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In [15℄, the authors initiated the study of dynamial perolation. Inthis model, with p �xed, the edges of G swith bak and forth aording toindependent 2 state Markov hains where 0 swithes to 1 at rate p and 1swithes to 0 at rate 1� p. In this way, if we start with distribution �p; thedistribution of the system is at all times �p. The general question studied in[15℄ was whether there ould exist atypial times at whih the perolationstruture looks di�erent than at a �xed time.We reord here some of the results from [15℄; (i) for any graph G and forany p < p(G), there are no times at whih perolation ours, (ii) for anygraph G and for any p > p(G), there are no times at whih perolation doesnot our, (iii) there exist graphs whih do not perolate for p = p(G), butnonetheless, for p = p(G), there are exeptional times at whih perolationours, (iv) there exist graphs whih perolate for p = p(G), but nonethe-less, for p = p(G), there are exeptional times at whih perolation doesnot our, and (v) for Zd with d � 19 with p = p(Zd), there are no timesat whih perolation ours. In addition, it has reently be shown in [23℄that for site perolation on the triangular lattie, for p = p = 1=2, there areexeptional times at whih perolation ours. Given this, a similar resultwould be expeted for Z2.The point of the present paper is to initiate a study of dynamial per-olation for interating systems where the edges or sites ip at rates whihdepend on the neighbors. We point out that in a di�erent diretion suhquestions in ontinuous spae, but without interations, related to ontin-uum perolation have been studied in [2℄.Ising model results. Preise de�nitions of the following Ising modelmeasures and the stohasti Ising model will be given in Setion 2. Fix anin�nite graph G = (S;E). Let �+;�;h be the plus state for the Ising modelwith inverse temperature � and external �eld h on G (this is a probabilitymeasure on f�1; 1gS). Let 	+;�;h denote the orresponding stohasti Isingmodel; (this is a stationary ontinuous time Markov hain on f�1; 1gS withmarginal distribution �+;�;h). Let C+ (C�) denote the event that there existsan in�nite luster of sites with spin 1 (�1) and let C+t (C�t ) denote the eventthat there exists an in�nite luster of sites with spin 1 (�1) at time t. It isknown that the family �+;�;h, is, for �xed �, stohastially inreasing (to bede�ned later) in h.Theorem 1.1 Consider a graph G = (S;E) of bounded degree. Fix � � 0and let h = h(�) be de�ned byh := inffh : �+;�;h(C+) = 1g:Then for all h > h, 	+;�;h(C+t ours for every t) = 12



and for all h < h 	+;�;h(9t � 0 : C+t ours ) = 0:If we modify h to be insteadh0 := supfh : �+;�;h(C�) = 1g;the same two laims hold with C+t replaed by C�t and with h < h0 and h > h0reversed.This result tells us what happens in the subritial and superritialases (with respet to h with � held �xed). It is the analogue of the easierProposition 1.1 in [15℄ where it is proved that if p < p (p > p), then, withprobability 1, there is perolation at no time (at all times).The following easy lemma gives us information about when h is non-trivial.Lemma 1.2 Assume the graph G has bounded degree and let � be arbitrary.Then h > �1. If p(site) < 1, then h < 1. Similar results hold if h isreplaed by h0.The following theorems, where we restrit to Zd, will only disuss thease h = 0. However, this will in many ases give us information about the\ritial" ase (�; h(�)) sine in a number of situations, h(�) = 0. Forexample, this is true on all Zd with d � 2 and � suÆiently large. Wealso mention that while the relationship between h and h0 in Theorem 1.1might in general be ompliated, for Zd, one easily has that h = �h0; thisfollows from the known fat that the plus and minus states are the samewhen h 6= 0. When h = 0, we will abbreviate �+;�;0 by �+;� and 	+;�;0 by	+;�. We point out that while �+;�;h is stohastially inreasing in h for�xed �; there is no suh monotoniity in � for �xed h; not even for h = 0:Therefore we must use a di�erent approah in the latter ase.We �rst study perolation of �1's and then perolation of 1's. Let�p(2) := inff� : 1Xl=1 l3l�1e�2�l <1g = log 32 :We will refer to �p(2) as the ritial inverse temperature of the Peierls regimefor Z2. The hoie of �p(2) might at �rst look quite arbitrary, but it isexatly what is needed to arry out a ontour argument (known as Peierlsargument) for Z2. For d � 3, there is a �p(d), suh that for � larger than�p(d), a similar (although topologially more ompliated) argument worksfor Zd: As a result of this \ontour argument", it is well known and easy toshow that for � > �p(d); we have that�+;�(C�) = 0: (1)3



Our next result is a dynamial version of (1) and we emphasize thatthis orresponds to the ritial ase as it is easy to hek that for these �'s,h(�) = 0.Theorem 1.3 For Zd with d � 2 and � > �p(d)	+;�(9t � 0 : C�t ours) = 0:It is well known that �p(d) � �(d), the latter being the ritial inversetemperature for the Ising model on Zd. For d = 2, Theorem 1.3 an beextended down to the ritial inverse temperature �(2). First, it is known(see [5℄) that on Z2, for all � �+;�(C�) = 0: (2)Our dynamial analogue for � > � is the following where we again pointout that this is also a ritial ase as it is easy to hek that for these �'s,we also have h(�) = 0.Theorem 1.4 For the stohasti Ising model 	+;� on Z2 with parameter� > �; 	+;�(9t � 0 : C�t ours) = 0:Interestingly, (1) is not always true for � > �(d) although, as stated, itis true for Z2 or � suÆiently large. In [1℄, it is shown that for Zd with larged; there exists �+ > �(d) suh that the probability in (1) is in fat 1 for all� < �+: Moreover, they show that for these �; there exists h > 0 with�+;�;h(C�) = 1:For suh �'s, this means that h0 > 0 and hene it immediately follows fromTheorem 1.1 that 	+;�(C�t ours for every t) = 1:Note that for these values of �, the ase h = 0 is a non-ritial ase.We next look at perolation of 1's under �+;�. In the above results, wehave not disussed the ase of perolation of �1's when � � �. However,by symmetry, this is the same as studying perolation of 1's in this ase andso we an now move over to the study of C+.First, it is well known that for any graph of bounded degree, �+;�;h 6=��;�;h) �+;�;h(C+) = 1: (This is proved in [3℄ for Zd; this argument extendsto any graph of bounded degree.) In partiular, for any graph G of boundeddegree and for � > �(G), �+;�(C+) = 1: (3)4



Our next result is a dynamial version of (3) for Zd. We mention thatthis result sometimes orresponds to a ritial ase and sometimes not. For� > �p(d) in Zd or � > �(2) in Z2, we have seen that h = 0 and so, inthese ases, this next result overs the ritial ase. However, as pointedout, for d large and � just a little higher than �, the result in [1℄ gives usthat h < 0 and hene in this ase, this next theorem already follows fromTheorem 1.1.Theorem 1.5 For the stohasti Ising model 	+;� on Zd with parameter� > �(d); 	+;�(C+t ours for every t) = 1:(The proof we give atually works for any graph of bounded degree).We mention that while � > � is a suÆient ondition for (3) to hold, it isertainly not neessary. For example, on Z3 we have that �+;0(C+) = 1 sine�+;0 = �1=2 and the ritial value for site perolation on Z3 is less than 1=2.The reason � appears is the onnetion between the Ising model and therandom luster model; � orresponds to the ritial value for perolation inthe orresponding random luster model (see [13℄).We are now left with the ase � � �. We will not be able to say toomuh sine it is not known in all ases whether one has perolation at a�xed time. We �rst however have the following easy result for d � 3. Wedo not prove this result sine it follows easily from the fat that the ritialvalue for site perolation on Zd is less than 1=2 for d � 3 as this gives easilythat h(�) < 0 for � suÆiently small and hene Theorem 1.1 is appliable.Note that the ase � = 0 follows from the result in [15℄ mentioned above.Proposition 1.6 For d � 3, there exists �1(d) > 0 suh that for all � <�1(d), we have that 	+;�(C+t ours for every t) = 1:Finally, due to work of Higuhi, we an determine what happens with� < � for Z2. It is shown in [16℄ that for Z2, for all � < �, we have thath(�) > 0. The following result follows from this fat and Theorem 1.1.Theorem 1.7 For d = 2, for all � < �, we have that	+;�(9t � 0 : C+t ours ) = 0:We note that even though it is known that for Z2, �+;�(C+) = 0, weannot onlude that 	+;�(9t � 0 : C+t ours ) = 0sine it is known (see [17℄) that h(�) = 0. In ontrast, based on the resultsin [23℄, it is interesting to ask 5



Question 1.8 For the graph Z2, is it the ase that	+;�(9t � 0 : C+t ours ) = 1?We �nally mention that interestingly it is also known (see again [17℄)that for � < �, �+;�;h(�)(C+) = 0.Contat proess results. Preise de�nitions of the following itemswill be given in Setion 2. Fix an in�nite graph G = (S;E). Consider theontat proess on a graph G = (S;E) with parameter �. Denote by ��the stohastially largest invariant measure, the so-alled \upper invariantmeasure" (this is a probability measure on f0; 1gS). Let 	� denote theorresponding stationary ontat proess (this is a stationary ontinuoustime Markov hain on f0; 1gS with marginal distribution ��). If 0 < �1 < �2;it is well known that ��1 is stohastially smaller than ��2 , denoted by��1 � ��2(see Setion 2 for this preise de�nition).Theorem 1.9 Consider the ontat proess 	� on a graph G = (S;E); withinitial and stationary distribution ��. Let �p be de�ned by�p := inff� : ��(C+) = 1g:We have that for all � > �p;	�(C+t ours for every t) = 1:In order for this theorem to be nonvauous, we need to know that �p <1 for at least some graph. First, the fat that there exists � suh that��(C+) > 0 for Td with d � 2 follows from [12℄. Here Td is the uniquein�nite onneted graph without iruits and in whih eah site has exatlyd + 1 neighbours; Td is ommonly known as the homogenous tree of orderd: Combined with a 0-1 law whih we develop, Proposition 4.2, we obtainthat �p <1 in this ase. For Zd with d � 2 (as well as for Td), it is provedin [22℄ that for large �, �� stohastially dominates high density produtmeasures whih immediately implies that �p <1 in these ases.When we prove Theorem 1.1, we will in fat, prove a more general the-orem whih holds for a large lass of systems. However, this proof will onlywork for models satisfying the so-alled FKG lattie ondition (whih weall \monotone" in this paper.) We now point out the important fat thatfor � < 2, in 1 dimension, the upper invariant measure for the ontat pro-ess, while having positive orrelations, is not monotone (see [20℄). Theseterms are de�ned in Setion 2. (One would also believe it is never monotonewhenever the measure is not Æ0.) Hene Theorem 1.9 does not follow fromthe generalization of Theorem 1.1 whih will ome later.6



