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Abstract

We relate various concepts of fractal dimension of the limiting
set C in fractal percolation to the dimensions of the set consisting
of connected components larger than one point and its complement in
C (the “dust”). In two dimensions, we also show that the set consisting
of connected components larger than one point is a.s. the union of non-
trivial Hölder continuous curves, all with the same exponent. Finally,
we give a short proof of the fact that in two dimensions, any curve in
the limiting set must have Hausdorff dimension strictly larger than 1.
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1 Introduction and main results

In this paper we are concerned with a percolation model, first introduced
in [12], which is known as Mandelbrot’s fractal percolation process and which
can be informally described as follows. For any integers d ≥ 2 and N ≥ 2,
we start by dividing the unit cube [0, 1]d ⊂ Rd into Nd closed subcubes of
equal size 1/N × 1/N × · · · × 1/N . Given p ∈ [0, 1] and a subcube, we retain
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the subcube with probability p and discard it with probability 1− p. This is
done independently for every subcube of the partition. Sometimes we adopt
the terminology calling retained cubes black and deleted cubes white. We
define the random set C1

N = C1
N(d, p) ⊂ [0, 1]d as the union of all retained

subcubes. Next consider any retained (assuming that C1
N 6= ∅) subcube B

in C1
N . We repeat the described procedure on a smaller scale by dividing B

into Nd further subcubes, discarding or retaining them as above. We do this
for every retained subcube of C1

N . This yields a new random set C2
N ⊂ C1

N .
Iterating the procedure on every smaller scale yields an infinite sequence of
random sets [0, 1]d ⊃ C1

N ⊃ C2
N ⊃ · · · and we define the limiting set

CN :=
∞⋂
n=1

CnN .

We will hereafter suppress the N in our notation and simply write C for CN .
We will need a more formal definition of the model as well. Let

Ink :=

[
(k − 1)

Nn
,
k

Nn

]
,

where n ≥ 1 and 1 ≤ k ≤ Nn. For k = (k1, . . . , kd), consider the subcube
Dn

k of [0, 1]d defined by Dn
k := Ink1 × I

n
k2
× . . . × Inkd , and let D := {Dn

k : n ≥
1, 1 ≤ kl ≤ Nn}. A cube Dn

k will sometimes be called a level-n cube. We
define the sample space by

Ω := {0, 1}D,

and denote an element of Ω by ω. We let B be the Borel σ-algebra on Ω
generated by the cylinders and let Pp denote the product measure on B with
density p ∈ [0, 1], that is, we let Pp(ω(Dn

k) = 1) = p independently for every
Dn

k ∈ D. The limiting set is then defined to be the intersection of all Dn
k ∈ D

such that ω(Dn
k) = 1.

Let CR([0, 1]d) denote the event that C contains a connected component
which intersects the left hand side {0} × [0, 1]d−1 of the unit cube and also
intersects the right hand side {1} × [0, 1]d−1. In this case we say that a
left-right crossing of the unit cube occurs.

We define the percolation function θN,d by

θN,d(p) := Pp(CR([0, 1]d)). (1)

The critical value is defined as

p̃c = p̃c(N, d) := inf{p : θN,d(p) > 0}.
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It has been shown in [8] that the phase transition in Mandelbrot fractal per-
colation is non-trivial, i.e. 0 < p̃c(N, d) < 1. Furthermore it was discovered
in [8] that for d = 2, θN,d(p) is discontinuous at p̃c (see [10] for an easy proof).
This was generalised in [4] to all d ≥ 3 and N large enough but the result
is conjectured to hold for all N in any dimension. (At this point we remark
that as a corollary to the proof of Theorem 1.1 below, we obtain an explicit
bound for the size of the discontinuity at the critical value pc, defined below
and conjectured to coincide with p̃c, in terms of the Hausdorff dimension of
the set Cc, also to be defined below.)

In d = 2, the set C is a.s. totally disconnected for p < p̃c(N, 2). This is
also known to be true in higher dimensions for the same set of N for which
it is known that θN,d(p) is discontinuous at p̃c (see [5]) and is conjectured to
be true for all d and N . It is therefore natural to work with the following
critical value:

pc(N, d) := sup{p : C is a.s. totally disconnected}.

It is known (see [5]) that for any d ≥ 2 and N ≥ 2,

Pp(C is not totally disconnected) > 0

if p = pc(N, d). Given this, it is an easy exercise to show that for p ≥
pc(N, d), C 6= ∅ implies that the set Cc consisting of the union of all connected
components larger than one point is a.s. not empty.

We now fix N, d ≥ 2 and assume that pc(N, d) ≤ p < 1. For any point
x ∈ C, let Cx ⊂ C be the set of points y ∈ C that are connected to x in
C. We call Cx the connected component of x. It is known (see [13]) that for
p ≥ pc(N, d) there exist a.s. uncountably many x ∈ C such that Cx = {x}. We
partition C into two sets, Cd := {x ∈ C : Cx = {x}} and the aforementioned
Cc := C \ Cd. (To understand the notation: d is short for “dust”, and c is
short for “connected”.)

Before we can state our results we will need some more definitions. The
reader is referred to [11] for a general overview of the subject of fractal sets.

