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Abstract

The ordinary contact process is used to model the spread of a dis-
ease in a population. In this model, each infected individual waits
an exponentially distributed time with parameter 1 before becoming
healthy. In this paper, we introduce and study the contact process in a
randomly evolving environment. Here we associate to every individual
an independent two-state, {0, 1}, background process. Given δ0 < δ1,
if the background process is in state 0, the individual (if infected) be-
comes healthy at rate δ0, while if the background process is in state 1,
it becomes healthy at rate δ1. By stochastically comparing the contact
process in a randomly evolving environment to the ordinary contact
process, we will investigate matters of extinction and that of weak and
strong survival. A key step in our analysis is to obtain stochastic dom-
ination results between certain point processes. We do this by starting
out in a discrete setting and then taking continuous time limits.
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Keywords and phrases: contact process; stochastic domination;
hidden markov chain

Short title: Randomly evolving contact processes

1 Introduction

The first part of this introduction will discuss the concept of stochastic dom-
ination and then move on to state our discrete time results. We will then
proceed by defining the Contact Process in a Randomly Evolving Environ-
ment, from now on referred to as CPREE, that we introduce in this paper.
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We would like to point out that a model called the Contact Process in a
Random Environment (or CPRE) has been studied before. The first pa-
pers concerning this latter model were [2] and [8], and then further studies
were carried out in for instance [1], [9], [13] and [14]. However the random
environments in those papers are static while here they change over time.

In this paper we are concerned with models on connected graphs G =
(S, E) of bounded degree, in which every site s ∈ S can take values 0 or
1. Here σ and ξ will mainly denote configurations on S, i.e. σ, ξ ∈ {0, 1}S .
We say that ξ � ξ̃ if ξ(s) ≤ ξ̃(s) for every s ∈ S. An increasing function f
is a function f : {0, 1}S → R such that f(ξ) ≤ f(ξ̃) for all ξ � ξ̃. For two
probability measures µ, µ′ on {0, 1}S , we write µ � µ′ if for every continuous
increasing function f we have that µ(f) ≤ µ′(f). (µ(f) is shorthand for∫

f(x)dµ(x).) Strassens Theorem (see [10], page 72) states that if µ � µ′,
then there exist random variables X, X ′ with distributions µ, µ′ respectively,
defined on the same probability space, such that X � X ′ a.s.

We will need the following standard definition.

Definition 1.1 Let S be such that |S| < ∞ and let µ be a probability mea-
sure on {0, 1}S with full support. µ is said to be monotone, if for every s ∈ S
and any ξ, ξ̃ ∈ {0, 1}S\s such that ξ � ξ̃, one has that

µ(σ(s) = 1|σ(S \ s) ≡ ξ) ≤ µ(σ(s) = 1|σ(S \ s) ≡ ξ̃).

If |S| = ∞, we say that a probability measure µ on {0, 1}S is monotone if
the restriction of µ to any finite subset of S is monotone.

For p ∈ [0, 1], let each site s ∈ S, independently of all others, take value 1
with probability p and 0 with probability 1 − p. Write πp for this product
measure on {0, 1}S . For any probability measure µ on {0, 1}S define pmax,µ

by
pmax,µ := sup{p ∈ [0, 1] : πp � µ}.

The supremum is easily seen to be obtained, which motivates the notation.
Similarly define

pmin,µ := inf{p ∈ [0, 1] : µ � πp}.

Next, informally we will here think of {Bn}∞n=1 as a background process
which influences another process {Xn}∞n=1. Formally, fix 0 ≤ α0 ≤ α1 ≤ 1
and let {Bn}∞n=1 be any process with state space {0, 1}. Conditioned on
{Bn}∞n=1 let the process {Xn}∞n=1, also with state space {0, 1}, be a sequence
of conditionally independent random variables where the (conditional) dis-
tribution of Xk is

if then with prob.
Bk = 0 Xk = 1 α0

Bk = 1 Xk = 1 α1,
(1)

for every k ≥ 1.
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We will say that µ is translation invariant on N if for every l ≥ 1, k ≥ 0
and any ξ ∈ {0, 1}{1,...,l}

µ(σ(1, . . . , l) ≡ ξ) = µ(σ(k + 1, . . . , k + l) ≡ ξ).

In section 2 we will prove the following proposition.

Proposition 1.2 Assume that the distribution of {Bn}∞n=1 is monotone and
translation invariant. Then the sequence

{P(Xn = 1|Xn−1 = · · · = X1 = 0)}n≥1,

is decreasing in n. In addition the limit equals pmax,µ, where µ is the distri-
bution of {Xn}∞n=1.

The proof is an easy consequence of results from [5] and [12].
We are now ready to define the discrete background process that we

will use throughout this paper. For p, γ ∈ [0, 1], define the Markov chain
{Bn}∞n=1 in the following way:

B1 =
{

1 w.p. p
0 w.p. 1− p,

(2)

and for k ≥ 2,
if then w.p.
Bk−1 = 0 Bk = 1 γp
Bk−1 = 1 Bk = 0 γ(1− p).

(3)

In other words, Bk takes the same value as Bk−1 unless there is an update
which happens independently with probability γ. If an update occurs, Bk =
1 with probability p, and Bk = 0 with probability 1 − p. Using (1) this
defines a joint process {(Bn, Xn)}∞n=1, whose second marginal is an example
of a so called hidden Markov chain. The main theorem of Section 3 is the
following, here µ refers to the distribution of {Xn}∞n=1 with the background
process as above.

Theorem 1.3 We have that

pmax,µ =
1
2

(
1− C −

√
(1− C)2 − 4D

)
,

where
C = (1− α0 − α1)− γ(1− α0 − (1− p)(α1 − α0))

and
D = α0α1 + γ(α1(1− α0)− (1− p)(α1 − α0)).

Furthermore

pmin,µ =
1
2

(
1 + C ′ +

√
(1− C ′)2 − 4D′

)
,

where C ′ and D′ are as C and D but with α0, α1, p and γ replaced by 1 −
α1, 1− α0, 1− p and γ respectively.
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Remark: It is easy to check that pmax,µ (pmin,µ) is increasing (decreasing)
in γ. This is natural since intuitively, as γ increases, {Xn}∞n=1 looks more
like an i.i.d. process and so our approximations should get better.

The proof of Theorem 1.3 unfortunately involves some tedious (but
straightforward) calculations; however this result is needed for all the other
results of this paper.

From the results of Section 3, we will in Section 4 prove our next result.
First define

Xc
n :=

n∑
i=1

Xi ∀n ∈ N,

where c indicates that we are counting the number of 1’s up to time n. The
pair of processes {(Bt, Xt)}t≥0, to be defined below will be a Markov process.
Furthermore, it will be the continuous time analogue of the pair of processes
{(Bn, Xc

n)}∞n=1. To define {(Bt, Xt)}t≥0, let B0 = 1 with probability p and
B0 = 0 with probability 1 − p, also let X0 = 0. We define the transition
rates at time t ≥ 0, for the Markov process {(Bt, Xt)}t≥0 as follows:

from to with intensity
(0, k) (1, k) γp

(1, k) (0, k) γ(1− p)
(0, k) (0, k + 1) α0

(1, k) (1, k + 1) α1,

for any k ≥ 0. Informally this can be described in the following way. Letting
the value of B0 be chosen as before, the {Bt}t≥0 process waits an exponen-
tially distributed time with parameter γ > 0 before it updates its status.
After an update, this process takes value 1 with probability p and 0 with
probability 1− p, and all of this is done independently of everything else. If
the background process is in state 0, {Xt}t≥0 increases by one every time
a Poisson process with rate α0 has an arrival. If instead the background
process is in state 1, {Xt}t≥0 increases by one every time a Poisson process
with rate α1 has an arrival. In short, {Xt}t≥0 is the counting process for
a type of Poisson process where the parameter comes from {Bt}t≥0. Anal-
ogous to the definition of pmax,µ, define λmax,µ, where µ here refers to the
distribution of {Xt}t≥0, in the following way. λmax,µ is the maximum real
number λ such that a Poisson(λ)-process can be coupled with the process
{Xt}t≥0 so that if the Poisson(λ)-process has an arrival at time τ ∈ [0,∞)
then so does the {Xt}t≥0 process. In other words, there exists {X ′

t}t≥0 with
distribution Poisson(λ) coupled with {Xt}t≥0 such that

Xt −X ′
t is non-decreasing in t.
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Define λmin,µ to be the minimal real number λ such that a Poisson(λ)-process
can be coupled with the process {Xt}t≥0 so that if the {Xt}t≥0 process has
an arrival at time τ ∈ [0,∞) then so does the Poisson(λ)-process. Observe
that λmax,µ = λmax,µ(α0, α1, γ, p). We will write out the arguments in most
equations, but not in more general discussions. Trivially α0 ≤ λmax,µ ≤
λmin,µ ≤ α1. For future convenience let Poiγ,p

α0,α1
denote the distribution of

{Xt}t≥0 and Poiλ denote the distribution of a Poisson process with intensity
λ. The coupling described above is a form of stochastic domination and we
will write

Poiλmax,µ � Poiγ,p
α0,α1

, (4)

and
Poiγ,p

α0,α1
� Poiλmin,µ

. (5)

Define

λ̄ = λ̄(α0, α1, γ, p)

:=
1
2
(α0 + α1 + γ −

√
(α1 − α0 − γ)2 + 4γ(1− p)(α1 − α0)).