�-movability. We now introdue the onepts of upwards and down-wards �-movability. While we mainly introdue these as a tehnial tool tobe used in our main results, it turns out that they are of interest in theirown right. In [4℄, the onept of upwards movability is studied for its ownsake and related to other well studied onepts suh as uniform insertiontolerane.Let S be a ountable set. Take any probability measure � on f�1; 1gSand let X be a f�1; 1gS valued random variable with distribution �. LetZ be a f�1; 1gS valued random variable with distribution �1�� and be in-dependent of X: De�ne X(�;�) by letting X(�;�)(s) = min(X(s); Z(s)) forevery s 2 S; and let �(�;�) denote the distribution of X(�;�): In a similar way,de�ne X(+;�) by letting X(+;�)(s) = max(X(s); Z(s)) for every s 2 S; whereZ has distribution �� and is independent of X. Denote the distribution ofX(+;�) by �(+;�):De�nition 1.10 Let (�1; �2) be a pair of probability measures on f�1; 1gS ;where S is a ountable set. Assume that�1 � �2:If �1 � �(�;�)2 ;then we say that this pair of probability measures is downwards �-movable.If the pair is downwards �-movable for some � > 0, we say that the pair isdownwards movable. Analogously, if�(+;�)1 � �2;then we say that the pair (�1; �2) is upwards �-movable and that it is upwardsmovable if the pair is upwards �-movable for some � > 0.For probability measures on f0; 1gS ; we have idential de�nitions.The relevane of downward (or upward) �-movability to our dynamialperolation analysis will be explained in Setion 5. In Setion 3, we willprove �-movability for general monotone systems whih will eventually leadto a proof of Theorem 1.1 (and its generalization). We now state a similarand key result for the ontat proess.Theorem 1.11 Let G be a graph of bounded degree, 0 < �1 < �2 and��1 ; ��2 be the upper invariant measures for the ontat proess on f0; 1gSwith parameters �1 and �2 respetively. Then (��1 ; ��2) is downwards mov-able.
7



We �nally mention how the above questions that we study fall into theontext of lassial Markov proess theory. Let (
;F ;P) be the probabilityspae where a stationary Markov proess fXtgt�0 taking values in somestate spae S is de�ned. Letting � denote the distribution of Xt (for any t),onsider an event A � S with �(A) = 1. Let At be the event that A oursat time t: We say that A is a dynamialy stable event if P(At 8t � 0) = 1:In Markov proess terminology, this is equivalent to saying that A hasapaity zero. All the questions in this paper deal with showing, for variousmodels and parameters, that the event that there exists/there does not existan in�nite onneted omponent of sites whih are all open is dynamiallystable.The rest of this paper is divided into 9 setions. In Setion 2, wewill give all neessary preliminaries and preise de�nitions of our models.Setions 3 and 4 will deal with the onept of �-movability. In Setion 3, wedevelop what will be needed to prove Theorem 1.1 and its generalization.In Setion 4, we will prove Theorem 1.11 (whih is the key to Theorem1.9) as well as give a proof that �p < 1 for trees. In Setion 5, we prove2 elementary lemmas whih relate the notion of �-movability to dynamialquestions. In the remaining setions, proofs of the remaining results aregiven. We note that the proof of Theorem 1.4 will use the proof of Theorem1.5 and hene will ome afterwards.We end with one bit of notation. If � is a probability measure on someset U , we write X � � to mean that X is a random variable taking valuesin U with distribution �.2 Models and de�nitionsBefore presenting the interating partile systems disussed in this paper wewill present some de�nitions and results related to stohasti domination.Let S be any ountable set. For �; �0 2 f�1; 1gS we write � � �0 if �(s) ��0(s) for every s 2 S: An inreasing funtion f is a funtion f : f�1; 1gS ! Rsuh that f(�) � f(�0) for all � � �0: For two probability measures �; �0 onf�1; 1gS we write � � �0 if for every ontinuous inreasing funtion f wehave that �(f) � �0(f): (�(f) is shorthand for R f(x)d�(x).) When f�1; 1gSis replaed by f0; 1gS ; we have idential de�nitions. Strassens Theorem (see[19℄, page 72) states that if � � �0, then there exist random variables X;X 0with distribution �; �0 respetively suh that X � X 0 a.s.A very useful result is the so alled Holley's inequality, whih appeared�rst in [18℄. We will present a variant of the theorem by Holley; it is notthe most general but is suÆient for our purposes.Theorem 2.1 Take S to be a �nite set. Let �, �0 be probability measures onf�1; 1gS whih assign positive probability to all on�gurations � 2 f�1; 1gS :8



Assume that�(�(s) = 1j�(S n s) = �) � �0(�(s) = 1j�(S n s) = �0)for every s 2 S and � � �0 where �; �0 2 f�1; 1gSns: Then � � �0:Proof. See [9℄ or [13℄ for a proof. QEDTwo properties of probability measures whih are often enounteredwithin the �eld of interating partile systems are the monotoniity propertyand the property of positive orrelations presented below.De�nition 2.2 Take S to be a �nite set. A probability measure � onf�1; 1gS whih assigns positive probability to every � 2 f�1; 1gS is alledmonotone if for every s 2 S and � � �0 where �; �0 2 f�1; 1gSns;�(�(s) = 1j�(S n s) = �) � �(�(s) = 1j�(S n s) = �0):We point out immediately, that it is known that this is equivalent to theso-alled FKG lattie ondition.De�nition 2.3 A probability measure � on f�1; 1gS is said to have positiveorrelations if for all bounded inreasing funtions f; g : f�1; 1gS ! R, wehave �(fg) � �(f)�(g):The following important result is sometimes known as the FKG inequal-ity (see [7℄).Theorem 2.4 Take S to be a �nite set. Let � be a monotone probabilitymeasure on f�1; 1gS whih assigns positive probability to every on�gura-tion. Then � has positive orrelations.Proof. This was originally proved in [7℄, see also [9℄ for a proof. QEDIn this setion and also later in this paper we will talk about onvergeneof probability measures. Convergene will always mean weak onvergene,where f0; 1gS is given the produt topology.
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2.1 The Ising modelTake G = (S;E); where jSj <1: The Ising measure ��;h on f�1; 1gS at in-verse temperature � � 0; external �eld h and with free boundary onditionsis de�ned as follows. For any on�guration � 2 f�1; 1gS ; letH�;h(�) = �� Xft;t0g2Et;t02S �(t)�(t0)� hXt2S �(t): (4)H�;h is alled the Hamiltonian. De�ne ��;h by assigning the probability��;h(�) = e�H�;h(�)Z (5)to any on�guration � 2 f�1; 1gS where Z is a normalization onstant. Ofourse Z depends on the graph and the values � and h, but this will not beimportant for us and therefore not reeted in the notation.Take Sn := �n+1 = f�n � 1; : : : ; n + 1gd and En to be the set of allnearest neighbor pairs of Sn: Given a on�guration � on f�1; 1gZdn�n ; let,for � 2 f�1; 1g�n ;H�;�;hn (�) = �� Xft;t0g2Ent;t02�n �(t)�(t0)� h Xt2�n �(t)� � Xft;t0g2Ent2�nt02�n+1n�n �(t)�(t0) (6)be our Hamiltonian. Here � is alled a boundary ondition. Again we de�nea probability measure using (5) but using the Hamiltonian of (6) instead.This Ising measure will be denoted by ��;�;hn : The ases � � 1 and � � �1are espeially important and the orresponding Ising measures are denotedby �+;�;hn and ��;�;hn respetively. We view �+;�;hn (��;�;hn ) as a probabilitymeasure on f�1; 1gZd by letting, with probability 1, the on�guration beidentially 1 (�1) outside �n. It is known (see [19℄, page 189) that thesequenes f�+;�;hn g and f��;�;hn g onverge as n tends to in�nity; these limitsare denoted by �+;�;h and ��;�;h.The same kind of onstrution an be arried out on any in�nite on-neted loally �nite graph G = (S;E): One de�nes a Hamiltonian analogousto the one in (6) but with �n replaed by any � � S where j�j <1: With� � 1 or � � �1, one then onsiders the orresponding limits of Ising mea-sures as � " S; the limit turning out to be independent of the partiularhoie of sequene. See for instane [9℄ for how this is arried out in detail.Fix h = 0 and abbreviate �+;�;0 and ��;�;0 by �+;� and ��;�. It is wellknown ([8℄, [9℄) that for any graph, there exists � 2 [0;1℄ suh that for0 � � < �, we have that ��;� = �+;� (and there is then a unique so alledGibbs state) and for � > �, ��;� 6= �+;�: For Zd with d � 2; and manyother graphs, � 2 (0;1): � is sometimes referred to as the ritial inverse10