A countable collection {Bi}∞i=1 of subsets of Rd with diameter at most ε
is called an ε-cover of F if F ⊂ ∪∞i=1Bi. Define the s-dimensional Hausdorff
measure of F as follows:

Hs(F ) := lim
ε→0

inf

{ ∞∑
i=1

diam(Bi)
s : {Bi}∞i=1 is an ε-cover of F

}
.

The Hausdorff dimension dimH(F ) of F is defined as

dimH(F ) := inf{s : Hs(F ) = 0}, (2)
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which also turns out to be equal to sup{s : Hs(F ) =∞}. The Hausdorff di-
mension of the limiting set in fractal percolation is a.s. given by the following
equation, whose proof can be found in [8] or [11], Proposition 15.4:

dimH(C) =

{
d+ log p

logN
if C 6= ∅,

0 otherwise.
(3)

There are many other concepts of dimensionality and we will in particular
use the following. For a bounded set F ⊂ Rd let Mδ(F ) be the minimal
number of closed cubes of side length δ that is needed to cover F .

The Lower Box counting dimension of F ⊂ Rd is given by

dimB(F ) := lim inf
δ→0

logMδ(F )

− log δ
,

while the Upper Box counting dimension of F ⊂ Rd is given by

dimB(F ) := lim sup
δ→0

logMδ(F )

− log δ
.

If dimB(F ) = dimB(F ) then the common value is denoted dimB(F ) and
called the Box counting dimension of F . It is known (see e.g. [11]) that for
any bounded set F ⊂ Rd

dimH(F ) ≤ dimB(F ) ≤ dimB(F ). (4)

The next two theorems contain our dimension results for fractal percola-
tion.

Theorem 1.1 For pc(N, d) ≤ p < 1, we a.s. have

dimB(Cc) = dimB(C) = dimH(C). (5)

If C 6= ∅ then a.s.
dimH(Cc) < dimH(C), (6)

from which it easily follows that a.s.

dimH(Cd) = dimH(C). (7)

Note that if p < pc(N, d), Cc = ∅ a.s. and so equation (6) still holds as
long as dimH(C) > 0.

Theorem 1.2 For every p there exists 1 ≤ β = β(p) ≤ d such that

Pp(Cc = ∅ or dimH(Cc) = β) = 1.
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For ε > 0, let Cc,ε be the union of the connected components of diameter
at least ε. The following result suggests that the “small components” of Cc
are the ones which actually determine its Box counting dimension.

Proposition 1.3 If Cc 6= ∅, then

Ep[dimB(Cc,ε)] ≤ D dimB(Cc),

where D < 1 is independent of ε.

When p ≥ p̃c, it is natural to ask about the nature of the left-right
crossings of the unit cube. For d = 2, it was shown in [13] that C contains
at least one continuous curve crossing the square as soon as a connected
component crossing the square exists. It was later established in [7] (again
for d = 2) that any curve in C must have Hausdorff dimension strictly larger
than 1.

In this paper, focusing again on the two-dimensional version of the model,
we take the issue of the existence of continuous curves in C much further,
using the sophisticated machinery of Aizenman and Burchard [1]. Their
paper deals with scaling limits of systems of random curves, but we will
show how their results can be useful in the context of fractal percolation
as well. This is perhaps somewhat surprising, since the scaling limits in [1]
deal with convergence in distribution, whereas in the fractal context, the
fractal limiting set is an a.s. limit. The key will be a very careful comparison
between convergence in the weak sense of curves in an appropriate topology,
and convergence in the a.s. sense of compact sets in another topology. From
such a comparison, one can obtain information about the compact sets that
make up the a.s. limit of the fractal construction.

In order to state our results, we need some definitions. First of all, we
define interface curves in the fractal process. The complement R2 \ Cn con-
sist of a finite number of connected components, exactly one of which is
unbounded. The boundary of any such connected component can be split
into closed curves (loops). We call such loops interface curves and denote by
Fn the collection of interface curves after n iterations of the fractal process.
In order for our interface curves to be uniquely defined, we orient them in
such a way that they have black (retained) squares on the left and white
(discarded) squares on the right, and assume that they turn to the right
at corners where two white and two black squares meet in a checkerboard
configuration, see Figure 1.

A connected subset of an interface curve delimited by a starting and an
ending point will be called an interface segment.
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Figure 1: The interface curves are drawn with broken lines. Arrows indicate
the orientation.

We continue with some general definitions concerning curves, mostly
taken from [1] (see also [6]). We regard curves in [0, 1]2 as equivalence
classes of continuous functions from [0, 1] to [0, 1]2 modulo strictly mono-
tonic re-parametrizations. Below, γ will represent a particular curve and
γ(t) a particular parametrization of γ. Denote by S the complete separable
metric space of curves in [0, 1]2 with metric

D(γ1, γ2) := inf sup
t∈[0,1]

|γ1(t)− γ2(t)|, (8)

where the infimum is over all parametrizations of γ1 and γ2. The distance
between two sets F and F ′ of curves is defined by the Hausdorff metric
induced by D, that is, Dist(F ,F ′) ≤ ε if and only if

∀ γ ∈ F , ∃ γ′ ∈ F ′ with D(γ, γ′) ≤ ε and vice versa. (9)

The space Σ of closed subsets of S with the metric Dist is also a complete
separable metric space.