Before stating our next result we would like to point out that the pair
of processes {(Bt, Xt)}t≥0 has been studied before (see [7] and some of the
references therein). However, in these papers the focus and motivation for
the study is completely different from ours, the question of interest being
how to best determine B0 by observing the {Xt}t≥0-process. See further the
remark after Theorem 1.5 below.

Theorem 1.4 Let {(Bt, Xt)}t≥0 be as above. For every choice of α0, α1, γ >
0 with α0 ≤ α1 and p ∈ [0, 1] we have that

λmax,µ(α0, α1, γ, p) = λ̄, (6)

and for p > 0
λmin,µ(α0, α1, γ, p) = α1.

Remarks:

• Note the apparent lack of symmetry between λmax,µ and λmin,µ. Infor-
mally, consider for a moment the model to be a point process, where
the process is 0 unless there is an arrival, in which case it takes the
value 1. We can then see that the true symmetric statement of the
λmax,µ result would concern a model which is 1 unless there is an arrival
in which case it takes the value 0. This however does not correspond
to the result concerning λmin,µ.
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• We will show in Section 4 that λmax,µ(α0, α1, γ, p) → min(α1, α0 + γ)
as p → 1. Hence if γ > α1 − α0, then λmax,µ(α0, α1, γ, p) → α1

as p → 1 which one would expect. In contrast, for every p > 0
λmin,µ(α0, α1, γ, p) = α1 and so λmin,µ(α0, α1, γ, p) 6→ α0 as p → 0
as one might have suspected; this gives a discontinuity at p = 0. Also,
it is trivial to show that λmax,µ(α0, α1, γ, p) → α0 as p → 0.

• Intuitively, as γ grows larger, the suppressing of possible arrivals be-
comes “increasingly independent”. Whenever a possible arrival occurs,
the background process has with very high probability been updated
since the last possible arrival, and if so the new arrival is suppressed
independently of everything else. Therefore, as γ grows larger, we
would expect our process to look more and more like an ordinary
Poisson-process. As a consequence, we would expect our approxima-
tion to get better. This is confirmed by studying the derivative of
λ̄ with respect to γ; it is easy to check that λ̄ is increasing in γ.
Furthermore, for fixed 0 < p < 1, it follows from the proof of Propo-
sition 1.9, where we take the limit γ →∞ in equation (6) above, that
limγ→∞ λmax,µ(α0, α1, γ, p) = pα1 +(1−p)α0. Of course this is exactly
what you would expect to get. Also, by letting γ → 0 in equation (6)
we get that λmax,µ(α0, α1, 0, p) → α0. This last result is also natural.
As γ becomes smaller, we will find longer and longer time intervals
in which the background process is in the lower state. Therefore the
Poisson process we dominate must have lower and lower density.

It is natural to ask for quantitative versions of Theorem 1.4 for finite
time, and in fact we will use such results to prove Theorem 1.4. There-
fore, for T > 0, let λT

max,µ(α0, α1, γ, p) denote the maximum intensity of
the Poisson process which the second marginal of the truncated process
{(Bt, Xt)}t∈[0,T ] can dominate. Define λT

min,µ(α0, α1, γ, p) analogously. We
feel that this bound is interesting in its own right and we therefore present
it in our next theorem together with a lower bound on λT

max,µ(α0, α1, γ, p)
and a result for λT

min,µ(α0, α1, γ, p) (this last result will follow from the proof
of Theorem 1.4).

Let

L = L(α0, α1, γ, p) :=
√

(α1 − α0 − γ)2 + 4γ(1− p)(α1 − α0).

Theorem 1.5 For every choice of α0, α1, γ, T > 0 with α0 ≤ α1 and p ∈
(0, 1) we have that

λT
max,µ(α0, α1, γ, p) ≥ λ̄ + (pα1 + (1− p)α0 − λ̄)e−TL. (7)

Furthermore there exists a constant E > 0, depending on α1, α0, γ and p,
such that

λT
max,µ(α0, α1, γ, p) ≤ λ̄ +

1
T

(pα1 + (1− p)α0 − λ̄)
1− e−TE

E
. (8)
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Finally
λT

min,µ = λmin,µ = α1.

Remarks:

• Observe that the right-hand side of equation (7) tends to pα1+(1−p)α0

as T tends to 0, and that it tends to λ̄ = λmax,µ(α0, α1, γ, p) as T tends
to infinity. Both results are of course what you would expect. The
same is true for the upper bound of equation (8).

• In [7] they calculate the probability density Fij(t) of the first arrival of
{Xt}t≥0 occuring at time t while Bt = j given that B0 = i. Through a
non-trivial although straightforward series of calculations it is possible
from their results to arrive at the conclusion that

λT
max,µ(α0, α1, γ, p) ≤ λ̄ +

1
T

c,

for some constant c. However, this result does not give the right asymp-
totic behavior as T tends to 0. Furthermore, since this approach also
rests on work needed to arrive at the expression for the probability
density Fij(t) we do not use the results of [7] in our proof.

1.1 Models

1.1.1 The contact process

In this section we will discuss some basic concepts concerning the contact
process, see [10] for results up to 1985 and [11] for results between 1985
and 1999. Consider a graph G = (S, E) of bounded degree. In the contact
process the state space is {0, 1}S . We will let 1 represent an infected indi-
vidual, while a 0 will be used to represent a healthy individual. Let λ > 0,
and define the flip rate intensities to be

C(s, σ) =


1 if σ(s) = 1
λ
∑

(s′,s)∈E

σ(s′) if σ(s) = 0. (9)

By flip rate intensities, informally, we mean as usual that every site s ∈
S waits an exponentially distributed time with parameter C(s, σ) before
changing its status. Here, 10,11 will denote the measures that put mass one
on the configuration of all 0’s and all 1’s respectively. If we let the initial
distribution be σ ≡ 1, the distribution of this process at time t, which we
will denote by 11Tλ(t), is known to converge as t tends to infinity. This
is simply because it is a so-called “attractive” process and σ ≡ 1 is the
maximal state; see [10] page 265. This limiting distribution will be referred
to as the upper invariant measure for the contact process with parameter λ
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and will be denoted by νλ. We then let Ψλ denote the stationary Markov
process on {0, 1}S with initial (and invariant) distribution νλ. One can also
choose to start the process with any set A ⊂ S of infected individuals and
then use the flip rate intensities above. Denote this latter process by Ψλ,A.
We say that the process dies out if for any s ∈ S

Ψλ,{s}(σt 6≡ 0 ∀ t ≥ 0) = 0,

and otherwise it survives. We also say that the process survives strongly if

Ψλ,{s}(σt(s) = 1 i.o.) > 0.

We say that the process survives weakly if it survives but does not survive
strongly. These and all other statements like it, made here and later, are
independent of the specific choice of the site s; see [11]. We will use the
same definition of survival for some closely related processes below. It is
well known that for any graph (see [11] pg. 42) there exists two critical
parameter values 0 ≤ λc1 ≤ λc2 ≤ ∞ such that

• Ψλ,{s} dies out if λ < λc1

• Ψλ,{s} survives weakly if λc1 < λ < λc2

• Ψλ,{s} survives strongly if λ > λc2.

The above description of the contact process with flip rate intensities
chosen according to (9) is standard. However for our purposes it is more
convenient to use the following flip rate intensities. Let δ > 0 and

C(s, σ) =


δ if σ(s) = 1∑
(s′,s)∈E

σ(s′) if σ(s) = 0. (10)

This is just a time scaling of the original model. We will denote the upper
invariant measure by νδ and the corresponding process starting with distri-
bution νδ by Ψδ. If we instead choose to start with a specific set A ⊂ S of
infected individuals, we denote the corresponding process by ΨA

δ . We will
let the distribution of the process at time t ≥ 0 be denoted by νA

δ,t. At some

point we need to consider the process Ψλ,A
δ , this is exactly like the model

just described except for a λ inserted in front of the sum in equation (10).
As above, it follows that there exists 0 ≤ δc1 ≤ δc2 ≤ ∞ such that

• Ψ{s}
δ dies out if δ > δc2

• Ψ{s}
δ survives weakly if δc1 < δ < δc2

• Ψ{s}
δ survives strongly if δ < δc1.

We point out that on G = Zd it is known (see [3]) that δc1 = δc2. It is also
well known (see [11]) that on any homogeneous tree of degree larger than or
equal to 3, this is not the case.
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1.1.2 CPREE

This model is a pair of processes {(Bt, Yt)}t≥0 with state space {{0, 1} ×
{0, 1}}S . The second coordinate of {(Bt, Yt)}t≥0 will represent whether an
individual is infected or not, while the first coordinate will represent how
prone the individual is to recover. With a slight abuse of notation we have
chosen the first coordinate to be denoted by {Bt}t≥0 even though a process
with this notation was already defined previously in the introduction. How-
ever, at every site s ∈ S, the marginal of the {Bt}t≥0 process defined in this
subsection (denoted by {Bt(s)}t≥0) will be independent of the rest of the
{Bt}t≥0 process defined here, and have distribution according to the process
with the same notation defined earlier. It will be clear from context which
of these two we are referring to.