temperature for phase transition in the Ising model. Furthermore in [14℄,the author shows that if G is of bounded degree, the ondition � < 1 isequivalent to the ondition p < 1; where p is the ritial parameter valuefor site perolation on G: It is easy to see that for any graph of boundeddegree p > 0 (see the proof of Theorem 1.10 of [10℄). This in turn impliesvia the onnetion between the random luster model and the Ising model,desribed below, that � > 0 for any graph of bounded degree.2.2 Spin Systems.A on�guration � 2 f�1; 1gS an be seen as partiles on a disrete set Shaving one of two di�erent \spins" represented by �1 and 1: To this wewill add a stohasti dynamis, and assume that the system is desribedby \ip rate intensities" whih we will denote by fC(s; �)gs2S; �2f�1;1gS :C(s; �) represents the rate at whih site s hanges its state when the presenton�guration is �: Of ourse C(s; �) � 0 8s 2 S; � 2 f�1; 1gS ; and weassume that the interation is nearest neighbour in the sense that the iprate of a site s 2 S only depends on the on�guration � at s and at sites twith fs; tg 2 E: We will limit ourselves to only allow one site ip in everytransition and we will only onsider ip rate intensities suh thatsups;� C(s; �) <1:In many ases we will onsider translation invariant systems and then thislast ondition will hold trivially. Furthermore we will always assume thetrivial ondition that for every s 2 Ssup�:�(s)=0C(s; �(s)) > 0; sup�:�(s)=1C(s; �(s)) > 0:We will all suh an objet a spin system (see [19℄ or [6℄ for results onerninggeneral spin systems). Given suh rates, one an obtain a Markov proess	 on f�1; 1gS governed by these ip rates; see [19℄. Suh a Markov proesswith a spei�ed initial distribution � on f�1; 1gS will be denoted by 	�:Given a Markov proess, � will be alled an invariant distribution for theproess if the projetions of 	� onto f�1; 1gS at any �xed time t � 0 is�: In this ase, 	� will be a stationary Markov proess on f�1; 1gS all ofwhose marginal distributions are �: Of ourse the state spae f�1; 1gS anbe exhanged for either f0; 1gS or f0; 1gE .Sometimes we will work with two di�erent sets of ip ratesfC1(s; �)gs2S; �2f�1;1gS and fC2(s; �)gs2S; �2f�1;1gS ; governing two Markovproesses 	1 and 	2 respetively. We will write C1 � C2 if the followingonditions are satis�ed;C2(s; �2) � C1(s; �1) 8s 2 S; 8�1 � �2 s.t. �1(s) = �2(s) = 0; (7)11



and C1(s; �1) � C2(s; �2) 8s 2 S; 8�1 � �2 s.t. �1(s) = �2(s) = 1: (8)The point of C1 � C2 is that a oupling of 	1 and 	2 will then exist forwhih f(�; Æ) : �(s) � Æ(s)8s 2 Sg is invariant for the proess; see [19℄.2.3 Stohasti Ising modelsWe will now briey disuss stohasti Ising models. We will omit mostdetails; for an extensive disussion and analysis see again [19℄. ConsiderGn = (Sn; En) de�ned in the subsetion 2.1. Given � and h, it is possibleto onstrut ip rates C+n on f�1; 1gSn for whih �+;�;hn is reversible andinvariant. We denote by 	+;�;hn the orresponding stationary Markov proesswith initial distribution �+;�;hn : One possible hoie of ip rate intensities arethat for every s 2 �n and � 2 f�1; 1gS ;C+n (s; �) = exp[��( Xt2�n:ft;sg2En �(t)�(s) + Xt2�n+1n�n:ft;sg2En �(s))� h�(s)℄:Sites in �n+1 n �n are kept �xed at 1. Observe that if s 2 �n�1; the seondsum is over an empty set. A straightforward alulation givesC+n (s; �)�+;�;hn (�) = C+n (s; �s)�+;�;hn (�s); (9)where �s(t) = � �(t) if t 6= s��(t) if t = s:This shows that indeed �+;�;hn is reversible and invariant for C+n . Any familyof spin rates satisfying (9) is alled a stohasti Ising model (on our �niteset). One an show that there exists a limiting distribution 	+;�;h of 	+;�;hnwhen n tends to in�nity; see [19℄, Theorem 2.2, page 17 and Theorem 2.7,page 139. Furthermore 	+;�;h is a stationary Markov proess on f�1; 1gZdwith marginal distribution �+;�;h governed by ip rate intensitiesC(s; �) = exp(�� Xt2Zd:ft;sg2E �(t)�(s) � h�(s)); (10)see [19℄ Theorem 2.7 page 139. It is also possible to onstrut 	+;�;h diretlyon f�1; 1gZd without going through the limiting proedure. Furthermorethere are several possible hoies of ip rate intensities that an be usedto onstrut a stationary and reversible Markov proess on f�1; 1gZd withmarginal distribution �+;�;h: In [19℄, a stohasti Ising model is de�ned to be12



any spin system with ip rate intensities fC(s; �)gs2Zd;�2f�1;1gZd satisfyingthat for eah s 2 ZdC(s; �) exp(� Xft;sg2Et2Zd �(t)�(s) + h�(s)) (11)is independent of �(s): Therefore, when we refer to a stohasti Ising model	+;�;h with marginal distribution �+;�;h, we will have this de�nition in mind.It is partiularly easy to see that (11) (or the ondition of detailed balaneas it is often referred to) is satis�ed for the ip rate intensities of (10) butthere are many other rates satisfying this. It is known that the set of soalled Gibbs states are exatly the same as the lass of reversible measureswith respet to the ip rates satisfying (11); see [19℄ page 190-196: Note alsothat the ondition spei�ed in (11) with Zd replaed by �n is equivalent tothat of (9) (modi�ed with the boundary ondition removed).While we de�ned above stohasti Ising models on f�1; 1gZd; this on-strution an be done on more general graphs (see [19℄).2.4 The random luster modelUnlike all other models in this paper, the random luster model deals withon�gurations on the edges E of a graph G = (S;E): We will review thede�nition of the regular random luster measure on general �nite graphsand the \wired" random luster measure on �n � Zd: We will also reallthe limiting measures and in the next subsetion the onnetion betweenthe random luster model and the Ising model. In doing so we will followthe outlines of [9℄ and [13℄ losely.Take a �nite graph G = (S;E): De�ne the random luster measure �p;qGon f0; 1gE with parameters p 2 [0; 1℄ and q > 0 as the probability measurewhih assigns to the on�guration � 2 f0; 1gE the probability�p;qG (�) = qk(�)Z Ye2E p�(e)(1� p)1��(e): (12)Here Z is again a normalization onstant and k(�) is the number of onnetedomponents of �: From now on we will always take q = 2 and therefore wewill suppress q in the notation.Take Gn = (Sn; En); where Sn = �n+1 � Zd and En is the set of allnearest neighbour pairs of �n+1: Write �pn for �pGn ; and de�ne~�pn(�) = �pn(�j all edges of En with both end sites in �n+1 n �n are present):(13)This is the so alled \wired" random luster measure. It is alled \wired"sine all edges of the boundary are present. It is immediate from the de�ning13



equations (12) and (13) that for e 2 En and any � 2 f0; 1gEnne~�pn(�(e) = 1j�(En n e) = �) = 8<: p; if the endpoints of e areonneted in �;p2�p otherwise. (14)One an show (see [9℄ or [13℄) that when n tends to in�nity, the probabil-ity measures f~�pngn2N+ onverge to a probability measure ~�p: Furthermore,the onstrution of ~�pn on f0; 1gEn an be done on any �nite subgraph byonneting all sites of the boundary of the graph with eah other. As aonsequene, we an also de�ne random luster measures on more generalgraphs than Zd; see for example [11℄.2.5 The random luster model and the Ising modelTake Gn = (Sn; En) as in Setion 2.4. As in [13℄, let Ppn be the probabilitymeasure on f�1; 1; gSn � f0; 1gEn de�ned in the following way.1. Assign eah site of �n+1 n �n and every edge with both endpoints in�n+1 n �n the value 1.2. Assign eah site of �n the value 1 or �1 with equal probability, assigneah edge with not more than one endpoint in �n+1 n �n the value 0or 1 with probabilities 1� p and p respetively. Do this independentlyfor all sites and edges.3. Condition on the event that no two sites with di�erent spins have anopen edge onneting them.One an then hek that Ppn(�; f0; 1gEn ) = �+;�n (�) with � = � log(1 �p)=2; and that Ppn(f�1; 1gSn ; �) = ~�pn(�): Here, Ppn(�; f0; 1gEn ) is just themarginal in the �rst oordinate of Ppn: The same kind of onstrution anbe arried out on any �nite graph G = (S;E):2.6 The ontat proessConsider a graph G = (S;E) of bounded degree. In the ontat proess thestate spae is f0; 1gS . Let � > 0; and de�ne the ip rate intensities to beC(s; �) = 8<: 1 if �(s) = 1� X(s0;s)2E �(s0) if �(s) = 0:If we let the initial distribution be � � 1; the distribution of this proessat time t whih we will denote by Æ1T�(t) is known to onverge as t tendsto in�nity. This is simply beause it is a so alled \attrative" proess and� � 1 is the maximal state and fÆ1T�(t)g is stohastially dereasing; see14