The fractal process induces a probability measure µn on Σ, where µn
denotes the distribution of Fn. With this notation, we can present our main
result on continuous curves in C.
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Theorem 1.4 The sequence of measures (µn) has subsequential weak limits.
Any such weak limit µ assigns probability 1 to curve configurations in which
all curves are Hölder continuous with the same exponent. The limiting set C
has the same distribution as g(F) := ∪γ∈F Image(γ), where F is a random
set of curves distributed as µ. In other words, C is distributed as the union
of the images of the curves in a sample from a weak limit of the (µn).

Remark Note that, although Theorem 1.4 only claims the existence of sub-
sequential weak limits for µn as n → ∞, Theorem 1.4 combined with the
existence of a unique a.s. limit for Cn implies that g ◦ µn(·) = µn(g−1(·)) has
a unique weak limit.

We now briefly discuss this result. Since a single point is of course a
Hölder continuous curve, the bare statement that a set is the union of Hölder
continuous curves is in itself close to being an empty statement. However,
the curves in C mentioned in Theorem 1.4 cannot be exclusively curves whose
image is one point. One way to see this is to rephrase the notion of weak
convergence as follows (see also [1]). A sequence of probability measures
(µn) on Σ converges weakly to a probability µ measure on Σ if and only if
there exists a family of probability measures ρn on Σ×Σ such that the first
marginal of ρn is µn, the second marginal of ρn is µ (for all n), and∫

Σ×Σ

Dist(Fn,F)dρn(Fn,F)→ 0

as n→∞. It is now also clear what happens to the points in the “dust set”
Cd: these are accounted for as well in the theorem, since any point x ∈ Cd can
be approximated by curves in Fn whose diameter and distance to x converge
to 0.

It is also possible to specialise to certain particular curves. As an exam-
ple, we discuss the lowest crossing in C which we will first properly define.
Condition on the existence in Cn of a left-right crossing of the unit square for
all n, and consider the lowest interface segment σn in Fn connecting the left
and right side of the unit square. The closure of the region in the unit square
above σn is a compact set (in the Euclidean topology) which decreases in n
and which therefore converges as n→∞. The lowest crossing in C is defined
as the boundary of this limiting set.

Theorem 1.5 If C contains a left-right crossing of the unit square, then the
lowest crossing in C is a Hölder continuous curve.

The machinery of Aizenman and Burchard also allows for a quick proof,
given in Section 4, of the following result, first proved in [7].
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Theorem 1.6 In two dimensions, there exists a constant κ > 1 such that
all continuous curves in Cc have Hausdorff dimension at least κ.

2 Proofs of Theorems 1.1, 1.2 and Proposi-

tion 1.3

Proof of Theorem 1.1. We start with the second equality of (5). Let Zn be
the number of cubes of side length N−n that are retained in Cn. First observe
that

logZn
− logN−n

=
logZ

1/n
n

logN
.

It is well known from the theory of branching processes (see e.g. [2, 9]) that

Z
1/n
n → pNd a.s. on the event C 6= ∅. Therefore, for a.e. ω such that C(ω) 6= ∅,

lim
n→∞

logZn
− logN−n

= d+
log p

logN
,

and hence dimB(C) ≤ d + log p
logN

. Equations (3) and (4) then imply that

dimB(C) = dimH(C).
For the first equality of (5), let {Bi}Mδ

i=1 be a cover of Cc using the minimal
number Mδ of closed cubes of side length δ. For A,B ⊂ Rd, define d(A,B) :=
inf{|x−y| : x ∈ A, y ∈ B}, with |·| denoting Euclidean distance. Assume that
there exists x ∈ C such that d(x,

⋃Mδ

i=1Bi) > 0. Then there must exist some

Dn
k such that d(Dn

k,
⋃Mδ

i=1 Bi) > 0 and x ∈ Dn
k, which implies that ω(Dn

k) = 1
(i.e., Dn

k is retained). However, because of the scale invariant construction
of C and the fact that, for p ≥ pc(N, d), a.s. C is either empty or contains
connected components larger than one point (see [5]), C ∩Dn

k must contain
connected components larger than one point. This contradicts the fact that
{Bi}Mδ

i=1 is a cover of Cc and shows that such an x cannot exist. Furthermore,
since the union

⋃Mδ

i=1Bi is closed, it follows that, if d(x,
⋃Mδ

i=1 Bi) = 0 for

x ∈ C, then x ∈
⋃Mδ

i=1Bi. Therefore, Mδ must be the minimal number of
closed cubes of side length δ that covers C. This concludes the proof of (5).

Since C = Cc ∪ Cd, (7) follows from (6) and the fact that (see [11])

dimH(C) = max(dimH(Cc), dimH(Cd)). (10)

We proceed therefore by proving (6), inspired by an argument suggested by
Lincoln Chayes to the second author. Recall that Cc,ε is the union of the
connected components of diameter at least ε. For p ≥ pc(N, d), we have that

dimH(Cc) = sup
ε

dimH(Cc,ε), (11)
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which is an easy consequence of the definition of Hausdorff dimension (see
[11]). Therefore, it suffices to find an upper bound of dimH(Cc,ε) which is
uniform in ε and strictly smaller than dimH(C).

We will now assume thatN ≥ 5 is odd. This assumption will make certain
definitions easier to write down: the reader can check that the squares Dn

k

below would not be uniquely defined for even N . We leave it to the reader
to adapt the proof for all cases N ≥ 2.