For any A ⊂ S, let Y0(s) = 1 iff s ∈ A, and let B0 ∼ πp. For 0 ≤ δ0 <
δ1 < ∞, γ > 0 and p ∈ [0, 1], let the flip rate intensities C(s, (Bt, Yt)) of a
site s ∈ S be

from to with intensity
(0, 0) (1, 0) γp

(0, 1) (1, 1) γp

(1, 0) (0, 0) γ(1− p)
(1, 1) (0, 1) γ(1− p)

(0, 0) (0, 1)
∑

(s′,s)∈E

Yt(s′)

(1, 0) (1, 1)
∑

(s′,s)∈E

Yt(s′)

(0, 1) (0, 0) δ0

(1, 1) (1, 0) δ1.

Denote the distribution of {Yt}t≥0 by Ψγ,p,A
δ0,δ1

and the distribution at a fixed

time t by νγ,p,A
δ0,δ1,t. The definition of dying out, surviving weakly and surviving

strongly is the same as for the ordinary contact process. At this point a
question naturally arises. For fixed δ0, δ1, γ and p, do the initial state of the
background process have any effect on this definition? This point is raised
in Section 6, where we list some open questions. Note that we are here
assuming that B0 ∼ πp which then is included in the definition.

We will write
Ψγ,p,A

δ0,δ1
� ΨA

δ

when we mean that there exists a process {Yt}t≥0 with distribution as above
and a process {Y ′

t }t≥0 with distribution ΨA
δ coupled such that

Yt(s) ≤ Y ′
t (s) ∀s ∈ S and ∀t ≥ 0,
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and use the obvious notation for all similar types of situations. This stochas-
tic ordering also implies that

νγ,p,A
δ0,δ1,t � νA

δ,t ∀t ≥ 0.

It is easy to show that Ψγ,p,A
δ0,δ1

is in this sense stochastically decreasing in
p. We have already introduced this notation for continuous time processes
in (4) and (5). There it was a relation between jump processes indexed by
t ≥ 0, while here it is a relation between processes with state space {0, 1}S . It
will be clear from the context which one we are referring to. By the recovery
process of a site, we mean the process governing the recoveries of that site.
In the ordinary contact process it is a Poiδ process, while by the definition
of the CPREE above, the recovery process at every site is in fact a Poiγ,p

δ0,δ1

process as defined earlier. This explains the relation between Theorem 1.4
and our next result.

We will let ∆G denote the maximum degree of a graph G of bounded
degree. We can now list our main results concerning this model:

Theorem 1.6 Let G = (S, E) be any graph of bounded degree and A ⊂ S,
be such that |A| < ∞. For any δ < min(δ1, δ0 + γ) there exists a p =
p(δ, δ0, δ1, γ) ∈ (0, 1) large enough so that

Ψγ,p,A
δ0,δ1

� ΨA
δ . (11)

Furthermore, for δ > min(δ1, δ0 + γ) there is no p ∈ (0, 1) such that (11)
holds.

Our next result also uses Theorem 1.4. However, it does so in a different
way. The reason for this is that a straightforward approach would need a re-
sult for λmin,µ(α0, α1, γ, p) analogous to the one we have for λmax,µ(α0, α1, γ, p).
However this is false since λmin,µ(α0, α1, γ, p) is equal to α0 for any p > 0.

Here, let Ψγ,p,A
δ0,δ1,B0(A)≡0 denote the distribution of Ψγ,p,A

δ0,δ1
conditioned on the

event that B0(s) = 0 for every s ∈ A.

Theorem 1.7 Let G = (S, E) be any graph of bounded degree. Let A ⊂ S,
be such that |A| < ∞ and γ ≥ ∆G. For any choice of δ > δ0 and λ < 1 there
exists a p = p(δ, λ, δ0, δ1, γ) ∈ (0, 1) small enough so that

Ψλ,A
δ � Ψγ,p,A

δ0,δ1,B0(A)≡0.

Remarks: It is unfortunate that we need the assumption that B0(s) = 0
for every s ∈ A. However, this is of no importance when we later apply
the theorem to prove Theorem 1.8 stated below. Also, as λ → 1, the proof
requires that p → 0. The hypothesis γ ≥ ∆G and λ < 1, might look artificial,
however a lower bound on γ is required as Example 5.1 shows, and for
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λ = 1, the statement is false as Example 5.2 shows. We thank the referee
for pointing out these two examples.

We are now ready to state the main theorem concerning the CPREE
model of this paper. Results 1 − 3 use an easy coupling argument while
4−6 follow from applications of Theorems 1.6 and 1.7. Here, any statements
similar to pc1 < p < pc2 in the case that pc1 = pc2 should be interpreted as
empty statements.

Theorem 1.8 Let s ∈ S, 0 ≤ δ0 ≤ δ1 < ∞ and consider the process Ψγ,p,{s}
δ0,δ1

.
We have the following results:

1. Assume that δc1 < δ0 < δc2 < δ1. There exists pc2 = pc2(δ0, δ1, γ) ∈
[0, 1] such that Ψγ,p,{s}

δ0,δ1
dies out if p > pc2 and survives weakly if p <

pc2.

2. Assume that δ0 < δc1 ≤ δc2 < δ1. There exists pc2 = pc2(δ0, δ1, γ) ∈
[0, 1] and pc1 = pc1(δ0, δ1, γ) ∈ [0, 1] such that pc1 ≤ pc2 and Ψγ,p,{s}

δ0,δ1
dies out if p > pc2 survives weakly if pc1 < p < pc2 and survives
strongly if p < pc1.

3. Assume that δ0 < δc1 < δ1 < δc2. There exists pc1 = pc1(δ0, δ1, γ) ∈
[0, 1] such that Ψγ,p,{s}

δ0,δ1
survives strongly if p < pc1 and survives weakly

if p > pc1.

4. In case number 1, if γ > δc2 − δ0 then pc2 < 1 and if γ ≥ ∆G, then
pc2 > 0.

5. In case number 2, if γ > δc2 − δ0 then pc2 < 1, if γ > δc1 − δ0 then
pc1 < 1 and if γ ≥ ∆G, then pc1, pc2 > 0.

6. In case number 3, if γ > δc1 − δ0 then pc1 < 1 and if γ ≥ ∆G, then
pc1 > 0.

Remarks:

• We do not include trivial cases like δc1 < δ0 < δ1 < δc2 in the state-
ment.

• One might suspect that the condition γ > δc2 − δ0 should in fact be
γ > δ1 − δ0, considering the statement of Theorem 1.6. The point is
however that we must only be able to choose the δ of Theorem 1.6 to
be larger than δc2, not δ1.

• We would like to point out that even if we only show that pc1, pc2 < 1
whenever γ > δc1 − δ0, γ > δc2 − δ0 respectively, there is no apparent
reason why this should not be true for all γ > 0. Similarly for pc1, pc2 >
0.
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The rest of the paper is organized as follows. Proposition 1.2 is proved
in Section 2. This is then used to prove Theorem 1.3 in Section 3. In Section
4 we use a limiting argument to conclude Theorem 1.4 from Theorem 1.3.
We then exploit Theorem 1.4 to prove Theorems 1.6 and 1.7 in Section 5.
Finally, these last two theorems will be used to prove Theorem 1.8 in the
same section.

We exploit the techniques for proving Theorem 1.6 further to conclude
the following results concerning pc1 and pc2.

Proposition 1.9 Fix i ∈ {1, 2} and assume that δ0 < δci. We have for pci,

lim sup
γ→∞

pci(δ0, δ1, γ) ≤ δci − δ0

δ1 − δ0
.

Remark: We conjecture that the limit exists and that

lim
γ→∞

pci(δ0, δ1, γ) =
δci − δ0

δ1 − δ0
.

We cannot prove this with the techniques of this paper; this is closely related
to the remarks after Theorem 1.4. However, the intuition why it should be
true is that as γ → ∞, the recovery process should become increasingly
similar to an ordinary Poisson(δ0 + p(δ1 − δ0))-process (see the remarks of
Theorem 1.4). In turn, our CPREE then should become more and more like
an ordinary contact process with recovery rate δ0 + p(δ1− δ0). Therefore we
should get that pc solves the equation δc = δ0 + p(δ1 − δ0).

As γ tends to 0 we can unfortunately not conclude anything about pci.
The reason is yet again connected to the remark after Theorem 1.4. We
know that for γ = 0, λmin,µ(α0, α1, 0, p) = α1 from Theorem 1.4 and that
λmax,µ(α0, α1, 0, p) = α0. Therefore the stochastic domination techniques we
use in this paper do not yield any nontrivial results. We also point out that
the case γ = 0, corresponds to the CPRE and we therefore refer to the
papers mentioned in the first paragraph of the introduction.