[19℄ page 265. This limiting distribution will be referred to as the upperinvariant measure for the ontat proess with parameter � and will bedenoted by ��: We then let 	� denote the stationary Markov proess onf0; 1gS with initial (and invariant) distribution ��:3 �-movability for monotone measuresIn this setion, we prove movability results for lasses of monotone measures.The �nite ase is overed by Lemma 3.3, while the ountable ase is disussedin Proposition 3.4. In this setion, we will always assume that our measureshave full support.For any jSj < 1; s 2 S, � 2 f0; 1gSns and probability measure � onf0; 1gS write �(�;�)(ij�) for �(�;�)(�(s) = ij�(S n s) = �); �(�;�)(i \ �) for�(�;�)(f�(s) = ig\f�(S ns) = �g) and �(�;�)(�) for �(�;�)(�(S ns) = �): Here,� an represent either + or � and i 2 f0; 1g: Note that s is suppressed inthe notation and so should be understood from ontext.We begin with an easy lemma whose proof is left to the reader. Theidea is that if the on�guration outside of s is � under �(�;�), it must havebeen at least as large under � \before ipping some 1's to 0's"; then usemonotoniity.Lemma 3.1 Assume that � is a monotone probability measure on f0; 1gSwhere jSj < 1: Take s 2 S and let � 2 f0; 1gSns: Then, for any � > 0; wehave that �(�;�)(1j�) � (1� �)�(1j�)and that �(+;�)(0j�) � (1� �)�(0j�):The next lemma will be used to prove lemma 3.3.Lemma 3.2 Assume that � is a monotone probability measure on f0; 1gSwhere jSj <1: For any � > 0; �(�;�) is also monotone.Proof. Let s 2 S be arbitrary, X � � and X(�;�) � �(�;�): For any Æ; � 2f0; 1gSns de�ne the probability measures �Æ and �� on f0; 1gSns by letting�Æ(A) = P(X 2 AjX(�;�)(S n s) � Æ) and ��(A) = P(X 2 AjX(�;�)(S n s) ��) for every event A in f0; 1gSns; respetively. We will prove that�Æ � �� 8Æ � �: (15)This will give us (sine P(X(s) = 1jX(S n s) � �) is an inreasing funtionof �) thatP(X(�;�)(s) = 1jX(�;�)(S n s) � �)15



= (1� �)Z~�2f0;1gSns P(X(s) = 1jX(S n s) � ~�)d��(~�)� (1� �)Z~�2f0;1gSns P(X(s) = 1jX(S n s) � ~�)d�Æ(~�)= P(X(�;�)(s) = 1jX(�;�)(S n s) � Æ):Sine s was hoosen arbitrarily this would prove the statement.We now prove (15). De�ne for � � ~� d(~�; �) := jft 2 S n s : ~�(t) =1gj � jft 2 S n s : �(t) = 1gj and d(~�; 0) = jft 2 S n s : ~�(t) = 1gj: Herej � j denotes ardinality. Let �Sns(�) = P(X(S n s) � �) and de�ne �(�;�)Snssimilarly. We have that for � � ~� :��(~�) (16)= P(X(�;�)(S n s) � �jX(S n s) � ~�) �Sns(~�)�(�;�)Sns (�)= �d(~�;�)(1� �)d(�;0) �Sns(~�)�(�;�)Sns (�) : (17)It is well known that � being monotone implies that for every ~Æ; ~��Sns(~� _ ~Æ)�Sns(~� ^ ~Æ) � �Sns(~�)�Sns(~Æ): (18)By a simple modi�ation of Theorem 2.9 pg 75 of [19℄, it is enough for usto show that ��(~� _ ~Æ)�Æ(~� ^ ~Æ) � ��(~�)�Æ(~Æ) (19)for all ~� � � and ~Æ � Æ to show (15). An elementary alulation shows thatd(~� _ ~Æ; �) + d(~� ^ ~Æ; Æ) = d(~�; �) + d(~Æ; Æ): (20)We therefore get��(~� _ ~Æ)�Æ(~� ^ ~Æ)= �d(~�_~Æ;�)+d(~�^~Æ;Æ)(1� �)d(�;0)+d(Æ;0) �Sns(~� _ ~Æ)�(�;�)Sns (�) �Sns(~� ^ ~Æ)�(�;�)Sns (Æ)� �d(~�;�)+d(~Æ;Æ)(1� �)d(�;0)+d(Æ;0) �Sns(~�)�(�;�)Sns (�) �Sns(~Æ)�(�;�)Sns (Æ) = ��(~�)�Æ(~Æ);where (16) is used in the �rst and last equality and equations (18) and (20)are used in the inequality. QED16



Lemma 3.3 Let �1; �2 be probability measures on f0; 1gS where jSj < 1:Assume that �2 is monotone and thatA := infs2S�2f0;1gSns [�2(�(s) = 1j�(S n s) � �)� �1(�(s) = 1j�(S n s) � �)℄ > 0:Then for any hoie of � > 0; suh thatA > 11� � � 1;we have �1 � �(�;�)2 :Hene (�1; �2) is downwards movable.Proof. Monotoniity of �2, Lemma 3.1, the de�nition of A and our hoieof � give us that for any s 2 S and � 2 f0; 1gSns�(�;�)2 (1j�)� (1� �)�2(1j�) � (1� �)(A+ �1(1j�))� (1� �)�1(1j�)1� � = �1(1j�):By Lemma 3.2, �(�;�)2 is monotone and so 8~� � �,�1(1j~�) � �(�;�)2 (1j~�) � �(�;�)2 (1j�):The proof is ompleted by the use of Holley's inequality, Theorem 2.1.QEDProposition 3.4 Let S be any �nite or ountable set and onsider(Sn)n2N+ ; a olletion of sets suh that jSnj < 1 8n 2 N+ and Sn " S:Let (�1;n)n2N+ ; (�2;n)n2N+ ; be two olletions of probability measures, where�1;n; �2;n are probability measures on f0; 1gSn for every n 2 N+ . Further-more, assume that all of the probability measures (�1;n)n2N+ ((�2;n)n2N+ )are monotone, that �1;n ! �1 and that �2;n ! �2: SetAn := infs2Sn�2f0;1gSnns [�2;n(�(s) = 1j�(S n s) � �)� �1;n(�(s) = 1j�(S n s) � �)℄:If infn2N+ An > 0;then (�1; �2) is upwards (downwards) movable.17



Proof. Take � > 0 suh thatinfn2N+ An > 11� � � 1:With this hoie of �; Lemma 3.3 says that (�1;n; �2;n) is upwards (down-wards) �-movable. Sine �1;n ! �1 and �2;n ! �2 we easily get that�(�;�)2;n ! �(�;�)2 and �(+;�)1;n ! �(+;�)1 : Furthermore sine the relations�1;n � �(�;�)2;nand �(+;�)1;n � �2;nare easily seen to be preserved under weak limits, we get that�1 � �(�;�)2 and �(+;�)1 � �2: QED4 �-movability for the ontat proess and a 0-1LawThe onditions in our next proposition might seem overly tehnial; however,these represent the essential features of the ontat proess (after a smallsuitable time resaling) and therefore we feel it is instrutive to highlightthese features. In Proposition 4.1 and Lemmas 5.1, 5.2 and 8.1 we willuse the so-alled graphial representation to de�ne our proesses; see forinstane [19℄ page 172.Proposition 4.1 Let �1 and �2 be two probability measures de�ned onf0; 1gS ; where S is a ountable set. Assume that �1 � �2 and that thereexists two stationary Markov proesses 	1 and 	2; governed by ip rateintensities fC1(s; �1)gs2S;�12f0;1gS and fC2(s; �2)gs2S;�22f0;1gS respetively,and with marginal distributions �1 and �2: Assume that C1 � C2 (onditions(7) and (8) of the introdution). Consider the following onditions;1. There exists an �1 > 0 suh thatC2(s; �2)� C1(s; �1) � �1 (21)8s 2 S; 8�2 � �1 s.t. �2(s) = 0 and C1(s; �1) 6= 0:2. There exists an �2 > 0 suh thatC1(s; �1)� C2(s; �2) � �2 (22)8s 2 S; 8�2 � �1 s.t. �1(s) = 1 and C2(s; �2) 6= 0:18



3. There exists an �3 > 0 suh thatC1(s; �1) � �3 8s 2 S; 8�1 s.t. �1(s) = 1; (23)4. There exists an �4 > 0 suh thatC2(s; �2) � �4 8s 2 S; 8�2 s.t. �2(s) = 0: (24)If onditions 1 2 and 3 are satis�ed, then (�1; �2) is downwards movable.If onditions 1 2 and 4 are satis�ed, then (�1; �2) is upwards movable.Proof. We will prove the �rst statement, the seond follows by symmetry.De�ne � := sups;�2:�2(s)=0C2(s; �2) + sups;�1:�1(s)=1C1(s; �1):Our aim is to onstrut a oupling of the proesses fX1;tgt�0 � 	1 andfX2;tgt�0 � 	2 suh that X1;t � X2;t 8t � 0 in suh a way that we provethe proposition. Before presenting the atual oupling we will disuss theidea behind it. For every site s 2 S assoiate an independent Poisson proesswith parameter �: Next, let fUs;kgs2S;k�1 and fU 0s;kgs2S;k�1 be independentuniform [0; 1℄ random variables also independent of the Poisson proesses.If � is an arrival time for the Poisson proess at site s, we write Us;� for Us;kwhere k is suh that � is the kth arrival of the Poisson proess at site s.Now, let � be an arrival time for the Poisson proess assoiated to a site s:For i 2 f1; 2g, let Xi;�� and Xi;�+ denote the on�gurations before and afterthe arrival. We will let the outome of Us;� deide what happens with thefX2;tgt�0 proess at time t = �; and then we will let U 0s;� together with Us;�deide what happens with the fX1;tgt�0 proess at time t = �: As we willsee, we will do this so that X1;t � X2;t for all t � 0. Furthermore, we will dothis in suh a way that there exists an � 2 (0; 1) suh that if U 0s;� � 1��; thenX1;�+(s) = 0 regardless of the outome of Us;� : Consider now the proessfX�t gt�0 we get by taking X�0(s) = 1 for every s 2 S and letting fX�t (s)gt�0be updated at every arrival time � for the Poisson proess assoiated to s;and updated in suh a way that X��+(s) = 0 if U 0s;� � 1� �; and X��+(s) = 1if U 0s;� < 1 � �: Of ourse the distribution of X�t will onverge to �1��:Observe that whenever X�t (s) = 0 we have that X1;t(s) = 0: Therefore wean onlude that X1;t � min(X2;t;X�t ) 8t � 0: (25)Furthermore sine the proess fX�t gt�0 does not depend on any Us;� wehave that X�t (s) is onditionally independent of X2;t if there has been anarrival for the Poisson proess assoiated to s before time t: Let si; i 2f1; : : : ; ng be distint sites in S and let At be the event that all Poisson19