ForD1
k such that (1/2, . . . , 1/2) ∈ D1

k, letB(D1
k; 1) := [0, 1]d andB(D1

k; 3N−1)
be the two cubes concentric to D1

k with side length 1 and 3N−1 respectively.
Let ϕN,d(p) be the probability that there exists a connected component of
C that crosses the “shell” B(D1

k; 1) \ B(D1
k; 3N−1). It follows from [5] that

ϕN,d(p) > 0 whenever p ≥ pc(N, d).
Assuming that Cc 6= ∅, fix ε > 0 such that Cc contains at least one compo-

nent of diameter larger than ε and let l be such that N−l+1 ≤ ε/d. Consider
a cube Dn

k for n ≥ l which is intersected by a component of Cc of diameter
larger than ε. Let B(Dn

k; 3N−n) and B(Dn
k;N−n+1) be two cubes which are

concentric to Dn
k and have side length 3N−n and N−n+1 respectively. Obvi-

ously, for Dn
k to be intersected by a connected component of diameter larger

than ε, there must be a crossing of the shell B(Dn
k;N−n+1) \ B(Dn

k; 3N−n).
(Note that, depending on the position of Dn

k, it is possible that B(Dn
k; 3N−n)

and/or B(Dn
k;N−n+1) are only partially contained in [0, 1]d.)

We will now construct a specific cover of Cc,ε which we will use in our
estimate for its Hausdorff dimension. Let Wn denote the set of cubes Dn

k

with the following two properties:

• The intersection of all retained cubes of level n and higher contains a
crossing of the shell B(Dn

k;N−n+1) \ B(Dn
k; 3N−n). In other words, if

we would make all cubes black until level n− 1 (inclusive), then there
would be a connected component in C crossing the shell B(Dn

k;N−n+1)\
B(Dn

k; 3N−n),

• Dn
k is retained, that is, ω(Dn

k) = 1.

By scale invariance and independence between the two conditions, we have
that Pp(Dn

k ∈ Wn) ≤ pϕN,d(p). The inequality is due to a boundary effect
since, as mentioned earlier, B(Dn

k; 3N−n) and/or B(Dn
k;N−n+1) need not be

completely contained in [0, 1]d.
For a given cube Dn

k, let Bm denote the level-m cube which contains Dn
k,

where m ≤ n (with Bn = Dn
k). We make two observations:

1. If Dn
k has a non-empty intersection with Cc,ε, then we have that Bm ∈

Wm, for all m = l, l + 1, . . . , n.
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Dn
k

B(Dn
k; 3N

−n)

B(Dn
k;N

−n+1)

Figure 2: The cube Dn
k is in Vn and Dn+1

k , drawn with broken lines, belongs
to Vn+1. Note that the corresponding shells are disjoint.

2. The events {Bm ∈ Wm} form a collection of independent events; see
Figure 2.

This motivates us to define Vn as the collection of cubes Dn
k for which the

corresponding cubes Bm are in Wm, for all m = l, l + 1, . . . , n. From obser-
vation 1, we have that the collection Vn forms a cover of Cc,ε. We can now
write, using observation 2,

Pp(Dn
k ∈ Vn) = Pp

(
n⋂

m=l

Bm ∈ Wm

)

=
n∏

m=l

Pp(Bm ∈ Wm)

≤ (pϕN,d(p))
n−l+1.

Using Fatou’s lemma and the fact that the collection of cubes in Vn covers
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Cc,ε, we obtain (writing |Vn| for the number of cubes in Vn)

Ep (Hs(Cc,ε)) ≤ lim inf
n→∞

Ep

 ∑
Dnk∈Vn

diam(Dn
k)s


= lim inf

n→∞
(
√
dN−n)sEp(|Vn|)

≤ lim inf
n→∞

ds/2N−sn(pϕN,d(p)N
d)n−l+1

= ds/2N−d(l−1)pϕN,d(p) lim
n→∞

Nn(d+
log(pϕN,d(p))

logN
−s). (12)

The limit in (12) is finite if and only if

s ≥ d+
log(pϕN,d(p))

logN
,

showing that

dimH(Cc,ε) ≤ d+
log(pϕN,d(p))

logN
a.s.

It follows from (11) that

dimH(Cc) ≤ d+
log(pϕN,d(p))

logN
a.s.

and since ϕN,d(p) < 1 the result follows from this and (3). �

Remark For Theorem 1.1 we use the result from [5] that for p = pc(N, d),
Pp(Cc 6= ∅) > 0. It is possible to prove the result without this prior knowl-
edge, as follows. We can start with the observation from [5] that pc = pb.
We can then prove Theorem 1.1 in the case of p > pc and from the last line
of that proof we get that ϕN,d(p) ≥ 1

Nd−1 , using the fact that the Hausdorff-
dimension of a connected set which consists of more than one point is al-
ways at least 1 (see e.g. [11], Proposition 4.1). Using this uniform bound
and a right-continuity argument similar to the ones in [5], we conclude that
in fact ϕN,d(pc) ≥ 1

Nd−1 . Hence we can conclude that for p = pc(N, d),
Pp(Cc 6= ∅) > 0, and go through the proof once more to obtain the same
result as above.

Proof of Theorem 1.2. If Pp(Cc = ∅) = 1 then there is nothing to prove, so
we assume that Pp(Cc 6= ∅) > 0.