We also have the following easy result about pc1, pc2.

Proposition 1.10 We have that for any γ > 0 and δ1 > δci > δ0, where
i ∈ {1, 2}

lim
δ0↑δci

pci(δ0, δ1, γ) = 0.

Remark: One would of course expect that

lim
δ1↓δci

pci(δ0, δ1, γ) = 1.

However, it is not possible to prove this the same way as we prove Proposi-
tion 1.10; again this is a fact that propagates from Theorem 1.4.
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2 Proof of Proposition 1.2

The proof of Theorem 1.2 will require the following two results, the first uses
Lemma 3.2 of [5] and the second is a restatement (which is more suitable
for our purposes) of Theorem 1.2 of [12].

Lemma 2.1 If {Bn}∞n=1 is monotone then {Xn}∞n=1 is monotone.

Proof Let {Zn}∞n=1 ∼ π
1− 1−α1

1−α0

and {Z ′
n}∞n=1 ∼ πα0 be independent. Ob-

serve that {Xn}∞n=1 has the same distribution as {max(min(Bn, Zn), Z ′
n)}∞n=1.

It follows from Lemma 3.2 of [5] that {min(Bn, Zn)}∞n=1 is monotone. It then
follows similarly that {max(min(Bn, Zn), Z ′

n)}∞n=1 is monotone.

QED

Lemma 2.2 Let µ be a translation invariant measure on {0, 1}N which is
monotone. Then the following two statements are equivalent.

1.

πp � µ

2. For any n ∈ N

µ(σ(n) = 1|σ(1, . . . , n− 1) ≡ 0) ≥ p.

Proof of Proposition 1.2. Let

An := P(Xn = 1|Xn−1 = · · · = X1 = 0).

Since {Xn}∞n=1 is monotone (Lemma 2.1) and translation invariant it is easy
to see that An is decreasing in n, and therefore the limit A = limn→∞ An

exists. It is now an easy consequence of Lemma 2.2 that this limit is equal
to pmax,µ.

QED

The above results show that when the assumptions of the theorem hold
then

inf
n∈N,ξ∈{0,1}n−1

P(Xn = 1|(Xn−1, . . . , X1) ≡ ξ) = pmax,µ.

It is very easy to find examples for which this statement is not true. For
instance let (X, Y ) ∈ {0, 1} × {0, 1} and P(X = Y = 1) = P(X = Y =
0) = 1/2. This dominates a product measure with positive density so that
pmax,µ > 0, while P(X = 1|Y = 0) = 0.

13



3 Discrete time domination results

This section is devoted to the proof of Theorem 1.3. {(Bn, Xn)}∞n=1 are the
processes defined in the introduction. We start with the following lemma;
we do not include the elementary proof.

Lemma 3.1 The process {Bn}∞n=1 is monotone.

We will also need the following lemma which gives us a recursion formula
of An expressed in terms of An−1.

Lemma 3.2 We have that

An =
CAn−1 + D

1−An−1
, (12)

with C,D as in Theorem 1.3

Proof. The proof is straightforward, however it involves some tedious cal-
culations. We have

An =
P(Xn = 1, Xn−1 = 0|(Xn−2, . . . , X1) ≡ 0)

P(Xn−1 = 0|(Xn−2, . . . , X1) ≡ 0)

=
P(Xn = 1, Xn−1 = 0|(Xn−2, . . . , X1) ≡ 0)

1−An−1
.

Observe that

P(Xn = 1|(Xn−1, . . . , X1) ≡ 0)
= P(Xn = 1|Bn = 1, (Xn−1, . . . , X1) ≡ 0)P(Bn = 1|(Xn−1, . . . , X1) ≡ 0)

+P(Xn = 1|Bn = 0, (Xn−1, . . . , X1) ≡ 0)P(Bn = 0|(Xn−1, . . . , X1) ≡ 0)
= α1P(Bn = 1|(Xn−1, . . . , X1) ≡ 0)

+α0(1− P(Bn = 1|(Xn−1, . . . , X1) ≡ 0))
= α0 + (α1 − α0)P(Bn = 1|(Xn−1, . . . , X1) ≡ 0).

Therefore

P(Bn = 1|(Xn−1, . . . , X1) ≡ 0)

=
P(Xn = 1|(Xn−1, . . . , X1) ≡ 0)− α0

α1 − α0
=

An − α0

α1 − α0
.

Furthermore, using the above we get

P(Xn = 1, Xn−1 = 0|(Xn−2, . . . , X1) ≡ 0)
= P(Xn = 1, Xn−1 = 0|Bn−1 = 1, (Xn−2, . . . , X1) ≡ 0)
×P(Bn−1 = 1|(Xn−2, . . . , X1) ≡ 0)

+P(Xn = 1, Xn−1 = 0|Bn−1 = 0, (Xn−2, . . . , X1) ≡ 0)
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×P(Bn−1 = 0|(Xn−2, . . . , X1) ≡ 0)
= P(Xn = 1|Xn−1 = 0, Bn−1 = 1)

×P(Xn−1 = 0|Bn−1 = 1)
An−1 − α0

α1 − α0

+P(Xn = 1|Xn−1 = 0, Bn−1 = 0)

×P(Xn−1 = 0|Bn−1 = 0)
(

1− An−1 − α0

α1 − α0

)
= [α1(1− γ(1− p)) + α0γ(1− p)](1− α1)

An−1 − α0

α1 − α0

+[α1γp + α0(1− γp)](1− α0)
(

1− An−1 − α0

α1 − α0

)
=

An−1 − α0

α1 − α0

(
[α1(1− γ(1− p)) + α0γ(1− p)](1− α1)

−[α1γp + α0(1− γp)](1− α0)
)

+ [α1γp + α0(1− γp)](1− α0).

Finally observing that

1
α1 − α0

[
[α1(1− γ(1− p) + α0γ(1− p)](1− α1)

−[α1γp + α0(1− γp)](1− α0)
]

=
1

α1 − α0

[
[α1 − (α1 − α0)γ(1− p)]

(1− α1)− [(α1 − α0)γp + α0](1− α0)
]

=
1

α1 − α0

[
[α1(1− α1)− α0(1− α0)

]
− γ(1− p)(1− α1)− γp(1− α0)

= (1− α0 − α1)− γ(1− p)(1− α1)− γp(1− α0)
= (1− α0 − α1)− γ[1− α0 − (1− p)(α1 − α0)],

and that

− α0

α1 − α0

(
[α1(1− γ(1− p)) + α0γ(1− p)](1− α1)

−[α1γp + α0(1− γp)](1− α0)
)

+ [α1γp + α0(1− γp)](1− α0)

=
α1

α1 − α0
[α1γp + α0(1− γp)](1− α0)

− α0

α1 − α0
[α1(1− γ(1− p)) + α0γ(1− p)](1− α1)

=
1

α1 − α0

[
[α0 + (α1 − α0)γp](1− α0)α1

−[α1 − (α1 − α0)γ(1− p)](1− α1)α0

]
15



=
1

α1 − α0

[
α0(1− α0)α1 − α1(1− α1)α0

]
+γp(1− α0)α1 + γ(1− p)(1− α1)α0

= α0α1 + γp(1− α0)α1 + γ(1− p)(1− α1)α0

= α0α1 + γ[(p− α0 + (1− p)α0)α1 + (1− p)α0 − (1− p)α0α1]
= α0α1 + γ[α1(1− α0)− (1− p)(α1 − α0)],

completes the proof.

QED

We are now ready to prove Theorem 1.3.
Proof of Theorem 1.3. From Proposition 1.2 we know that the limit
A = limn→∞ An exists, and therefore we can take the limit of both sides of
equation (12) (An is easily seen to be uniformly bounded away from 1) to
conclude that

A = lim
n→∞

An = lim
n→∞

CAn−1 + D

1−An−1
=

CA + D

1−A
.

This gives us that
A−A2 = CA + D,

and therefore
A2 + (C − 1)A + D = 0,

solving this equation gives

A =
1
2

(
1− C ±

√
(1− C)2 − 4D

)
=

1
2

(
1− C ±

√
(2α1 − (1− C))2 − 4(D + α2

1 − α1(1− C))
)

.

We will now proceed to rule out one of the solutions.

D + α2
1 − α1(1− C)

= α2
1 − α1 + α0α1 + γ(α1(1− α0)− (1− p)(α1 − α0))

+α1((1− α0 − α1)− γ(1− α0 − (1− p)(α1 − α0)))
= γ(α1(1− α0)− (1− p)(α1 − α0))− γα1(1− α0 − (1− p)(α1 − α0))
= γ(−(1− p)(α1 − α0) + (1− p)α1(α1 − α0))
= −γ(1− p)(α1 − α0)(1− α1).

Using that γ(1− p)((α1 − α0)(1− α1)) ≥ 0 we get

1
2

(
1− C +

√
(2α1 − (1− C))2 − 4(D + α2

1 − α1(1− C))
)

≥ 1
2

(
1− C +

√
(2α1 − (1− C))2

)
≥ 1

2
(1− C + (2α1 − (1− C))) = α1.
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Obviously we cannot have
A ≥ α1,

since already (for γ, p ∈ (0, 1))

A2 = P(X2 = 1|X1 = 0) < α1

and A ≤ An for every n. We conclude that

A =
1
2

(
1− C −

√
(1− C)2 − 4D

)
.