proesses assoiated to s1 through sn have had an arrival by time t: Ofourse P(At) = (1� e��t)n and so we get thatP(X2;tX�t (s1) = � � � = X2;tX�t (sn) = 1)= P(X2;tX�t (s1) = � � � = X2;tX�t (sn) = 1jAt)P(At)+P(X2;tX�t (s1) = � � � = X2;tX�t (sn) = 1jAt)P(At)= P(X2;t(s1) = � � � = X2;t(sn) = 1jAt)�P(X�t (s1) = � � � = X�t (sn) = 1jAt)P(At)+P(X2;tX�t (s1) = � � � = X2;tX�t (sn) = 1jAt)P(At)= P(X2;t(s1) = � � � = X2;t(sn) = 1jAt)P(At)(1� �)n+P(X2;tX�t (s1) = � � � = X2;tX�t (sn) = 1jAt)P(At)= P(fX2;t(s1) = � � � = X2;t(sn) = 1g \ At)(1� �)n+P(X2;tX�t (s1) = � � � = X2;tX�t (sn) = 1jAt)P(At)� (P(X2;t(s1) = � � � = X2;t(sn) = 1)� P(At ))(1� �)n+P(X2;tX�t (s1) = � � � = X2;tX�t (sn) = 1jAt)P(At)= P(X2;t(s1) = � � � = X2;t(sn) = 1)(1 � �)n+P(At)(P(X2;tX�t (s1) = � � � = X2;tX�t (sn) = 1jAt)� (1� �)n)= �(�;�)2 (�(s1) = � � � = �(sn) = 1)+P(At)(P(X2;tX�t (s1) = � � � = X2;tX�t (sn) = 1jAt)� (1� �)n)t!1�! �(�;�)2 (�(s1) = � � � = �(sn) = 1):In additionP(X2;t(s1) = � � � = X2;t(sn) = 1 \At)(1� �)n� P(X2;t(s1) = � � � = X2;t(sn) = 1)(1 � �)n= �(�;�)2 (�(s1) = � � � = �(sn) = 1):Hene, by inlusion exlusion, we have that the distribution ofmin(X2;t;X�t ) approahes �(�;�)2 as t tends to in�nity. So by �rst taking thelimit in (25), we get that �1 � �(�;�)2 , as desired.Now to the onstrution. Take X1;0 � �1; X2;0 � �2; suh that X1;0 �X2;0: Let � be an arrival time for the Poisson proess assoiated to s: TakeUs;� and U 0s;� : The following transition rules apply:X2;�� X2;�+ if0 1 Us;� � C2(s;X2;�� )�1 0 Us;� � ��C2(s;X2;�� )� :It is easy to hek that the proess fX2;tgt�0 thus onstruted will havethe right ip-rate intensities. The onstrution of fX1;tgt�0 is slightly more20



ompliated. If C2(s;X2;��) = 0 and X2;��(s) = 0 then it follows from(7) that C1(s;X1;��) = 0; and in that ase we interpret C1(s;X1;��)C2(s;X2;��) as 0:Observe that C2(s;X2;��) an be 0 when X2;��(s) = 1 but it will not auseany problems. With these observations in mind, these are the transitionrules we apply:(X1;�� ;X2;��) (X1;�+ ;X2;�+) if(0; 0) (1; 1) Us;� � C2(s;X2;��)� and U 0s;� � C1(s;X1;��)C2(s;X2;��)(0; 0) (0; 1) Us;� � C2(s;X2;��)� and U 0s;� > C1(s;X1;��)C2(s;X2;��)(0; 0) (0; 0) otherwise(0; 1) (0; 0) Us;� � ��C2(s;X2;��)�(0; 1) (1; 1) Us;� < sups;�2:�2(s)=0C2(s; �2)� andU 0s;� � C1(s;X1;��)sups;�2:�2(s)=0C2(s; �2)(0; 1) (0; 1) otherwise(1; 1) (0; 0) Us;� � ��C2(s;X2;��)�(1; 1) (0; 1) Us;� < ��C2(s;X2;�� )� andU 0s;� � ��C1(s;X1;��)��C2(s;X2;��)(1; 1) (1; 1) otherwiseIt is not diÆult to hek that all ip rate intensities are orret andthat X1;t � X2;t for all t � 0. Observe that by the de�nition of �, theevents nUs;� � ��C2(s;X2;��)� o and 8><>:Us;� < sups;�2:�2(s)=0C2(s; �2)� 9>=>; are dis-joint when (X1;�� ;X2;��) = (0; 1):We now want to show that there exists an � > 0 so that U 0s;� � 1 ��; implies that X1;�+(s) = 0. Note that if (X1;�� ;X2;��) = (0; 0) andC1(s;X1;��) > 0 () C2(s;X2;��) > 0) thenC1(s;X1;��)C2(s;X2;��) � C2(s;X2;��)� �1C2(s;X2;��) � 1� �1sups;�2:�2(s)=0C2(s; �2) < 1and if (X1;�� ;X2;��) = (0; 0) and C1(s;X1;��) = 0 thenC1(s;X1;��)C2(s;X2;��) = 0:21



Furthermore if (X1;�� ;X2;��) = (0; 1) and C1(s;X1;��) > 0, thenC1(s;X1;��)sups;�2:�2(s)=0C2(s; �2) � 1� �1sups;�2:�2(s)=0C2(s; �2) < 1while again if (X1;�� ;X2;��) = (0; 1) and C1(s;X1;��) = 0, then the 0 neverhanges to a 1. Finally if (X1;�� ;X2;��) = (1; 1) and C2(s;X2;��) > 0() C1(s;X1;��) > 0), then�� C1(s;X1;��)�� C2(s;X2;��) � �� C2(s;X2;��)� �2�� C2(s;X2;��) � 1� �2�� C2(s;X2;��) � 1� �2� ;and if (X1;�� ;X2;��) = (1; 1) and C2(s;X2;��) = 0;�� C1(s;X1;��)�� C2(s;X2;��) � �� �3� = 1� �3� < 1:Therefore, wheneverU 0s;� � max0B�1� �1sups;�2:�2(s)=0C2(s; �2) ; 1� �2� ; 1� �3�1CA ;we have that X1;�+(s) = 0 regardless of the outome of Us;� : Therefore(�1; �2) is downwards �-movable where� := 1�max0B�1� �1sups;�2:�2(s)=0C2(s; �2) ; 1� �2� ; 1 � �3�1CA= min0B� �1sups;�2:�2(s)=0C2(s; �2) ; �2� ; �3�1CA : QEDProof of Theorem 1.11. Take Æ > 0 suh that �1(1+Æ) < �2 and onsiderthe proess fXtgt�0 onstruted in the following way. Take X0 � 1 and letthe proess evolve with ip rate intensitiesC1(s; �) = 8<: 1 + Æ if �(s) = 1�1(1 + Æ)Xs0�s�(s0) if �(s) = 0: (26)Denote the limiting distribution of Xt as t tends to in�nity by �1+Æ;�1(1+Æ):It is easy to see that this proess is just a time-saling of the ontat proess22



onstruted in Setion 2.6 with parameter �1: Reall that that proess hadlimiting distribution ��1 ; the upper invariant measure for the ontat pro-ess. Thus we have ��1 = �1+Æ;�1(1+Æ): By Proposition 4.1 with C1 as aboveand C2 as in Setion 2.6 with parameter �2; there exists an � > 0 suh that�1+Æ;�1(1+Æ) � �(�;�)�2 :Hene (��1 ; ��2) is downwards movable. QEDFor the rest of this setion we will only onsider the graph Td for d � 2:The following is a 0-1 law for the upper invariant measure for the ontatproess.Proposition 4.2 Let A � f0; 1gTd where d � 2 be a set whih is invariantunder all graph automorphisms on Td. Then, for � > 0; we have that��(A) 2 f0; 1g:Proof. Let � > 0: By elementary measure theory, there exists a ylinderevent B depending on �nitely many oordinates suh that��(A�B) � �: (27)Let suppB denote the �nite number of oordinates with respet to whihB is measurable. Letting fT�(t)gt�0 denote the Markov semigroup for theontat proess with parameter �, we have that Æ1T�(t)! �� and also that�� � Æ1T�(t) for every t � 0: Choose t so that for all (equivalently some)sites s Æ1T�(t)(�(s) = 1) � ��(�(s) = 1) + �2jsuppBj :It follows easily that if m is any oupling of Æ1T�(t) and �� whih is onen-trated on f(�; Æ) : � � Æg, then for any �nite set S of sitesm(f(�; Æ) : �(s) 6= Æ(s) ours for some s 2 S) � jSj�2jsuppBj :In partiular, if E is any event depending on at most 2jsuppBj sites, thenjÆ1T�(t)(E) � ��(E)j � �: (28)For this �xed t, Theorem 4.6 page 35 of [19℄ shows that there exists anautomorphism  2 AUT (Td) suh thatjÆ1T�(t)(B \ B)� Æ1T�(t)(B)Æ1T�(t)(B)j � �: (29)23