Let Zn be the number of retained cubes after n steps of the fractal con-
struction procedure and let B1, . . . , BZn denote the retained cubes. If the
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event {dimH(Cc) ≥ α} occurs, then {dimH(Cc ∩ Bk) ≥ α} for at least one
k = 1, . . . , Zn (see, e.g., [11]). Therefore,

Pp(dimH(Cc) ≥ α
∣∣∣Zn = l) = 1−

l∏
k=1

(1− Pp(dimH(Cc ∩Bk) ≥ α
∣∣∣Bk ⊂ Cn).

However, because of scale invariance, dimH(Cc∩Bk), conditioned on the event
that Bk ⊂ Cn, must have the same distribution as dimH(Cc) and so in fact

Pp(dimH(Cc) ≥ α
∣∣∣Zn = l) = 1− (1− Pp(dimH(Cc) ≥ α))l.

We can now write

Pp(dimH(Cc) ≥ α) =
Ndn∑
l=1

Pp(dimH(Cc) ≥ α
∣∣∣Zn = l)Pp(Zn = l)

=
Ndn∑
l=1

(
1− (1− Pp(dimH(Cc) ≥ α))l

)
Pp(Zn = l)

≥ [1− (1− Pp(dimH(Cc) ≥ α))n]Pp(Zn ≥ n).

This last quantity is bounded below by

[1− (1− Pp(dimH(Cc) ≥ α))n]Pp(Zn ≥ n
∣∣∣C 6= ∅)Pp(C 6= ∅). (13)

As mentioned above, a.s. Z
1/n
n → pNd > 1 as n→∞ if C 6= ∅. Therefore,

if Pp(dimH(Cc) ≥ α) > 0, by taking the limit of (13) as n→∞, we conclude
that Pp(dimH(Cc) ≥ α) ≥ Pp(C 6= ∅). If α > 0, it follows that in fact
Pp(dimH(Cc) ≥ α) = Pp(C 6= ∅). Letting φ(α) = Pp(dimH(Cc) ≥ α), we have
that φ(0) = 1 and either φ(α) = 0 or φ(α) = Pp(C 6= ∅) when α > 0.

Now observe that Cc 6= ∅ implies dimH(Cc) ≥ 1 (see, e.g., Proposition 4.1
of [11]). Since the inverse implication is obvious, we conclude that φ(1) =
Pp(Cc 6= ∅) > 0 (where the last inequality follows from the assumption made
at the beginning of the proof) and that Pp(Cc 6= ∅) = Pp(C 6= ∅). Hence,
since {Cc 6= ∅} ⊂ {C 6= ∅}, we obtain that

{Cc 6= ∅} = {C 6= ∅}, (14)

up to a set of probability 0.
Moreover, since φ(α) = Pp(C 6= ∅) for at least α ≤ 1, and {dimH(Cc) ≥

α} ⊂ {C 6= ∅} for α > 0, we also obtain that {dimH(Cc) ≥ α} = {C 6= ∅}, up
to a set of probability 0, for every α > 0 such that Pp(dimH(Cc) ≥ α) > 0.
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Writing
β := sup{α : Pp(dimH(Cc) ≥ α) > 0},

we conclude from the above observations that, up to a set of probability 0, if
Cc 6= ∅ then dimH(Cc) = β, with β ≥ 1 as a consequence of the assumption
that Pp(dimH(Cc) 6= ∅) > 0 and the fact that dimH(Cc) ≥ 1 as soon as Cc 6= ∅.
�

Theorem 1.2 and the proof of Theorem 1.1 have an interesting corollary which
links dimH(Cc) to the discontinuity at the critical point pc(N, d). (This is the
corollary that was announced in the introduction.)

Corollary 2.1 Let ∆ denote the a.s. Hausdorff dimension of Cc when p =
pc(N, d) and Cc 6= ∅. Then,

ϕN,d(pc(N, d)) ≥ 1

Nd−∆
.

Proof. Let pb(N, d) := inf{p ≤ 1 : ϕN,d(p) > 0}. Theorem 4.1 of [5] and the
observation preceding it show that pb(N, d) = pc(N, d). Moreover, it follows
from [5] that ϕN,d(pc(N, d)) > 0. Combining these observations with the last
line of the proof of Theorem 1.1, we obtain that, for p ≥ pc(N, d),

ϕN,d(p) ≥ pϕN,d(p) ≥
1

Nd−∆
.

�

Proof of Proposition 1.3. We again use the fact that Cc,ε is contained in the
union of the cubes in Vn, defined in the proof of Theorem 1.1, and therefore,
MN−n = MN−n(Cc,ε) ≤ |Vn|. First observe that

lim inf
δ→0

logMδ

− log δ
= lim inf

n→∞
logMN−n

− logN−n
.

By Fatou’s lemma and Jensen’s inequality we get along the same lines as in
the last part of the proof of Theorem 1.1 (using the same l as in that proof)
that

Ep
(

lim inf
n→∞

logMN−n

− logN−n

)
≤ lim inf

n→∞
Ep
(

logMN−n

− logN−n

)
≤ lim inf

n→∞
logEp(MN−n)

− logN−n

≤ lim inf
n→∞

logEp (|Vn|)
n logN

≤ lim inf
n→∞

log(pϕN,d(p)N
d)n−l+1

n logN

=
log(pϕN,d(p)N

d)

logN
= d+

log(pϕN(p))

logN
.
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Since ϕN,d(p) < 1 it follows that d+ log(pϕN,d(p))/ logN < d+ log p/ logN .
�

3 Proof of Theorems 1.4 and 1.5

In this section and the next one we work in two dimensions, that is, d = 2.
We will be using the machinery in [1] concerning scaling limits of systems of
random curves.