Using Proposition 1.2 we then conclude that pmax,µ = A. Finally, the result
for pmin,µ follows from an easy symmetry argument.

QED

Observe that when α0 = α1 = α, {Xn}∞n=1 is i.i.d. and pmax,µ = pmin,µ =
α. Note that in this case C = 1 − 2α − γ(1 − α) and D = α2 + γα(1 − α),
and so

pmax,µ

=
1
2

(
2α + γ(1− α)−

√
(2α + γ(1− α))2 − 4(α2 + γα(1− α)

)
=

1
2

(
2α + γ(1− α)−

√
(γ(1− α))2

)
= α,

as we should get. Similarly one can check that that pmin,µ = α.
Furthermore if we choose γ = 1, {Xn}∞n=1 is again i.i.d. and we would

expect to get that pmax,µ = pmin,µ = α0 + p(α1 − α0). Again, this is easy to
check. Finally, as γ → 0 we get that pmax,µ → α0 and pmin,µ → α1. It is not
hard to see why this is what we should expect.

4 Continuous time domination results

In this section we prove Theorem 1.4.
For T > 0, let DN[0, T ] be the set of functions from [0, T ] to N that are

right-continuous and have left limits. Let DN[0,∞) be defined in the same
way, but with [0, T ] replaced by [0,∞). Let a function be called a count path
if it is a non-decreasing function that takes integer values and has jumps of
size 1. Define Dc ⊂ DN[0, 1] to be the set of count paths. Dc is closed under
the Skorokhod topology, see [4] pg. 137.

Let α0, α1, γ > 0 and let m be such that α0,m := α0/m, α1,m := α1/m,
γm := γ/m ∈ (0, 1). Consider the model in the last section with α0, α1 and
γ replaced by α0,m, α1,m and γm respectively (p is not changed). Denote the
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corresponding processes by {(Bm
n , Xm

n )}∞n=1 but consider only the truncated
part {(Bm

n , Xm
n )}m

n=1. As in the introduction, let

Xc,m
n =

n∑
i=1

Xm
i for n ∈ {1, · · · ,m}.

Define the continuous time version {(Bm
t , Xm

t )}t∈[0,1] by letting

(Bm
t , Xm

t ) = (Bm
n , Xc,m

n ) for t ∈ [n− 1, n)/m and n ∈ {1, · · · ,m}, (13)

and (Bm
t=1, X

m
t=1) = (Bm

m , Xc,m
m ). According to Theorem 1.3, we can couple

the {(Bm
n , Xm

n )}m
n=1 process with an i.i.d. process {Y m

n }m
n=1 with density

pmax,µm (where µm denotes the distribution of {Xm
n }∞n=1) such that

Y m
n ≤ Xm

n ∀n ∈ {1, · · · ,m}. (14)

Here pmax,µm is given by Theorem 1.3. Define {Y c,m
n }∞n=1 in the obvious way

and the continuous time version {Y m
t }t∈[0,1] by letting

Y m
t = Y c,m

n for t ∈ [n− 1, n)/m, n ∈ {1, · · · ,m}

and Y m
t=1 = Y c,m

m . We get from equation (14) that

Xm
t − Y m

t is non-decreasing in t ∀n ∈ {1, · · · ,m}. (15)

We state the following lemma; the proof is an elementary exercise in
convergence in the Skorokhod topology.

Lemma 4.1 The set {(f, g) ∈ Dc ×Dc : f − g is non-decreasing} is closed
in the product Skorokhod topology.

Consider now {(Bt, Xt)}t∈[0,1] defined in section 1. Recall that the flip
rate intensities corresponding to {(Bt, Xt)}t∈[0,1] are

from to with intensity (16)
(0, k) (1, k) γp

(1, k) (0, k) γ(1− p)
(0, k) (0, k + 1) α0

(1, k) (1, k + 1) α1.

for any k ≥ 0. Observe that for {(Bm
n , Xc,m

n )}∞n=1 we have the transition
probabilities

from to with probability (17)
(0, k) (1, k) (γp/m)(1− α1/m)
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(1, k) (0, k) (γ(1− p)/m)(1− α0/m)
(0, k) (1, k + 1) γpα1/m2

(1, k) (0, k + 1) γ(1− p)α0/m2.

(0, k) (0, k) (1− α0/m)(1− γp/m)
(1, k) (1, k) (1− α1/m)(1− γ(1− p)/m)
(0, k) (0, k + 1) (α0/m)(1− γp/m)
(1, k) (1, k + 1) (α1/m)(1− γ(1− p)/m)

Using the flip rate intensities of equations (16) and (17), it is a standard
result to show the next lemma. Again we omit the proof. However see for
instance [6] for a survey on the convergence of Markov processes in general.

Lemma 4.2 The sequence of processes {(Bm
t , Xm

t )}t∈[0,1] defined above and
indexed by m, converges weakly to the Markov process {(Bt, Xt)}t∈[0,1].

QED

We are now ready to prove our main results of this section. We will start
by proving the following lemma.

Lemma 4.3 With the assumptions of Theorem 1.4, we have that

λmax,µ(α0, α1, γ, p) ≥ λ̄.

Proof We will start by constructing the coupling on the finite time-interval
[0, 1] and then argue that we can extend it to infinite time.

Let {(Bm
t , Xm

t , Y m
t )}t∈[0,1] be any sequence of processes indexed by m

where, as indicated by the notation, the marginals {(Bm
t , Xm

t )}t∈[0,1] and
{Y m

t }t∈[0,1] have the distribution of the processes defined at the beginning
of this section. Furthermore assume that these marginals are coupled so that
Xm

t −Y m
t is non-decreasing for every m. Obviously the marginal {Y m

t }t∈[0,1]

converges weakly to a Poisson process {Yt}t∈[0,1] with intensity

lim
m→∞

mpmax,µm

= lim
m→∞

1
2
(α0 + α1 + γ(1− 1

m
α0 − (1− p)

1
m

(α1 − α0)))

−1
2

(
(α0 + α1 + γ(1− 1

m
α0 − (1− p)

1
m

(α1 − α0)))2

−4(α0α1 + γ(α1(1−
1
m

α0)− (1− p)(α1 − α0)))
)1/2

=
1
2

(
α0 + α1 + γ −

√
(α0 + α1 + γ)2 − 4(α0α1 + γ(α0 + p(α1 − α0)))

)
=

1
2

(
α0 + α1 + γ −

√
(α1 − α0 − γ)2 + 4γ(1− p)(α1 − α0)

)
= λ̄.
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Lemma 4.2 shows that also the sequence {(Bm
t , Xm

t )}t∈[0,1] converges weakly.
It can then be argued that the sequence {(Bm

t , Xm
t , Y m

t )}t∈[0,1] is tight and

so there exists a subsequence {{(Bm(k)
t , X

m(k)
t , Y

m(k)
t )}t∈[0,1]}∞k=1 that con-

verges weakly to some process {(B̃t, X̃t, Ỹt)}t∈[0,1]. Of course, the marginal
distribution {(B̃t, X̃t)}t∈[0,1] must be equal to the distribution of {(Bt, Xt)}t∈[0,1],

and the marginal distribution {Ỹt}t∈[0,1] must be equal to the distribution
of {Yt}t∈[0,1]. Furthermore using Lemma 4.1 we conclude that

Xt − Yt is non-decreasing. (18)

It not hard to see that we can adapt the proof to work for any time-interval
[0, T ]. It is then easy to construct the coupling on DN[0,∞). Hence we have
established that

λmax,µ(α0, α1, γ, p) ≥ λ̄.

QED

Considering {(Bm
n , Xm

n )}∞n=1, let for every m, i ≥ 1 Am
i := P(Xm

i =
1|Xm

i−1 = · · · = Xm
1 = 0), and let Am := pmax,µm = limi→∞ Am

i . In our next
lemma, we will need that Tm (where T > 0) is an integer, which will not
always be the case. However, adjusting the proofs for this is trivial and we
therefore leave it to the reader. The same comment applies for other results
to follow.

Lemma 4.4 For any T > 0,

lim
m→∞

mAm
Tm = λ̄ + (pα1 + (1− p)α0 − λ̄)

e−(α0+α1+γ)T

e−λ̄T P(Xt = 0 ∀t ∈ [0, T ])
.