Furthermore, sine �� is invariant under automorphisms (27) implies that��(A�B) � �;and sine A = A; we have ��(A�B) � �:It follows that ��(B�B) � ��(A�B) + ��(A�B) � 2�:Next, (28) implies thatjÆ1T�(t)(B�B)� ��(B�B)j � �;and so Æ1T�(t)(B�B) � 3�: (30)We get that j��(A)� ��(A)2j = j��(A)� ��(A)��(A)j� j��(B)� ��(B)��(B)j+ 3�� jÆ1T�(t)(B)� Æ1T�(t)(B)Æ1T�(t)(B)j+ 6�� jÆ1T�(t)(B)� Æ1T�(t)(B \ B)j+ 7�� Æ1T�(t)(B�B) + 7� � 10�:Where we used (27), (28) and (29) for the three �rst inequalities and (30)in the last. Sine � > 0; was hoosen arbitrarily we get that��(A) = ��(A)2and so ��(A) 2 f0; 1g: QEDRemarks: The above proof works for any transitive and even quasi-transitive graph. For the ase of Zd, this was proved in Proposition 2.16page 143 of [19℄. It is mentioned there that while Æ1T�(t) is ergodi foreah t, one annot onlude immediately the ergodiity of �� beause thelass of ergodi proesses is not weakly losed. We point out however thatthere is another important notion of onvergene given by the �d-metri (see[24℄ page 89 for de�nition) on stationary proesses. Convergene in thismetri is stronger than weak onvergene and weaker than onvergene inthe total variation norm. It is also known that the ergodi proesses are �d-losed and that weak onvergene together with stohasti ordering implies24



�d-onvergene. In this way, one an onlude ergodiity of �� using the �d-metri giving an alternative proof of Proposition 2.16 of [19℄. In fat, theproof of Proposition 4.2 is essentially based on this idea. However, beauseof the open question listed below, it is not so easy to formulate the �d-metrifor tree indexed proesses and so we hoose a more hands on approah.Observe that the ruial property of �d-onvergene whih is essentially usedin the above proof is that for eah �xed k, one has uniform onvergeneof the probability measures (in say the total variation norm) over all setswhih depend on at most k points. (The point is that the k points an lieanywhere and hene this is muh stronger than weak onvergene).Open Question related to de�ning the �d-metri for tree indexedproesses: Assume that � and � are two automorphism invariant proba-bility measures on f0; 1gTd suh that � � �: Does there exist a Td-invariantoupling (X;Y ) with X � �; Y � � and X � Y ?Proposition 4.3 On Td; d � 2 there exists a �p suh that for all � > �p��(C+) = 1:Proof. By Theorem 1.33(), page 275 in [19℄, for suÆiently large �,��(�(s) = 1) � 2=3. By [12℄ we have that if ��(�(s) = 1) � 2=3, then��(C+) > 0:Finally, Proposition 4.2 then implies that��(C+) = 1: QED5 Relationship between �-movability and dynam-isIn the general setup we have a family of stationary Markov proesses para-metrised by one or two parameters, e.g. the ontat proesses 	� (� is herethe only parameter) or a stohasti Ising model 	+;�;h (� and h being theparameters). Many of the proofs in this paper will involve omparing themarginal distributions of these Markov proesses for two di�erent values ofone of the involved parameters. Let p be the parameter and let p1 < p2:Assume that the marginal distributions are �p1 and �p2 respetively andthat �p1 � �p2 : Lemmas 5.1 and 5.2 shows that there is a lose onnetionbetween showing that (�p1 ; �p2) is downwards �-movable and that the in�-mum of the seond proess over a short time interval is stohastially largerthan the �rst proess. 25



Let 	� be a stationary Markov proess on f0; 1gS with marginal distri-bution � and let fXtgt�0 � 	�: For Æ > 0 and s 2 S de�neXinf;Æ(s) := inft2[0;Æ℄Xt(s);and denote the distribution of Xinf;Æ by �inf;Æ: Similarly de�neXsup;Æ(s) := supt2[0;Æ℄Xt(s);and denote the distribution of Xsup;Æ by �sup;Æ:Lemma 5.1 Take S to be the sites of a bounded degree graph. LetfC(s; �)gs2S; �2f�1;1gS be the ip rate intensities for a stationary Markovproess 	� on f�1; 1gS with marginal distribution �: Let� := sup(s;�)C(s; �):For any � > 0; if we set � := 1� e��� ; we have that�(�;�) � �inf;� :Similarly, we get that �sup;� � �(+;�):Proof. We will prove the �rst statement, the seond statement follows bysymmetry. Take � > 0: For every s 2 S assoiate an independent Poissonproess with parameter �: De�ne f(X1t ;X2t )gt�0 in the following way. LetX10 � X20 � �; and take t0 to be an arrival time for the Poisson proessof a site s: For i 2 f1; 2g, let Xit0;� and Xit0;+ denote the on�gurationsbefore and after the arrival. We let X1t0;+(s) 6= X1t0;�(s) with probabilityC(s;X1t0;�)=� and we let X2t0;+(s) = 0 and �nally we let X1t0;+(S n s) �X1t0;�(S n s); X2t0;+(S n s) � X2t0;�(S n s): Do this independently for all arrivaltimes for all Poisson proesses of all sites. Observe that one X2t (s) is 0, itremains so. Note also that X1� � �; X2� � �(�;�): Furthermore if X1t (s) = 0for some t 2 [0; � ℄ the onstrution guarantees that X2� (s) = 0 and thereforeX2� � X1inf;� � �inf;� : QEDLemma 5.2 Take S to be the sites of any bounded degree graph. LetfC(s; �)gs2S; �2f�1;1gS be the ip rate intensities of a stationary Markovproess 	� on f�1; 1gS with marginal distribution �: De�ne�1 := infs;�:�(s)=1C(s; �):26



If �1 > 0 then for any 0 < � < 1; if we set � := � log(1��)�1 ; we have that�inf;� � �(�;�):Similarly, de�ning �2 := infs;�:�(s)=0C(s; �); if �2 > 0; then for any 0 < � < 1;if we set � := � log(1��)�2 ; we have that�(+;�) � �sup;� :Proof. We will prove the �rst statement, the seond statement followsby symmetry. For every s 2 S assoiate an independent Poisson proesswith parameter � := sup(s;�)C(s; �): Next, let fUs;kgs2S;k�1 be independentuniform [0; 1℄ random variables also independent of the Poisson proesses.If t0 is an arrival time for the Poisson proess at site s, we write Us;t0 forUs;k where k is suh that t0 is the kth arrival of the Poisson proess at sites. De�ne f(X1t ;X2t )gt�0 in the following way. Let X10 � X20 � �; andtake t0 to be an arrival time for the Poisson proess of a site s: We letX1t0;+(s) 6= X1t0;�(s) if Us;t0 � C(s;X1t0;�)=�: Furthermore we let X2t0;+(s) = 0if Us;t0 � �1=� or X2t0;�(s) = 0; and �nally we let X1t0;+(S n s) � X1t0;�(S n s);X2t0;+(S n s) � X2t0;�(S n s): Do this independently for all arrival times for allPoisson proesses of all sites. ClearlyX1� � � and X2� � �(�;�): Furthermore,if X2� (s) = 0; then either X10 (s) = X20 (s) = 0 or there exists a t 2 [0; � ℄suh that t is an arrival time for the Poisson proess assoiated to s andUs;t � �1=�: Sine �1 � C(s;X1t�) if X1t�(s) = 1, we get that either X1t+(s)or X1t�(s) is 0 and therefore X1inf;� � X2� : QEDTo illustrate why the ondition �1 > 0 of Lemma 5.2 is needed, onsiderthe ase � = �p for some p > 0:With � > 0; if we assume the trivial dynamisC(s; �) = 0 for all s; �; we will of ourse not have that �inf;� � �(�;�) for any� > 0:6 Proof of Theorem 1.9Proof of Theorem 1.9. Take � > �p and let �0 = (� + �p)=2: By Theo-rem 1.11 there exists an � > 0 suh that (��0 ; ��) is downwards �-movable.Lemma 5.1 gives us that there exists a � > 0 suh that �(�;�)� � ��;inf;� andhene that ��0 � ��;inf;� . Therefore, sine C+ is an inreasing event and�0 > �p, we have that 1 = ��0(C+) � ��;inf;� (C+)and so 	�(C+t 8t 2 [0; � ℄) = 1:The theorem now follows from ountable additivity.27



QED7 Proof of Theorem 1.1In this setion we will deal with stationary distributions for interating par-tile systems whih are monotone in the sense of De�nition 2.2.Let G = (S;E) be a ountable onneted loally �nite graph and let� � S be onneted and j�j <1: Let f�p�gp2I ; where I � R be a family ofprobability measures on f�1; 1g� suh that�p1� � �p2� 8p1 � p2:Assume that there exist stationary Markov proesses 	p� governed by iprate intensities fCp;�(s; �)gs2�;�2f�1;1g� and with marginal distributions �p�:Furthermore assume that there exists limiting distributions 	p of 	p� and�p of �p� as � " S: Assume that �p� are monotone for every p and �: Forp1 < p2; letA�;p1;p2 := infs2��2f�1;1g�ns [�p2� (�(s) = 1j�(�ns) � �)��p1� (�(s) = 1j�(�ns) � �)℄and assume that for all p1 < p2inf��SA�;p1;p2 > 0:For �xed p1 < p2 there exists by Proposition 3.4 an � > 0 suh that (�p1 ; �p2)is both upwards and downwards �-movable. Next, by Lemma 5.1 there existsa � > 0 suh that �p2;(�;�) � �p2inf;� ;and therefore �p1 � �p2inf;� : (31)Theorem 7.1 Consider the setup just desribed. Let A be an inreasingevent on f�1; 1gS and let At be the event that A ours at time t:(1) Let a 2 R: If �p(A) = 1for all p 2 I with p > a, then	p(At ours for every t) = 1for all p 2 I with p > a.(2) Let a 2 R: If �p(A) = 0for all p 2 I with p < a, then	p(At ours for some t) = 0for all p 2 I with p < a. 28



