤an

sup
r∈Cz

ℓn

∣

∣

∣

∣

P(
√

n X
ℓ
n = rℓ | Σn = kn + ℓ)

P(
√

n X
ℓ
n = 0 | Σn = kn + ℓ)

− f(z)

∣

∣

∣

∣

→ 0,

where we have used that for all terms concerned,
∏M

i=1 A
rℓ

i
n = 1 because

rℓ ∈ S0. Furthermore, from the second part of Lemma 3.2 it follows that the
functions

z 7→ P(
√

n X
ℓ
n = ⌈z√n⌋ | Σn = kn + ℓ)

P(
√

n X
ℓ
n = 0 | Σn = kn + ℓ)
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are bounded uniformly in n and in all ℓ ∈ {0, . . . , an} by a µ0-integrable
function. In the same way as in the proof of Theorem 1.4, it follows from
these facts (with the addition that we have uniform bounds) that

sup
0≤ℓ≤an

∣

∣

∣

∣

(
√

n)M−1
P(

√
n X

ℓ
n = 0 | Σn = kn + ℓ) − 1

∫

f dµ0

∣

∣

∣

∣

→ 0.

From this we conclude that (27) does hold, which completes the proof of
Theorem 1.5.

3.3 Proof of Theorem 1.6

Proof of Theorem 1.6. Suppose that (kn − E(Σn))/
√

n → K for some K ∈
[−∞,∞). Let X be a random vector having a multivariate normal distribu-
tion with density h/

∫

h dλ with respect to λ. By standard arguments, X
p
n

converges weakly to X . Therefore, for a rectangle A ⊂ RM we have

P(X p
n ∈ A, Σn ≥ kn) = P(X p

n ∈ A ∩ H kn−E(Σn)√
n

) → P(X ∈ A ∩ HK),

since A ∩ HK+ε is a λ-continuity set for all ε ∈ R. Taking A = RM gives

P(Σn ≥ kn) → P(X ∈ HK).

Hence, for all rectangles A ⊂ RM

P(X p
n ∈ A | Σn ≥ kn) → P(X ∈ A ∩ HK)

P(X ∈ HK)
.

3.4 Law of large numbers

Finally, we prove a law of large numbers, which we will need in Section 4. Let
X̃in denote a random variable with the conditional law of Xin, conditioned on
the event {Σn ≥ kn}. If (kn−E(Σn))/

√
n → K for some K ∈ [−∞,∞], then

an immediate consequence of Theorems 1.5 and 1.6 is that X̃in/n converges
in probability to either piαi or ciαi. The following theorem shows that such
a law of large numbers holds for a general sequence kn such that kn/n → α.

Theorem 3.7. For i ∈ {1, . . . ,M}, the random variable X̃in/n converges in
probability to piαi if α ≤∑M

i=1 piαi, or to ciαi if α ≥∑M
i=1 piαi.

Proof. If α 6=∑M
i=1 piαi, then (kn−E(Σn))/

√
n goes to −∞ or ∞ as n → ∞,

and the result immediately follows from Theorem 1.5 and Theorem 1.6.
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Now suppose that α =
∑M

i=1 piαi. Then ci = pi for all i ∈ {1, . . . ,M}.
Recall that in general the ci and A are determined by the equations

ci =
pi

pi + A(1 − pi)
and

M
∑

i=1

piαi

pi + A(1 − pi)
= α.

The constant A is continuous as a function of α, hence ci = ci[α] is also
continuous as a function of α. Therefore, if α =

∑M
i=1 piαi, then for each

ε > 0 we can choose δ > 0 such that ci[α+δ]αi ≤ piαi +
1
2
ε. By Corollary 2.3

we have, for large enough n,

P(Xin ≥ (piαi + ε)n | Σn ≥ kn)

≤ P(Xin ≥ (piαi + ε)n | Σn ≥ (α + δ)n)

≤ P(Xin ≥ (ci[α + δ]αi + 1
2
ε)n | Σn ≥ (α + δ)n),

which tends to 0 as n → ∞ by Theorem 1.5. Similarly, using Corollary 2.3
and Theorem 1.6 instead of Theorem 1.5, we obtain

P(Xin ≤ (piαi − ε)n | Σn ≥ kn) → 0.