Proof Let Cm, Dm denote C,D of Theorem 1.3 with parameters α0/m,
α1/m, γ/m and p. By Lemma 3.2, for any n,

Am
n −Am

=
CmAm

n−1 + Dm

1−Am
n−1

− CmAm + Dm

1−Am

=
(CmAm

n−1 + Dm)(1−Am)− (CmAm + Dm)(1−Am
n−1)

(1−Am
n−1)(1−Am)

=
Cm(Am

n−1 −Am) + Dm(Am
n−1 −Am)

(1−Am
n−1)(1−Am)

= (Am
n−1 −Am)

Cm + Dm

(1−Am
n−1)(1−Am)

= · · · = (Am
1 −Am)

(
Cm + Dm

1−Am

)n−1 1∏n−1
k=1(1−Am

k )
.
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Furthermore

Cm + Dm

= (1− α0/m− α1/m)− γ/m(1− α0/m− (1− p)(α1/m− α0/m))
+α0α1/m2 + γ/m(α1/m(1− α0/m)− (1− p)(α1/m− α0/m))

= 1− α0/m− α1/m + α0α1/m2 − γ/m(1− α0/m− α1/m(1− α0/m))
= (1− α0/m)(1− α1/m)(1− γ/m).

Recall also that we in Lemma 4.3 proved that λ̄ = limm→∞ mAm. We get
that

1. limm→∞(Cm + Dm)Tm−1 = e−(α0+α1+γ)T

2. limm→∞(1−Am)Tm−1 = limm→∞ e(Tm−1) log(1−Am)

= limm→∞ e(Tm−1)(−Am+O((Am)2)) = e−λ̄T

3. limm→∞
∏Tm−1

k=1 (1−Am
k ) = limm→∞ P(Xm

t = 0 ∀t ∈ [0, T − 1/m])
= P(Xt = 0 ∀t ∈ [0, T ])

4. mAm
1 = m(pα1/m + (1− p)α0/m) = pα1 + (1− p)α0.

Therefore

lim
m→∞

mAm
Tm (19)

= lim
m→∞

mAm + (mAm
1 −mAm)

(
Cm + Dm

1−Am

)Tm−1 1∏Tm−1
k=1 (1−Am

k )

= λ̄ + (pα1 + (1− p)α0 − λ̄)
e−(α0+α1+γ)T

e−λ̄T P(Xt = 0 ∀t ∈ [0, T ])
,

as desired.

QED

Next we prove the upper bound in Theorem 1.5 of λT
max,µ(α0, α1, γ, p).

Lemma 4.5 For every choice of α0, α1, γ, T > 0, with α0 ≤ α1 and p ∈
(0, 1) we have that there exists a constant E > 0, depending on α1, α0, γ and
p such that

λT
max,µ(α0, α1, γ, p) ≤ λ̄ +

1
T

(pα1 + (1− p)α0 − λ̄)
1− e−TE

E
.

Proof of Lemma 4.5 We have that

P(Xm
t = 0 ∀t ∈ [0, T ]) =

Tm∏
k=1

(1−Am
k ) (20)

= e
∑Tm

k=1 log(1−Am
k ) = e−

∑Tm
k=1 Am

k +O((Am
k )2) = eO(1/m)−

∑Tm
k=1 Am

k .
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Using equation (20) it is easy to see that it suffices to get an estimate on∑Tm
k=1 Am

k . To that end, let n > 0 be an integer and let Tk := kT/n for
k ∈ {1, . . . , n}. Using that for fixed m, Am

k is decreasing in k, we get that

Tm∑
k=1

Am
k =

T1m∑
k=1

Am
k +

T2m∑
k=T1m+1

Am
k + · · ·+

Tnm∑
k=Tn−1m+1

Am
k

≤ T1mAm
1 + (T2 − T1)mAm

T1m + · · ·+ (Tn − Tn−1)mAm
Tn−1m.

Using equation (19), that mAm
1 = pα1+(1−pα0) and that (Tk−Tk−1) = T/n

for every k, we get that

lim
m→∞

Tm∑
k=1

Am
k ≤ T

n
(pα1 + (1− p)α0) (21)

+
n−1∑
k=1

T

n

[
λ̄ + (pα1 + (1− p)α0 − λ̄)

e−(α0+α1+γ)Tk

e−λ̄TkP(Xt = 0 ∀t ∈ [0, Tk])

]
.

Note that the existence of this limit follows from the existence of the limit
on the left hand side of equation (20). We observe that trivially P(Xt =
0 ∀t ∈ [0, T ]) ≥ e−α1T and so we get that

e−(α0+α1+γ)Tk

e−λ̄TkP(Xt = 0 ∀t ∈ [0, Tk])
≤ exp(−(α0 + α1 + γ)Tk + λ̄Tk + α1Tk)

= exp(
−Tk

2

(
α0 + α1 + γ +

√
(α1 − α0 − γ)2 + 4γ(1− p)(α1 − α0)

)
+ α1Tk)

= exp(
−Tk

2
(α0 + α1 + γ + |α1 − α0 − γ|+ 2E) + α1Tk)

= exp(Tk(α1 −max(α1, α0 + γ)− E)) ≤ e−ETk ,

where E solves the equation

|α1 − α0 − γ|+ 2E =
√
|α1 − α0 − γ|2 + 4γ(1− p)(α1 − α0).

We get that
n−1∑
k=1

T

n

e−(α0+α1+γ)Tk

e−λ̄TkP(Xt = 0 ∀t ∈ [0, Tk])
(22)

≤ T

n

n−1∑
k=1

e−ETk =
T

n

n−1∑
k=1

(e−ET/n)k

=
T

n

(
1− e−TE

1− e−TE/n
− 1
)

=
T

n

(
e−TE/n − e−TE

1− e−TE/n

)

=
T

n

(
e−TE/n − e−TE

TE/n +O(1/n2)

)
=

(
e−TE/n − e−TE

E +O(1/n)

)
.
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Combining equations (21) and (22) and taking the limit as n tends to infinity
(after taking the limit as m tends to infinity), we get that

lim
m→∞

Tm∑
k=1

Am
k ≤ T λ̄ + (pα1 + (1− p)α0 − λ̄)

1− e−TE/2

E
.

Combining equation (20) with this yields

P(Xt = 0 ∀t ∈ [0, T ]) = lim
m→∞

P(Xm
t = 0 ∀t ∈ [0, T ])

≥ exp

(
−

(
T λ̄ + (pα1 + (1− p)α0 − λ̄)

1− e−TE/2

E

))
.

Finally we conclude that

λT
max,µ(α0, α1, γ, p) ≤ λ̄ +

1
T

(pα1 + (1− p)α0 − λ̄)
1− e−TE/2

E
.

QED

Remark: It is interesting that in the above proof we “lift ourselves up by
the boots” by using a simple estimate for P(Xt = 0 ∀t ∈ [0, T ]) to obtain a
better one.

Proof of Theorem 1.4. The first statement follows immediately from
Lemmas 4.3 and 4.5, by letting T tend to infinity.

We can of course trivially conclude that λmin,µ(α0, α1, γ, p) ≤ α1. To see
why we have equality consider the event

{There are at least k arrivals during [0, 1]}.

Let α < α1, we have that

Poiα(There are at least k arrivals during [0, 1]) =
∞∑

l=k

e−α αl

l!
.

We also see that

Poiγ,p
α0,α1

(There are at least k arrivals during [0, 1]) ≥ pe−γ
∞∑

l=k

e−α1
αl

1

l!
.

Since ∑∞
l=k e−α1

αl
1

l!∑∞
l=k e−α αl

l!

−→k→∞ ∞,

we get that for every α < α1, γ > 0 and p > 0 there exists a k such that

Poiα(There are at least k arrivals during [0, 1])
< Poiγ,p

α0,α1
(There are at least k arrivals during [0, 1]).

23



Obviously this contradicts

Poiγ,p
α0,α1

� Poiα,

and so λmin,µ(α0, α1, γ, p) ≥ α1.

QED

Remark: It is actually possible to prove the statement without using
Lemma 4.5, and we give here a short informal description how this can
be done. To show that λmin,µ ≤ λ̄ directly from Theorem 1.3, start with
the processes {(Bt, Xt)}t≥0 and {Yt}t≥0 with distributions as indicated by
the notation (the latter process with parameter λ) coupled so that {Xt}t≥0

has an arrival whenever {Yt}t≥0 has an arrival. For any m, it is straight-
forward to discretize these processes resulting in processes {(Bm

n , Xm
n )}∞n=1

and {Y m
n }∞n=1 with distributions as indicated by the notation, but with pa-

rameters α0/m+O(1/m2), α1/m+O(1/m2), γ/m+O(1/m2), p and λ/m+
O(1/m2) respectively. Furthermore this is done so that {Xm

n }∞n=1 is coupled
above {Y m

n }∞n=1. Using Theorem 1.3 we arrive at

λ/m +O(1/m2) ≤ pmax,µm ,

where µm is the distribution of {Xm
n }∞n=1. Multiplying with m and letting

m go to infinity gives the result.
In the next section we will need the following easy corollary to Theorem

1.4.

Corollary 4.6 For any δ < min(δ1, δ0 + γ) we can find a 0 < p < 1 close
enough to one so that

Poiδ � Poiγ,p
δ0,δ1

.

Proof. We just need to observe that

lim
p→1

λmax,µ(δ0, δ1, γ, p) (23)

= lim
p→1

1
2
(δ0 + δ1 + γ −

√
(δ1 − δ0 − γ)2 + 4γ(1− p)(δ1 − δ0)))

=
1
2
(δ1 + δ0 + γ − |δ1 − δ0 − γ|) = min(δ1, δ0 + γ).