Proof. We prove only (1) as (2) is proved in an idential way. Take p > aand let p2 = (p+ a)=2: By the argument leading towards (31), there exists� > 0 suh that �p2(A) � �pinf;� (A):By using �p2(A) = 1 and�pinf;� (A) � 	p(At ours for every t 2 [0; � ℄);we get by ountable additivity that	p(At ours for every t) = 1: QEDWe will now be able to prove Theorem 1.1 easily.Proof of Theorem 1.1. We prove only the very �rst statement; all theother statements are proved in a similar manner. We �x � � 0 and then hwill orrespond to our parameter p in the above set up. For any � � S; anys 2 � and any � 2 f�1; 1g�ns; we have that�+;�;h� (�(s) = 1j�(� n s) = �) = 11 + e�2�(Pt:t�s �(t))�2h ; (32)where we let �(t) = 1 if t 2 � in order to take the boundary onditioninto aount. It is obvious from (32) and the de�nition of monotoniity that�+;�;h� is monotone for any h and �: Letting h1 < h2; it is immediate thatA�;h1;h2 = infs2��2f�1;1g�ns [ 11 + e�2�(Pt:t�s �(t))�2h2 � 11 + e�2�(Pt:t�s �(t))�2h1 ℄ > 0;where again �(t) = 1 for all t 2 �: It is not hard to see that this stritinequality must hold uniformly in �; i.e.,inf��SA�;h1;h2 > 0:It follows that all of the assumptions of Theorem 7.1 hold and part (1) ofthat result gives us what we want. QEDProof of Lemma 1.2. Fix � � 0. Given any p 2 (0; 1); it is easy to seethat there exists a real number h2 suh that for all h � h2, for s 2 S andfor all � 2 f�1; 1gSns�+;�;h(�(s) = 1j�(S n s) = �) � p29



and hene �p � �+;�;h: It is also easy to see that there exists a real numberh1 suh that for all h < h1, for s 2 S and for all � 2 f�1; 1gSns�+;�;h(�(s) = 1j�(S n s) = �) � pand hene �+;�;h � �p. The statements of the lemma easily follow fromthese fats. QED8 Proof of Theorem 1.3In this setion we will use a variant of the so alled Peierls argument to proveTheorem 1.3. We prove this only for Z2; the proof (with more ompliatedtopologial details) an be arried out for Zd with d � 3.We will write 0 �;t ! ��L for the event that there exists a path of sitesin state �1 onneting the origin to ��L := �L+1 n �L at time t and wewill write 0 �;t ! 1 for the event that there exists an in�nite path of sitesin state �1 ontaining the origin at time t. We will also write 0 +;t ! ��Land 0 +;t ! 1 for the obvious analogous events. We will �rst need Lemma8.1 and the onept of a dual graph. The dual graph Gdualn = (Sdualn ; Edualn )of Gn = (Sn; En) onsists of the set of sites Sdualn := f�n � 12 ; : : : ; n + 12g2and Edualn whih is the set of nearest neighbor pairs of Sdualn : In this paperwe will only work with the edges of the dual graph. An edge e 2 Edualnrosses one (and only one) edge f 2 En and the end sites of this edge f willbe alled the sites (of Gn) assoiated to e: For a random spin on�gurationX on f�1; 1gSn de�ne a random edge on�guration Y on f0; 1gEdualn in thefollowing way: Y (e) = � 0 if X(t) = X(s)1 if X(t) 6= X(s); (33)where s; t are the sites assoiated to edge e 2 Edualn : In �gure (1) we havedrawn a on�guration � 2 f�1; 1gS1 and the indued edge on�guration onf0; 1gEdual1 :Assume that the sites evolve aording to the ip rate intensitiesfCn(s; �)gs2Sn ; �2f�1;1gSn : Consider ; a (�nite) path of edges in the dualgraph. Take 0 to be a subset of : Assume that all edges of 0 are absent andall edges of n0 are present at t = 0:We want to estimate the probability ofthe event that all edges of 0 are present at some point (not neessarily all atthe same time) during some time interval [0; � ℄: In other words we want to es-timate the probability of the event fYsup;� (0) � 1jY0(0) � 0; Y0(n0) � 1g:30



Figure 1: S1 and the edges of it's dual graph. A solid irle marks a sitewith spin 1, while an empty irle has spin �1. A solid line is a present edgeof the dual graph, and a dashed line is an absent edge of the dual graph.Lemma 8.1 Let fCn(s; �)gs2Sn; �2f�1;1gSn be the ip rate intensities for astationary Markov proess on f�1; 1gSn and let Yt be de�ned as above. Let� := sup(s;�)Cn(s; �) (<1):For any � > 0 and any 0 � Edualn ;P(Ysup;� (0) � 1jY0(0) � 0; Y0(Edualn n 0)) � (4(1 � e��� )1=4)j0j:Proof.Take � > 0: For every s 2 Sn assoiate an independent Poisson proesswith parameter �: De�ne fXtgt�0 in the following way. Let X0 � � andtake t0 to be an arrival time for the Poisson proess of a site s: We letXt0;+(s) 6= Xt0;�(s) with probability C(s;Xt0;�)=�: Do this independentlyfor all arrival times for all Poisson proesses assoiated to the di�erent sites.It is immediate that X� � �: Let si; i 2 f1; : : : ; lg be distint sites of Sn:The event fXinf;� (si) 6= Xsup;� (si) 8i 2 f1; : : : ; lgg is ontained in the eventthat every Poisson proess assoiated to the sites si; i 2 f1; : : : ; lg have hadat least one arrival by time �: The probability that a partiular site has hadan arrival by time � is 1 � e��� : Furthermore this event is independent ofthe Poisson proesses for all other sites. ThereforeP(Xinf;� (si) 6= Xsup;� (si) 8i 2 f1; : : : ; lg) � (1� e��� )l: (34)31



Given 0; onsider the set of all sites assoiated to some edge of 0 and letn0 be the ardinality of that set. Observe that n0 � 2j0j and that in orderfor the event fYsup;� (0) � 1jY0(0) � 0; Y0(Edualn n 0)g to our, at leastj0j=4 of the sites assoiated to 0 must ip during [0; � ℄: This is beause onesite is assoiated to at most 4 edges. Denote the event that at least j0j=4 ofthe sites assoiated to 0 ips during [0; � ℄ by A�;0 : Take ~S to be a subset ofthe sites assoiated to 0 suh that j ~Sj � j0j=4: By (34), the probability thatall of these sites ips during [0; � ℄ is less than (1�e��� )j ~Sj � (1�e��� )j0j=4:To onlude, observe that the number of subsets of the sites assoiated to 0is bounded by 22j0j: Hene, the probability of the event A�;0 must be lessthan (1� e��� )j0j=422j0j; and soP(Ysup;� (0) � 1jY0(0) � 0; Y0(Edualn n 0))� P(A�;0) � ((1� e��� )1=44)j0j: QEDProof of Theorem 1.3. We will prove the theorem for d = 2: For � > �p;hoose Æ1 > 0 so that �0 := � 2�Æ12 > �p and hene1Xl=1 l3l�1e�2�0l <1:Next, hoose N and � < 1=2 suh that 4N � Æ1; and � 1N � e��(2�Æ1) and let� be suh that � = 4(1 � e��� )1=4: Let Æ > 0 be arbitrary and hoose L sothat 3 1Xl=L l3l�1e�2�0l < Æ:Let EL;� be the event that 0 �;t ! ��L; for some t 2 [0; � ℄: Let 	+;�n bede�ned as in Setion 2.3. We will show that	+;�n (EL;� ) < Æ 8n > L:Sine 	+;�n (EL;� )! 	+;�(EL;� ); (see Setion 2.3) we get that 	+;�(EL;� ) � Æ:Letting L!1 and Æ ! 0, we get that	+;�(9t 2 [0; � ℄ : 0 �;t !1) = 0;and then by ountable additivity	+;�(9t � 0 : 0 �;t !1) = 0:It is well known (see [8℄) that if all sites in �n+1 n �n takes the value +1,EL;� (35)� f9 � Edualn ; t 2 [0; � ℄ : jj � L;  surrounds the origin, Yt() � 1g� f9 � Edualn : jj � L;  surrounds the origin, Ysup;� () � 1g:32



To prove 	+;�n (EL;� ) < Æ; onsider  with jj = l a ontour in Edualnsurrounding the origin. By Lemma 8.1, P(Ysup;� (0) � 1jY0(0) � 0; Y0( n0) � 1) � �j0j whenever 0 � : We getP(Ysup;� () � 1) (36)= lXk=0 X0�j0j=k P(Y0(0) � 0; Y0( n 0) � 1)�P(Ysup;� (0) � 1jY0(0) � 0; Y0( n 0) � 1)� lXk=0 X0�j0j=k P(Y0(0) � 0; Y0( n 0) � 1)�k= lXk=0P(fall edges exept k of  are present at t = 0g)�k= l=NXk=0P(fall edges exept k of  are present at t = 0g)�k+ lXk=l=N+1P(fall edges exept k of  are present at t = 0g)�k:Obviously, l=N need not be an integer, but orreting for this is trivial andis left for the reader.We need to estimate P(fall edges exept k of  are present at t = 0g):For this purpose, de�ne T: f�1; 1gSn ! f�1; 1gSn ; by(T�)(s) = � �(s) if s is not in the domain bounded by ��(s) if s is in the domain bounded by for all � 2 f�1; 1gSn : Let Ek = f� : all edges exept k of  are presentg:Sine H+;�n of (6) gives a ontribution of �� for adjaent pairs of equalspin and +� for adjaent pairs of unequal spin, we have that for � 2 Ek;H+;�n (T�) = H+;�n (�)� 2�(jj � k) + 2�k = H+;�n (�)� 2�jj + 4�k:Hene, for � 2 Ek�+;�n (�) = e�H+;�n (�)Z = e�H+;�n (T�)�2�jj+4�kZ ;and so �+;�n (Ek)= X�2Ek �+;�n (�) = e�2�l+4�k X�2Ek e�H+;�n (T�)Z33