One part of the argument is to apply some of the machinery developed in
[1] in order to show that the sequence of measures µn defined in the introduc-
tion has subsequential weak limits, and we first deal with this issue. After
that, we combine the existence of weak limits with the a.s. limit behaviour
of the fractal process in order to draw the final conclusions.

Let B(x, r) denote a closed square centered at x with side length r and
B◦(x; r) its interior. For R > r, let A(x; r, R) := B(x,R) \ B◦(x, r) be an
annulus. The basic estimate is the following, from which everything else will
follow.

Lemma 3.1 Let p ≥ pc(N, 2). There exists a sequence λ(1), λ(2), . . . with
limk→∞ λ(k) =∞ and finite constants Kk such that the following bound holds
uniformly for all r ≤ R ≤ 1 with r small enough, and all x:

lim sup
n→∞

Pp(Fn contains k disjoint crossings of A(x; r, R)) ≤ Kk

( r
R

)λ(k)

.

(15)

Proof. We are looking for a collection of mutually disjoint annuli (all con-
tained in B(x,R) and “surrounding” B(x, r)) of the form A(y; 2N−n, 4N−n),
where y is a corner point of some square Dn

k of the fractal construction. It
is not hard to see that for any x ∈ [0, 1]2, we can find such a collection
with at least M := c log(R/r) elements, for a suitable [uniform ???] positive
constant c. For small enough r, M is at least 1. For a given x, we denote
these annuli by An1 , An2 , . . . , AnM , where the indices n1 < n2 < · · · < nM
refer to the n associated with the annuli. The idea is that if there are k
disjoint crossings of A(x; r, R), then each annulUS Ani must also be crossed
by k disjoint crossings in Fn. This is exponentially unlikely in the number
of annuli, as we will show now.

We first consider the annulus An1 . Let n > n1, and perform the fractal
process until level n1 (inclusive). The annulus An1 consists of 12 level-n1

squares (Figure 3), some of which are in Cn1 and some of which are not. Now
observe that the collection of black (retained) squares of level n1 in An1 is

14



Figure 3: The annulus An1 with 3 level-n1 components, drawn in dark grey.

partitioned into at most 6 “level-n1 components”, where two neighbouring
retained level-n1 squares are in the same component if they share an edge:
see Figure 3 for an illustration of the event that the annulus contains 3 such
level-n1 components.

Now let k be large enough (exactly how large will become clear soon).
If An1 is, after n iterations, crossed by k disjoint interface segments, then
at least one of the level-n1 components must be crossed by at least k/6
such segments, since there are at most 6 components to accomodate these
crossings (we should write bk/6c but we ignore these details for the sake of
notational convenience). Between the interface crossings, one has alternating
black (retained) and white (discarded) crossings of the annulus. This implies
that the component with at least k/6 interface crossings is, after n iterations,
also crossed by at least k/12 − 1 white crossings which are “between” the
“first” and “last” of the k/6 interface crossings of said component.

The point of considering the level-n1 components introduced above is
that they are disjoint and separated by vacant squares, so that the fractal
constructions inside them from level n1 on are independent of each other, and
none of the interface segments crossing An1 can intersect more than one of
them. Therefore, adding extra retained level-n1 squares in An1 does not affect
the k/12 − 1 white crossings in the component with at least k/6 interface
crossings. This implies that the probability of having at least k interface

15



crossings in An1 after n iterations is bounded above by the probability of
having at least k/12 − 1 white crossings after n iterations, conditioned on
having full retention in An1 up to level n1.

However, scaling tells us that, if we condition on retention until level n1,
the probability in question is the same as the probability of having at least
k/12 − 1 disjoint white components crossing Ā := A((0, 0); 2, 4) when we
perform n − n1 iterations of the fractal process in [−2, 2]2 rather than in
[0, 1]2, seen as the union of 16 independent fractal processes on the 16 unit
squares making up [−2, 2]2. For these white crossing components we can use
the BK inequality (see [13] - a similar BK inequality for black crossing is not
available) and deduce that the probability of having k/12− 1 of such white
crossing components is bounded above by the probability of having at least
one, raised to the power k/12 − 1. This then finally leads to the estimate
that

Pp(Fn contains k disjoint crossings of A(x; r, R))

is bounded above by

Pp(Ā is crossed by a white component after n− n1 steps)k/12−1. (16)

If there is a white component crossing Ā, then there is no black circuit
surrounding the origin in Ā. The probability of having such a black circuit
after n − n1 iterations is at least as large as the probability to have such a
circuit in the limit, and by the weak RSW theorem for fractal percolation in
[10] and the FKG inequality, we have that for p ≥ pc(N, 2) this probability is
strictly positive. It follows that there exists α < 1 such that (16) is bounded
above by αk/12−2, uniformly in n > n1.

Next we consider An1 and An2 simultaneously. Take n > n2. The proba-
bility to have k interface crossings in An1 and also in An2 is the probability
that this happens in An1 multiplied by the probability that this happens in
An2 conditioned on the fact that it happens in An1 . We can treat this con-
ditional probability exactly as above: we can change the conditioning into
one involving complete retention inside An2 until level n2, to get an upper
bound. It follows that the probability that both An1 and An2 have k interface
crossings is bounded above by the square of the individual bounds, that is,
by (αk/12−1)2.