We conclude that X̃in/n converges in probability to piαi = ciαi.

4 Asymptotic stochastic domination

4.1 Proof of Theorem 1.8

Consider the general framework for vectors Xn and Yn of Section 1.2 in
the setting of Section 1.4. We will split the proof of Theorem 1.8 into four
lemmas. In the statements of these lemmas, we will need the constant α̂,
which is defined as the limit as n → ∞ of k̂n/n:

k̂n =
M
∑

i=1

pimin

pi + βmax(1 − pi)
, hence α̂ =

M
∑

i=1

piαi

pi + βmax(1 − pi)
.

Let us first look at the definition of α̂ in more detail. In Section 1.4, we
informally introduced the sequence k̂n as a critical sequence such that if kn is
around k̂n, then there exists a block i such that the number of successes X̃in

of the vector X̃n in block i is roughly the same as Ỹin. We will now make
this precise. Recall that the ci and the constant A are determined by

ci =
pi

pi + A(1 − pi)
and

M
∑

i=1

piαi

pi + A(1 − pi)
= α.
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Furthermore, note that
pi

pi + βi(1 − pi)
= qi,

and recall that we defined I = {i ∈ {1, . . . ,M} : βi = βmax}. The ordering of
α and α̂ gives information about the ordering of the ci and qi. This is stated
in the following remark, which follows from the equations above.

Remark 4.1. We have the following:

(i) If α < α̂, then A > βmax and ci < qi for all i ∈ {1, . . . ,M}.

(ii) If α = α̂, then A = βmax and ci = qi for i ∈ I, while ci < qi for i /∈ I.

(iii) If α > α̂, then A < βmax and ci > qi for some i ∈ {1, . . . ,M}.

(iv)
∑M

i=1 piαi ≤ α̂ ≤
∑M

i=1 qiαi, with α̂ =
∑M

i=1 piαi if and only if βmax = 1,

and α̂ =
∑M

i=1 qiαi if and only if all βi (i ∈ {1, . . . ,M}) are equal.

Our law of large numbers, Theorem 3.7, states that X̃in/n converges in
probability to piαi if α ≤∑M

i=1 piαi, and to ciαi if α ≥∑M
i=1 piαi. This law of

large numbers applies analogously to the vector Ỹn. If we define d1, . . . , dM

as the unique solution of the system







1 − di

di

qi

1 − qi

=
1 − dj

dj

qj

1 − qj

∀i, j ∈ {1, . . . ,M},
∑M

i=1 diαi = α,

then Ỹin/n converges in probability to qiαi if α ≤
∑M

i=1 qiαi, and to diαi

if α ≥ ∑M
i=1 qiαi. These laws of large numbers and the observations in

Remark 4.1 will play a crucial role in the proofs in this section.
Now we define one-dimensional (possibly degenerate) distribution func-

tions FK : R→ [0, 1] for K ∈ [−∞,∞], which will come up in the proofs as
the distribution functions of the limit of a certain function of the vectors X̃n.
Recall from Section 1.3 the definitions (5), (6), (7) and (8) of the measure ν0,
the functions f and h and the half-space HK . Write u = (u1, . . . , uM). Then

FK(z) =







































∫

HK∩{
P

i∈I
ui≤z} h(u) dλ(u)
∫

HK

h dλ
if K < ∞, α =

∑M
i=1 piαi,

∫

{P

i∈I
ui≤z−zK} f(u) dν0(u)
∫

f dν0

if K < ∞, α >
∑M

i=1 piαi,

0 if K = ∞,

(28)
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where

zK =

∑

i∈I ci(1 − ci)αi
∑M

i=1 ci(1 − ci)αi

K. (29)

The following lemmas, together with Proposition 1.3, imply Theorem 1.8.

Lemma 4.2. If α < α̂, then supP(X̃n ≤ Ỹn) → 1.

Lemma 4.3. Suppose that α > α̂ and βi 6= βj for some i, j ∈ {1, . . . ,M}.
Then supP(X̃n ≤ Ỹn) → 0.

Lemma 4.4. Suppose that α = α̂ and βi 6= βj for some i, j ∈ {1, . . . ,M}.
Suppose furthermore that (kn − k̂n)/

√
n → K for some K ∈ [−∞,∞]. Then

supP(X̃n ≤ Ỹn) → infz∈R FK(z) − Φ(z/a) + 1.