� e�2�l+4�k X�2f�1;1gSn e�H+;�n (T�)Z = e�2�l+4�k;where the last equality follows from T being bijetive. We then get thatl=NXk=0P(fall edges exept k of  are present at t = 0g)�k (37)� l=NXk=0 e�2�l+4�k�k � e�2�l+ 4�lN l=NXk=0 �k � 2e�2�l+ 4�lN� 2e��(2�Æ1)l = 2e�2�0l:FurthermorelXk=l=N+1P(fall edges exept k of  are present at t = 0g)�k (38)� �l=N lXk=l=N+1P(fall edges exept k of  are present at t = 0g)� �l=N � e��(2�Æ1)l = e�2�0l;where we use that fall edges exept k of  are present at t = 0g are disjointevents for di�erent k. Hene (36), (37) and (38) ombined gives usP(Ysup;� () � 1) � 3e�2�0land so by (35), for all n > L;	+;�n (EL;� )� 	+;�n (9 � Edualn : jj � L;  surrounds the origin, Ysup;� () � 1)� 1Xl=L l3l�13e�2�0l < Æ;where the seond to last inequality follows from the fat that the number ofontours around the origin of length l is at most l3l�1; (see [8℄). QEDRemark: For Zd, the proof is generalized by noting that the number ofonneted surfaes of size l surrounding the origin is at most C(d)l; for someonstant C(d): The arguments are the same but the \topologial details" aremessier. 34



9 Proof of Theorem 1.5We will start this subsetion by presenting a theorem by T.M. Liggett, R.H.Shonmann and A.M. Staey ([21℄).Theorem 9.1 Let G=(S,E) be a graph with a ountable set of sites in whihevery site has degree at most � � 1; and in whih every �nite onnetedomponent of G ontains a site of degree stritly less than �: Let p; �; r 2[0; 1℄; q = 1� p; and suppose that(1� �)(1 � r)��1 � q;(1� �)���1 � q:If � 2 G(p); then ��r � �: In partiular, if q � (� � 1)��1=��; then�� � �; where� =  1� q1=�(�� 1)(��1)=�! (1� (q(�� 1))1=�):Here G(p) denotes the set of probability measures on f�1; 1gS suh that if� 2 G(p); X � � then for any site s 2 SP [X(s) = 1j�(fX(t) : fs; tg 62 Eg)℄ � p a:s:Observe that when p ! 1 ) q ! 0 and so � ! 1: The above theoremis stated as the original in [21℄. However, by onsidering the line-graph ofG = (S;E), it an be restated in the following way.Corollary 9.2 Let ~G = ( ~S; ~E) be any ountable graph of degree at most �:For eah 0 < � < 1 there exists a 0 < p < 1 where p = p(�; �) suh thatif Y � � where � is a probability measure on the edges of ~G suh that forevery edge e 2 ~E P [Y (e) = 1j�(fY (f) : e 6� fg)℄ � p a:s:we have that � ~E� � �:By e 6� f we of ourse mean that the edges e and f does not have anyendpoints in ommon. Here, � ~E� is the produt measure with density � onthe edges of ~G:Consider a graph G = (S;E) and a subgraph G0 = (S0; E0) where S0 = Sand E0 � E: Let X � �p on S: We delare an edge e 2 E0 to be losed if anyof the endpoints takes the value 0 under X: Corollary 9.2 gives us that forany � < 1 there is a p < 1 suh that this method of losing edges dominatesindependent bond perolation with density � on E0: Observe that we anhoose p independent of E0 sine the maximal degree of E0 is bounded aboveby the maximal degree of E: 35



Let (X;Y ) � Ppn; de�ned in Setion 2.5. Close every e 2 En suhthat Y (e) = 1 independently with probability � thus reating (X;Y (�;�)):Compare this to losing every site in Sn independently with parameter �0(reating X(�;�0)) and de�ningY �0(e) = � 1 if Y (e) = 1 and neither one of the endpoints of e ips0 otherwise.By the arguments of the last paragraph we see that for a �xed � there existsan �0 (that we an hoose independent of (X;Y ) and n) suh that the �rstway (i.e. independent bond perolation) of removing edges is stohastiallydominated by the latter. HenePpn((X;Y (�;�)) 2 (f�1; 1gSn ; �)j(X;Y ))� Ppn((X(�;�0); Y �0) 2 (f�1; 1gSn ; �)j(X;Y )):By averaging over all possible (X;Y ); the next lemma follows.Lemma 9.3 With notation as above, for any � > 0 there exists �0 > 0independent of n suh thatPpn((X;Y (�;�)) 2 (f�1; 1gSn ; �)) � Ppn((X(�;�0); Y �0) 2 (f�1; 1gSn ; �)):Observe that Ppn((X;Y (�;�)) 2 (f�1; 1gSn ; �)) =D ~�p;(�;�)n (�) (39)and that Ppn((X(�;�0); Y �0) 2 (�; f�1; 1gEn )) =D �+;�;(�;�0)n (�): (40)We are now ready to prove Theorem 1.5.Proof of Theorem 1.5. For any hoie of � > � take p = 1� e�2�and let Æ 2 (0; p� p): Now, (14) and Holley's inequality implies that~�p�Æn � ~�pn 8n 2 N+ :Sine by (14) both ~�p�Æn and ~�pn are monotone, there exists by Lemma 3.3(it is easy to hek that all other onditions of that lemma are satis�ed) an� > 0 suh that ~�p�Æn � ~�p;(�;�)n 8n 2 N+ : (41)In [13℄ they show that the limit limn ~�p�Æn (0 ! ��n) exists and thatlimn ~�p�Æn (0 ! ��n) > 0: (42)36



Here f0  ! ��ng denotes the event that there exists a path of presentedges onneting the origin to ��n := �n+1 n �n: Sine f0  ! ��ng is aninreasing event on the edges, Lemma 9.3 guarantees the existene of an�0 > 0 suh that~�p;(�;�)n (0 ! ��n)= Ppn((X;Y (�;�)) 2 (f�1; 1gSn ; 0; ! ��n))� Ppn((X(�;�0); Y �0) 2 (f�1; 1gSn ; 0 ! ��n)) 8n 2 N+ :If there exists a path of present edges onneting the origin to the boundary��n under Y; all the sites of this path must have the value 1 under X:Similarly for (X(�;�0); Y �0); if there exists a path of present edges onnetingthe origin to the boundary ��n under Y �0 ; all the sites of this path musthave the value 1 under X(�;�0): HenePpn((X(�;�0); Y �0) 2 (f�1; 1gSn ; 0 ! ��n))= Ppn((X(�;�0); Y �0) 2 (0 + ! ��n; 0 ! ��n))� Ppn((X(�;�0); Y �0) 2 (0 + ! ��n; f0; 1gEn ))= �+;�;(�;�0)n (0 + ! ��n):Of ourse�+;�;(�;�0)n (0 + ! ��n) � �+;�;(�;�0)n (0 + ! ��L) 8L < n:Therefore, for any L we have that0 < limn ~�p�Æn (0 ! ��n)� limn �+;�;(�;�0)n (0 + ! ��L) = �+;�;(�;�0)(0 + ! ��L);and so 0 < limL �+;�;(�;�0)(0 + ! ��L) = �+;�;(�;�0)(0 + !1):The limit in L exists sine f0 + ! ��L2g � f0 + ! ��L1g for L1 � L2: Sine�+;� is ergodi (see [19℄ page 143 and 195) it follows that �+;�;(�;�0) mustalso be ergodi. This is beause �+;�;(�;�0) an be expressed as a funtion oftwo independent proesses, one being �+;� and the other a produt measure.We onlude that �+;�;(�;�0)(C+) = 1: (43)By Lemma 5.1, there exists a � > 0 suh that�+;�;(�;�0) � �+;�inf;�37



and therefore �+;�inf;� (C+) = 1:Therefore 	+;�(C+t ours for every t 2 [0; � ℄) = 1:Finally using ountable additivity	+;�(C+t ours for every t) = 1: QED10 Proof of Theorem 1.4The aim of this setion is to prove Theorem 1.4. For that we will useTheorem 1.5 and Lemma 10.1. We will not prove Lemma 10.1 sine itfollows immediately from the proof of Lemma 11.12 in [10℄ due to Y. Zhang.A probability measure � on f�1; 1gS is said to have the �nite energyproperty if all onditional probabilities on �nite sets are stritly positive.Lemma 10.1 Take � to be any probability measure on f�1; 1gZ2 whih haspositive orrelations and the �nite energy property. Assume further that �is invariant under translations, rotations and reetions in the oordinateaxes. If �(C+) = 1; then �(C�) = 0:Proof of Theorem 1.4. Fix � > �. By (43), there exists � > 0 suh that�+;�;(�;�)(C+) = 1:Sine �+;� and �1�� both have positive orrelations, it follows that �+;�;(�;�)has positive orrelations. This is beause (see [19℄, page 78) the produt oftwo probability measures whih have positive orrelations also has positiveorrelations. Furthermore, a olletion of inreasing funtions of randomvariables whih have positive orrelations also has positive orrelations. Inaddition, the �nite energy property is easily seen to hold for �+;�;(�;�). Usingthis we an by Lemma 10.1 onlude that�+;�;(�;�)(C�) = 0:By Lemma 5.1 there exists a � > 0 suh that �+;�;(�;�) � �+;�inf;� and hene�+;�inf;� (C�) = 0:It follows that 	+;�(9t 2 [0; � ℄ : C�t ours) = 0;and by ountable additivity, we onlude	+;�(9t � 0 : C�t ours) = 0:38
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