We continue in the obvious way now, leading to the conclusion that for
n > nM , the probability that all annuli An1 , . . . , AnM are crossed by k inter-
face crossings, is bounded above by(

αk/12−1
)c log(R/r)

.
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A little algebra shows that this is equal to( r
R

)c log(α1−k/12)

,

and this is a bound of the required form, with λ(k) = c log(α1−k/12). �

We now describe how the existence of subsequential weak limits of the se-
quence µn follows from this lemma. (This is well known but perhaps not
immediately obvious from the literature, hence our summary for the conve-
nience of the reader.) For ε > 0 and positive integers k, n define

rnε,k := inf

({
0 < r ≤ 1 :

some annulus A(x; r1+ε, r), x ∈ [0, 1]2, is
crossed by k disjoint crossings in Fn

}
, 1

)
.

It follows exactly as in [1] or [14] that, as a consequence of Lemma 3.1,
for any ε > 0, for large enough k the random variables rnε,k are stochastically
bounded away from zero as n→∞, that is

lim
u→0

lim sup
n→∞

Pp(rnε,k ≤ u) = 0. (17)

Note that in Lemma 3.1 we have the result (15) only for r small enough, while
the corresponding hypothesis H1 in [1] is stated without that restriction. Our
Lemma 3.1 however is sufficient to prove (17), since the latter concerns the
behaviour of Pp(rnε,k ≤ u) as u→ 0.

Note also that Hypothesis H1 is used in equation (3.4) in [1] only for
annuli whose inner radius equals 3r1+ε

n , with rn = 2−n ≤ u for u > 0. By
taking u sufficiently small in the proof of Lemma 3.1 in [1], also the inner
radius 3r1+ε

n becomes sufficiently small and we can apply our Lemma 3.1.
Hence, (17) follows from our Lemma 3.1 by the same arguments used in [1]
or [14].

As shown in [1] (see in particular their proof of Theorem 1.1 and equation
(1.7) in their Remark (ii) following the statement of Theorem 1.1, but note
the typo in equation (1.7), where d/λ(1) should be λ(1)/d), equation (17)
implies the following result.

Theorem 3.2 ([1]) For any ε > 0, all curves Γ ∈ Fn can be parametrized
by continuous functions γ : [0, 1] → [0, 1]2 such that for each curve, for all
0 ≤ t1 ≤ t2 ≤ 1

|γ(t1)− γ(t2)| ≤ knε |t1 − t2|
1

2+ε ,

where the random variables knε are stochastically bounded as n→∞, that is,

lim
u→∞

lim sup
n→∞

Pp(knε ≥ u) = 0.
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Once we have this result, we use Theorem 5.7 in [14] and Theorem 1.1
in [1] to conclude that the sequence of measures {µn}n≥1 is tight. Since Σ is
separable, it then follows from Prohorov’s theorem that for every sequence
nk →∞ there exists a subsequence nkl →∞ such that µnkl converges weakly
to a probability measure on Σ.

Finally, from the fact that the knε are stochastically bounded and the fact
that the collection of curves with a given Hölder exponent is compact, we
have (see also [14] and [1]) that if we sample from any such weak limit, all
curves γ in the sample can be parametrized in such a way that

|γ(t1)− γ(t2)| ≤M |t1 − t2|α, (18)

where M is a random number common to all curves in the same sample, and
α is a (non-random) constant.

Next we combine the above weak convergence with the a.s. convergence
of the retained squares (as compact sets) in the fractal process. Let (S,H)
denote the metric space of compact subsets of [0, 1]d with the Hausdorff
distance H and let (Σ,Dist) be as defined after equation (9). Furthermore
let the function g : Σ 7→ S be defined by g(F) = ∪γ∈F Image(γ) and define
Fn = g(Fn).

Our next result concerns weak convergence of (Fn, Fn) where we use the
product topology on Σ× S.

Lemma 3.3 The distribution of (Fn, Fn) converges weakly along a subse-
quence. Furthermore, any pair (F , F ) of random variables sampled from any
such weak limit a.s. satisfies F = g(F).

Proof. We already know that the distribution µn of Fn converges weakly
along a subsequence. Using (8) and (9), if Dist(F ,F ′) ≤ δ, this immediately
implies that H(F, F ′) ≤ δ since the images of any two curves γ1, γ2 such
that D(γ1, γ2) ≤ δ are within Hausdorff distance δ. This proves that g is
continuous.

The convergence in distribution of Fn along some subsequence nk to a
limit F implies the existence of coupled versions Xk and X of Fnk and F
respectively, such that Xk converges to X in probability as k →∞ (see, e.g.

Corollary 1 in [3]). Moreover, since g is continuous, g(Xk)
dist.
= Fnk converges

in probability to g(X)
dist.
= g(F) as k → ∞. This implies convergence in

probability of the vector (Xk, g(Xk)) to (X, g(X)), which yields the joint
convergence in distribution of (Fnk , Fnk) to some limit (F , F ) with F = g(F)
a.s. �
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Proof of Theorem 1.4. According to Lemma 3.3 there exists a subsequence
{nk}k≥1 such that (Fnk , Fnk) converges weakly to some limit (F , F ) where F
is a.s. the union of the images of F . Furthermore, we claim that a.s.