Lemma 4.5. If α = α̂ and βi 6= βj for some i, j ∈ {1, . . . ,M}, then

inf
z∈R

FK(z) − Φ(z/a) + 1 =











1 if K = −∞,

PK if K ∈ R, where 0 < PK < 1,

0 if K = ∞.

The constant a in Lemma 4.4 is the constant defined in (9a). The infimum
in Lemma 4.4 can actually be computed, as Lemma 4.5 states, and attains
the values stated in Theorem 1.8, with PK as defined in (10).

We will prove Theorem 1.8 by proving each of the Lemmas 4.2–4.5 in
turn. The idea behind the proof of Lemma 4.2 is as follows. If we do not
condition at all, then Xn � Yn for every n ≥ 1. If α <

∑M
i=1 piαi, then

the effect of conditioning vanishes in the limit and supP(X̃n ≤ Ỹn) → 1
as n → ∞. If

∑M
i=1 piαi ≤ α < α̂, then ci < qi for all i ∈ {1, . . . ,M}.

Hence, for large n we have that X̃in is significantly smaller than Ỹin for all
i ∈ {1, . . . ,M}, from which it will again follow that supP(X̃n ≤ Ỹn) → 1.

Proof of Lemma 4.2. First, suppose that α <
∑M

i=1 piαi. Let Xn and Yn be
defined on a common probability space (Ω,F , P ) such that Xn ≤ Yn on all
of Ω. Pick ω1 ∈ Ω according to the measure P ( · |

∑M
i=1 Xin ≥ kn) and pick

ω2 ∈ Ω independently according to the measure P ( · |
∑M

i=1 Yin ≥ kn). If ω2

is in the event
{
∑M

i=1 Xin ≥ kn

}

∈ F , set Ỹn(ω1, ω2) := Yn(ω1), otherwise

set Ỹn(ω1, ω2) := Yn(ω2). Set X̃n(ω1, ω2) := Xn(ω1) regardless of the value
of ω2. It is easy to see that this defines a coupling of X̃n and Ỹn on the space
(Ω×Ω,F ×F) with the correct marginals for X̃n and Ỹn. Moreover, in this
coupling we have X̃n ≤ Ỹn at least if ω2 ∈

{
∑M

i=1 Xin ≥ kn

}

. Hence

supP(X̃n ≤ Ỹn) ≥ P(
∑M

i=1 Xin ≥ kn)

P(
∑M

i=1 Yin ≥ kn)
,
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which tends to 1 as n → ∞ (e.g. by Chebyshev’s inequality).
Secondly, suppose that

∑M
i=1 piαi ≤ α < α̂. By Remark 4.1(i), ci < qi for

all i ∈ {1, . . . ,M}. For each coupling of X̃n and Ỹn we have

P(X̃n ≤ Ỹn) ≥ P(X̃in ≤ (ci + qi)αin/2 ≤ Ỹin ∀i ∈ {1, . . . ,M}),

which tends to 1 as n → ∞ by Theorem 3.7 and Remark 4.1(iv).

The next lemma, Lemma 4.3, treats the case α > α̂. In this case, we have
that for large n, X̃in is significantly larger than Ỹin for some i ∈ {1, . . . ,M},
from which it follows that supP(X̃n ≤ Ỹn) → 0.

Proof of Lemma 4.3. First, suppose that α̂ < α <
∑M

i=1 qiαi. Then ci > qi

for some i ∈ {1, . . . ,M} by Remark 4.1(iii). Hence, by Theorem 3.7 and
Remark 4.1(iv),

P(X̃in ≥ (ci + qi)αin/2) → 1,

P(Ỹin ≥ (ci + qi)αin/2) → 0.

It follows that P(X̃n ≤ Ỹn) tends to 0 uniformly over all couplings.
Next, suppose that α ≥∑M

i=1 qiαi and βi 6= βj for some i, j ∈ {1, . . . ,M}.
Then there exists i ∈ {1, . . . ,M} such that ci 6= di, since

1 − di

di

dj

1 − dj

βj =
1 − qi

qi

pj

1 − pj

= βi
1 − ci

ci

cj

1 − cj

.