QED

Observe that

Poiγ,p
δ0,δ1

(There are no arrivals in [0, t]) ≥ (1− p)e−γte−δ0t = (1− p)e−(γ+δ0)t

and that
Poiδ(There are no arrivals in [0, t]) = e−δt.
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Therefore, if δ > γ + δ0, we have for fixed p and some t that

e−δt ≤ (1− p)e−(γ+δ0)t,

and so we cannot have that

Poiδ � Poiγ,p
δ0,δ1

,

which is an alternative way to see why the limit in equation (23) cannot
simply be equal to δ1.

Proof of Theorem 1.5. The upper bound is just Lemma 4.5.
For the lower bound, we start by observing that using Theorem 1.4 we

trivially get that P(Xt = 0 ∀t ∈ [0, T ]) ≤ e−λ̄T . Therefore by equation
(19), using that pα1 + (1− p)α0 ≥ λ̄ (which follows from the fact that λ̄ is
increasing in γ with limit pα1 + (1− p)α0, see remark after Theorem 1.4),

lim
m→∞

mAm
Tm

≥ λ̄ + (pα1 + (1− p)α0 − λ̄)
e−(α0+α1+γ)T

e−2T λ̄

= λ̄ + (pα1 + (1− p)α0 − λ̄)e−TL.

We therefore need to show that λT
max,µ ≥ limm→∞ mAm

Tm. Observe that
the second marginal of the discrete time process {(Bm

n , Xm
n )}Tm

n=1 trivially
dominates an i.i.d. sequence of density Am

Tm. Therefore, going through a
limiting procedure very similar to the one of Lemma 4.3, we get that the
second marginal of {(Bt, Xt)}t∈[0,T ] dominates a Poisson process with inten-
sity limm→∞ mAm

Tm on the time interval [0, T ].
The result for λT

min,µ follows as in the proof of Theorem 1.4.

QED

5 CPREE-results

Proof of Theorem 1.6. For every site s ∈ S the recoveries of the Ψγ,p,A
δ0,δ1

process at that site has the same distribution as the arrivals of a Poiγ,p
δ0,δ1

process. By Corollary 4.6 we can couple the processes Ψγ,p,A
δ0,δ1

and ΨA
δ so

that at every site the former has a recovery whenever the latter does. Fur-
thermore, coupling the infection rates are of course trivial. This gives the
first result (equation (11)).

Trivially the statement cannot hold if δ > δ1. Furthermore, if δ > δ0 +γ,
then by letting x ∈ A, and noting that for T large enough,

Ψγ,p,A
δ0,δ1

(σt(x) = 1 ∀t ∈ [0, T ])

≥ (1− p)e−δ0T e−γT > e−δT ≥ ΨA
δ (σt(x) = 1 ∀t ∈ [0, T ]),

we are done.
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QED

For A ⊂ S such that |A| < ∞, let Ψγ,p,A
δ0,∞,B(A)≡0 denote the CPREE where

a site s ∈ S always is healthy (i.e. in state 0) as long as the background
process of the site s is in state 1. That is, we do not allow the site to become
infected if the background process of the site is in state 1. More precisely,
for any graph G = (S, E) let {(Bt, Yt)}t≥0 be a pair of processes with state
space {{0, 1} × {0, 1}}S such that B0 ∼ πp conditioned on the event that
B0(s) = 0 for every s ∈ A, and let Y0(s) = 1 iff s ∈ A. Observe that the
conditioning does not affect the probability of B0(s) being 0 or 1 for any
s 6∈ A. Let the pair evolve according to the following flip rate intensities at
any site s.

from to with intensity
(0, 0) (1, 0) γp

(0, 1) (1, 0) γp

(1, 0) (0, 0) γ(1− p)

(0, 0) (0, 1)
∑

(s′,s)∈E

Yt(s′)

(0, 1) (0, 0) δ0.

Observe that with this definition the state (1, 1) is not allowed. Informally,
this can be interpreted as letting the rate of recovery when Bt(s) = 1 be
infinite, hence the notation.

Proof of Theorem 1.7. We start by observing that it is easy to see
from the definitions of Ψγ,p,A

δ0,δ1,B0(A)≡0 and Ψγ,p,A
δ0,∞,B(A)≡0 that

Ψγ,p,A
δ0,∞,B(A)≡0 � Ψγ,p,A

δ0,δ1,B0(A)≡0.

We will construct {(Bt, Yt)}t≥0 to have distribution Ψγ,p,A
δ0,∞,B(A)≡0 for some p

close to 0, and couple it with a process {Y ′
t }t≥0 such that {Yt}t≥0 stochas-

tically dominates {Y ′
t }t≥0. It will be easy to see that in turn {Y ′

t }t≥0 will
stochastically dominate Ψλ,A

δ .
We now proceed to the actual construction. Let B0 ∼ πp, conditioned

on the event that B0(s) = 0 for every s ∈ A. For every site s ∈ S, associate
an independent process {Bt(s), Xt(s)}t≥0 such that {1−Bt(s), Xt(s)}t≥0 is
the model of Theorem 1.4 with α0 = 0, α1 = ∆G and with p replaced by
1− p. We get from Theorem 1.4 that

λmax,µ(0,∆G, γ, 1− p)

=
1
2
(0 + ∆G + γ −

√
(∆G − 0− γ)2 + 4γ(1− (1− p))(∆G − 0))

=
1
2
(∆G + γ −

√
(∆G − γ)2 + 4∆Gγp)).
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That is, we can couple the pair of processes {Bt(s), Xt(s)}t≥0 with a Poisson
process {X ′

t(s)}t≥0 with intensity λmax,µ(0,∆G, γ, 1 − p) such that if this
latter process has an arrival then so does {Xt(s)}t≥0. There is a slight issue
with s ∈ A, where we have conditioned that B0(s) = 0. However, this
corresponds to conditioning that the background process of Theorem 1.4
starts in state 1, and it is not hard to see that the conclusion of the theorem
is still valid in this case. Informally, if we in this theorem start with the
background process in state 1, this means that we are starting in the higher
intensity state, and so it becomes “easier to dominate”. It is easy to make
this statement precise.

Let for every s ∈ S, {Dt(s)}t≥0 be a Poisson process with intensity
δ0, independant of each other and all other processes, and consider some
quadruple {Bt(s), Xt(s), X ′

t(s), Dt(s)}t≥0 with marginal distributions as in-
dicated by the notation. We now proceed to construct {(Bt, Yt)}t≥0 (the
first marginal is of course already defined) and {Y ′

t }t≥0 from these four pro-
cesses. Let Y0(s) = Y ′

0(s) for every s ∈ S and let Y0(s) = Y ′
0(s) = 1 iff s ∈ A.

Let for every s ∈ S {(Bt(s), Yt(s))}t≥0 and {Y ′
t (s)}t≥0 denote the marginals

of the processes {(Bt, Yt)}t≥0 and {Y ′
t }t≥0 at the site s.

Let N(s, Yτ (s)), N(s, Y ′
τ (s)) denote the number of neighbors of the site

s that are infected at time τ under {Yt}t≥0 and {Y ′
t }t≥0 respectively. Recall

that by definition, for any s ∈ S, Y0(s) = Y ′
0(s) = 0 if B0(s) = 1. We will

write Xτ (s) 6= Xτ−(s), X ′
τ (s) 6= X ′

τ−(s) and Dτ (s) 6= Dτ−(s) to indicate that
these processes have an arrival at time τ. Observe that by construction, for
every s ∈ S and t ≥ 0, if X ′

τ (s) 6= X ′
τ−(s) then Xτ (s) 6= Xτ−(s). We will

also write Bτ−(s) < Bτ (s) when we mean that the Bt process flips from 0
to 1 at time τ.

At time τ, {(Yt(s), Y ′
t (s))}t≥0 will change:

from to if (24)
(1, 1) (0, 0) Dτ (s) 6= Dτ−(s) or Bτ−(s) < Bτ (s)
(1, 0) (0, 0) Dτ (s) 6= Dτ−(s) or Bτ−(s) < Bτ (s)

and also:

from to with probability if
(0, 0) (1, 1) N(s, Y ′

τ (s))/∆G X ′
τ (s) 6= X ′

τ−(s)
(0, 0) (1, 0) (N(s, Yτ (s))−N(s, Y ′

τ (s)))/∆G X ′
τ (s) 6= X ′

τ−(s)
(0, 0) (1, 0) N(s, Yτ (s))/∆G X ′

τ (s) = X ′
τ−(s),

Xτ (s) 6= Xτ−(s)
(1, 0) (1, 1) N(s, Y ′

τ (s))/∆G X ′
τ (s) 6= X ′

τ−(s).

(25)

No other transitions are allowed. Note that by construction {Xt(s)}t≥0 and
{X ′

t(s)}t≥0 only have arrivals when {Bt(s)}t≥0 is in state 0. Therefore, these
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rates make sure that {Yt}t≥0 and {Y ′
t }t≥0 are in state 0 when {Bt(s)}t≥0 is

in state 1. Note also that since N(s, Y ′
0(s)) = N(s, Y0(s)) for every s ∈ S,

the rates make sure that

Y ′
t (s) ≤ Yt(s) ∀s ∈ S, t ≥ 0,

and that N(s, Y ′
t (s)) ≤ N(s, Yt(s)) for every s ∈ S and t ≥ 0.