H(Fn, C)→ 0 as n→∞, (19)

where Fn = g(Fn). To see this, let F ε
n denote the ε-neighbourhood of Fn and

note that C 6⊂ F ε
n implies that there exists an x ∈ C such that B(x, ε)∩Fn = ∅

and so B(x, ε) ⊂ Cn, otherwise an interface curve would be closer to x than
ε. It is however easy to prove that the probability that there exists a ball
of radius ε in Cn goes to 0. For the other direction, let D = D(C, ε) be the
complement of the open ε-neighbourhood of C. Obviously D∩Cn is a compact
set (if nonempty) and furthermore D∩Cn+1 ⊂ D∩Cn for every n. Therefore,
by compactness, if D∩Cn 6= ∅ for every n then ∩∞n=1D∩Cn 6= ∅ and so there
are points in C that are also in D which is a contradiction. Therefore, the
open ε-neighbourhood of C will eventually contain Cn and hence also Fn.

Since Fnk converges weakly to F and a.s. to C (because of (19)), we
conclude that F and C have the same distribution, and hence C has the same
distribution as g(F). The fact that (as noted above) a.s., a realisation from
F only contains Hölder continuous curves satisfying (18) finishes the proof.
�

Proof of Theorem 1.5. Let νn be the distribution of σn. We repeat the
proof of Theorem 1.4, with the distance (9) replaced by (8). This shows
that conditioned on the existence of a left-right crossing for all n, νn has
subsequential weak limits as n → ∞ and in addition that any such limit
assigns probability 1 to Hölder continuous curves. �

4 Proof of Theorem 1.6

We will start by showing that the fractal percolation process satisfies Hy-
pothesis H2 in [1], from which Theorem 1.6 follows. The hypothesis concerns
probabilistic bounds on crossings in the long direction of certain rectangles.

A collection of sets {Ai} is called well-separated if for all i the distance
of each set Ai to the other sets {Aj}j 6=i is at least as large as the diameter of
Ai. Hypothesis H2 in [1] reads as follows.

Hypothesis 4.1 There exist σ > 0 and some ρ < 1 such that for every
collection of k well-separated rectangles A1, . . . , Ak of width l1, . . . , lk and
length σl1, . . . , σlk, the following inequality holds:

lim sup
n→∞

Pp
(
Fn contains a long crossing in each of A1, . . . , Ak

)
≤ ρk.
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Lemma 4.2 Hypothesis 4.1 holds for interface curves in the fractal process.

Proof. We assume without loss of generality that l1 ≥ l2 ≥ · · · ≥ lk. Let ni be
the smallest integer n for which all rectangles of dimensions li and σli contain
an n-level square of the fractal construction, and define Ai as the event of
complete retention until iteration step ni. Let CRI

n(Ai) denote the event that
the closed rectangle Ai is crossed in the long direction by an interface segment
after n iterations of the fractal process, and define CRB

n (Ai) similarly for a
black crossing.

Note that by the fact that A1, . . . , Ak are well-separated and by the choice
of n1, given A1, the event CRB

n (A1) is, when n > n1, conditionally indepen-
dent of the events CRB

n (A2), . . . , CRB
n (Ak), since no level-n square intersects

more than one rectangle. Note also that, if a rectangle is crossed in the long
direction by an interface segment, then it also contains a black crossing in
the long direction. Using these two facts and the FKG inequality gives, for
n > n1,

Pp(∩ki=1CR
I
n(Ai)) ≤ Pp(∩ki=1CR

B
n (Ai))

≤ Pp(∩ki=1CR
B
n (Ai)|A1)

= Pp(CRB
n (A1)|A1)Pp(∩ki=2CR

B
n (Ai)|A1).

Since l1 ≥ l2 ≥ · · · ≥ lk, we have n1 ≤ n2 ≤ · · · ≤ nk and hence A1 ⊃ A1 ⊃
· · · ⊃ Ak. It follows as before that for n > n2 we have

Pp(∩ki=2CR
B
n (Ai)|A1) ≤ Pp(∩ki=2CR

B
n (Ai)|A2)

= Pp(CRB
n (A2)|A2)Pp(∩ki=3CR

B
n (Ai)|A2).

We repeat this procedure k − 2 more times, finally obtaining, for n > nk,
that

Pp(∩ki=1CR
I
n(Ai)) ≤

k∏
i=1

Pp(CRB
n (Ai)|Ai).

It remains to show that Pp(CRB
n (Ai)|Ai) is uniformly bounded above by

some ρ < 1. This can be seen as follows. Let, for each i, Wi be a smallest
collection of level-(ni + 1) squares in the fractal process with the property
that if each of the squares in Wi is white, then Ai cannot be crossed by
a black path in the long direction. It is easy to see from the choice of ni
that the cardinality of Wi is uniformly bounded above and hence that the
probability that all squares in Wi are white is uniformly bounded below by
some positive number. It follows that the probability of a long black crossing
in Ai is uniformly bounded above by some number strictly smaller than 1.
�
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Proof of Theorem 1.6. The result follows from Lemma 4.2 and Theorem 1.3
in [1]. �

Acknowledgments. The second author thanks Lincoln Chayes for suggest-
ing the argument that led to the proof of equation (6).
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