In fact, we must have ci > di for some i ∈ {1, . . . ,M}, because
∑M

i=1 ciαi =
∑M

i=1 diαi. By Theorem 3.7, it follows that

P(X̃in ≥ (ci + di)αin/2) → 1,

P(Ỹin ≥ (ci + di)αin/2) → 0.

Again, P(X̃n ≤ Ỹn) tends to 0 uniformly over all couplings.

We now turn to the proof of Lemma 4.4. Under the assumptions of this
lemma, ci = qi for i ∈ I and ci < qi for i /∈ I. The proof proceeds in four
steps. In step 1, we show that the blocks i /∈ I do not influence the asymptotic
behaviour of supP(X̃n ≤ Ỹn), because for these blocks, X̃in is significantly
smaller than Ỹin for large n. In step 2, we show that the parts of the vectors
X̃n and Ỹn that correspond to the blocks i ∈ I are stochastically ordered,
if and only if the total numbers of successes in these parts of the vectors
are stochastically ordered. At this stage, the original problem of stochastic
ordering of random vectors has been reduced to a problem of stochastic
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ordering of random variables. In step 3, we use our central limit theorems
to deduce the asymptotic behaviour of the total numbers of successes in the
blocks i ∈ I. In step 4, we apply the following lemma, which follows from [6,
Proposition 1], to these total numbers of successes:

Lemma 4.6. Let X and Y be random variables with distribution functions
F and G respectively. Then we have

supP(X ≤ Y ) = inf
z∈R

F (z) − G(z) + 1,

where the supremum is taken over all possible couplings of X and Y .

Proof of Lemma 4.4. Write mIn :=
∑

i∈I min. Let XIn and X̃In denote the

mIn-dimensional subvectors of Xn and X̃n, respectively, consisting of the
components that belong to the blocks i ∈ I. Define YIn and ỸIn analogously.

Step 1. Note that for each coupling of X̃n and Ỹn,

P(X̃n ≤ Ỹn) ≥ P(X̃In ≤ ỸIn, X̃in ≤ (ci + qi)αin/2 ≤ Ỹin ∀i /∈ I)

≥ P(X̃In ≤ ỸIn) −
∑

i/∈I

{

P

(

X̃in >
ci + qi

2
αin
)

+P
(

Ỹin <
ci + qi

2
αin
)}

. (30)

By Remark 4.1(ii), ci < qi for i /∈ I. Hence, it follows from Remark 4.1(iv)
and Theorem 3.7 that the sum in (30) tends to 0 as n → ∞, uniformly over
all couplings. Since clearly supP(X̃n ≤ Ỹn) ≤ supP(X̃In ≤ ỸIn),

∣

∣

∣
supP(X̃n ≤ Ỹn) − supP(X̃In ≤ ỸIn)

∣

∣

∣
→ 0,

where the suprema are taken over all possible couplings of (X̃n, Ỹn) and
(X̃In, ỸIn), respectively.

Step 2. The βi for i ∈ I are all equal. Hence, by Proposition 1.2 and
Lemma 2.2 we have for m ∈ {0, 1, . . . ,mIn} and ℓ ∈ {0, 1, . . . ,mIn − m}

L(XIn|
∑

i∈I Xin = m) � L(YIn|
∑

i∈I Yin = m + ℓ). (31)

Now let B be any collection of vectors of length mIn with exactly m compo-
nents equal to 1 and mIn − m components equal to 0. Then

P(X̃In ∈ B) = P(XIn ∈ B |∑M
i=1 Xin ≥ kn)

=
P(XIn ∈ B)P(

∑

i/∈I Xin ≥ kn − m)

P(
∑M

i=1 Xin ≥ kn)
.
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Taking C to be the collection of all vectors in {0, 1}mIn with exactly m com-
ponents equal to 1, we obtain

P(X̃In ∈ B |∑i∈IX̃in = m) =
P(X̃In ∈ B)

P(X̃In ∈ C)
= P(XIn ∈ B |∑i∈IXin = m),

and likewise for YIn and ỸIn. Hence, (31) is equivalent to

L(X̃In|
∑

i∈I X̃in = m) � L(ỸIn|
∑

i∈I Ỹin = m + ℓ).

With a similar argument as in the proof of Proposition 1.3, it follows that

supP(X̃In ≤ ỸIn) = supP(
∑

i∈I X̃in ≤∑i∈I Ỹin).