It remains to check that {(Bt, Yt)}t≥0 and {Y ′
t }t≥0 have the right distri-

bution. As noted above {Yt}t≥0 is 0 if {Bt}t≥0 is 1. Furthermore it is easy
to see that when {Bt}t≥0 is 0, {Yt}t≥0 flips from 0 to 1 at rate N(s, Yτ (s))
and from 1 to 0 at rate δ0. It is also easy to see that {Y ′

t }t≥0 flips from 1
to 0 at a rate which is the minimum of two exponentially distributed times
with parameters δ0 and γp, the latter being the rate at which {Bt}t≥0 flips
from 0 to 1. Hence {Y ′

t }t≥0 flips from 1 to 0 at rate δ0 +γp and by choosing
p small enough this is less that δ. It also not hard to see that {Y ′

t }t≥0 flips
from 0 to 1 at a rate λmax,µ(0,∆G, γ, 1−p)N(s, Y ′

t (s))/∆G. Furthermore by
choosing p perhaps even smaller, we get that

λmax,µ(0,∆G, γ, 1− p)N(s, Y ′
t (s))/∆G

=
N(s, Y ′

t (s))
2∆G

(∆G + γ −
√

(∆G − γ)2 + 4∆Gγp)) ≥ λN(s, Y ′
t (s)).

Here we used that γ ≥ ∆G. Therefore {Y ′
t }t≥0 is a contact process with

infection rate larger than λ and with recovery rate less that δ, and so the
distribution of {Y ′

t }t≥0 dominates Ψλ,A
δ .

QED

Example 5.1

Let S = Z and A = {−n, . . . , 0}. We have that

Ψγ,p,A
δ0,∞,B0(A)≡0(σt(1) = 0 ∀ t ∈ [0, T ])

≥ Ψγ,p,A
δ0,∞,B0(A)≡0(Bt(1) = 1 ∀ t ∈ [0, T ]) = pe−γT .

Furthermore, using Corollary 3.22 and Theorem 3.29 of [10], it follows after
some work that for some constants K, ε, ε′ > 0,

Ψλ,A
δ (σt(1) = 0 ∀ t ∈ [0, T ]) ≤ Ke−εn + e−ε′T .

By letting n go to infinity we see that if γ < ε′ we cannot have

Ψλ,A
δ � Ψγ,p,A

δ0,∞,B0(A)≡0.

Furthermore it is possible to modify this example to work for large δ1 rather
than δ1 = ∞. This is done by considering how long the site {1} is infected
during the timeinterval [0, T ] rather than the probability of this site not
being infected at all during [0, T ].
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Example 5.2

Assume that x, y ∈ S, are neighbours and that λ = 1. We have that
Ψλ,{x}

δ (σt(y) = 1) = t+ o(t) while Ψγ,p,{x}
δ0,∞,B0(x)=0(σt(y) = 1) = (1−p)t+ o(t),

hence for p positive we can find t small enough so that Ψλ,{x}
δ (σt(y) = 1) >

Ψγ,p,{x}
δ0,∞,B0(x)=0(σt(y) = 1).

We are now ready to prove Theorem 1.8.
Proof of Theorem 1.8. We will start with the existence of pc1 and pc2.

Let 0 < p1 ≤ p2 < ∞ and let {B1
t }t≥0, {B2

t }t≥0 be two background
processes with parameters p1, p2 respectively. Let B1

0 have distribution πp1

and B2
0 have distribution πp2 and couple them so that B1

0(s) ≤ B2
0(s) for

every s ∈ S. It is easy to see that we can then couple the processes so that

B1
t (s) ≤ B2

t (s) ∀t ≥ 0, ∀s ∈ S.

Using these processes to construct {(B1
t , Y 1

t )}t≥0 and {(B2
t , Y 2

t )}t≥0 with
distributions Ψγ,p1,{s}

δ0,δ1
and Ψγ,p2,{s}

δ0,δ1
, it is easy to see that we can couple the

marginals {Y 1
t }t≥0, {Y 2

t }t≥0 so that

Y 2
t (s) ≤ Y 1

t (s) ∀t ≥ 0, ∀s ∈ S.

This establishes the existence of pc1 and pc2.
Consider now the part of statement 4 concerning pc2 > 0. Choose δ > δ0

close enough to δ0 and λ < 1 close enough to 1 so that the contact process
Ψγ,{s}

δ survives weakly. Observing that Ψγ,p,{s}
δ0,∞ is a convex combination of

Ψγ,p,{s}
δ0,∞,B(s)=0 and Ψγ,p,A

δ0,∞,B(s)=1 and using Theorem 1.7 gives the result.
All of the statements about pc1, pc2 > 0 are proved in exactly the same

way. All of the statements about pc1, pc2 < 1 are proved in a similar way, but
follow even easier since we can use Theorem 1.6 directly without worrying
about the initial state of the background process at s.

QED

Proof of Proposition 1.9. We will show the theorem for pc2, the proof
for pc1 is identical. First, we use Taylor expansion to see that

lim
γ→∞

λmax,µ(δ0, δ1, γ, p)

= lim
γ→∞

1
2
(δ0 + δ1 + γ −

√
(δ0 + δ1 + γ)2 − 4(δ0δ1 + γ(δ0 + p(δ1 − δ0))))

= lim
γ→∞

1
2
(δ0 + δ1 + γ)

(
1−

√
1− 4

δ0δ1 + γ(δ0 + p(δ1 − δ0))
(δ0 + δ1 + γ)2

)
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= lim
γ→∞

1
2
(δ0 + δ1 + γ)

1−

1−
4 δ0δ1+γ(δ0+p(δ1−δ0))

(δ0+δ1+γ)2

2

+O(
1
γ2

)


= lim

γ→∞

δ0δ1 + γ(δ0 + p(δ1 − δ0))
δ0 + δ1 + γ

+O(
1
γ

) = δ0 + p(δ1 − δ0).

It is now clear from Theorem 1.4, the proof of Theorem 1.6 and the above
calculation that given any ε > 0, we can find γ′ large enough so that with
δ = δ0 + p(δ1 − δ0)− ε we have that for all γ ≥ γ′

Ψγ,p,A
δ0,δ1

� ΨA
δ

and so the Ψγ,p,A
δ0,δ1

dies out if δ0 + p(δ1 − δ0) − ε > δc2. This is the same as
saying that for any ε > 0 there exists γ′ large enough so that for all γ ≥ γ′,
if

p >
δc2 − δ0 + ε

δ1 − δ0
,

the process dies out. Therefore for every γ ≥ γ′ we have that

pc2(δ0, δ1, γ) ≤ δc2 − δ0 + ε

δ1 − δ0
.

We can therefore conclude that

lim sup
γ→∞

pc2(δ0, δ1, γ) ≤ δc2 − δ0

δ1 − δ0
.

QED

Proof of Proposition 1.10. We show the proposition for pc2, the proof for
pc1 is identical. Using the trivial facts that

√
1− x ≤ 1− x/2 for 0 ≤ x ≤ 1

and that
0 ≤ 4pγ(δ1 − δ0)

(δ0 − δ1 − γ)2
≤ 1

we get that for any p,

λmax,µ(δ0, δ1, γ, p)

=
1
2
(δ0 + δ1 + γ −

√
(δ1 − δ0 − γ)2 + 4γ(1− p)(δ1 − δ0))

=
1
2
(δ0 + δ1 + γ −

√
(δ0 − δ1 − γ)2 − 4pγ(δ1 − δ0))

=
1
2

(
δ0 + δ1 + γ − |δ0 − δ1 − γ|

√
1− 4pγ(δ1 − δ0)

(δ0 − δ1 − γ)2

)

≥ 1
2

(
δ0 + δ1 + γ − |δ0 − δ1 − γ|+ 2pγ(δ1 − δ0)

|δ0 − δ1 − γ|

)
= δ0 +

pγ(δ1 − δ0)
|δ0 − δ1 − γ|

.
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Therefore, for every p > 0, we can choose δ0 < δc2 sufficiently close to δc2 so
that λmax,µ(δ0, δ1, γ, p) > δc2. Therefore, as above, the process Ψγ,p,A

δ0,δ1
dies

out and therefore
lim

δ0↑δc2

pc2(δ0, δ1, γ) < p.

Since p > 0 was arbitrary, limδ0↑δc2 pc2(δ0, δ1, γ) = 0 and we are done.

QED

6 Open questions

We here list some open questions related to the results of this paper.

1. Do either of the critical values pc1 and pc2 depend on the initial state
of the background process?

2. Instead of studying the CPREE model one could study other inter-
acting particle systems such as a stochastic Ising model in a random
evolving environment.

3. Is it possible to generalize the model used for the background process
in some way? For instance, can we analyze the situation where we
allow more than 2 different states?
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