Step 3. First observe that by Remark 4.1(iv), α <
∑M

i=1 qiαi. Hence, by

Theorem 1.6 (note that (kn −E(
∑M

i=1 Yin))/
√

n → −∞) and the continuous
mapping theorem,

P(
∑

i∈I(Ỹin − qimin)/
√

n ≤ z) → Φ(z/a) for every z ∈ R. (32)

Next observe that by Remark 4.1(ii), ci = qi for i ∈ I and A = βmax, from
which it follows that k̂n =

∑M
i=1 cimin. Hence, Corollary 3.5 gives

∑

i∈I(cin − qi)min/
√

n → zK , (33)

with zK as defined in (29). In the case α >
∑M

i=1 piαi, Theorem 1.5, (33)
and the continuous mapping theorem now immediately imply

P(
∑

i∈I(X̃in − qimin)/
√

n ≤ z) → FK(z) for every z ∈ R. (34)

Note that if K = ±∞, FK is degenerate in this case: we have FK(z) = 1 for
all z ∈ R if K = −∞ and FK(z) = 0 for all z ∈ R if K = ∞.

Now consider the case α =
∑M

i=1 piαi. By Remark 4.1(iv), in this case

we have βmax = 1, which implies that k̂n =
∑M

i=1 pimin = E(Σn) and pi = qi

for all i ∈ {1, . . . ,M}. Hence, if K = ∞, then (33) and Theorem 1.5
again imply (34) with FK(z) = 0 everywhere. If K ∈ [−∞,∞), then we
obtain (34) directly from Theorem 1.6; FK is non-degenerate in this case
(also for K = −∞).

Step 4. The distribution functions on the left-hand sides of (32) and (34)
are non-decreasing and bounded between 0 and 1, hence they converge uni-
formly on compact sets. It follows by Lemma 4.6 that

supP(
∑

i∈I X̃in ≤∑i∈I Ỹin) → infz∈R FK(z) − Φ(z/a) + 1.
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Finally, we turn to the proof of Lemma 4.5. The key to computing the
infimum of FK(z)−Φ(z/a)+1 is to first express the distribution function FK ,
defined in (28), in a simpler form.

Proof of Lemma 4.5. In the case α >
∑M

i=1 piαi and K = −∞, FK is 1
everywhere, hence infz∈R FK(z) − Φ(z/a) + 1 = 1. In the case K = ∞, FK

is 0 everywhere, hence infz∈R FK(z) − Φ(z/a) + 1 = 0. We will now study
the remaining cases.

Consider the case α = α̂ =
∑M

i=1 piαi and K ∈ [−∞,∞). Let Z =
(Z1, . . . , ZM) be a random vector which has the multivariate normal distri-
bution with density h/

∫

h dλ. By Remark 4.1(iv) we have βmax = 1. Note

that therefore, 1
a

∑

i∈I Zi,
1
b

∑

i/∈I Zi and 1
c

∑M
i=1 Zi, with a, b and c as defined

in (9), all have the standard normal distribution. Moreover,
∑

i∈I Zi and
∑

i/∈I Zi are independent.
For K = −∞, it follows that FK(z) = Φ(z/a), hence infz∈R FK(z) −

Φ(z/a) + 1 = 1. For K ∈ R, observe that Z ∈ HK is equivalent with
1
c

∑M
i=1 Zi ≥ K/c. Likewise, Z ∈ HK ∩{u ∈ RM :

∑

i∈I ui ≤ z} is equivalent
with 1

a

∑

i∈I Zi ≤ z/a and 1
b

∑

i/∈I Zi ≥ (K −∑i∈I Zi)/b. It follows that

FK(z) =

∫

h dλ
∫

HK

h dλ

∫

HK∩{P

i∈I
ui≤z} h(u) dλ(u)
∫

h dλ

=
1

1 − Φ(K/c)

∫ z/a

−∞

∫ ∞

K−au

b

e−u2/2

√
2π

e−v2/2

√
2π

dv du

=

∫ z/a

−∞

e−u2/2

√
2π

1 − Φ
(

K−au
b

)

1 − Φ
(

K
c

) du,

hence

FK(z) − Φ(z/a) =

∫ z/a

−∞

e−u2/2

√
2π

Φ
(

K
c

)

− Φ
(

K−au
b

)

1 − Φ
(

K
c

) du. (35)

Clearly, the derivative of this expression with respect to z is 0 if and only if
(K − z)/b = K/c, that is, z = zmin = K − bK/c. Plugging this value for z
into (35) shows that infz∈R FK(z) − Φ(z/a) + 1 = PK , with PK as defined
in (10). Moreover, PK > 0 because FK(zmin) > 0, and PK < 1 because the
integrand in (35) is negative for u < zmin/a.

Finally, consider the case α >
∑M

i=1 piαi and K ∈ R. This time, let
Z = (Z1, . . . , ZM) be a random vector which has the singular multivariate
normal distribution with density f/

∫

f dν0 with respect to ν0. Then a little
computation shows that (Z1, . . . , ZM−1) has a multivariate normal distribu-
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tion with mean 0 and a covariance matrix Σ given by


























Σii =
σ2

i

∑M
k=1,k 6=i σ

2
k

∑M
k=1 σ2

k

for i ∈ {1, . . . ,M − 1},

Σij =
−σ2

i σ
2
j

∑M
k=1 σ2

k

for i, j ∈ {1, . . . ,M − 1} with i 6= j,

where σ2
i = ci(1 − ci)αi for i ∈ {1, . . . ,M}. Similarly, every subvector of Z

of dimension less than M has a multivariate normal distribution.
By the definition (28) of FK , zK +

∑

i∈I Zi has distribution function FK .
Since βi 6= βj for some i, j ∈ {1, . . . ,M}, we have |I| ≤ M − 1. It follows
that

∑

i∈I Zi has a normal distribution with mean 0 and variance

∑

i∈I

σ2
i

∑M
k=1,k 6=i σ

2
k

∑M
k=1 σ2

k

+
∑

i∈I

∑

j∈I\{i}

−σ2
i σ

2
j

∑M
k=1 σ2

k

=
(
∑

i∈I σ2
i )(
∑

i/∈I σ2
i )

∑M
i=1 σ2

i

. (36)

By Remark 4.1(ii), A = βmax and hence for i ∈ {1, . . . ,M},

σ2
i = ci(1 − ci)αi =

βmaxpi(1 − pi)αi

(pi + βmax(1 − pi))2
.

It follows that the variance (36) is equal to a2b2/c2, with a, b, and c as defined
in (9). Furthermore, zK = a2K/c2. We conclude that FK is the distribution
function of a normally distributed random variable with mean a2K/c2 and
variance a2b2/c2, so that FK(z) = Φ

(

c
ab

(z−a2K/c2)
)

. Since a2b2/c2 < a2, we
see that FK(z) < Φ(z/a) for small enough z. Hence FK(z) − Φ(z/a) attains
a minimum value which is strictly smaller than 0. This minimum is strictly
larger than −1 because FK(z) > 0 for all z ∈ R.

To find the minimum, we compute the derivative of FK(z)−Φ(z/a) with
respect to z. It is not difficult to verify that the minimum is attained for

z = zmin = K − b

c

√

K2 + c2 log(c2/b2),

from which it follows that infz∈R FK(z) − Φ(z/a) + 1 = PK , with PK as
defined in (10). From the remarks above we know that 0 < PK < 1.

4.2 Conditioning on exactly kn successes

For the sake of completeness, we finally treat the case of conditioning on
the total number of successes being equal to kn. The situation is not very
interesting here.

38



Theorem 4.7. Let X̂n be a random vector having the conditional distribution
of Xn, conditioned on the event {Σn = kn}. Define Ŷn similarly. If all βi

(i ∈ {1, . . . ,M}) are equal, then X̂n and Ŷn have the same distribution for
every n ≥ 1. Otherwise, supP(X̂n = Ŷn) → 0 as n → ∞.

Proof. If all βi (i ∈ {1, . . . ,M}) are equal, then by Proposition 1.2 we have
that X̂n and Ŷn have the same distribution for every n ≥ 1. If βi 6= βj for

some i, j ∈ {1, . . . ,M}, then it can be shown that supP(X̂n ≤ Ŷn) → 0
as n → ∞, by a similar argument as in the proof of Lemma 4.3; instead of
Theorem 3.7 use Lemma 3.1.
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